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Multi-rate Systems with Fading Measurements and

Randomly Occurring Faults
Yong Zhang, Zidong Wang, Lei Zou and Zhenxing Liu

Abstract

In this paper, the fault detection problem is investigated for a class of networked multi-rate systems (NMSs)

with network-induced fading channels and randomly occurring faults. The stochastic characteristics of the fading

measurements are governed by mutually independent random channel coefficients over the known interval[0, 1].

By applying the lifting technique, the system model for the observer-based fault detection is established. With the

aid of the stochastic analysis approach, sufficient conditions are established under which the stochastic stability

of the error dynamics for the state estimation is guaranteedand the prescribedH∞ performance constraint on

the error dynamics for the fault estimation is achieved. Based on the established conditions, the addressed fault

detection problem of NMSs is recast as a convex optimizationone that can be solved via the semi-definite program

method, and the explicit expression of the desired fault detection filter is derived by means of the feasibility of

certain matrix inequalities. The main results are specialized to the networked single-rate systems that are a special

case of the NMSs. Finally, two simulation examples are utilized to illustrate the effectiveness of the proposed fault

detection method.

Index Terms

Networked multi-rate systems; Fading measurements; Randomly occurring faults; Fault detection.

I. INTRODUCTION

In networked control systems (NCSs) [1], [2], in addition tothe well-studied communication delays

[3], [4], packet dropouts [5]–[8] and signal quantization [9]–[11], the channel fading phenomenon is often
unavoidable due mainly to the multi-path propagation, shadowing effects from obstacles, as well as the

path loss. Up to now, the stability and state estimation problems for the networked systems with fading

measurements have drawn some initial research attention [12]–[17]. On the other hand, most available
literature concerning NCSs has assumed the single-rate sampled-data setting for the underlying system.

However, in practice, especially for large-scale networked systems, the elements of the control system may

be structured distributively, that is, the sensors, actuators and controller are connected by communication
networks. For such kind of NCSs, faster A/D and D/A conversions would lead to better performance but

This work was supported in part by the National Natural Science Foundation of China under Grants 61104027, 61174107 and 61329301,

the Royal Society of the U.K., and the Alexander von HumboldtFoundation of Germany.
Y. Zhang and Z. Liu are with the School of Information Scienceand Engineering, Wuhan University of Science and Technology, Wuhan

430081, China. (Email:zhangyong77@wust.edu.cn)

Z. Wang is with the Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom. He is
also with the Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia. (Email:Zidong.Wang@brunel.ac.uk)

L. Zou is with the Research Institute of Intelligent Controland Systems, Harbin Institute of Technology, Harbin 150001, China.



SUBMITTED 2

also mean higher implementation cost. Allowing different speeds for A/D and D/A conversions results in

satisfactory trade-offs between the performance and implementation cost. As such, the scheme of multi-rate

sampled-data (MSD) arise naturally and has become a research focus for many years, see [18]–[22].
In order to meet the ever-increasing demand for higher performance, higher safety, and reliability

standard, the fault detection problem has been an active research area for several decades [23], [24].

Recently, the fault detection (FD) problem of networked control systems [25]–[27], [29] has become a
rather hot topic. For example, to deal with the FD problem of nonlinear networked systems, the T-S fuzzy-

model-based fault detection problem has been studied in [30] for NCSs with Markov delays. In [31], an

FD framework has been proposed for a class of nonlinear NCSs via a shared communication medium.

On the other hand, the FD problem of MSD systems has been investigated in [18]–[20]. To date, the FD
problem has not been adequately examined for networked multi-rate systems (NMSs), not to mention the

cases when fading measurements and randomly occurring faults are simultaneously presented.

In this paper, we aim to investigate the fault detection problem for a class of NMSs with fading
measurements and randomly occurring faults. Our main contributions can be highlighted as follows:

(1) the system model is comprehensive that covers networkedmulti-rate sampled-data dynamics, fading

measurements and randomly occurring faults, thereby better reflecting the reality; (2) by using the lifting

technique, the FD problem for networked multi-rate sampled-data systems is investigated that caters for

fading measurements and randomly occurring faults; and (3)the sufficient conditions are establish to

quantify the relationships between theH∞ performance, the fault occurrence probability as well as the

multiple of periodh.

The rest of this paper is outlined as follows. In Section II, the multi-rate sampled-data system with

network-induced randomly occurring faults and measurements fading is introduced. Section III uses
lifting technique to establish the model for the multi-ratefault detection dynamics. In Section IV, by

employing the Lyapunov stability theory, some sufficient conditions are established in the form of matrix

inequalities, and then the fault detection gain is obtainedby solving a convex optimization problem.
Two illustrative examples are given in Section V to demonstrate the effectiveness of the results obtained.

Finally, conclusions are drawn in Section VI.

