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Abstract—This paper is concerned with the distributed H∞
filtering problem for a class of discrete-time Takagi–Sugeno (T–
S) fuzzy systems with time-varying delays. The data communica-
tions among sensor nodes are equipped with redundant channels
subject to random packet dropouts that are modeled by mu-
tually independent Bernoulli stochastic processes. The practical
phenomenon of uncertain packet dropout rate is considered, and
the norm-bounded uncertainty of the packet dropout rate is
asymmetric to the nominal rate. Sufficient conditions on the
existence of the desired distributed filters are established by
employing the scaled small gain theorem to ensure that the closed-
loop system is stochastically stable and achieves a prescribed
average H∞ performance index. Finally, an illustrative example
is provided to verify the theoretical findings.

Index Terms—Distributed H∞ filtering, sensor networks, T–
S fuzzy systems, time-varying delays, unreliable communication
links

I. INTRODUCTION

Sensor networks (SNs) are typically composed of a number
of spatially distributed autonomous nodes that are capable
of environment monitoring, data communication and signal
processing. During the past decades, SNs have received sig-
nificant research attention due to their broad applications in
diverse areas such as health care, traffic control, intelligent
buildings, surveillance, industrial automation, and so on [1]–
[4]. The basic issue of distributed filtering over SNs is mainly
concerned with the state estimation of the target plant from not
only its own measurements but also its neighbors’ according
to the topology of the underlying SN [5]–[8]. With explicit
physical meanings in the attenuation against energy-bounded
noises, the H∞ filtering techniques have been applied to
the distributed filtering issues and some useful results have
appeared for a variety of dynamic systems, see, e.g., [9]–[11].

Time delays, which cannot be ignored in many dynamic
systems, constitute a great challenge in distributed filtering
problem. The advances in the field of time-delay systems are
mainly related to the basic stability and/or performance issues,
see e.g., [12]–[17]. It has been shown in [16] that the input-
output (IO) method, which benefits from the application of
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the scaled small gain (SSG) theorem, is fairly effective in
tackling the time-varying delays. Very recently, the two-term
approximation idea proposed in [16] has been demonstrated
to outperform most existing methodologies in terms of a less
approximation error. In addition, since most physical plants or
processes are essentially nonlinear, the studies on distributed
filtering of nonlinear systems with or without time delays have
been carried out in the past few years, see. e.g., [18], [19]. In
[20], a class of Takagi-Sugeno (T–S) fuzzy models, which
is well recognized to be capable of approximating smooth
nonlinear systems to any degree of accuracy, is adopted and
has been shown to be quite helpful in facilitating the design
of distributed filters. On the basics of T–S fuzzy modeling for
nonlinear systems, and their recent advances, we refer readers
to [21]–[24] for more details.

It is worthy noting that, in most of engineering situations,
the data transmissions from the target plant to sensor nodes
are inevitably subject to random packet dropouts, which often
exert a tremendous influence on the filtering performance. So
far, most of efforts have been devoted to the ways how to over-
come the effect of packet dropouts on the SNs where data are
transmitted over one channel [9], [25]–[27]. Yet, in practice,
two or more channels can be simultaneously available for a
concrete application of SN. Intuitively, inclusion of redundant
channels would help resolve the issue of packet dropouts and
even alleviate the effect of disconnection of partial channels.
As such, it is of great necessity and significance to allow for
the use of redundant channels in designing distributed filters
via SNs. However, to the best of the authors’ knowledge, no
insightful investigations have been reported up to date in the
area of distributed filtering with redundant channels.

With regard to the packet dropout rate of each communi-
cation channel, it should be pointed out that almost all the
previous works have assumed that the packet dropout rate
is exactly known, which is rarely the case in practice. The
packet dropout rate is not invariant due to the complex network
environment and fluctuation of power supply, and the upper
and lower bounds of the packet dropout rate can be also
asymmetric to the “nominal” rate. The performance of a filter
designed with a fixed packet dropout rate may become worse if
the actual rate is far from the fixed value. Meanwhile, for some
scenarios, adequate samples for computing the mathematical
expectation of the Bernoulli process are too costly or time-
consuming to acquire. In other words, it is fairly difficult to
determine an exact expectation. Owing to these two reasons,
it makes practical sense to study the issue of uncertain packet
dropout rate and account for its effects on the underscored
distributed filtering performance.
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Based on the aforementioned discussions, in this paper, we
aim at addressing the distributed H∞ filtering problem for a
class of discrete-time T–S fuzzy systems with time-varying
delays. The main contributions of this paper can be summa-
rized as follows. 1) For the first time, the data communications
among sensor nodes are allowed to be conducted along redun-
dant channels, where the random packet dropouts in different
channels are modeled by mutually independent Bernoulli s-
tochastic processes. 2) In each communication channel, the
practical phenomenon of uncertain packet dropout rate is
considered where the norm-bounded uncertainty is used to
describe the packet dropout rate. 3) A two-term approximation
idea [16] is employed for the fuzzy systems with time-varying
delays to reduce the resulting approximation error in model
transformation. The rest of this paper is outlined as follows.
In Section II, some preliminaries and problem formulation
are introduced. Section III is devoted to the problems of
model transformation, stability analysis and distributed H∞
filter design. The necessity of taking uncertain packet dropout
rates into account in the design phase of distributed filters, as
well as the performance improvements by including redundant
channels, are shown via an illustrative example in Section IV.
Finally, the conclusion is drawn in Section V.

Notations: The notation used throughout this paper is fairly
standard. Rn denotes the n-dimensional Euclidean space. The
notation P > 0 (P ≥ 0) means that P is symmetric and
positive (semi-positive) definite. In, 0n and 0m×n represent,
respectively, the n× n identity matrix, the n× n zero matrix
and the m × n zero matrix. 1n = [1 1 · · · 1]T ∈ Rn.
The notation vecn{xp}p denotes [x1 x2 . . . xn]. diag{...}
stands for a block-diagonal matrix, and diagn{Ap}p stands for
the block-diagonal matrix diag{A1, A2, · · ·An}. In symmetric
block matrices or complex matrix expressions, we use the
symbol “∗” as an ellipsis for the terms that are introduced
by symmetry. The symbol ⊗ denotes the Kronecker product.
G1 ◦G2 represents the series connection of mapping G1 and
G2. The notation ‖·‖ stands for the Euclidean vector norm,
‖·‖2 the usual l2[0,∞) norm and ‖·‖∞ the l2-induced norm
of a transfer function matrix. λmax(·) denotes the maximum
eigenvalue of a symmetric matrix. In addition, E{x} and
E{x|y} denote, respectively, the expectation of x and the
expectation of x conditional on y.

II. PRELIMINARIES

Consider the SN in Fig. 1, which has n intermediate sensor
nodes distributed in space according to a fixed interconnection
network topology described by a directed graph G = (V, E ,L),
where V = {1, 2, . . . , n} is the nonempty set of sensor nodes,
E ⊆ V × V is the set of edges, and L = (lpq)n×n is a weighted
adjacency matrix with nonnegative adjacency element lpq . An
edge of G is denoted by ordered pair (p, q). The adjacency
elements associated with the edges of the graph are positive,
i.e., lpq > 0, (p, q) ∈ E , which means that sensor node q is
one of the neighbors of sensor node p, and sensor node p can
obtain information from sensor node q. Moreover, we assume
that lpp = 1 for all p ∈ V , which can be regarded as the case
that the sensors are self-connected, and therefore (p, p) can
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Fig. 1. An illustration of the use of two channels in distributed filtering over
sensor network.

represent an additional edge. The set of neighbors of node
p ∈ V plus the node itself is denoted by Np , {q ∈ V |
(p, q) ∈ E}.

In this paper, the target plant is described by the following
discrete-time T–S fuzzy model with time-varying delays:

Plant Rule i: IF θ1(k) is Mi1, θ2(k) is Mi2, . . . , and θg(k)
is Mig , THEN x(k + 1) = Aix(k) +Adix (k − d(k)) + Eiw(k)

z(k) = Cix(k)
x(k) = ϕ(k), k = {−d2,−d2 + 1, ..., 0}

(1)

where i ∈ S , {1, 2, ..., s}, and s is the number of IF–THEN
rules; θ1(k), θ2(k), ..., θg(k) are the premise variables, and g
is the number of these premise variables; Mij is the fuzzy
set; x(k) ∈ Rnx is the state vector which cannot be observed
directly; z(k) ∈ Rnz is the signal to be estimated; w(k) ∈ Rnw

denotes the disturbance input belonging to l2[0,∞); ϕ(k) is a
real-valued initial condition sequence on {−d2,−d2+1, ..., 0};
Ai, Adi, Ei, and Ci are known matrices with appropriate
dimensions, which are real and constant. In (1), d(k) is a
positive integer satisfying

d1 ≤ d(k) ≤ d2 (2)

where d1 and d2 represent the minimum and maximum time
delays, respectively.

