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Abstract

This work addresses the identification problem of a discrete-time nonlinear
system composed by linear and nonlinear subsystems. Systems in this class
will be represented by Linear Fractional Transformations. Iterative identifi-
cation procedures are examined, that alternate between the estimation of the
linear and the nonlinear components. The burden of identification falls nat-
urally on the nonlinear subsystem, as techniques for identification of linear
systems have long been established. Two approaches are examined. A point-
wise identification of the nonlinearity, recently proposed in the literature, is
applied and its advantages and drawbacks are outlined. An alternative pro-
cedure that employs piecewise affine approximation techniques is proposed.
Numerical examples demonstrate the efficiency of the proposed algorithm.
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Chapter 1

Introduction

Whenever a linear model fails to explain a system accurately, nonlinear mod-
els are employed. Nonlinear system identification has been an active research
field in the last few decades and a number of black-box identification ap-
proaches have been proposed in the literature. For an extensive overview the
interested reader is referred to the survey paper [16].

However, real world systems often consist of interconnected linear and
nonlinear components. The simplest and most commonly arising examples
are the Hammerstein and Wiener systems, a serial connection of a nonlin-
ear followed by a linear part, or vice versa, respectively. More complex
networked structures are also encountered. A general framework for repre-
senting such interconnected systems based on the Linear Fractional Trans-
formations (LFTs) was introduced in [3]. Exploiting networked structures in
the identification process is expected to be beneficial in terms of complex-
ity and accuracy of the identified model. In spite of this, identification of
interconnected systems has received little attention so far.

In this work we address the identification problem for an LFT intercon-
nection composed by a linear time-invariant system and a static nonlinearity.
First we study the work of [6], where the linear part is assumed to be known
and the authors propose a nonparametric, point-wise, estimation algorithm
for the static nonlinear map of the interconnected system. We integrate this
algorithm into an iterative procedure that interchanges between the identi-
fication of the linear and the nonlinear part. Iterative schemes have been
extensively used in nonlinear system identification, see for example the sem-
inal paper [12].

Further, we develop an alternative iterative scheme, based on Piece Wise
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Affine (PWA) approximation of the static nonlinearity. Piece Wise Affine
system identification has recently attracted a lot of attention due to the
universal approximation properties of PWA maps [7, 2]. In PWA identifi-
cation one needs to estimate a suitable partition of the regressors domain
and the parameters of the affine submodels in each region of the partition.
Recently proposed identification techniques can be divided into two classes.
The ones that fix the number of affine submodels to be estimated a priori
[5, 13, 15, 11, 8] and these that estimate it from the data [10, 4, 1]. An
extensive overview on PWA system identification can be found in [14].Here,
we make use of the bounded-error identification technique proposed in [1]
to approximate the system nonlinearity by a PWA map. Identification of
the linear part is tackled via standard techniques [9]. Numerical examples
demonstrate that the proposed iterative scheme is able to exploit the knowl-
edge of the system interconnection structure effectively.

In Chapter 1 we formulate the identification problem rigorously. In Chap-
ter 2 we summarize the point-wise identification approach of [3] and integrate
it into an iterative scheme for the identification of an LFT system structure.
Motivated by the limitations of this method, in Chapter 3 we develop a new
iterative algorithm that employs the PWA identification technique of [1] for
the approximation of the nonlinear component. Numerical examples demon-
strate the suitability of the proposed method. We conclude this report with
a discussion on the identifiability of the proposed algorithm and directions
for future research.
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Chapter 2

Problem Formulation

The problem of identifying a discrete time networked system composed by
linear and nonlinear components is addressed in this project. Such systems
are represented under a general framework by Linear Fractional Transforma-
tions (LFTs). LFTs are a very flexible structure that can be used to model
any dynamical system consisting of interconnections of linear and nonlinear
components. Moreover, any interconnection of two or more LFTs results in
a new LFT, so LFT can be regarded as a generalized form of any dynamical
system consisting of linear and nonlinear parts.