Notation The notation used here is fairly standard except where otherwise stated.Rn andRn×m denote,
respectively, then-dimensional Euclidean space and the set of alln × m real matrices.l2[0,∞) is the

space of square summable sequences. The notationX ≥ Y (respectively,X > Y ), whereX and Y

are real symmetric matrices, means thatX − Y is positive semi-definite (respectively, positive definite).
Prob{·} means the occurrence probability of the event “·” and E{·} stands for the expectation of the

stochastic variable ”·” with respect to the given probability measureProb. 0 and I denote, respectively,

the zero matrix of compatible dimensions and the identity matrix of compatible dimensions. In symmetric
block matrices or complex matrix expressions, we utilize asterisk ∗ to represent a term that is induced

by symmetry, anddiag{· · · } stands for a block-diagonal matrix.col{· · · } represents a column vector

composed of elements.‖ • ‖ refers to the Euclidean norm for vectors.⌊⋆⌋ is the floor function which is

the largest integer not greater than⋆. Matrices, if not explicitly specified, are assumed to have compatible
dimensions.
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II. I NTRODUCTION OF NETWORKED MULTI-RATE SYSTEMS

Consider the following class of discrete time systems with randomly occurring faults:

x(Tk+1) = Ax(Tk) +B1ω(Tk) + α(Tk)B2f(Tk) (1)

y(tk) = Cx(tk), k = 0, 1, 2, · · · (2)

wherex(Tk) ∈ R
nx represents the state vector,y(tk) ∈ R

ny is the ideal measurement,ω(Tk) ∈ R
nω is the

disturbance input which belongs toℓ2[0,∞), andf(Tk) ∈ R
nf is the fault signal to be detected.A, B1,

B2 andC are constant matrices with appropriate dimensions.

The sampling period of system (1) is denoted byh , Tk+1 − Tk. For simplicity, it is assumed that
the measurement period is integer multiples of the system (2), i.e. tk+1 − tk , bh, whereb is a positive

integer. An illustration of the multi-rate sampled-data systems is shown in Fig. 1 whereb = 3, Tk are the

updating instants for system states andtk are the updating instants for system measurements.
The stochastic variableα(Tk) is used to govern the random behaviour of the fault occurrence, which

is a Bernoulli distributed white-noise sequence taking values on0 or 1 with the following probabilities:

Prob{α(Tk) = 1} = ᾱ, Prob{α(Tk) = 0} = 1− ᾱ.

In comparison with the wired NCSs, the wireless NCSs are susceptible to fading effect because of

multipath propagation or shadowing from obstacles affecting the wave propagation [12], [13]. In this

paper, the actually received measurement signal with probabilistic fading channels is described by

ȳ(tk) =

ℓ(tk)∑

s=0

βs(tk)y(tk − sbh) (3)

whereℓ(tk) = min{ℓ, ⌊ tk
bh
⌋} with ℓ being a given positive scalar denoting the number of paths.ȳ(tk) ∈ R

ny

is the measurement output through fading channels.βs(tk) (s = 0, 1, ..., ℓ(tk)) are assumed to be mutually

independent channel coefficients having probability density functions q(βs) on the interval[0, 1] with

known mathematical expectations̄βs and variances̃̄β2
s .

Remark 1: In a networked environment, the faults could occur in a random way due to a variety of

reasons such as limited bandwidth of the communication channels, random fluctuation of the network load,

unreliability of the wireless links with large distances, as well as the fading measurement signals. The
network-induced fault can be modelled in (1) whose probability distribution information can be specified

a prior through statistical tests. Note that both the time-delays and packet dropouts can be described by

this kind of fading model.
It can be seen that (1) evolves with a constant periodh, while the fading measurement dynamics (3)

is generated with a slower periodbh. Accordingly, (1) and (3) is essentially a multi-rate sampled-data

tk tk+1 tk+2

Tk Tk+1 Tk+2 Tk+3 Tk+6

Fig. 1. An illustration of the multi-rate sampled-data system with b=3.
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(MRSD) system model. Note that it is mathematically difficult to handle the FD problem directly for such

kind of MRSD system. In the next section, we are going to convert the resulting MRSD system into a

single-rate system for technical convenience.

III. M ODEL OF THE NETWORKED MULTI-RATE SYSTEMS

The following assumptions are needed in the derivation of the main results.
Assumption 1:The mutually independent channel coefficientsβs(tk) (s = 0, 1, · · · , ℓ) are independent

of the random variableα(Tk) governing the fault occurrence.
Assumption 2:In this paper, for the purpose of simplicity, for−ℓ ≤ i ≤ −1, we assume thatx(i) = 0

andcol{ω(i), f(i)} = 0. Without loss of generality, we also assume thatℓ+ 1 ≤ b.
By applying the relation (1) recursively, one obtains a new system with time scaletk as follows:

x(tk+1) = Abx(tk) + Ā11ω̄(tk) + Ā12f̄(tk) +
b−1∑

i=0

α̃(tk + ih)Ab−1−iB2f(tk + ih) (4)

where

ω̄(tk) , col
{
ω(tk), ω(tk + h), · · · , ω(tk + (b− 1)h)

}
,

f̄(tk) , col
{
f(tk), f(tk + h), · · · , f(tk + (b− 1)h)

}
,

α̃(tk + ih) , α(tk + ih)− ᾱ (i = 0, 1, 2, · · · , b− 1),

Ā11 , [Ab−1B1 Ab−2B1 · · ·AB1 B1],

Ā12 , [ᾱAb−1B2 ᾱAb−2B2 · · · ᾱAB2 ᾱB2].