The overall model of the discrete-time fuzzy systems with
time delays can be expressed as follows:
x(k + 1)=

s∑
i=1

hi(θ(k))[Aix(k)+Adix(k − d(k))+Eiw(k)]

z(k) =
s∑

i=1

hi (θ (k))Cix(k)

(3)
where θ(k) ,

[
θ1(k) θ2(k) · · · θg(k)

]
, and

hi (θ(k)) ,

∏g
j=1Mij(θj(k))∑s

i=1

∏g
j=1Mij(θj(k))

.

In (3), hi(θ(k)) is the fuzzy basis function, and Mij(θj(k))
is the grade of membership of θj(k) in Mij . Therefore, we
have hi (θ(k)) ≥ 0, i ∈ S, and

∑s
i=1 hi (θ(k)) = 1 for all k.

For each p (p = 1, 2, . . . , n), the model of sensor node p is
given as follows:

yp(k) = αp(k)Bpix(k)+(1−αp(k))βp(k)Dpix(k)+Fpiw(k)
(4)
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where yp(k) ∈ Rny is the measured output received by
intermediate sensor node p; Bpi ∈ Rny×nx , Dpi ∈ Rny×nx ,
and Fpi ∈ Rny×nw are known real-valued constant matrices.
In this paper, as shown in Fig. 1, two parallel communication
channels, as a special case of redundant channels, are consid-
ered in the SN with a fixed topology. The stochastic variables
αp(k) and βp(k), which are mutually independent Bernoulli
processes and also independent with the premise variables,
are introduced to model the packet dropout phenomena in
the first and the second communication channel, respectively.
Moreover, it is assumed that the packet dropout rate in each
channel is uncertain. More specifically, we have

Pr {αp(k) = 1} = E {αp(k)} = E
{
α2
p(k)

}
= ᾱp + ∆αp(k)

Pr {αp(k) = 0} = 1− ᾱp −∆αp(k)

Pr
{
βp(k) = 1

}
= E

{
βp(k)

}
= E

{
β2
p(k)

}
= β̄p + ∆βp(k)

Pr
{
βp(k) = 0

}
= 1− β̄p −∆βp(k) (5)

where E {αp(k)} or E
{
βp(k)

}
stands for the packet arriving

rate in the corresponding channel, respectively. In (5), ᾱp

and β̄p are the nominal expectations of packet arrivals, and
∆αp(k) and ∆βp(k) are the norm-bounded uncertainties of
ᾱp and β̄p, respectively. The uncertainties are bounded as
−ηp2 ≤ ∆αp(k) ≤ ηp1 and −δp2 ≤ ∆βp(k) ≤ δp1 with
ηp1, ηp2, δp1, δp2 ≥ 0. Therefore, it is clear that

ᾱp + ∆αp(k) ≤ ᾱp + ηp1, 1− ᾱp −∆αp(k) ≤ 1− ᾱp + ηp2

β̄p + ∆βp(k) ≤ β̄p + δp1, 1− β̄p −∆βp(k) ≤ 1− β̄p + δp2.

Moreover, since the packet arriving rate at sensor node p
can be formulated as

Pr {Rp(k)} = 1− (1− E {αp(k)})(1− E
{
βp(k)

}
) (6)

where {Rp(k)} denotes the event that the measurement of
sensor p is transmitted successfully at time k. Then it holds
that

Pr{Rp(k)} = E{αp(k)}+ E{βp(k)} − E{αp(k)}E{βp(k)}
≥ max

{
E {αp(k)} , E

{
βp(k)

}}
which clearly shows the advantage of adopting two channels.

Remark 1: The proposed measurement model in (4) pro-
vides a novel unified framework to account for the phe-
nomenon of two-channel packet dropouts at each time instant
by resorting to the random variables αp(k) and βp(k). In
particular, if αp(k) = 1, βp(k) = 1 or 0, sensor node p in
model (4) takes the first channel; and if αp(k) = 0, βp(k) = 1,
packet dropout occurs at the first channel, and sensor node
p chooses the second channel. In the two aforementioned
cases, the packet at time k is not dropped, while if αp(k) =
0, βp(k) = 0, the packet dropout occurs at sensor node
p. Note that the measurement model in (4) can be further
extended to the multi-channel case. Also, by generalizing (6)
to multi-channel case, it is straightforward that the occurrence
probability of packet dropouts at each sensor node can be
further reduced.

Remark 2: In practice, the packet arriving rates E {αp(k)}
and E

{
βp(k)

}
are generally related to the external environ-

ment and transport protocols. In this paper, without loss of

generality, we suppose that ηp2 is greater than ηp1, and δp2 is
greater than δp1, which means that the packet arriving rates
easily tend to become smaller.

A more compact presentation of the SN in sensor node p
can be given by

x(k + 1) = A(k)x(k) +Ad(k)x(k − d(k)) + E(k)w(k)
yp(k) = αp(k)Bp(k)x(k) + (1− αp(k))βp(k)Dp(k)x(k)

+ Fp(k)w(k)
z(k) = C(k)x(k)

(7)
where

A(k) ,
s∑

i=1

hi(θ(k))Ai, Ad(k) ,
s∑

i=1

hi(θ(k))Adi

Bp(k) ,
s∑

i=1

hi(θ(k))Bpi, C(k) ,
s∑

i=1

hi(θ(k))Ci

Dp(k) ,
s∑

i=1

hi(θ(k))Dpi, E(k) ,
s∑

i=1

hi(θ(k))Ei

Fp(k) ,
s∑

i=1

hi(θ(k))Fpi. (8)

The key point in designing distributed filters for SNs is to
fuse the information available for the filter on sensor node p
both from the node itself and its neighbors. Now, we assume
that the filter’s premise variable on each node is the same as the
plant’s premise variable. The following fuzzy filter structure
is adopted on sensor node p:

Filter Rule j : IF θ1(k) is Mj1, θ2(k) is Mj2, . . . , and
θg(k) is Mjg , THEN{

x̂p(k + 1) =
∑

q∈Np

lpqKpqj x̂q(k) +
∑

q∈Np

lpqHpqjyq(k)

ẑp(k) = Lpj x̂p(k)
(9)

where j ∈ S , {1, 2, ..., s}; lpq is the weighted adjacency
scalar between node p and node q; x̂p(k) ∈ Rnx and zp(k) ∈
Rnz are the estimation of x (k) and z(k) on sensor node p,
respectively. The matrices Kpqj ∈ Rnx×nx , Hpqj ∈ Rnx×ny ,
and Lpj ∈ Rnz×nx in (9) are the fuzzy filter parameters to be
determined for node p. Moreover, the initial values of fuzzy
filters are assumed to be x̂p(0) = 0nx×1 for all p = 1, 2, . . . n.
Then, the overall fuzzy filter on sensor node p can be inferred
by

x̂p (k + 1) =
∑s

j=1 hj (θ (k)) [
∑

q∈Np
lpqKpqj x̂q (k)

+
∑

q∈Np
lpqHpqjyq (k)]

ẑp(k) =
∑s

j=1 hj (θ (k))Lpj x̂p (k) .