A Linear Fractional Transformation is of the form of Figure 2.1, where
uk ∈ Rn and yk ∈ Rm are given (measured) input and output sequences,ek ∈
Rl is a noise term sequence, possibly of a known class. In Figure 2.1, L

Figure 2.1: LFT form of a dynamical system
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describes the overall linear dynamics of the system and can be partitioned as

L =
[ Lyu Lye Lyw

Lzu Lze Lzw

]
. (2.1)

Moreover, N is a nonlinear function, N : Rq → Rp with N (z) = w.
In [6] a method is proposed for the identification of the nonlinear map

N under the assumptions that the linear system is known, the input signal
to the nonlinearity, z, is measurable and the nonlinear map N is static. An
estimate N̂ is then identified by specifying its input-output pairs (z, ŵ) such
that ŵ = N̂ (z). That is, the method consists in point-wise estimation of the
unknown signal w.

In this work we assume that the linear system belongs in a known class
and its parameters are to be identified. Moreover, z is a regression vector
which at each time point k = 1, ..., N consists of ny past values of the output
{yk, k = 1, ..., N} and the current and nu past values of the input {uk, k =
1, ...N}, i.e.

zk = [ yT
k−1 . . . yT

k−ny
uT

k . . . uT
k−nu

]T , (2.2)

hence, z ∈ Rq with q = nym + (nu + 1)n. Finally, the nonlinear map is
assumed to be unknown. In contrast to [6] we do not impose any restrictions
on the structure of the nonlinear function N . Rather we wish to approximate
it by a piece wise affine (PWA) map so that we obtain an analytical form
for the unknown nonlinearity. A PWA map is a function g : Rq → Rp of the
form

g(z) =

{ φT θ1 if z ∈ X1
...

...
φT θs if z ∈ Xs

where φ = [ zT 1 ]T , θi ∈ Rq+1, i = 1, ..., s are the parameters of each
affine submodel, X ⊆ Rq is the set of domain of the regression vector z and
{Xi, i = 1, ..., s} is a complete partition of X . Each Xi, i = 1, ..., s is assumed
to be a convex polyhedron described by

Xi = {z ∈ Rq : HT
i φ ¹ 0}, (2.3)

where Hi, i = 1, ..., s are constant vectors in Rq+1. In [1] an algorithm is
proposed for the identification of PWA models, where the minimum number
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s of submodels along with their parameters θi’s and the parameters of the
convex polyhedra Hi’s ,i = 1, ..., s are estimated. Our target is to identify
the LFT structure in an iterative fashion interchanging between identification
of the linear and nonlinear components, using standard techniques for the
identification of the linear system, such as the prediction error method, and
the PWA techniques of [1] for the identification of an approximating PWA
map for the unknown nonlinearity.

For the identification process, we have at our disposal N pairs of in-
put/output measurements {uk,yk}N

k=1.

We consider the model

A(q)yk = B(q)uk + wk + C(q)ek (2.4a)

wk = N (zk) (2.4b)

for k = 1, ..., N , where zk ,k = 1, ..., N is given by (2.2), p = l = m = n = 1,
q = ny + nu + 1 and A(q), B(q) and C(q) are given by

A(q) = 1− a1q
−1 − a2q

−2 − ...− anaq
−na (2.5a)

B(q) = b1 + b2q
−1 + ... + bnb

q−nb (2.5b)

C(q) = 1 + c1q
−1 + ... + cncq

−nc (2.5c)

where the orders na, nb and nc are known. In this setting we then have

Lyu = B(q)
A(q)

Lyw = 1
A(q)

Lye = C(q)
A(q)

This choice of Lyu, Lyw and Lye is not representative of the general case
for the linear system L. However this structure is preferred in terms of
simplicity of the resulting model.

As discussed above, our target is to identify the system in an iterative
fashion, interchanging between identification of linear and nonlinear parts.
For the linear part the identification task reduces to the estimation of the
linear model’s parameters

a =
[
1 a1 a2 ... ana

]
b =

[
b1 b2 ... bnb

]
c =

[
1 c1 ... cnc

]
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Identification is performed using standard techniques like the prediction error
method. The nonlinear function N is of unknown structure and only its in-
put sequence {zk}N

k=1 is available to us. We explore two different approaches
for the identification of the nonlinear component. First we implement the
point-wise identification method of [6]. Then we integrate the PWA iden-
tification algorithm for nonlinear dynamical systems of [1] in the iterative
scheme to obtain a PWA approximating map of the unknown nonlinearity.
Finally, we conclude on the performance of these algorithms and we propose
further directions for future investigation.
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Chapter 3

Point-wise identification

Identification of the nonlinear component N of a LFT structure is performed
in [6]. There are several assumptions imposed in this work, the most impor-
tant of which are that the linear system L is known and the nonlinear map
N is static. An estimate N̂ is formed by specifying the pairs (z, ŵ) such
that ŵ = N̂ (z). In this respect the identification problem reduces to an es-
timation problem, that is infer the internal signal w given the input-output
sequences of the system (u, y).