Consider the following observer-based fault detection filter
{

x̂(tk+1) = Abx̂(tk) + L
(
ȳ(tk)− Cx̂(tk)

)

r(tk) = V
(
ȳ(tk)− Cx̂(tk)

) (5)

where x̂(tk) ∈ R
nx̂ is the estimated state,r(tk) ∈ R

nr is the residual that is compatible with the fault
vector, and theL and V are the appropriately dimensioned fault detection filter gain matrices to be

designed.In our present work, it is intended to make the error between the residual signalr(tk) and the

fault signalf(tk) as small as possible inH∞ framework.
Letting e(tk) , x(tk) − x̂(tk), x̄(tk) , col

{
x(tk), x(tk − h), · · · , x(tk − (b − 1)h)

}
and β̃s(tk) ,

βs(tk)− β̄s, the error dynamics for the fault detection filter can be obtained from (4)-(5) and Assumption

2 as follows:






e(tk+1) =(Ab − LC)e(tk) + Ā11ω̄(tk) + Ā12f̄(tk) + LCx(tk)

−

ℓ∑

s=0

β̃s(tk)LCx(tk − sbh)−

ℓ∑

s=0

β̄sLCx(tk − sbh)

+

b−1∑

i=0

α̃(tk + ih)Ab−1−iB2f(tk + ih)

r(tk) =V Ce(tk)− V Cx(tk) +

ℓ∑

s=0

β̄sV Cx(tk − sbh)

+

ℓ∑

s=0

β̃s(tk)V Cx(tk − sbh)

(6)



SUBMITTED 5

On the other hand, with similar procedure for obtaining (4),we have






x(tk+1 − h) =Ab−1x(tk) + Ā21ω̄(tk) + Ā22f̄(tk)

+
b−2∑

i=0

α̃(tk + ih)Ab−2−iB2f(tk + ih)

· · · · · ·

x(tk+1 − (b− 1)h) =Ax(tk) + Āb1ω̄(tk)

+ Āb2f̄(tk) + α̃(tk)B2f(tk)

(7)

where

Ā21 , [Ab−2B1 Ab−3B1 · · ·B1 0], · · · , Ā(b−1)1 , [AB1 B1 · · · 0 0],

Āb1 , [B1 0 · · ·0 0], Ā22 , [ᾱAb−2B2 ᾱAb−3B2 · · · ᾱB2 0], · · · ,

Ā(b−1)2 , [ᾱAB2 ᾱB2 · · · 0 0], Āb2 , [ᾱB2 0 · · ·0 0].

For convenience of later analysis, we denote

η(tk) , col
{
e(tk), x̄(tk), x̄(tk − bh), · · · , x̄(tk − ℓbh)

}
, re(tk) , r(tk)− f(tk),

I , col
{

I, 0, · · · , 0
︸ ︷︷ ︸

(ℓ+1)b

}

, Ā , col
{
(1− β̄0)LC,A

b, Ab−1, · · · , A, 0, · · · , 0
︸ ︷︷ ︸

ℓb

}
,

B̄1 , col
{

Ab−1B2, A
b−1B2, A

b−2B2, · · · , AB2, B2
︸ ︷︷ ︸

b

, 0, · · · , 0
︸ ︷︷ ︸

ℓb

}

,

B̄2 , col
{

Ab−2B2, A
b−2B2, A

b−3B2, · · · , B2, 0
︸ ︷︷ ︸

b

, 0, · · · , 0
︸ ︷︷ ︸

ℓb

}

, · · · ,

B̄b , col{B2, B2, 0, · · · , 0, 0
︸ ︷︷ ︸

b

, 0, · · · , 0
︸ ︷︷ ︸

ℓb

}.

Then, by using the lifting technique, the augmented system resulting from (4), (6) and (7) can be written

as






η(tk+1) =
(

A+

ℓ∑

s=0

β̃s(tk)Ãs

)

η(tk) + B1ω̄(tk)

+
(

D +

b−1∑

i=0

α̃(tk + ih)D̃i

)

f̄(tk)

re(tk) =
(

C +
ℓ∑

s=0

β̃s(tk)C̃s

)

η(tk) + B2f̄(tk)

(8)

where

A , [(Ab − LC)I Ā − β̄1LCI − β̄2LCI · · · − β̄ℓLCI 0 · · · 0
︸ ︷︷ ︸

ℓb

],

Ãs , [0 · · · 0
︸ ︷︷ ︸

s+1

LCI 0 · · · 0
︸ ︷︷ ︸

(ℓ+1)b−s−1

],

B1 , col{Ā11, Ā11, Ā21, · · · , Ā(b−1)1, Āb1, 0, · · · , 0
︸ ︷︷ ︸

ℓb

},
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D , col{Ā12, Ā12, Ā22, · · · , Ā(b−1)2, Āb2, 0, · · · , 0
︸ ︷︷ ︸

ℓb

},

D̃i , [0 · · · 0
︸ ︷︷ ︸

i

B̄i+1 0 · · · 0
︸ ︷︷ ︸

b−i−1

],

C , [V C − (1− β̄0)V C β̄1V C β̄2V C · · · β̄ℓV C 0 · · · 0
︸ ︷︷ ︸

ℓb

],

C̃s , [0 · · · 0
︸ ︷︷ ︸

s+1

V C 0 · · · 0
︸ ︷︷ ︸

(ℓ+1)b−s−1

], B2 , [−I 0 · · · 0
︸ ︷︷ ︸

b−1

],

(s = 0, 1, · · · , ℓ; i = 0, 1, · · · b− 1).