Thus, the fuzzy filter for sensor node p can be represented by
the following more compact form:{

x̂p(k + 1) =
∑

q∈Np

lpqKpq(k)x̂q(k) +
∑

q∈Np

lpqHpq(k)yq(k)

ẑp(k) = Lp(k)x̂p(k)
(10)

where

Kpq(k) ,
s∑

j=1

hj(θ(k))Kpqj , Lp(k) ,
s∑

j=1

hj(θ(k))Lpj

Hpq(k) ,
s∑

j=1

hj(θ(k))Hpqj . (11)
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Defining ep(k) , x(k)− x̂p(k) and z̃p(k) , z(k)− ẑp(k),
the fuzzy filtering error dynamics for sensor p can be obtained
by (7) and (10):

ep(k + 1) =
{
A(k)−

∑
q∈Np

lpqHpq(k) [αq(k)Bq(k)

+
(
βq (k)− αq (k)βq (k)

)
Dq (k)

]
−
∑

q∈Np
lpqKpq(k)

}
x(k) +Ad(k)

× x(k − d(k)) +
∑

q∈Np
lpqKpq(k)eq(k)

+
[
E(k)−

∑
q∈Np

lpqHpq(k)Fq(k)
]
w(k)

z̃p(k) = [C(k)− Lp(k)]x(k) + Lp(k)ep(k)

p = 1, 2, . . . , n, q ∈ Np. (12)

For notational simplification, we denote

Āi , In ⊗Ai, Ādi , In ⊗Adi, C̄i , In ⊗ Ci

Ēi , 1n ⊗ Ei, x̄(k) , 1n ⊗ x(k), e(k) , vecn{ep(k)}p
F̄i , vecn{Fpi}p, z̄(k) , vecn{z̃p(k)}p
B̄i , diagn{Bpi}p, D̄i , diagn{Dpi}p
L̄j , diagn{Lpj}p, Iq , diag{0q−1, 1,0n−q} ⊗ Iny

K̄j , [K̆pqj ]
p×q
n×n, H̄j , [H̆pqj ]

p×q
n×n (13)

where

K̆pqj ,

{
lpqKpqj , p = 1, 2, . . . n; q ∈ Np

0, p = 1, 2, . . . n; q /∈ Np

H̆pqj ,

{
lpqHpqj , p = 1, 2, . . . n; q ∈ Np

0, p = 1, 2, . . . n; q /∈ Np
. (14)

Obviously, since lpq = 0 when q /∈ Np. K̄j ∈ Rnnx×nnx

and H̄j ∈ Rnnx×nny are two sparse matrices. Moreover,
combining (8), (11) and (13), we have

Ā(k) ,
s∑

i=1

hi(θ(k))Āi, Ād(k) ,
s∑

i=1

hi(θ(k))Ādi

C̄(k) ,
s∑

i=1

hi(θ(k))C̄i, D̄(k) ,
s∑

i=1

hi(θ(k))D̄i

Ē(k) ,
s∑

i=1

hi(θ(k))Ēi, F̄ (k) ,
s∑

i=1

hi(θ(k))F̄i

B̄(k) ,
s∑

i=1

hi(θ(k))B̄i, L̄(k) ,
s∑

j=1

hj(θ(k))L̄j

K̄(k) ,
s∑

j=1

hj(θ(k))K̄j , H̄(k) ,
s∑

j=1

hj(θ(k))H̄j . (15)

Then, the error dynamics governed by (12) can be obtained in
the following compact form:

e(k + 1) =
{
Ā (k)−

∑n
q=1 αq (k) H̄ (k) IqB̄ (k)

−
∑n

q=1

(
βq(k)− αq(k)βq(k)

)
H̄(k)IqD̄(k)

−K̄(k)
}
x̄(k) + Ād(k)x̄ (k − d(k))

+ K̄(k)e(k) +
[
Ē(k)− H̄(k)F̄ (k)

]
w(k)

z̄(k) =
[
C̄(k)− L̄(k)

]
x̄(k) + L̄(k)e(k).

By setting E(k) ,
[
x̄T (k) eT (k)

]T
, augmenting the

original model to include the fuzzy filter error dynamics, the

following augmented system can be obtained:

E(k + 1) =
[
A (k)−

∑n
q=1 αq (k)HIq (k)

−
∑n

q=1(βq(k)− αq(k)βq(k))HIIq(k)
]
E(k)

+Ad(k)E(k − d(k)) + E(k)w(k)
z̄(k) = C(k)E(k)
E(k) = φ(k), k = {−d2,−d2 + 1, ..., 0}

(16)
where

A(k) ,

[
Ā(k) 0nnx

Ā(k)− K̄(k) K̄(k)

]
Ad(k) ,

[
Ād(k) 0nnx

Ād(k) 0nnx

]
, E(k) ,

[
Ē(k)

Ē(k)− H̄(k)F̄ (k)

]
C(k) ,

[
C̄(k)− L̄(k) L̄(k)

]
HIq(k) ,

[
0nnx 0nnx

H̄(k)IqB̄(k) 0nnx

]
HIIq(k) ,

[
0nnx

0nnx

H̄(k)IqD̄(k) 0nnx

]
. (17)

Before presenting the main objective of this paper, we
introduce the following definitions:

Definition 1: [28] The distributed fuzzy filtering error
system (DFFES) in (16) is said to be stochastically stable, if
in the case of w (k) ≡ 0nw×1, for any initial condition E(0),
the following is satisfied:

E
{∑∞

k=0 |E(k)|2 | E(0)
}
<∞. (18)

Definition 2: [29] A mapping G : u(k) → y(k) is input-
output stable if there exists % ≥ 0 such that

‖y(k)‖2 = ‖G(u(k))‖2 ≤ % ‖u(k)‖2 .

Given integers d2 ≥ d1 ≥ 1 and a prescribed scalar γ > 0,
our aim in this paper is to find the distributed filter matrices
(Kpqj , Hpqj , Lpj) in (9) such that for any time-varying delay
d(k) satisfying (2):

1) (Stochastic stability) The DFFES in (16) is stochastically
stable in the sense of (18).

2) (Average H∞ performance index) Under zero initial con-
dition, the filter error z̄(k) satisfies 1

n ‖z̄(k)‖2E2
≤ γ2 ‖w(k)‖22

where ‖z̄(k)‖E2
, E

{√∑∞
k=0 z̄

T (k)z̄(k)
}

.

III. MAIN RESULTS

In this section, we are aiming at establishing a sufficient cri-
terion for the error z̄(k) in (16) to satisfy the H∞ performance
constraint by applying the scaled small gain (SSG) theorem.
Then, distributed H∞ fuzzy filters in the form of (9) will be
designed such that the DFFES in (16) is stochastically stable
with a prescribed average H∞ performance.

A. Model Transformation Approach

Consider an interconnected system consisting of two sub-
systems:

(S1) : ϑ(k) = Gv(k), (S2) : v(k) = ∆ϑ(k) (19)

where the forward subsystem (S1) is a known linear time-
invariant system with operator G mapping v(k) to ϑ(k),
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and the feedback subsystem (S2) is an unknown linear time-
varying mapping with operator ∆ which has a block-diagonal
structure. A sufficient condition of the input-output stability
of the interconnected system formed by (S1) and (S2) can be
given as a direct result of the SSG theorem.

Before proceeding further, we first present the SSG theorem
that will be used in the later derivations.

Lemma 1: (SSG Theorem [16]) Consider the closed-loop
system in (19). Assume that the forward subsystem (S1) is
internally stable, the closed-loop system formed by (S1) and
(S2) is input-output stable for all G and ∆ if the following
inequality holds:

Υ(GT )×Υ(∆T ) < 1 (20)

where T is a nonsingular linear matrix, and

Υ(GT ) =
∥∥T ◦G ◦ T−1

∥∥
∞ , Υ(∆T ) =

∥∥T ◦∆ ◦ T−1
∥∥
∞ .

To cope with the time-varying delay of the filtering error
system (16) by the SSG theorem, we need to adopt time-
invariant delays as an approximation of the time-varying
term and pull the “delay uncertainty” out into the feedback
subsystem ∆. In this paper, we would employ the two-
term approximation method adopted in [16]. By defining
d12 , d2 − d1, the term E(k − d(k)) can be expressed as

E(k − d(k)) = 1
2 [E (k − d1) + E (k − d2)] + d12

2 v(k) (21)

where 1
2 [E (k − d1) + E (k − d2)] is the approximation of

E(k − d(k)), and d12

2 v(k) is the approximation error.
By defining ϑ(k) , E (k + 1)− E(k), we can obtain

v(k) , 2
d12

{
E(k − d(k))− 1

2 [E (k − d1) + E (k − d2)]
}

= 1
d12
{2E(k − d(k))− [E (k − d1) + E (k − d2)]}

= 1
d12

[∑k−d(k)−1
u=k−d2

ϑ(u)−
∑k−d1−1

u=k−d(k) ϑ(u)
]

= 1
d12

[∑k−d1−1
u=k−d2

κ(u)ϑ(u)
]

(22)

where

κ(u) ,

{
1, when u ≤ k − d(k)− 1
−1, when u ≥ k − d(k)− 1.