Remember that in general the LFT structure of Figure 2.1 is described
by

y = Lyuu + Lyww + Lyee (3.1)

As in all estimation problems under this setting, given the input-output se-
quences (u, y) there may be many pairs of signals (ê, ŵ) that are consistent
with (3.1). In [6], the assumption that the nonlinear operator is static is ex-
ploited to the development of a metric called the dispersion function D(z, w).
This metric forces the estimation algorithm described below to prefer those
signals (e, w) that are consistent with the static nature of the nonlinear map.
The dispersion function D(z, w) is given by

D(z, w) = N(‖∆Πzz‖2 + ‖∆Πzw‖2), (3.2)

where Πz is a permutation operator that sorts z in an increasing order and
∆ is a first order difference operator. In [6] it is proved that the dispersion
of (z, w) is quadratic in w, i.e. there exists a positive definite matrix Q and
a scalar r such that

D(z, w) = wT Qw + r. (3.3)
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To estimate the unknown signals (e, w) the following optimization prob-
lem is solved :

mine,w ‖e‖2 + βwT Qw
s.t. (e, w) ∈ CL(u, y)

(3.4)

where CL(u, y) = {(e, w) ∈ Rl × Rp|y = Lyuu + Lyww + Lyee} and β is
a weighting parameter that is used to trade-off between the error and the
desired smoothness properties.

Problem (3.4) is a quadratic minimization problem with 2N unknowns
to be estimated. In [6] a parameterization of the unknown signals (e, w) is
proposed that reduces the complexity of the problem. All consistent signals
(e, w) ∈ CL(u, y) are parameterized as

(e, w) = (e0 + Bef, w0 + Bwf), (3.5)

where f is a free signal and
[Be Bw

]
is a null system of

[Lye Lye

]
such that

LyeBe + LywBw = 0. In (3.5), (e0, w0) is a particular solution of (3.1) which
is computed using standard techniques such as the Kalman Filter or Kalman
Smoother. Under the above parameterization the optimization problem (3.4)
is reformulated as an unconstrained least squares problem :

f̂ = arg min
f

∥∥∥
[

e0

√
βQ

1
2 w0

]
+

[ Be√
βQ

1
2Bw

] ∥∥∥
2

(3.6)

so that (ê, ŵ) = (e0 + Bef̂ , w0 + Bwf̂).
In the sequel we explore the performance of the Kalman Filter and the

Kalman Smoother as a mean of estimating the unknown sequence w for the
model structure (2.4). Further we develop an iterative algorithm for the
identification of the LFT model in the case where the linear system need also
to be identified.

3.1 Kalman filtering

In this section we estimate the unknown sequence {wk}N
k=1, the output se-

quence of the nonlinear map N of Figure 2.1. For simplicity of notation we
consider the model structure (2.4) and we assume that nb ≤ na.

8



The input-output model system (2.4) is transformed into state-space form
as follows : Model (2.4) is equivalent to

yk = y1
k + y2

k (3.7a)

y1
k =

B(q)

A(q)
uk +

1− A(q)

A(q)
wk +

C(q)− A(q)

A(q)
ek (3.7b)

y2
k = wk + ek (3.7c)

where the system (3.7b) is strictly proper and admits a canonical observation
state space form as :

xk+1 = Fxk + G




uk

ek

wk


 (3.8a)

y1
k = Hxk (3.8b)

where, F =




0 ... 0 −ana

1 ... 0 −ana−1
...

...
...

0 ... 1 −a1


, G =




bna cna − ana −ana

...
...

...
b1 c1 − a1 −a1


 and H =

[
0 ... 0 1

]
.

Thus, from (3.7) and (3.8) our system is given in state-space form by :

xk+1 = Fxk + G




uk

ek

wk


 (3.9a)

yk = Hxk +
[
0 1 1

]



uk

ek

wk


 (3.9b)

This description is used for the application of the Kalman Filter and Smoother.