Remark 2:By using the lifting technique, the model (8) for NMSs is obtained. Comparing with the fault

detection models of the MRSD system in [18]–[20], the model (8) exhibits two distinguished features: i)
both the fading measurements and randomly occurring faultsare considered and therefore the model (8)

is quite comprehensive to better reflect the networked environment; ii) the introduction of the stochastic

coefficients in model (3) results in significant delays in theoverall dynamics governed by (8). Note that
the communication delay issues have not been considered in [18]–[20].

Before proceeding further, we introduce the following definition.

Definition 1: The augmented system (8) is said to be exponentially mean-square stable if, with̄ω(tk) =
0 and f̄(tk) = 0, there exist scalarsδ > 0 and̺ ∈ (0, 1) such that

E{‖η(tk)‖
2} ≤ δ̺tkE{‖η(t0)‖

2}, ∀η(t0) ∈ R
(b+1)nx

The purpose of this paper is to design the observer-based fault detection filters such that the following

requirements are met simultaneously:
(a) the augmented system (8) is exponentially mean-square stable;

(b) under the zero-initial condition, the errorre(tk) between the residual and the fault estimate satisfies
∞∑

k=0

E{‖re(tk)‖
2} < γ2

∞∑

k=0

(‖ω̄(tk)‖
2 + ‖f̄(tk)‖

2) (9)

for any nonzerōω(tk) or f̄(tk), where scalarγ > 0 is a given disturbance attenuation level.
For the fault detection purpose, we adopt the thresholdJth and the residual evaluation functionJ(tk)

as follows:

J(tk) =







tk∑

h=tk0

rT (h)r(h)







1

2

, Jth = sup
ω̄(tk)∈ℓ2
f̄(tk)=0

E{J(tk)}

wheretk0 denotes the initial evaluation time instant andtk − tk0 denotes the evaluation time steps.

The occurrence of faults can be detected by comparingJ(tk) with Jth according to the following test

rule:
{

J(tk) ≥ Jth =⇒ alarm for fault

J(tk) < Jth =⇒ no fault
(10)

Remark 3:As is discussed in [23], depending on the type of the system under consideration, there
exist two residual evaluation strategies, i.e. the statistic testing and norm-based residual evaluation. For

the norm-based residual evaluation, the well-establishedrobust control theory can be used to compute
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the threshold, therefore, it is widely adopted. On the otherhand, from the engineering viewpoint, the

determination of a threshold is to find out the tolerant limitfor disturbances and model uncertainties under

fault-free operation conditions. There are some factors such as the dynamics of the residual generator as
well as the bounds of the unknown inputs and model uncertainties, they all significantly influence this

procedure. As a result, false alarm and missed detection aretwo common phenomenon in fault diagnosis.

IV. M AIN RESULTS

In this section, by resorting to the stochastic analysis techniques, we shall provide theH∞ performance

analysis result for the augmented system (8) and then proceed with the subsequent fault detection filter
design stage.

Theorem 1:Let the disturbance attenuation levelγ > 0 and the fault detection filter parametersL

andV be given. The augmented system (8) is exponentially mean-square stable while achieving theH∞

performance constraint (9) if there exists matrixP such that the following matrix inequality holds:

Φ̂ ,






Φ̄11 Φ̄12 Φ̄13

∗ −I 0

∗ ∗ −I




 < 0 (11)

where

Φ̄11 ,






Γ ATPB1 ATPD + CTB2

∗ BT
1 PB1 − γ2I BT

1 PD

∗ ∗ Φ33




 ,

Γ ,

ℓ∑

s=0

˜̄β2
s Ã

T
s P Ãs +ATPA− P, Φ̄12 , col

{
CT , 0, 0

}
,

Φ̄13 , col
{ ˆ̃CT , 0, 0

}
,
ˆ̃CT , [ ˜̄β0C̃

T
0

˜̄β1C̃
T
1 · · · ˜̄βℓC̃

T
ℓ ],

Φ33 ,

b−1∑

i=0

α̌2D̃T
i P D̃i +DTPD + BT

2 B2 − γ2I.

Proof: Choose the following Lyapunov function:

V (η(tk)) = ηT (tk)Pη(tk) (12)

By calculating the difference ofV (η(tk)) along the trajectory of the augmented system (8) withω̄(tk) =

0 and f̄(tk) = 0, and taking the mathematical expectation, one has

E(∆V (η(tk))) = E{ηT (tk+1)Pη(tk+1)− ηT (tk)Pη(tk)}

= E{ηT (tk)((A+
ℓ∑

s=0

β̃s(tk)Ãs)
TP (A+

ℓ∑

s=0

β̃s(tk)Ãs)− P )η(tk)}

= ηT (tk)
(

ATPA− P +
ℓ∑

s=0

β̃2
s Ã

T
s P Ãs

)

η(tk)

= ηT (tk)Γη(tk) (13)

It follows from (11) thatΓ < 0 and, subsequently,

E
(
∆V (η(tk))

)
≤ −λmin(−Γ)‖η(tk)‖

2
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By following the similar analysis in [5], the augmented system (8) is exponentially mean-square stable.
Finally, let us consider theH∞ performance of the overall estimation dynamics. For this purpose, we

introduce the following index:

Jn , E

{ n∑

k=0

‖re(tk)‖
2 −

n∑

k=0

γ2(‖ω̄(tk)‖
2 + ‖f̄(tk)‖

2)
}

(14)