From (16) and (21), the fuzzy filtering error system (16)
can be transformed into the following form:

E(k + 1) =
[
A(k)−

∑n
q=1 αq(k)HIq(k)−

∑n
q=1 βq(k)

× (1− αq(k))HIIq(k)] E(k) + d12

2 Ad(k)v(k)

+ 1
2Ad(k)[E(k − d1) + E(k − d2)] + E(k)w(k)

z̄(k) = C(k)E(k). (23)

Now, by (23), the interconnection frame of the closed-loop
system is presented as (S1) :

E(k + 1)
ϑ(k)
z̄(k)

 =

Γ1(k) E(k)
Γ2(k) E(k)
Γ3(k) 0nz×nw

[ ς(k)
w(k)

]
(S2) : v(k) = ∆ϑ(k)

(24)

where

Γ1(k) ,
[
A(k)−

∑n
q=1

[
αq(k)HIq(k) + βq(k)(1− αq(k))

×HIIq(k)] 1
2Ad(k) 1

2Ad(k) d12

2 Ad(k)
]

Γ2(k) ,
[
A(k)−

∑n
q=1

[
αq(k)HIq(k) + βq(k)(1− αq(k))

×HIIq(k)]− I2nnx

1
2Ad(k) 1

2Ad(k) d12

2 Ad(k)
]

Γ3(k) ,
[
C(k) 0nnz×6nnx

]
ς(k) ,

[
ET (k) ET (k − d1) ET (k − d2) vT (k)

]T
.

Furthermore, the following lemma shows that the scaled
gain of the mapping ∆ in (24) has an upper bound.

Lemma 2: [16] Consider the closed-loop system (24).
For any given nonsingular matrix T ∈ R2nnx×2nnx , the
feedback mapping ∆ : ϑ(k) → v(k) of (22) satisfies∥∥T ◦∆ ◦ T−1

∥∥
∞ ≤ 1.

Remark 3: In view of Lemma 2, we can observe that the l2-
induced norm of (S2) in (24) is bounded by one. Then, accord-
ing to Lemma 1, if we can guarantee

∥∥T ◦G ◦ T−1
∥∥
∞ < 1,

the whole interconnection system (24) is input-output stable.

B. H∞ Performance and Stochastic Stability Analysis

Based on Lemmas 1 and 2, the following theorem presents a
criterion to ensure that the DFFES (24) is stochastically stable
with a prescribed average H∞ performance.

Theorem 1: Consider the discrete-time DFFES in (24)
and suppose that the filter parameters Kpqj , Hpqj , Lpj

(p = 1, 2, . . . , n, q ∈ Np, j ∈ S) are given. For integers d1, d2
with d2 ≥ d1 ≥ 1 and constants γ > 0, ᾱq, β̄q > 0,
ηq1, ηq2, δq1, δq2 ≥ 0 (q ∈ Np), the DFFES (24) is stochasti-
cally stable with an average H∞ performance γ for any time-
varying delay satisfying d1 ≤ d(k) ≤ d2, if ∀q ∈ Np, there
exist positive definite matrices Pi, Q1i, Q2i, R1, R2, R3, i ∈ S,
satisfying

Goltii < 0, (o, l, t, i ∈ S)

Goltij + Goltji < 0, (o, l, t, i, j ∈ S, i < j) (25)

where

Goltij ,
[
Λlti Ωoij

∗ Ξo

]
Λlti ,

[
ΛIi

[
R1 R2 02nnx

02nnx×nw

]
∗ diag

{
ΛIIl,ΛIIIt,−R3,−nγ2Inw

}]
Ωoij ,

[
ΨT

IIIij d1WIIijR1 d2WIIijR2 WIIijR3 WIijPo

]
Ξo , diag {−Innz

,−R1,−R2,−R3,−Po}
ΛIi , −Pi −R1 −R2 +Q1i +Q2i, ΛIIl , −R1 −Q1l

ΛIIIt , −R2 −Q2t, R1 , I2n+1 ⊗R1, R2 , I2n+1 ⊗R2

R3 , I2n+1 ⊗R3, Po , I2n+1 ⊗ Po

WIij ,
[
µ1,1ΨT

I11,ij µ1,2ΨT
I12,ij · · · µ1,nΨT

I1n,ij

µ2,1ΨT
I21,ij µ2,2ΨT

I22,ij · · · µ2,nΨT
I2n,ij µ3ΨT

I3ij

]
WIIij , [ µ1,1ΨT

II11,ij
µ1,2ΨT

II12,ij
· · · µ1,nΨT

II1n,ij

µ2,1ΨT
II21,ij

µ2,2ΨT
II22,ij

· · · µ2,nΨT
II2n,ij

µ3ΨT
II3ij ]
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with

ΨI1q,ij ,
[
Aij − nHIq,ij

1
2Adi

1
2Adi

d12

2 Adi Eij

]
ΨI2q,ij ,

[
Aij − nHIIq,ij

1
2Adi

1
2Adi

d12

2 Adi Eij

]
ΨI3ij ,

[
Aij

1
2Adi

1
2Adi

d12

2 Adi Eij

]
ΨII1q,ij ,

[
Aij−nHIq,ij− I2nnx

1
2Adi

1
2Adi

d12

2 Adi Eij

]
ΨII2q,ij ,

[
Aij−nHIIq,ij−I2nnx

1
2Adi

1
2Adi

d12

2 Adi Eij

]
ΨII3ij ,

[
Aij − I2nnx

1
2Adi

1
2Adi

d12

2 Adi Eij

]
ΨIIIij ,

[
Cij 0nnz×(6nnx+nw)

]
and

Aij ,

[
Āi 0nnx

Āi − K̄j K̄j

]
, Adi ,

[
Ādi 0nnx

Ādi 0nnx

]
Eij ,

[
Ēi

Ēi − H̄jF̄i

]
, HIq,ij ,

[
0nnx 0nnx

H̄jIqB̄i 0nnx

]
Cij ,

[
C̄T

i − L̄T
j

L̄T
j

]T
, HIIq,ij ,

[
0nnx 0nnx

H̄jIqD̄i 0nnx

]

µ1q ,

√
ᾱq + ηq1

n
, µ2q ,

√
(β̄q + δq1)(1− ᾱq + ηq2)

n

µ3 ,

√∑n
q=1[1− ᾱq + ηq2 − (β̄q − δq2)(1− ᾱq − ηq1)]

n
.

Proof: See Appendix.

C. Distributed H∞ Filter Design
In this subsection, sufficient conditions on the existence

of the desired distributed H∞ fuzzy filters in the form of
(9) will be provided ensuring that the closed-loop system in
(24) is stochastically stable with a guaranteed average H∞
performance.

Theorem 2: Consider the discrete-time DFFES in (24) with
uncertain packet dropout rates. Given integers d1, d2 with d2 ≥
d1 ≥ 1 and constants γ, ᾱq, β̄q > 0, ηq1, ηq2, δq1, δq2 ≥ 0
(q ∈ Np), the DFFES is stochastically stable with an average
H∞ performance γ, if ∀p = 1, 2, . . . , n, q ∈ Np, there
exist positive definite matrices Pi, Q1i, Q2i, R̃1, R̃2, R̃3, i ∈ S,
matrices T̄1pqj , T̄2pqj , Spj , Xp, Zp, j ∈ S, and some positive
scalars ε1, ε2, ε3, ε4, satisfying

G̃oltii < 0, (o, l, t, i ∈ S)

G̃oltij + G̃oltji < 0, (o, l, t, i, j ∈ S, i < j) (26)

where

G̃oltij ,
[
Λ̃lti Ω̃ij

∗ Ξ̃o

]
Λ̃lti ,

[
Λ̃Ii

[
ε−11 R̃1 ε−12 R̃2 02nnx

02nnx×nw

]
∗ diag

{
Λ̃IIl, Λ̃IIIt,−R̃3,−nγ2Inw

} ]
Ω̃ij ,

[
Ψ̃T

IIIij d1W̃IIij ε4d2W̃IIij W̃IIij W̃Iij

]
Ξ̃o , diag

{
Innz

− sym(Z), R̃1, R̃2, R̃3, P̃o

}
Λ̃Ii , −Pi − ε−21 R̃1 − ε−22 R̃2 +Q1i +Q2i

Λ̃IIl , −R̃1 − ε21Q1l, Λ̃IIIt , −R̃2 − ε22Q2t

R̃1 , I2n+1 ⊗ (R̃1 − sym(ε1X ))

R̃2 , I2n+1 ⊗ (R̃2 − sym(ε2ε4X ))

R̃3 , I2n+1 ⊗ (R̃3 − sym(ε3X ))

P̃o , I2n+1 ⊗ (Po − sym(X ))

W̃Iij , [ µ1,1Ψ̃T
I11,ij

µ1,2Ψ̃T
I12,ij

· · · µ1,nΨ̃T
I1n,ij

µ2,1Ψ̃T
I21,ij

µ2,2Ψ̃T
I22,ij

· · · µ2,nΨ̃T
I2n,ij

µ3Ψ̃T
I3ij

]