3.1.1 The Kalman Filter

In order to estimate {wk}N
k=1, wk needs to be included in the state of model

(3.9). Thus, we define a new state zk =

[
xk

wk

]
and the system is now described
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by

zk+1 =

[
F G3

0 0

]

︸ ︷︷ ︸
Ā

zk +

[
G1

0

]

︸ ︷︷ ︸
B̄

uk +

[
G2 O
0 1

]

︸ ︷︷ ︸
Γ

[
ek

wk+1

]
(3.10a)

y1
k =

[
H 1

]
︸ ︷︷ ︸

C̄

zk (3.10b)

where Gi, i = 1, 2, 3 is the ith column of matrix G defined above. So system
(3.7) has state-space representation

zk+1 = Āzk + B̄uk + Γ

[
ek

wk+1

]
(3.11a)

yk = C̄zk + ek (3.11b)

To estimate the state of system (3.11) we assume that the noise sequence
is Gaussian with ek ∼ N(0, σ2

e) and we apply Kalman filtering with correlated

noises. Let ξk =

[
ek

wk+1

]
then the covariance matrices to be used in Kalman

filtering equations are :

Q = Eξkξ
T
l =

[
σ2

e 0
0 σ2

w

]
δkl (3.12a)

R = Eeke
T
l = σ2

eδkl (3.12b)

S = Eξke
T
l =

[
σ2

e

0

]
δkl (3.12c)

Kalman filter equations

P0,0 = V ar(x0)
x̂0,0 = Ex0

Kk = ΓSR−1

Pk,k−1 = (Ā−KkC̄)Pk,k(Ā−KkC̄)T + ΓQΓT −KkRKT
k

Wk = Pk,k−1C̄
T (C̄Pk,k−1C̄

T + R)−1

x̂k,k−1 = Āx̂k−1,k−1 + B̄uk−1 + Kk(yk−1 − C̄x̂k−1,k−1)
x̂k,k = x̂k,k−1 + Wk(yk − C̄x̂k,k−1) for k = 1, ..., N
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wk distribution
uk distribution N(0,1) N(0,10) N(0,100) u2

k−1

U(0,1)
U(-1,1)
N(0,10)

22.70 % 61.58 % 86.90 % 29.37 %
21.17 % 58.24 % 86.12 % 0
26.18 % 69.81 % 76.29 % 0

Table 3.1: Measure of fit between true and estimated values of w

Note that {ξk, k = 1, ..., N} is not a Gaussian process, therefore the Kalman
filter is applied as the best available linear estimator.

Example 1

Consider the system

yk + yk−1 + 0.2yk−2 − 0.05yk−3 = uk−1 + uk−2 + 0.2uk−3 + wk + ek − 0.5ek−1,
(3.13)

where ek ∼ N(0, 1). System (3.13) is of the form of system (2.4) with a =[
1 1 0.2 −0.05

]
, b =

[
0 1 1 0.2

]
and c =

[
1 −0.5

]
.

In order to check the performance of the Kalman filter in estimating the
unknown sequence {wk}N

k=1 we experiment with different input distributions
for {uk}N

k=1 and different distributions for {wk}N
k=1. As a measure of fit

between the real values of {wk}N
k=1 and the estimated ones {ŵk}N

k=1 we use
the following

FIT (w, ŵ) = (1− ‖w − ŵ‖2

‖w − w̄‖2

)100% (3.14)

where ‖·‖2 is the Euclidean norm and w̄ is the mean of the sequence {wk}N
k=1.

The results are shown in Table 3.1.
We see that the distribution of the input signal {uk}N

k=1 does not play
any significant role in the performance of the Kalman filter. In contrast the
distribution of the signal to be estimated {wk}N

k=1 and the distribution of the
noise sequence {ek}N

k=1 determine the quality of fit between the true and the
estimated values of wk. In cases where the variances of noise {ek}N

k=1 and

input {wk}N
k=1 sequences satisfy σ2

w

σ2
e
' 1 the estimation of the input sequence

is very poor and for σ2
w

σ2
e
¿ 1 there is no fit between estimated and true input

sequence. The quality of fit, however, increases for σ2
w

σ2
e
À 1 as shown in Table

11



3.1.
Further, we compute the innovations process which gives us the estimates

of the noise sequence {êk}N
k=1. From (3.11)

êk = yk − C̄zk. (3.15)

So we have at our disposal estimates {ŵk}N
k=1 and {êk}N

k=1. Filtering these
back through (3.13) we obtain estimates of the output sequence {ŷk}N

k=1. For
all of the cases in Table 3.1 the quality of fit is very satisfactory, FIT (y, ŷ) ≥
95%.