Under the zero-initial condition, it follows from (14) that

Jn ,E

{ n∑

k=0

‖re(tk)‖
2 −

n∑

k=0

γ2(‖ω̄(tk)‖
2 + ‖f̄(tk)‖

2)
}

≤
n∑

k=0

E

{

‖re(tk)‖
2 − γ2(‖ω̄(tk)‖

2 + ‖f̄(tk)‖
2) + ∆V (η(tk))

}

− E{V (η(tn+1)}

≤

n∑

k=0

E

{

‖re(tk)‖
2 − γ2(‖ω̄(tk)‖

2 + ‖f̄(tk)‖
2) + ∆V (η(tk))

}

=

n∑

k=0

{

ηT (tk)[

ℓ∑

s=0

˜̄β2
s Ã

T
s P Ãs +ATPA+

ℓ∑

s=0

˜̄β2
s C̃

T
s C̃s

+ CTC − P ]η(tk) + 2ηT (tk)[A
TPD + CTB2]f̄(tk)

+ 2ηT (tk)A
TPB1ω̄(tk) + 2ω̄T (tk)B

T
1 PDf̄(tk)

+ f̄T (tk)[

b−1∑

i=0

α̌2D̃T
i P D̃i +DTPD + BT

2 B2 − γ2I]f̄(tk)

+ ω̄T (tk)[B
T
1 PB1 − γ2I]ω̄(tk)

}

=
n∑

k=0

{

ϑT (tk)Φϑ(tk)
}

=

n∑

k=0

{

ϑT (tk)(Φ̄11 + Φ̃)ϑ(tk)
}

(15)

where

ϑ(tk) , col{η(tk), ω̄(tk), f̄(tk)}, E{α̃2(tk + ih)} = (
√

ᾱ(1− ᾱ))2 , α̌2,

Φ , Φ̄11 + Φ̃, Φ̃ , diag{

ℓ∑

s=0

˜̄β2
s C̃

T
s C̃s + CTC, 0, 0} = Φ̄12Φ̄

T
12 + Φ̄13Φ̄

T
13.

By using the Schur Complement Lemma to (11), we have

Φ̂ = Φ̄11 + Φ̄12Φ̄
T
12 + Φ̄13Φ̄

T
13 < 0 (16)

that is Φ̄11 + Φ̃ < 0, therefore, we obtain the following relation from (15)

E
(
∆V (η(tk))

)
+ E

(
‖re(tk)‖

2
)
− γ2

(
‖ω̄(tk)‖

2 + ‖f̄(tk)‖
2
)
< 0 (17)

for all nonzeroω̄(tk) and f̄(tk). Considering zero initial condition, the inequality (17) implies that
n∑

k=0

E{‖re(tk)‖
2} < γ2

n∑

k=0

(‖ω̄(tk)‖
2 + ‖f̄(tk)‖

2)
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Letting n → ∞, it follows from the aforementioned inequality that
∞∑

k=0

E{‖re(tk)‖
2} < γ2

∞∑

k=0

(‖ω̄(tk)‖
2 + ‖f̄(tk)‖

2)

which is (9). The proof is now complete.

Having established the analysis results, we are now ready todeal with the filter design problem. In the
following theorem, a sufficient condition is provided for the existence of the desiredH∞ multi-rate fault

detection filter. For technical convenience, we denote

ĀT
10 , col

{

− β̄1C
T L̄T ,−β̄2C

T L̄T , · · · ,−β̄ℓC
T L̄T

}

,

ĀT
1 , col

{

(Ab)TP1 − CT L̄T , (1− β̄0)C
T L̄T , ĀT

10, 0, · · · , 0︸ ︷︷ ︸

ℓb

}

,

ĀT
i , col

{

(Ab+2−i)TPi, 0, · · · , 0
︸ ︷︷ ︸

(ℓ+1)b

}

, ˆ̄AT ,

[

ĀT
1 ĀT

2 · · · ĀT
b+1 0 · · · 0

︸ ︷︷ ︸

ℓb

]

,

X T
j , col

{

0, · · · , 0
︸ ︷︷ ︸

j+1

,−CT L̄T , 0, · · · , 0
︸ ︷︷ ︸

b−1−j

}

,
¯̃AT
j ,

[

X T
j 0 · · · 0

︸ ︷︷ ︸

b

]

,

P̂ , diag{P1, P2, · · · , P(ℓ+1)b+1},
ˆ̃AT ,

[
˜̄β0

¯̃AT
0

˜̄β1
¯̃AT
1 · · · ˜̄βℓ

¯̃AT
ℓ

]

,

ˆ̃DT ,

[

α̌D̃T
0 P̂ α̌D̃T

1 P̂ · · · α̌D̃T
b−1P̂

]

,
ˆ̃CT , [ ˜̄β0C̃

T
0

˜̄β1C̃
T
1 · · · ˜̄βℓC̃

T
ℓ ],

(i = 2, 3, · · · , b+ 1; j = 0, 1, 2, · · · , ℓ).

