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Robust Model Predictive Control under Redundant
Channel Transmission with Applications in

Networked DC Motor Systems
Yan Song, Zidong Wang, Derui Ding and Guoliang Wei

Abstract—In networked systems, intermittent failures in data
transmission are usually inevitable due to the limited bandwidth
of the communication channel, and an effective countermeasure
is to add redundance so as to improve the reliability of the
communication service. This paper is concerned with the model
predictive control (MPC) problem by using static output feed-
back for a class of polytopic uncertain systems with redundant
channels under both input and output constraints. By utilizing
the min-max control approach combined with stochastic analysis,
sufficient conditions are established to guarantee the feasibility
of the designed MPC scheme that ensures the robust stabilityof
the closed-loop system. In terms of the solution to an auxiliary
optimization problem, an easy-to-implement MPC algorithm is
proposed to obtain the desired sub-optimal control sequence as
well as the upper bound of the quadratic cost function. Finally, to
illustrate its effectiveness, the proposed design method is applied
to control a networked direct current (DC) motor system.

Index Terms—Model predictive control, Networked control
systems, Static output feedback, Redundant channels, DC motor
control, Equality constraints.

I. I NTRODUCTION

M ODEL predictive control (MPC), also called receding
horizon control, has been widely applied into the

process industries in the past few decades due mainly to
its ability to handle input/state constraints and compensate
time delays [18], [19], [26]. Different from the conventional
control with a pre-computed control law, MPC requires online
optimization to compute an optimal control sequence at every
sampling interval and implements the first one of the control
sequence. Recently, with the ever-increasing popularity of fast
micro-controllers, MPC has also become a very powerful and
attractive alternative to classical controllers in the areas of
power converters and electrical drives, see [2], [12], [14],
[21], [25], [28] and the references therein. For instance, an
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MPC-based voltage control issue has been addressed in [12]
to restore voltage following a contingency and maintain a pre-
specified amount of post-transient voltage stability margin. In
[21], an MPC-based maximum power point tracking strategy
has been presented, in which the predictive controller could
correct errors before the switching signal was applied to the
respective converter.

It should be pointed out that the utilization of the MPC
strategy does not inherently ensure the closed-loop stability.
For example, the aforementioned MPC algorithms might not
be able to guarantee the robustness against model uncertain-
ties. Accordingly, the design of a robust and stable MPC
algorithm for uncertain system with constraints has become
an ongoing research issue that attracts increasing attention
from researchers. Some representative results on this issue
can be highlighted as follows. In [10], a direct digital MPC
controller design method without approximation has been
proposed for the continuous-time systems with saturation
constraints. Very recently, some sufficient conditions ensuring
the feasibility and stability have been investigated in [16]
for nonlinear systems subject to bounded disturbances, and
then an event-triggered MPC algorithm has been provided in
order to efficiently exploit system resources. For a class of
distributed nonlinear systems, the feasibility and the stability
of the robust distributed MPC scheme have been discussed
in [17] by utilizing the triangle inequality and the Gronwall-
Bellman inequality.

Note that, in most previous works on MPC, it has been
implicitly assumed that system states are fully accessible. This
is, unfortunately, not always the case in practice, and it is
often necessary to design the output feedback controller inthe
framework of MPC to satisfy specified performance such as
stability and robustness. However, so far, only limited research
results have been available in the literature for uncertain
systems (see e.g. [4], [15]) due mainly to the difficulty of
finding an appropriate methodology to optimize the quadratic
cost performance with incomplete measurement informationin
comparison with the traditional optimal control approaches.

In networked systems, the limited bandwidth of the com-
munication channel inevitably gives rise to various network-
induced phenomena such as the transmission delay [24], miss-
ing measurements (or packet dropouts), signal quantization,
and so forth. It is worth mentioning that, if not properly han-
dled, these network-induced phenomena (especially missing
measurements) could cause performance degradation of the
underlying systems. To ensure the quality and reliability of
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the communication service, a new communication protocol,
namely, redundant channel transmission, has received partic-
ular research attention in recent years. Such a strategy has
been widely utilized in some industrial systems and critical
infrastructures such as power systems and aerospace fields.

In redundant channel schemes, if a channel suffers certain
communication failure which can be detected by means of
software or hardware devices, another channel will be auto-
matically activated to protect the key data. In [20], a new
hybrid adaptive modulation and diversity scheme, in which
the same information has been transmitted redundantly overa
subset of available sub-channels, has been provided to increase
the overall spectral efficiency. In [29], by injecting artificial
redundancy into wireless transmission, the transmission re-
liability has been enhanced. When it comes to networked
control systems, the overall performance will be improved by
using redundant channels as compared with single channel
case, see [1], [27] for more details. Unfortunately, to the best
of the authors’ knowledge, such a communication protocol
for MPC issues with input and output constraints has not
been adequately investigated, not to mention the case when
the output feedback control scheme is applied as well. It is,
therefore, the purpose of this paper to shorten such a gap.