Remember that our system is of the form (3.9b)

yk = Hxk + wk + ek︸ ︷︷ ︸
unknown

(3.16)

and we use the Kalman filter to estimate the input sequence {wk}N
k=1. We

conclude that when the variance of the noise and input sequences are of the
same degree the filter cannot distinguish in between them, therefore resulting
in bad estimates {ŵk}N

k=1, whereas when the input signal is ”richer”, i.e. its
variance is of higher degree than that of the noise sequence,the two signals
are distinguishable and the filter produces better estimates {ŵk}N

k=1.

¦

3.1.2 Kalman smoother

Because of the difficulties that arose in the estimation of w by use of the
Kalman filter we now explore the Kalman smoother, since we have a priori
knowledge of the input/output sequences.

The system is given in state-space form by (3.9)

xk+1 = Fxk + G1uk +
[
G2 G3

] [
ek

wk

]

yk = Hxk +
[
1 1

] [
ek

wk

]

Let ε =

[
ek

wk

]
and Bu = G1, Bε =

[
G2 G3

]
, Dε =

[
1 1

]
, so the system

is given by

S
{xk+1 = Fxk + Buuk + Bεεk

yk = Hxk + Dεεk

12



The Kalman filter equations in state / process innovation form are given
by

K
{mk+1 = (F + KkH)mk + Buuk −Kkyk

νk = Hmk − yk

where Q = Eεkε
T
k =

[
σ2

e 0
0 σ2

w

]
and

Rk = Cov(xk+1, xk+1) = FPkF
T + BεQBT

ε

Sk = Cov(xk+1, yk) = FPkH
T + BεQDT

ε

Tk = Cov(yk, yk) = HPkH
T + DεQDT

ε

and
Pk+1 = Rk − SkT

−1
K ST

k , the Ricatti equation
Kk = −SkT

−1
k , the Kalman gain

Then, the system J = KS gives the Kalman filter in state-innovations /
sequence-innovations form as

J
{(m− x)k+1 = (F + KkH)(m− x)k − (Bε + KkDε)εk

νk = H(m− x)k −Dεεk

i.e.

J ∼
[ F + KkH −(Bε + KkDε)

H −Dε

]

In order to estimate εk we need to find a right inverse system of J , i.e. a
system J ∗ such that JJ ∗ = I. We compute the right inverse of J as in
[17]. For the matrix Dε there exists a right inverse D∗

ε =
[
d1 d2

]
, such that

DεD
∗
ε = I or d1 + d2 = 1, so that any choice of d1 gives a right inverse of Dε

as

D∗
ε =

[
d1

1− d1

]
(3.17)

The inverse system J ∗ is given by

J ∗ ∼
[ F −BεD

∗
εH −(BεD

∗
ε + Kk)

−D∗
εH −D∗

ε

]
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Distributions Kalman Filter Kalman Smoother

Case I
ek ∼ N(0, 1)
wk ∼ N(0, 1)

29.38%
10.76% d1 = 0.2
29.71% d1 = 0.5
19.00% d1 = 0.8

Case II
ek ∼ N(0, 1)

wk ∼ N(0, 10)
58.25%

63.98% d1 = 0.1
57.94% d1 = 0.3
44.14% d1 = 0.5

Case III
ek ∼ N(0, 1)

wk ∼ N(0, 100)
71.38%

77.78% d1 = 0.1
63.86% d1 = 0.3
46.14% d1 = 0.5

Case IV
ek ∼ N(0, 1)
wk = u2

k−1

19.23%
12.01% d1 = 0.2
19.56% d1 = 0.5
11.18% d1 = 0.7

Table 3.2: Kalman filter vs Kalman smoother. Measure of fit between true
and estimated values of w

Kalman smoother equations

ξk−1 = (F −BεD
∗
εH)ξk − (BεD

∗
ε + Kk)νk

εk = −D∗
εHξk −D∗

ενk, for k = N − 1, ..., 1.