Theorem 2:For the given disturbance attenuation levelγ > 0, the augmented system (8) is exponentially
mean-square stable while achieving the performance constraint (9) for any nonzerōω(tk) and f̄(tk) if

there exist matrices̄L, V̄ andPi > 0 (i = 1, 2, · · · , (ℓ + 1)b + 1) such that the following linear matrix

inequality (LMI) holds:

Ξ̄ ,






Ξ̄11 Ξ12 Ξ̄13

∗ Ξ22 0

∗ ∗ Ξ̄33




 < 0 (18)

where

Ξ̄11 , diag
{

− P̂ ,−γ2I,−γ2I
}

, Ξ12 ,






ˆ̃CT CT

0 0

0 BT
2




 ,

Ξ̄13 ,






ˆ̃AT 0 ˆ̄AT

0 0 BT
1 P̂

0 ˆ̃DT DT P̂




 , Ξ22 , diag{−I, · · · ,−I},

Ξ̄33 , diag{−P̂ , · · · ,−P̂},

and other corresponding matrices are defined in Theorem 1. Furthermore, if the inequality (18) is feasible,

the desired fault detection filter gain can be determined by

L = P−1
1 L̄, V = V̄ . (19)
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Proof: By using the Schur Complement Lemma, (11) is equivalent to the following inequality:

Ξ =






Ξ11 Ξ12 Ξ13

∗ Ξ22 0

∗ ∗ Ξ33




 < 0 (20)

where

Ξ11 , diag{−P,−γ2I,−γ2I}, Ξ13 ,






ˇ̃AT 0 ATP

0 0 BT
1 P

0 ˇ̃DT DTP




 ,

Ξ33 , diag{−P, · · · ,−P
︸ ︷︷ ︸

b+ℓ+2

}, ˇ̃AT ,

[
˜̄β0Ã

T
0P

˜̄β1Ã
T
1 P · · · ˜̄βℓÃ

T
ℓ P

]

,

ˇ̃DT ,

[

α̌D̃T
0 P α̌D̃T

1 P · · · α̌D̃T
b−1P

]

.

In order to utilize the Matlab LMI Toolbox to design the faultdetection filter effectively, we assume

P as P̂ = diag{P1, P2, · · · , P(ℓ+1)b+1}, let L̄ = P1L and V̄ = V , then (18) can be obtained and the fault
detection filter can be expressed as (19). The proof of this theorem is now complete.

To sum up, the FD problem of networked multi-rate systems canbe solved by the following steps:

1) Design the fault detection filter by using Theorem 2.

2) Employ the designed fault detection filters in 1) to produce the residual evaluation functionJ(tk)

and appropriate thresholdJth.
3) Compare the residual evaluation functionJ

(
tk
)

with the thresholdJth to determine whether there

is a fault by using the test rule (10).

4) Determine the fault occurrence time according toJth < J
(
tk
)

for the first time.

As the special case of NMSs, we now deal with the fault detection filter design problem of networked

single-rate systems (NSSs) with network-induced fading measurements and randomly occurring faults.
With lifting technique, for system (1)-(3) withb = 1, choosing observer-based fault detection filter as

residual generator (5), and letting

ω̄(Tk) , col
{

ω(Tk), ω(Tk − h), · · · , ω(Tk − ℓh)
}

,

f̄(Tk) , col
{

f(Tk), f(Tk − h), · · · , f(Tk − ℓh)
}

,

ē(Tk) , col
{

e(Tk), x(Tk), x(Tk − h), · · · , x(Tk − ℓh)
}

,

e(Tk) , x(Tk)− x̂(Tk), J , col
{

I, 0, · · · , 0
︸ ︷︷ ︸

ℓ+1

}

,

Ai , col
{

(1− β̄i−2)LC, 0, · · · , 0
︸ ︷︷ ︸

i−2

, A, 0, · · · , 0
︸ ︷︷ ︸

ℓ−i−2

}

,

A1 , col
{

A− LC, 0, · · · , 0
︸ ︷︷ ︸

ℓ+1

}

, J1 , col
{

I, I, 0, · · · , 0
︸ ︷︷ ︸

ℓ−1

}

,

Jj , col
{

0, · · · , 0
︸ ︷︷ ︸

j

, I, 0, · · · , 0
︸ ︷︷ ︸

ℓ+1−j

}

, (i = 2, 3, · · · , ℓ+ 2; j = 2, 3, · · · , ℓ+ 1),
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we have the following augmented system:






ē(Tk+1) =

(

A +

ℓ∑

s=0

β̃s(Tk)Ãs

)

ē(Tk) + B1ω̄(Tk)

+

(

D +

ℓ∑

i=0

α̃(Tk − ih)D̃i

)

f̄(Tk)

re(Tk) =

(

C +

ℓ∑

s=0

β̃s(Tk)C̃s

)

ē(Tk) + B2f̄(Tk)

(21)

where

A ,

[

A1 A2 · · · Aℓ+2

]

, Ãs ,

[

0 · · · 0
︸ ︷︷ ︸

s+1

− LCJ 0 · · · 0
︸ ︷︷ ︸

ℓ−s

]

,

B1 ,

[

J1B1 J2B1 · · · Jℓ+1B1

]

, D ,

[

ᾱJ1B2 ᾱJ2B2 · · · ᾱJℓ+1B2

]

,

D̃i ,

[

0 · · · 0
︸ ︷︷ ︸

i

Ji+1B2 0 · · · 0
︸ ︷︷ ︸

ℓ−i

]

, C̃s ,

[

0 · · · 0
︸ ︷︷ ︸

s+1

V C 0 · · ·0
︸ ︷︷ ︸

ℓ−s

]

,

C ,

[

V C − (1− β̄0)V C
∣
∣
∣ β̄1V C · · · β̄ℓV C

]

,

B2 , col
{

− I, 0, · · · , 0
︸ ︷︷ ︸

ℓ

}

, (s, i = 0, 1, · · · , ℓ).