W̃IIij , [µ1,1Ψ̃T
II11,ij

µ1,2Ψ̃T
II12,ij

· · · µ1,nΨ̃T
II1n,ij

µ2,1Ψ̃T
II21,ij

µ2,2Ψ̃T
II22,ij

· · · µ2,nΨ̃T
II2n,ij

µ3Ψ̃T
II3ij

]

with

Ψ̃I1q,ij ,
[
XA0i + ITjI1 − nITjBqi

ε1
2 XAdi

ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ̃I2q,ij ,

[
XA0i + ITjI1 − nITjDqi

ε1
2 XAdi

ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ̃I3ij ,

[
XA0i + ITjI1 ε1

2 XAdi
ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ̃II1q,ij ,

[
XA0i + ITjI1 − nITjBqi −X ε1

2 XAdi

ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ̃II2q,ij ,

[
XA0i + ITjI1 − nITjDqi −X ε1

2 XAdi

ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ̃II3ij ,

[
XA0i + ITjI1 −X ε1

2 XAdi
ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ̃IIIij ,

[
ZC0i + SjI2 0nnz×(6nnx+nw)

]
and

A0i ,

[
Āi 0nnx

Āi 0nnx

]
, Bqi ,

[
0nnx

0nnx

IqB̄i 0nny×nnx

]
, I ,

[
0nnx

Innx

]
C0i ,

[
C̄T

i

0nnx×nnz

]T
, Dqi ,

[
0nnx

0nnx

IqD̄i 0nny×nnx

]
, E0i ,

[
Ēi

Ēi

]
Fi ,

[
0nnx×nw

−F̄i

]
, I1 ,

[
−Innx Innx

0nny×nnx
0nny×nnx

]
I2 ,

[
−Innx

Innx

]
, X , diag{X̄, X̄}, X̄ , diagn{Xp}p

Sj , diagn{Spj}p, Z , diagn{Zp}p
Tj ,

[
T̄1j T̄2j

]
, T̄1j ,

[
T̄1pqj

]p×q
n×n , T̄2j ,

[
T̄2pqj

]p×q
n×n .

Furthermore, if the inequalities in (26) are feasible, the matri-
ces K̄j , H̄j , and L̄j are given as

K̄j = X̄−1T̄1j , H̄j = X̄−1T̄2j , L̄j = Z−1Sj . (27)

Then, combining with (13) and (14), the desired filter param-
eters Kpqj , Hpqj , and Lpj can be obtained.

Proof: See Appendix.
Remark 4: Based on Theorem 2, the average H∞ perfor-

mance can be optimized for the underlying distributed filtering
problem via two channels. A noteworthy fact is that when we
set the matrix Dpi = 0ny×nx

in (4), the conditions in Theorem
2 reduce to those corresponding to the single channel case. As
expected, the obtained optimized γ in the presence of one more
redundant channel, denoted as γmin, should be less than the
one in single channel, which will be verified in next section.
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IV. ILLUSTRATIVE EXAMPLE

Let us consider the following nonlinear system with time-
varying delays [20] : x1(k + 1) = − [Rx1(k) + (1−R)x1(k − d(k))]

2

+ 0.3x2(k) + w(k)
x2(k + 1) = Rx1(k) + (1−R)x1(k − d(k))

where the constant R ∈ [0, 1] is the retarded coefficient.
In the example, it is assumed that the SN is rep-

resented by a directed graph G = (V, E ,L) with the
set of nodes V = {1, 2, 3}, the set of edges E =
{(1, 1) , (1, 3) , (2, 2) , (2, 3) , (3, 1) , (3, 3)}, and the adjacency
matrix L is given as

L =

 1 0 1
0 1 1
1 0 1

 .
For each p (p = 1, 2, 3), the pth sensor node is described

in the form of (7).
Let θ(k) = Rx1(k) + (1−R)x1(k − d(k)). It is assumed

that θ(k) ∈ (−M,M) where M > 0. We set the fuzzy basis
functions as

h1 (θ(k)) = 1
2

(
1− θ(k)

M

)
, h2 (θ(k)) = 1

2

(
1 + θ(k)

M

)
(28)

where h1((θ(k)), h2(θ(k)) ∈ [0, 1], and h1(θ(k)) +
h2(θ(k)) = 1.

From (28), it can be seen that h1 (θ(k)) = 0, h2 (θ(k)) = 1
when θ(k) is about M, and h1 (θ(k)) = 1, h2 (θ(k)) = 0
when θ(k) is about −M. Then, the underlying fuzzy model
is as follows.

Plant rule 1: IF θ(k) is about −M, THEN
x(k + 1) = A1x(k) +Ad1x(k − d(k)) + E1w(k)
yp(k) = αp(k)Bp1x(k) + (1− αp(k))βp(k)Dp1x(k)

+ Fp1w(k)
z(k) = C1x(k)

Plant rule 2: IF θ(k) is about M, THEN
x(k + 1) = A2x(k) +Ad2x(k − d(k)) + E2w(k)
yp(k) = αp(k)Bp2x(k) + (1− αp(k))βp(k)Dp2x(k)

+ Fp2w(k)
z(k) = C2x(k)

where

A1 =

[
RM 0.3
R 0

]
, Ad1 =

[
(1−R)M 0.3

1−R 0

]
, Ei =

[
1
0

]
A2 =

[
−RM 0.3
R 0

]
, Ad2 =

[
−(1−R)M 0.3

1−R 0

]
B1i =

[
0.2 0.18

]
, D1i =

[
0.08 0.12

]
, F1i = 0.2

B2i =
[
0.16 0.2

]
, D2i =

[
0.12 0.14

]
, F2i = 0.17

B3i =
[
0.14 0.16

]
, D3i =

[
0.1 0.1

]
, F3i = 0.15

Ci =
[
1 0

]
, ∀i = 1, 2.

We suppose that the time-varying state delay satisfies 1 ≤
d(k) ≤ 3. The values of the parameters R andM are given by
R = 0.8 andM = 0.1, respectively. The nominal expectations
of packet arrivals of the communication channels are taken as

TABLE I
MINIMUM VALUES OF AVERAGE H∞ PERFORMANCE γmin FOR

DIFFERENT CASES.

Cases γmin
I) Two channels (ηp2 = 0.02, δp2 = 0.03) 3.6594
II) Two channels (ηp2 = δp2 = 0) 2.8002
III) Single channel (ηp2 = 0.02, Dp = [0 0]) 3.7799
IV) Single channel (ηp2 = 0, Dp = [0 0]) 2.8576

ᾱ1 = 0.9, ᾱ2 = 0.8, ᾱ3 = 0.85, β̄1 = 0.65, β̄2 = 0.6, and
β̄3 = 0.7, respectively. Without loss of generality, we suppose
ηp2 = 2ηp1 and δp2 = 2δp1 (p = 1, 2, 3). A comparison
between minimum average H∞ performance γmin obtained
based on different cases is given in Table I with the choice of
ε1 = 7, ε2 = 25, ε3 = 8 and ε4 = 0.08. The parameters of
the desired distributed filters for case I can be calculated with
the optimized performance index as follows:

K111 =

[
0.3523 0.2876
0.4173 −0.1474

]
, K131 =

[
−0.1032 −0.1007
−0.1155 −0.0329

]
K221 =

[
0.2701 0.3155
0.5257 −0.2232

]
, K231 =

[
0.0315 −0.0337
0.0394 0.0326

]
K311 =

[
0.0272 0.0456
−0.0851 −0.1745

]
, K331 =

[
0.2159 0.2497
0.6110 −0.0282

]
K112 =

[
−0.1029 0.2531
1.3240 0.2909

]
, K132 =

[
−0.0331 −0.0369
−0.0181 0.0724

]
K222 =

[
−0.0624 0.2830
0.9946 0.1175

]
, K232 =

[
−0.1172 −0.0784
0.2074 0.1567

]
K312 =

[
−0.1356 −0.0566
0.1417 0.1431

]
, K332 =

[
−0.0563 0.2608
1.2944 0.2560

]
H111 =

[
0.8502
1.1495

]
, H131 =

[
0.9040
−0.0345

]
, H221 =

[
0.9173
0.8051

]
H231 =

[
0.5748
0.2013

]
, H311 =

[
0.3877
0.6801

]
, H331 =

[
0.8079
−0.1022

]
H112 =

[
1.4821
−2.4257

]
, H132 =

[
0.6354
−0.7688

]
, H222 =

[
0.9696
−1.6934

]
H232 =

[
0.5413
−0.8294

]
, H312 =

[
0.5862
−0.3957

]
, H332 =

[
1.2317
−2.1529

]
L11 =

[
0.7724 −0.0448

]
, L21 =

[
0.6927 0.0173

]
L31 =

[
0.7100 −0.0208

]
, L12 =

[
0.7526 −0.1087

]
L22 =

[
0.8860 −0.0496

]
, L32 =

[
0.6971 −0.1549

]
From Table I, we can observe that γmin increases as the
uncertainties of the packet dropout rates occur, and the average
H∞ performance of the system becomes better if two channels
are adopted at each node.