Example 1 (continued)

For the system (3.13) we apply the Kalman smoother to estimate the un-
known input sequence {wk}N

k=1 and we compare the quality of fit attained
by using the Kalman filter. Since we can choose any D∗

ε as in (3.17) we
experiment for different D∗

ε ’s as shown on Table 3.2.
The degree of freedom in choosing d1 in (3.17) can be used to trigger

the performance of the smoother. If the degree of σ2
ε

σ2
w

is known and d1

1−d1
is

chosen accordingly we always get a better quality of fit using the smoother.
In cases where no such knowledge is available an immediate solution is to

take Dε =
[
0.5 0.5

]T
. In such cases however, the quality of fit can be at

best as good as the Kalman smoother’s one (Case’s I, IV).
In conclusion the use of the Kalman smoother is beneficial only in cases
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where a priori knowledge for the distribution (variance) of the noise sequence
and the unknown input sequence is available.

3.2 LFT identification algorithm

Under the assumption that the linear system L of the LFT model of Figure
2.1 is known, point-wise estimation of the unknown input sequence w can
be performed by solving the optimization problem (3.6). We now relax this
assumption. Instead we explore a special structure of LFT given by

A(q)yk = B(q)uk + wk + ek (3.18a)

wk = N (zk) (3.18b)

i.e. we consider the model structure (2.4) with C(q) = 1 for ease of compu-
tations. In (3.18), zk is given by the regression vector (2.2) where we assume
to know the orders ny and nu.

The system can be written in semi-regression form as

yk = θT ϕk + wk + ek , for k = 1, ..., N (3.19)

where θ =
[−a1 ... −ana b0 b1 ... bnb

]T
is the unknown parameters’

vector and ϕk =
[
yT

k−1 ... yT
k−na

uT
k ... uT

k−nb

]T
is the regression vector.

Let y =
[
yT

1 ... yT
N

]T
and let u, w, e and ϕ be defined accordingly. The

identification algorithm works as follows :

Algorithm 3.1

Initialization : Set j=0, ŵ0 = 0.

Iteration step j : j = 1, ..., K, K fixed.

Identification of the linear component

Given the estimated sequence ŵj−1 estimate the linear part’s pa-
rameters by solving the optimization problem

θ̂j = min
θ
‖e‖2 = min

θ
‖y − ŵj−1 − θT ϕ‖2 (3.20)
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which is a linear least squares problem.

Identification of the nonlinear component

Compute matrices F j, Bj
u, Bj

e , Hj and Dj
e of system (S).

Get Kalman Smoother estimates of εj
0 =

[
ej

0

wj
0

]

Solve optimization problem (3.6)

f̂ = arg min
f

∥∥∥
[

e0

√
βQ

1
2w0

]
+

[ Be√
βQ

1
2Bw

] ∥∥∥
2

using parameter β as a tuning knob to trade off between identi-
fication error and the required smoothness properties.

Compute ŵj = wj
0 + Bwf̂ .

The initialization of the algorithm with ŵ0 is not restrictive. This choice
however forces the algorithm to fit at the first iteration a linear model that
explains the input-output data as best as possible, i.e. as a first guess we
assume the best case scenario, no nonlinearity exists.

Application of the above algorithm showed that a considerable number
of iterations is needed in order for the identification of both linear and non-
linear parts to be satisfactory (see Example 2.1). This was attributed to the
fact that at first iterations ŵ may not be well estimated and the linear least
squares estimates in problem (3.6) take into account part of the nonlinear
contribution in the system. A modification is thus applied in problem (3.6)
as follows.

Algorithm 3.2

The unknown sequence {wk}N
k=1 can be decomposed as

wk = w̄ + w̃k, for k = 1, ...N

where w̄ is the mean of {wk}N
k=1 and {w̃k}N

k=1 is a zero-mean
sequence.
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Figure 3.1: Estimated parameter of the linear model and point-wise approximated
output.

Let w̄ be estimated along with the parameters of the linear model,

so that φ =
[
ϕT 1

]T
and ϑ =

[
θT w̄

]T
. Then the optimization

problem for the linear part at iteration step j becomes

ϑ̂j = min
ϑ
‖e‖2 = min

ϑ
‖y − ŵj−1 − ϑT φ‖2 (3.21)

Under this formalization the iteration numbers required for the identification
of the system is dramatically reduced. The following examples demonstrate
these results.