Based on the augmented system (21), by following similar main line of obtaining Theorems 1-2, the

fault detection filter of NNSs can be designed by the following Corollary. To facilitate the presentation

of Corollary 1, we denote

Yi , col
{

0, · · · , 0
︸ ︷︷ ︸

i+1

,−CT ~LT , 0, · · · , 0
︸ ︷︷ ︸

ℓ−i

}

, Zi ,

[

Yi 0 · · · 0
]

,

Ā1 , col
{

ATQ1 − CT ~LT , (1− β̄0)C
T ~LT ,

∣
∣
∣ − β̄1C

T ~LT , · · · , − β̄ℓC
T ~LT

}

,

Āj , col
{

0, · · · , 0
︸ ︷︷ ︸

j−1

, ATQ2, 0, · · · , 0
︸ ︷︷ ︸

ℓ+2−j

}

, ˆ̄
A ,

[

Ā1 Ā2 · · · Āℓ+2

]

,

ˆ̃
A ,

[
˜̄β0Z0

˜̄β1Z1 · · · ˜̄βℓZℓ

]

, Q̂ , diag
{

Q1, Q2, · · · , Qℓ+2

}

,

ˆ̃
D ,

[

α̌D̃
T
0 Q̂ α̌D̃

T
1 Q̂ · · · α̌D̃

T
ℓ Q̂

]

,
ˆ̃

C ,

[
˜̄β0C̃

T
0

˜̄β1C̃
T
1 · · · ˜̄βℓC̃

T
ℓ

]

,

(i = 0, 1, · · · , ℓ; j = 2, 3, · · · , ℓ+ 2).

Corollary 1: For the given disturbance attenuation levelγ > 0, the augmented system (21) is expo-

nentially mean-square stable while achieving the performance constraint (9) for any nonzerōω(Tk) and

f̄(Tk) if there exist matrices~L, ~V andQi > 0 (i = 1, 2, · · · , ℓ+ 2) such that the following LMI holds:

Ψ =






Ψ11 Ψ12 Ψ13

∗ Ψ22 0

∗ ∗ Ψ33




 < 0 (22)
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where

Ψ11 = diag
{

− Q̂,−γ2I,−γ2I
}

, Ψ12 =






C T ˆ̃
C

BT
2 0

0 0




 , Ψ13 =







ˆ̃
A 0 ˆ̄

A

0 0 DT Q̂

0
ˆ̃
D BT

1 Q̂






,

Ψ22 = diag
{
− I, · · · ,−I

}
,Ψ33 = diag

{
− Q̂, · · · ,−Q̂

}
.

Furthermore, if the aforementioned inequality is feasible, the desired fault detection filters can be
determined by

L = Q−1
1
~L, V = ~V . (23)

Remark 4: In this paper, we first establish a comprehensive model that covers multi-rate sampled-data

dynamics, network-induced fading measurements and randomly occurring faults, thereby better reflecting

the reality of NCSs. In this case, sufficient conditions are given in Theorem 1-2 which make sure that the
augmented system (8) is exponentially mean-square stable and H∞ criterion in (9) is satisfied. Note that,

at this stage, the designed fault detection filter which shows the combined effects of fading parameters,

fault occurrence probability as well as multi-rate multiple. Next, as the special case of networked multirate
systems, i.e.b = 1, the general networked single-rate systems with fading measurements and randomly

occurring faults is taken into account, and corresponding fault detection filter is also designed in Corollary

1.

V. TWO ILLUSTRATIVE EXAMPLES

In this section, two numerical examples are presented to demonstrate the effectiveness of the proposed

fault detection filter design scheme with fading measurements and randomly occurring faults for NMSs
and NSSs, respectively.

Example 1 In this numerical example, for MSSs, the system parameters of (1) and (2) are chosen as

follows:

A =

[

0.8 h

0 0.6

]

, B1 =

[
h2

2

h

]

, B2 =

[
3h
2

0.6

]

, C =
[

0 0.3
]

.

Here, the sampling periodh of system (1) is0.5s, the measurement updating period is1.5s (i.e. b = 3),
the number of paths isℓ = 1, the probability of the randomly occurring faults is̄α = 0.6, and the

probability density functions of channel coefficients are






q(β0) = 0.0005(e9.89β0 − 1), 0 ≤ β0 ≤ 1;

q(β1) =

{

10β1,

− 2.50(β1 − 1),

0 ≤ β1 ≤ 0.20;

0.20 < β1 ≤ 1;

(24)

The mathematical expectationsβ̄s can be calculated as0.8991 and0.4000, and the variances̄̃β2
s (s = 0, 1)

are0.0133 and0.0467, respectively. By using the MATLAB LMI toolbox, for the augmented system (8),
we obtain the minimum disturbance attenuation level asγ∗ = 1.0094. The sub-optimal FD filter can then

be obtained as following:

L =

[

2.1427

−1.0263

]

;V = −0.0389.
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Fig. 2. Residual signalr(tk) for NMSs.
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Fig. 3. Evolution of residual evaluation functionJ(tk) for NMSs.