In order to test the performance of the designed filters,
we assume zero-initial conditions and x̂p(0) =

[
0 0

]T
(p = 1, 2, 3) with external disturbance w(k) = e−0.2k cos(k).
The output z(k) and its estimates from the filter p (p =
1, 2, 3) for case I are shown in Fig. 2, which shows the
effectiveness of the designed distributed filters for the system
against the time-varying delays and the uncertain packet
dropout rates. The resulting disturbance attenuation ratios
1√
3

√∑k
i=0 z̄(i)

T z̄(i)/
√∑k

i=0 w(i)Tw(i) can be computed
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Output of filter 3 ẑ3(k)

Fig. 2. Output z(k) and its estimates for sensor networks with redundant
channels subject to uncertain packet dropout rates.
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Fig. 3. Mean squares of filtering errors of three sensor nodes of different
cases.

as γ = 0.6456 for case I, γ′ = 0.5907 for case II, γ̃ = 0.6679
for case III and γ̃′ = 0.6013 for case IV, which are all less
than the corresponding γmin. It can be seen that γ > γ′, which
further shows the necessity of considering the uncertainties
of packet dropout rates in the design phase. It can also be
seen that γ̃ > γ and γ̃′ > γ′, which also illustrates the
performance benefiting from redundant channels. The mean
squares of filtering errors of three sensor nodes 1

3

∑3
p=1 z̃

2
p(k)

for different cases are shown in Fig. 3.

V. CONCLUSION

In this paper, the distributed H∞ filtering problem has been
investigated for a class of discrete-time DFFESs with time-
varying delays and redundant channels subject to uncertain
norm-bounded packet dropout rates. Sufficient conditions for
the existence of the desired distributed filters, in a basic
two-channel case, are established by employing the scaled
small gain theorem to ensure that the closed-loop system is

stochastically stable and achieves a prescribed average H∞
performance index. The necessity of allowing for the uncertain
packet dropout rates was shown, and it was also demonstrated
that the achieved average H∞ performance of the distributed
filtering can be improved by including redundant channels.
One future work will be to consider real Henon mapping
systems with more complicated dynamics rather than the
simplified one in the section of Illustrative Example.

APPENDIX

Proof of Theorem 1: We choose the following fuzzy-
basis-dependent Lyapunov–Krasovskii functional

V (E(k), k) ,
3∑

m=1
Vm(E(k), k) (29)

where
V1(E(k), k) , ET (k)P̄ (k)E(k)

V2(E(k), k) ,
∑2

l=1

∑k−1
u=k−dl

ET (u)Q̄l(u)E(u)

V3(E(k), k) ,
∑2

l=1

∑−1
u=−dl

∑k−1
v=k+u dlϑ

T (v)Rlϑ(v)
(30)

with

P̄ (k) ,
s∑

i=1

hi(θ(k))Pi, Q̄1(k) ,
s∑

i=1

hi(θ(k))Q1i

Q̄2(k) ,
s∑

i=1

hi(θ(k))Q2i.

Moreover, we define

J , E
{∑∞

k=0[ϑT (k)R3ϑ(k)− νT (k)R3ν(k)]
}

(31)

and

Jcl , E
{∑∞

k=0[z̄T (k)z̄(k)− nγ2wT (k)w(k)]
}

(32)

where R3 = TTT .
Then, taking the forward difference of V (E(k), k), we have

∆V1 , E {V1 (E(k + 1), k + 1) |E(k), k} − V1 (E(k), k)

= ET (k + 1)P̄ (k + 1)E(k + 1)− ET (k)P̄ (k)E(k)

= E{ξT(k)ΨT
1 (k)P̄ (k+1)Ψ1(k)ξ(k)}−ET(k)P̄ (k)E(k)

≤ E
{

1
n

∑n
q=1

{(
αq(k)βq(k)− α2

q(k)βq(k)
)
n2ET (k)

×[HT
Iq(k)P̄ (k+1)HIq(k)+HT

IIq(k)P̄ (k+1)HIIq(k)]

×E(k) + ξT (k)
[
ΨT

1q(k)P̄ (k + 1)Ψ1q(k) + ΨT
2q(k)

×P̄ (k + 1)Ψ2q(k)−ΨT
I3(k)P̄ (k + 1)ΨI3(k)

]
ξ(k)

}}
− ET (k)P̄ (k)E(k)

≤
∑n

q=1

[
µ2
1,qξ

T (k)ΨT
I1q(k)P̄ (k + 1)ΨI1q(k)ξ(k)

+µ2
2,qξ

T(k)ΨT
I2q(k)P̄ (k + 1)ΨI2q(k)ξ(k)

]
+ µ2

3ξ
T (k)

×ΨT
I3(k)P̄ (k + 1)ΨI3(k)ξ(k)− ET (k)P̄ (k)E(k)

(33)

∆V2 , E {V2 (E(k + 1), k + 1) |E(k), k} − V2 (E(k), k)

=
∑2

l=1

[
ET (k)Q̄l(k)E(k)

−ET (k − dl)Q̄l(k − dl)E(k − dl)
]

(34)
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∆V3 , E {V3 (E(k + 1), k + 1) |E(k), k} − V3 (E(k), k)

= E
{∑2

l=1

[∑−1
u=−dl

dlϑ
T (k)Rlϑ(k)

−dl
∑−1

u=−dl
ϑT (k + u)Rlϑ(k + u)

]}
(35)

where

Ψ1(k) ,
[
A(k)−

∑n
q=1 αq(k)HIq(k)−

∑n
q=1 βq(k)

× (1− αq(k))HIIq(k) 1
2Ad(k) 1

2Ad(k)
d12

2 Ad(k) E(k)
]

Ψ1q(k) ,
[
A(k)− αq(k)nHIq(k) 1

2Ad(k)
1
2Ad(k) d12

2 Ad(k) E(k)
]

Ψ2q(k) ,
[
A(k)−

(
βq(k)− αq(k)βq(k)

)
nHIIq(k)

1
2Ad(k) 1

2Ad(k) d12

2 Ad(k) E(k)
]

ΨI1q(k) ,
[
A(k)− nHIq(k) 1

2Ad(k) 1
2Ad(k)
d12

2 Ad(k) E(k)
]

ΨI2q(k) ,
[
A(k)− nHIIq(k) 1

2Ad(k) 1
2Ad(k)
d12

2 Ad(k) E(k)
]

ΨI3(k) ,
[
A(k) 1

2Ad(k) 1
2Ad(k) d12

2 Ad(k) E(k)
]

ξ(k) ,
[
ET (k) ET (k − d1) ET (k − d2) vT (k) wT (k)

]T
.

According to the Jensen inequality, ∀l = 1, 2, one has

− dl
∑k−1

u=k−dl
ϑT (u)Rlϑ(u)

≤ − [E(k)− E(k − dl)]T Rl [E(k)− E(k − dl)] (36)

From (35) and (36), we have

∆V3 =
∑2

l=1

{
E{d2l ϑ

T (k)Rlϑ(k)}

− [E(k)− E(k − dl)]T Rl [E(k)− E(k − dl)]
}

≤
∑2

l=1

{
d2l ξ

T (k)
{
µ2
1ΨT

II1q(k)RlΨII1q(k) + µ2
2

×ΨT
II2q(k)RlΨII2q(k) + µ2

3ΨT
II3(k)RlΨII3(k)

}
ξ(k)

− [E(k)− E(k − dl)]T Rl [E(k)− E(k − dl)]
}

(37)

where

ΨII1q(k) ,
[
A(k)− nHIq(k)− I2nnx

1
2Ad(k)

1
2Ad(k) d12

2 Ad(k) E(k)
]

ΨII2q(k) ,
[
A(k)− nHIIq(k)− I2nnx

1
2Ad(k)

1
2Ad(k) d12

2 Ad(k) E(k)
]

ΨII3(k) ,
[
A(k)− I2nnx

1
2Ad(k) 1

2Ad(k)
d12

2 Ad(k) E(k)
]
.

Similarly, we can obtain

E
{
ϑT (k)R3ϑ(k)|E(k), k

}
≤ ξT (k)

{
µ2
1ΨT

II1q(k)R3ΨII1q(k) + µ2
2ΨT

II2q(k)R3ΨII2q(k)

+µ2
3ΨT

II3(k)R3ΨII3(k)
}
ξ (k) (38)

and

E
{
z̄T (k)z̄(k)|ξ(k), k

}
= ξT (k)ΨT

III(k)ΨIII(k)ξ(k) (39)

where ΨIII(k) ,
[
C (k) 0nnz×(6nnx+nw)

]
.