Example 2.1
First we consider a system with piecewise linear nonlinearity as below.

yk = 0.8yk−1 + wk + ek (3.22a)

wk =
{ uk−1 , if uk−1 ≥ 0
−0.5uk−1 , if uk−1 < 0

(3.22b)

where u is uniformly distributed in [−5, 5] and the noise is also uniformly
distributed in [−0.2, 0.2]. In Figure 3.1.a wee see the results of the initial
algorithm. Indeed, after 30 iterations the parameter a1 = 0.8 of the linear
model is not well estimated and the nonlinearity although well recovered in
shape is not correctly shifted. Applying the modification described above
the algorithm converges in 4 iterations, as shown in Figure 3.1.b, which is a
significant reduction. Although the nonlinearity is very well approximated,

17



the parameter of the linear component is not well identified, however we see
that no improvement is possible. We note here that these are the best results
obtained for several choices of the weighting parameter β.
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Chapter 4

PWA identification

Having explored the performance and limitations of the point-wise identifi-
cation algorithm we now propose a viable alternative for the identification
of the nonlinear map N . As discussed above we are interested in estimating
a PWA function that approximates the nonlinear map. Recall that a PWA
map is a function g, g : Rq → Rp of the form

g(z) =

{ φT θ1 if z ∈ X1
...

...
φT θs if z ∈ Xs

where φ = [ zT 1 ]T , θi ∈ Rq+1, i = 1, ..., s are the parameters of each
affine submodel, X ⊆ Rq is the set of domain of the regressor vector z and
{Xi, i = 1, ..., s} is a complete partition of X . Each Xi, i = 1, ..., s is assumed
to be a convex polyhedron described by

Xi = {z ∈ Rq : HT
i φ ¹ 0},

where Hi’s, i = 1, ..., s are constant vectors in Rq+1. Again we consider the
system (3.18)

A(q)yk = B(q)uk + wk + ek

wk = N (zk)

which is given in semi-regression form by (3.19)

yk = θT ϕk + wk + ek , for k = 1, ..., N.
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The identification algorithm works as follows :

Algorithm 3.1

Initialization : Set j=0, ŵ0 = 0.

Iteration step j : j = 1, ..., K, K fixed.

Identification of the linear component

Decompose {wk}N
k=1 as

wk = w̄ + w̃k, for k = 1, ...N

where w̄ is the mean of {wk}N
k=1 and {w̃k}N

k=1 is a zero-mean
sequence.

Given the estimated sequence ŵj−1 solve the optimization prob-
lem

ϑ̂j = min
ϑ
‖e‖2 = min

ϑ
‖y − ŵj−1 − ϑT φ‖2 (4.1)

where φ =
[
ϕT 1

]T
and ϑ =

[
θT w̄

]T
as in Algorithm 2.2.

Identification of the nonlinear component

Compute vj = y − (θ̂j)T ϕ. It holds

vj = w + εj (4.2)

where εj describes the overall noise due to system’s noise e and
the linear identification error term. Under the assumption that εj

is bounded by some bound δ, estimate a minimum positive integer
s, a set of parameter vectors {θi}s

i=1 and a polyhedral partition
{Xi}s

i=1 of the regressor set X such that the corresponding PWA
function ĝ satisfies

|vj
k − ĝ(zk)| ≤ δ , for all k = 1, ..., N. (4.3)
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Figure 4.1: Estimated parameter of the linear model and approximated output
by PWA model.

To solve this problem apply the identification algorithm of [1] to
the data (z,vj).

Compute ŵj = PWA(z).

Example 3.1
Consider the system of Example 2.1.

yk = 0.8yk−1 + wk + ek

wk =
{ uk−1 , if uk−1 ≥ 0
−0.5uk−1 , if uk−1 < 0

where u is uniformly distributed in [−5, 5] and the noise is also uniformly
distributed in [−0.2, 0.2].

Estimating the linear component as in (3.6) we obtain the results of Fig-
ures 4.1 and 4.2. As shown, nearly 100 iterations are needed for the system
to be identified satisfactorily. In Figure 4.2 the parameters γ1 and γ2 are the
constant terms of the PWA function, which in the true system have nil value.
However solving the least squares problem (4.1) instead, only 3 iterations are
required which is a dramatic reduction. The respective results are shown in
Figures 4.3 and 4.4.