Letting the initial state of (1) bex(T0) = col{0.1,−0.1} and its estimation bêx(t0) = col{0.1, 0}. To
further illustrate the effectiveness of the designed faultdetection filter, fortk = 0, 1, 2, · · · , 100, let the

fault signal and the disturbance input be given as

f(tk) =

{

0.1, 30 ≤ tk ≤ 50

0, else
, ω(tk) = e−0.01tk sin(2tk).

The residual responser(tk) and evolution of residual evaluation functionJ(tk) =
{
∑tk

h=tk0
rT (h)r(h)

} 1

2

for NMSs are shown in Figs. 2-3, respectively. After 200 runsof the simulations, we get an average value

of Jth = 0.0369. From Fig. 3, it can be shown that0.0275 = J(29) < Jth < J(30) = 0.1090, which

means that the fault can be detected as soon as its occurrence.
We now examine the relationship between the disturbance attenuation levelγ and the fault occurrence

probability ᾱ as well as the multipleb of the sampling periodh. It can be observed from Table I that the
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disturbance attenuation performance deteriorates with increased̄α and b, which is in agreement with the

engineering practice.

TABLE I

THE PERMITTED MINIMUM γ∗.

ᾱ = 0.2 ᾱ = 0.4 ᾱ = 0.7 ᾱ = 0.9

b = 2 1.0008 1.0022 1.0035 1.0047
b = 3 1.0021 1.0057 1.0115 1.0145

b = 4 1.0109 1.0131 1.0145 1.0197

Example 2 As the special case of NMSs, in this example, an internet-based three-tank system is

introduced to illustrate the effectiveness of our proposedNSSs. With the variables defined in [32], the
system model (1) and (2) with following parameters are adopted:

A =






0.9974 0 0.0026

0 0.9951 0.0024

0.0026 0.0024 0.9950




 , B1 =






16.2190 0

0 16.2007

0.0212 0.0193




 , B2 =






0.0212

0.0193

16.1997




 , C =

[

1 0 0

0 1 0

]

.

wherex(Tk) ∈ R3 is the system state representing the liquid levels of the three tanks; similar to [32],

ω(Tk) ∈ R2 is the disturbance used to model the unknown disturbance andinput, f(Tk) ∈ R is the

fault signal reflecting the leakages in tank 3,y(Tk) ∈ R2 is the measurement output describing the height
measurements of tank 1 and tank 2. Here, we mainly investigate the internet-based fault detection problem,

the measurement signal will obtain through remote network,thus, due to the multi-path transmission and

shadowing problem, network-induced channel fading and randomly occurring fault usually take place,
then the actual received measurement signal through network is ȳ(Tk) ∈ R2, which satisfies (3).

Our aim here is to detect the faults by using the established mathematic model of the system (1) as
well as the measurement signals (2) through network in the presence of a leakage in tank 3. In order to

discuss simply the fault detection problem with fading measurement, we choose the fading parameters as

(24). Choosing the faults occurrence probability asᾱ = 0.6, similar to Example 1, by using Corollary 1,
the sub-optimal fault detection filter and the minimumH∞ attenuation level can be obtained as follows:

L =






−0.0042 0.0100

−0.0030 0.0069

−0.0095 0.0212




 , V = 10−5 ×

[

0.1185 −0.2856
]

, γ∗ = 1.0023.

The initial value of (21) is chosen as̄e(T0) = col{0.1,−0.1, 0, 0.2, 0,−0.6, 0, 0.3, 0}, for Tk =

0, 1, 2, · · · , 100, the fault signal and exogenous disturbance input signal are set as

f(Tk) =

{

0.5, 30 ≤ Tk ≤ 50

0, else
, ω(Tk) =

[

e−0.02Tk sin(0.2Tk)

e−0.01Tk cos(0.1Tk)

]

.

The residual responser(Tk) and evolution of residual evaluation functionJ(Tk) =
{
∑Tk

h=T0
rT (h)r(h)

} 1

2

for NSSs are shown in Figs. 4-5, respectively. After 200 runsof the simulations, we get an average value

of Jth = 1.4582 × 10−4. From Fig. 5, it can be shown that1.3526 × 10−4 = J(41) < Jth < J(42) =

1.6304 × 10−4, which means that the fault can be detected within 11 time steps after the fault occurred

at Tk = 30.
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Fig. 4. Residual signalr(Tk) for NSSs.
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Fig. 5. Evolution of residual evaluation functionJ(Tk) for NSSs.

VI. CONCLUSION

In this paper, we have dealt with the fault detection problemfor networked multi-rate systems with

randomly occurring faults and fading measurements. Different from the existing results of fault detection
for multi-rate sampled-data system, the delayed networkedmulti-rate systems is considered. By choosing

linear matrix inequality technique and convex optimization tool so that we can use Matlab LMI Toolbox

to design the fault detection filter effectively. Furthermore, as the special of NMSs, we also supply the
result of fault detection for NSSs with randomly occurring faults and fading measurements. Two examples

have been used to highlight the effectiveness of the proposed fault detection technology in this paper.It

would be interesting to deal with the following future research topics [33]–[39]: 1) investigation on the
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impact from quantization strategies and event-triggered communication mechanism; and 2) extension of

the techniques developed in this paper to more general time-varying and nonlinear systems.
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