Then, by performing a congruence transformation
diag{I2nnx

, I2nnx
, I2nnx

, I2nnx
, Inw

,−Ξ−1o } to the inequali-
ties in (25), we obtain the following inequalities:

Ǧoltii < 0, (o, l, t, i ∈ S)

Ǧoltij + Ǧoltji < 0, (o, l, t, i, j ∈ S, i < j) (40)

where

Ǧoltij ,
[
Λlti Ω̌ij

∗ Ξ−1o

]
Ω̌ij ,

[
ΨT

IIIij d1WIIij d2WIIij WIIij WIij

]
.

Moreover, we define

G(k) ,
s∑

o=1

s∑
l=1

s∑
t=1

ho(θ(k + 1))hl(θ(k − d1))ht(θ(k − d2))

×
{∑s

i=1 hi(θ(k))Ǧoltii +
∑s−1

i=1

∑s
j=i+1 hi(θ(k))

×hj(θ(k))
(
Ǧoltij + Ǧoltji

)}
. (41)

Then, combining (15), (17), (25), (40) and (41), and the
definitions of P̄ (k), Q̄1(k), Q̄2(k), R1, R2, R3, we have

G(k) < 0 (42)

where

G(k) ,

[
Λ(k) Ω(k)
∗ Ξ−1(k)

]
Λ(k) ,

[
ΛI(k)

[
R1 R2 02nnx

02nnx×nw

]
∗ diag

{
ΛII(k),ΛIII(k),−R3,−nγ2Inw

}]
ΛI(k) , −P̄ (k)−R1 −R2 + Q̄1(k) + Q̄2(k)

ΛII(k) , −R1 − Q̄1(k − d1), ΛIII(k) , −R2 − Q̄2(k − d2)

Ω(k) ,
[
ΨT

III(k) d1WII(k) d2WII(k) WII(k) WI(k)
]

WI(k) ,
[
µ1,1ΨT

I11
(k) µ1,2ΨT

I12
(k) · · · µ1,nΨT

I1n
(k)

µ2,1ΨT
I21

(k) µ2,2ΨT
I22

(k) · · · µ2,nΨT
I2n

(k)

µ3ΨT
I3

(k)
]

WII(k) ,
[
µ1,1ΨT

II11
(k) µ1,2ΨT

II12
(k) · · · µ1,nΨT

II1n
(k)

µ2,1ΨT
II21

(k) µ2,2ΨT
II22

(k) · · · µ2,nΨT
II2n

(k)

µ3ΨT
II3

(k)
]

Ξ−1(k) , diag
{
−Innz ,−R−11 ,−R−12 ,−R−13 ,−P (k + 1)

}
with P (k + 1) , I2n+1 ⊗ [

∑s
o=1 ho(θ(k + 1))P−1o ], o ∈ S.

Combining (33), (34) and (37), and considering the zero
inputs, i.e.,

[
vT (k) wT (k)

]
= 01×(2nnx+nw), we have

∆V , ∆V1 + ∆V2 + ∆V3 = ζT (k)Σ(k)ζ(k)

where

Σ(k) , Λ′(k) +
∑n

q=1

[
µ2
1,qφ

T
I1q(k)P̄ (k + 1)φI1q(k)

+µ2
2,qφ

T
I2q(k)P̄ (k + 1)φI2q(k)

]
+ µ2

3φ
T
I3(k)

× P̄ (k + 1)φI3(k) +
∑2

l=1

{
d2l
∑n

q=1

[
µ2
1,q

×φTII1q(k)RlφII1q(k) + µ2
2,qφ

T
II2q(k)RlφII2q(k)

]
+d2l µ

2
3φ

T
II3(k)RlφII3(k)

}
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Λ′(k) ,

[
ΛI(k)

[
R1 R2

]
∗ diag {ΛII(k),ΛIII(k)}

]
φI1q(k) ,

[
A(k)− nHIq(k) 1

2Ad(k) 1
2Ad(k)

]
φI2q(k) ,

[
A(k)− nHIIq(k) 1

2Ad(k) 1
2Ad(k)

]
φI3(k) ,

[
A(k) 1

2Ad(k) 1
2Ad(k)

]
φII1q(k) ,

[
A(k)− nHIq(k)− I2nnx

1
2Ad(k) 1

2Ad(k)
]

φII2q(k) ,
[
A(k)− nHIIq(k)− I2nnx

1
2Ad(k) 1

2Ad(k)
]

φII3(k) ,
[
A(k)− I2nnx

1
2Ad(k) 1

2Ad(k)
]

ζ(k) ,
[
ET (k) ET (k − d1) ET (k − d2)

]T
.

By performing a congruence transformation to (42) and by
Schur complement, we have Σ(k) < 0, which implies ∆V
< 0. Thus, the forward subsystem (S1) in (24) is internally
stable.

Considering the index J defined in (31), together with (29),
(33), (34), (37) and (38) in the case of w(k) = 0nw×1, and
under zero initial condition, i.e., V (E(0), 0) = 0, we have

J ≤ J + V (E(∞),∞)− V (E(0), 0)

= E
{∑∞

k=0

[
ϑT (k)R3ϑ(k)− vT (k)R3v (k) + ∆V

]}
=
∑∞

k=0 ς
T (k)Φ(k)ς(k) (43)

where

Φ(k) , Λ′′(k) +
∑n

q=1

[
µ2
1,qψ

T
I1q(k)P̄ (k + 1)ψI1q(k)

+µ2
2,qψ

T
I2q(k)P̄ (k + 1)ψI2q(k)

]
+ µ2

3ψ
T
I3(k)

× P̄ (k + 1)ψI3(k) +
∑2

l=1

{
d2l
∑n

q=1[µ2
1,q

×ψT
II1q(k)RlψII1q(k) + µ2

2,qψ
T
II2q(k)RlψII2q(k)]

+d2l µ
2
3ψ

T
II3(k)RlψII3(k)

}
+ µ2

3ψ
T
II3(k)R3ψII3(k)

+
∑n

q=1[µ2
1,qψ

T
II1q(k)R3ψII1q(k)

+ µ2
2,qψ

T
II2q(k)R3ψII2q(k)]

Λ′′(k) ,

[
ΛI(k)

[
R1 R2 02nnx

]
∗ diag {ΛII(k),ΛIII(k),−R3}

]
ψI1q(k) ,

[
A (k)− nHIq(k) 1

2Ad (k) 1
2Ad (k) d12

2 Ad (k)
]

ψI2q(k) ,
[
A (k)− nHIIq(k) 1

2Ad (k) 1
2Ad (k) d12

2 Ad (k)
]

ψI3(k) ,
[
A(k) 1

2Ad(k) 1
2Ad(k) d12

2 Ad(k)
]

ψII1q(k) ,
[
A(k)− nHIq(k)− I2nnx

1
2Ad(k)
1
2Ad(k) d12

2 Ad(k)
]

ψII2q(k) ,
[
A(k)− nHIIq(k)− I2nnx

1
2Ad(k)
1
2Ad(k) d12

2 Ad(k)
]

ψII3(k) ,
[
A(k)− I2nnx

1
2Ad(k) 1

2Ad(k) d12

2 Ad(k)
]

ς(k) ,
[
ET (k) ET (k − d1) ET (k − d2) vT (k)

]T
.

By performing a congruence transformation to (42) and by
Schur complement, we obtain Φ(k) < 0, which implies

E{∆V + ϑT (k)R3ϑ(k)− vT (k)R3v(k)} < 0. (44)

From (43), it is easy to see that J < 0, which implies∥∥T ◦G ◦ T−1
∥∥
∞ < 1, such that the whole interconnection

system in (24) is input-output stable under w(k) = 0nw×1.

Based on (44), we choose the following Lyapunov–
Krasovskii functional which can demonstrate the stochastic
stability of the system (24) with w(k) = 0nw×1:

Vcl(E(k), k) , V (E(k), k) +
1

d12

−d1−1∑
u=−d2

k−1∑
v=k+u

ϑT (v)R3ϑ(v).