¦
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by PWA model.
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Figure 4.5: Estimated parameters of the linear model and approximated output
ŵ by PWA function ĝ in Example 1.b .

Example 3.2
Now consider the Hammerstein system

yk = −0.3yk−1 + 0.4yk−2 + wk + ek (4.4a)

wk = u2
k−1 (4.4b)

where u is uniformly distributed in [−2, 2] and the noise is also uniformly dis-
tributed in [−0.1, 0.1]. In Figure 4.5 the estimated parameters of the linear
system and the estimated sequence ŵ are shown. Although convergence is
not as clear as in the previous example, the estimation again is satisfactory
after 4 iterations. The nonlinearity in this example is a parabola in uk−1

and it is approximated by a PWA map that consists of 5 modes, as shown
in Figure 4.5.

¦
We now continue to a more challenging situation.

Example 3.3
Let the system be given by

yk = −0.49yk−2 + 0.5uk−1 − 1.5uk−2 + wk + ek (4.5a)

wk =

{ −0.4yk−1 + uk−1 + 1.5, if 4yk−1 − uk−1 + 10 < 0
0.5yk−1 − uk−1 − 0.5, if 5yk−1 + uk−1 − 10 ≥ 0

and 5yk−1 − uk−1 − 6 ≤ 0
−0.3yk−1 + 0.5uk−1 − 1.7, if 5yk−1 + uk−1 − 6 ≥ 0

(4.5b)
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Figure 4.6: Estimated parameters of the linear model and approximated output
ŵ by PWA function ĝ in Example 2 .

In this example zk =

[
yk−1

uk−1

]
. As shown in Figure 4.6 the algorithm con-

verges in 5 iterations. However the structure turns out to be non-identifiable.
Although the estimates of a2 and b2, the parameters corresponding to yk−2

and uk−2 respectively, are very close to the true values, the estimated param-
eters corresponding to yk−1 and uk−1, namely a1 and b1, are quite different
from the true ones. Since yk−1 and uk−1 take part in both linear and nonlin-
ear maps, it is immediate that the linear model fitted to the data explains as
linearly as possible the data. The nonlinearity in this example is of the form

wk =

{α1yk−1 + β1uk−1 + γ1, H1φ ¹ 0
α2yk−1 + β2uk−1 + γ2, H2φ ¹ 0
α3yk−1 + β3uk−1 + γ3, H3φ ¹ 0

which can be written as

wk = ã1yk−1 + b̃1uk−1 +

{(α1 − ã1)yk−1 + (β1 − b̃1)uk−1 + γ1, H1φ ¹ 0

(α2 − ã1)yk−1 + (β2 − b̃1)uk−1 + γ2, H2φ ¹ 0

(α3 − ã1)yk−1 + (β3 − b̃1)uk−1 + γ3, H3φ ¹ 0

in which case the model equation (4.5) can be written as

yk = (a1 + ã1)︸ ︷︷ ︸
a1

yk−1+a2yk−2+(b1 + b̃1)︸ ︷︷ ︸
b1

uk−1+b2uk−2+(wk−ã1yk−1−b̃1uk−1)+ek

(4.6)
Indeed the iterative algorithm produces estimates for a1 and b1.

¦
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Conclusions

In this report we developed two iterative algorithms for the identification of
LFT system structures. The linear part of susch systems has been identified
using standard techniques available in the literature, while for the identifica-
tion of the nonlinear component we have employed a non-parametric identifi-
cation method based on point-wise approximation and a parametric method
that delivers PWA approximation. The non-parametric method has turned
out to be inadequate for our purposes. The PWA one however has produced
promising results.

There are many issues to be addressed. One is whether the use of the
PWA iterative procedure is beneficial compared to the use of the Piecewise
Aurotoregressive Exogenous (PWARX) model to identify the system as a
whole, i.e. without distinguishing between linear and nonlinear components,
as described in [1]. It is our belief that the separate estimation procedure may
reduce considerably the number of PWA submodels in the system. Another
point of interest is how the method behaves when the linear part is described
by a state-space model instead of an input/output one. Convergence results
are usually ambiguous on iterative procedures, nevertheless it is an area worth
to explore. Finally, issues of identifiability of the LFT structure arise in
more complex systems as demonstrated in Example 3.3. Therefore, rigorous
identifiability conditions need to be established.
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