(45)
By virtue of Jensen inequality, taking the forward difference
of Vcl(E(k), k) along the trajectory of the closed-loop system
consisting of (S1) and (S2), we have

∆Vcl

= E{∆V + ϑT (k)R3ϑ(k)− 1
d12

∑k−d1−1
u=k−d2

ϑT (u)R3ϑ(u)}

≤ E
{

∆V + ϑT (k)R3ϑ(k)− d−212

(∑k−d1−1
u=k−d2

ϑ(u)
)T

×R3

(∑k−d1−1
u=k−d2

ϑ(u)
)}

= E

{
∆V + ϑT (k)R3ϑ(k)−

(
d−112

∑k−d1−1
u=k−d2

κ(u)ϑ(u)
)T

×R3

(
d−112

∑k−d1−1
u=k−d2

κ(u)ϑ(u)
)}

= E{∆V + ϑT (k)R3ϑ(k)− vT (k)R3v (k)} < 0.

Then, it follows that Φ(k) < 0, thus we can always find
σ < 0 such that

∆Vcl , E {Vcl (E (k + 1) , k + 1) |E(k), k} − Vcl(E(k), k)

≤ λmax(Φ(k))ςT (k)ς(k)

≤ σET (k)E(k). (46)

where σ = λmax(Φ(k)), then σ < 0. From (46), one has

E {Vcl (E (k + 1) , k + 1)} − Vcl(E(k), k) ≤ σ|E(k)|2. (47)

Take mathematical expectation on both sides of (47). For any
h ≥ 1, summing up the inequality in (47) on both sides from
k = 0, ..., h, we have

E{Vcl(E(h+1), h+1)}−Vcl(E(0), 0) ≤ σE
{∑h

k=0 |E(k)|2
}

which implies

E
{∑h

k=0 |E(k)|2
}

≤ σ−1 {E {Vcl (E(h+ 1), h+ 1)} − E {Vcl(E(0), 0)}}
≤ −σ−1E {Vcl(E(0), 0)} .

When h =∞, we arrive at

E
{∑∞

k=0 |E(k)|2 | E(0), 0
}
≤ −σ−1 {Vcl(E(0), 0)} <∞

which implies that the closed-loop system (24) is stochastically
stable.

Consider the index Jcl defined in (32) for any nonzero
w(k) ∈ l2 [0,∞). Together with (29), (33), (34), (37)–(39)
and (45), and according to the fact that Vcl(E(∞),∞) ≥ 0,
under zero initial condition, i.e., Vcl(E(0), 0) = 0, we have

Jcl ≤ Jcl + Vcl(E(∞),∞)− Vcl(E(0), 0)

= E
{∑∞

k=0

[
z̄T (k)z̄(k)− nγ2wT (k)w(k) + ∆Vcl

]}
=
∑∞

k=0 ξ
T (k)z(k)ξ(k)
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where

z(k) , Λ(k) +
∑n

q=1

[
µ2
1,qΨT

I1q(k)P̄ (k + 1)ΨI1q(k)

+µ2
2,qΨT

I2q(k)P̄ (k + 1)ΨI2q(k)
]

+ µ2
3ΨT

I3(k)

× P̄ (k + 1)ΨI3(k) +
∑2

l=1

{
d2l
∑n

q=1

[
µ2
1,qΨT

II1q(k)

×RlΨII1q(k) + µ2
2,qΨT

II2q(k)RlΨII2q(k)
]

+d2l µ
2
3ΨT

II3(k)RlΨII3(k)
}

+ ΨT
III(k)ΨIII(k)

+
∑n

q=1

[
µ2
1,qΨT

II1q(k)R3ΨII1q(k) + µ2
2,qΨT

II2q(k)

×R3ΨII2q(k)] + µ2
3ΨT

II3(k)R3ΨII3(k). (48)

By Schur complement, it follows from (48) that (42) is a
sufficient condition ensuring z(k) < 0, which implies Jcl < 0.
Then, we have ‖z̄(k)‖2E2

≤ nγ2 ‖w(k)‖22, which implies that
the DFFES (24) is stochastically stable with an average H∞
performance γ.

Proof of Theorem 2: Firstly, we define the matrix Kj ,[
K̄j H̄j

]
. From (27) and the definition of Kj and Tj , we

have
ITj = X IKj , Sj = ZL̄j . (49)

For each o ∈ S, R1, R2, R3, Po > 0, we have the following
inequalities:

−XP−1o X T ≤ Po − sym(X ), −ZZT ≤ Innz
− sym(Z)

−ε21X R̃−11 X T ≤ R̃1 − sym(ε1X )

−ε22ε24X R̃−12 X T ≤ R̃2 − sym(ε2ε4X )

−ε23X R̃−13 X T ≤ R̃3 − sym(ε3X ). (50)

Furthermore, we denote

R1 , ε−21 R̃1, R2 , ε−22 R̃2, R3 , ε−23 R̃3. (51)

Then, combining (26), (49), (50) and (51), we can obtain

Ǵoltii < 0, (o, l, t, i ∈ S)

Ǵoltij + Ǵoltij < 0, (o, l, t, i, j ∈ S, i < j) (52)

where

Ǵoltij ,
[
Λ́lti Ώij

∗ Ξ́o

]
Λ́lti ,

[
ΛIi

[
ε1R1 ε2R2 02nnx

02nnx×nw

]
∗ diag

{
Λ́IIl, Λ́IIIt,−ε23R3,−nγ2Inw

}]

Ώij , [ Ψ́T
IIIij d1ẂIIij ε4d2ẂIIij ẂIIij ẂIij ]

Ξ́o , diag{−ZZT ,−Ŕ1,−Ŕ2,−Ŕ3,−Ṕo}
Λ́IIl , −ε21R1 − ε21Q1l, Λ́IIIt , −ε22R2 − ε22Q2t

Ŕ1 , I2n+1 ⊗XR−11 X T , Ŕ2 , I2n+1 ⊗ ε24XR−12 X T

Ŕ3 , I2n+1 ⊗XR−13 X T , Ṕo , I2n+1 ⊗XP−1o X T

W̃Iij , [ µ1,1Ψ́T
I11,ij

µ1,2Ψ́T
I12,ij

· · · µ1,nΨ́T
I1n,ij

µ2,1Ψ́T
I21,ij

µ2,2Ψ́T
I22,ij

· · · µ2,nΨ́T
I2n,ij

µ3Ψ́T
I3ij

]

W̃IIij , [µ1,1Ψ́T
II11,ij

µ1,2Ψ́T
II12,ij

· · · µ1,nΨ́T
II1n,ij

µ2,1Ψ́T
II21,ij

µ2,2Ψ́T
II22,ij

· · · µ2,nΨ́T
II2n,ij

µ3Ψ́T
II3ij

]

with

Ψ́I1q,ij ,
[
X (A0i + IKjI1 − nIKjBqi) ε1

2 XAdi

ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ́I2q,ij ,

[
X (A0i + IKjI1 − nIKjDqi)

ε1
2 XAdi

ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ́I3ij ,

[
X (A0i + IKjI1) ε1

2 XAdi
ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ́II1q,ij ,

[
X (A0i + IKjI1 − nIKjBqi − I2nnx) ε1

2 XAdi

ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ́II2q,ij ,

[
X (A0i + IKjI1 − nIKjDqi − I2nnx) ε1

2 XAdi

ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ́II3ij ,

[
X (A0i + IKjI1 − I2nnx

) ε1
2 XAdi

ε2
2 XAdi

ε3d12

2 XAdi XE0i + ITjFi

]
Ψ́IIIij ,

[
Z
(
C0i + L̄jI2

)
0nnz×(6nnx+nw)

]
.

According to the definitions of Aij ,Eij , Cij ,HIq,ij ,HIIq,ij ,
A0i,E0i, C0i, I,Kj , L̄j , I1, I2,Fi,Bi and Di, we rewrite the
matrices Aij ,Eij , Cij ,HIq,ij , HIIq,ij in Theorem 1 in the
following form:

Aij = A0i + IKjI1, Cij = C0i + L̄jI2, HIq,ij = IKjBi
Eij = E0i + IKjFi, HIIq,ij = IKjDi. (53)

Pre- and post-multiply the inequalities in (52) with
diag{I2nnx

, ε−11 I2nnx
, ε−12 I2nnx

, ε−13 I2nnx
, Inw

,Z−1, I2n+1⊗
X−1, I2n+1 ⊗ ε−14 X−1, I2n+1 ⊗ X−1} and its transpose,
respectively. Then, bearing (53) in mind, we can obtain (40).
The rest of the proof follows directly from Theorem 1.
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