Motivated by the above discussions, in this paper, we aim
to investigate the static output feedback MPC problem for a
class of polytopic uncertain systems with input and output
constraints under redundant channels.The main contributions
of this paper can be highlighted as follows. 1) By utilizing a
set of Bernoulli distributed random variables, a new measure-
ment model is presented to describe the redundant channel
communication protocol. 2) According to the min-max control
approach, some sufficient conditions are proposed to verify
the feasibility of the designed MPC scheme and the robust
stability of the closed-loop system where the singular value
decomposition approach is utilized to handle equality con-
straints. 3) An easy-to-implement MPC algorithm is provided
to obtain the desired sub-optimal control sequence and derive
an upper bound of certain quadratic cost function. 4) The
proposed MPC scheme is applied into a direct current (DC)
motor system in order to illustrate its effectiveness.

The rest of this paper is organized as follows. In Section
II, a class of polytopic uncertain discrete-time linear system-
s with N redundant channels and input/output constraints
are presented. In Section III, for all admissible parameter
uncertainties and packet dropouts, sufficient conditions are
provided to guarantee the stability of the addressed systems
and the feasibility of the given MPC scheme. Furthermore, by
means of the solution to an optimization problem, an easy-
to-use MPC algorithm is proposed to obtain the desired sub-
optimal control sequence and also derive an upper bound of
certain quadratic cost function. In Section IV, an example of
direct current (DC) motor systems is utilized to demonstrate
the effectiveness of the main results. Finally, conclusions are
drawn in Section V.

Notation The notation used here is fairly standard except
where otherwise stated.Rn andRn×m denote, respectively, the
n-dimensional Euclidean space and the set of alln×m real
matrices.x(k+n|k), u(k+n|k) andy(k+n|k) are the values

of x, u andy at a future timek + n. |x| and‖x‖2 stand for
the absolute value of the scalarx and the Euclidean norm of
the vectorx, respectively. The notationX ≥ Y (respectively,
X > Y ), whereX and Y are symmetric matrices, means
that X − Y is positive semi-definite (respectively, positive
definite). ‖x‖2W = xTWx where W > 0 is a symmetric
weighting matrix. I and 0 denote the identity matrix and
the zero matrix with appropriate dimensions, respectively. The
superscripts “−1” and “T ” are, respectively, the inverse and
transpose of a matrix.E{x} stands for the expectation of the
stochastic variablex. The symbol “∗” in a matrix denotes the
symmetric part in a symmetric matrix.diag{· · · } stands for a
block-diagonal matrix.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Consider the following polytopic uncertain discrete-time
linear system withN redundant channels:






x(k + 1) =A(k)x(k) +B(k)u(k)

y(k) =α1(k)C1(k)x(k)

+

N∑

i=2

{ i−1∏

j=1

(1− αj(k))αi(k)Ci(k)x(k)
}

(1)
wherex(k) ∈ R

nx , u(k) ∈ R
nu andy(k) ∈ R

ny are the state
vector, the control input and the measured output, respectively.
A(k), B(k) and Ci(k) (i = 1, 2 · · · , N ) with appropriate
dimensions are unknown matrices which contain polytopic
uncertainties (see e.g., [22]) given as follows:

Ξ(k) :=
(
A(k), B(k), C1(k), . . . , Ci(k), . . . , CN (k)

)
∈ Ω

whereΩ is a given convex bounded polyhedral domain de-
scribed by

Ω :=
{

Ξ(k)
∣
∣Ξ(k) =

L∑

l=1

λlΞ
(l)(k),

L∑

l=1

λl = 1, λl ≥ 0
}

with known matricesΞ(l) :=
(
A(l), B(l), C

(l)
1 , . . . , C

(l)
N

)
(l =

1, 2, . . . , L).
The random variablesαi(k) (i = 1, 2, . . . , N), describing

the packet dropout phenomena of theith channel, take values
on 0 or 1 with

Prob{αi(k) = 1} = α̃i, Prob{αi(k) = 0} = 1− α̃i (2)

where α̃i (i = 1, 2, . . . , N) are the known non-negative
constants. It is assumed that all the random variablesαi(k)
are mutually independent.

Remark 1:As described in Fig. 1, anN redundant chan-
nel transmission protocol is utilized with hope to improve
the reliability of transmitted information. According to the
measurement model in (1), if no packet dropout occurs at
the first channel (i.e.α1(k) = 1), the measurement output is
described asy(k) = C1(k)x(k), which implies that the signal
transmitted by other channels is not used. Whenαj(k) = 0
(j = 1, 2, · · · , i − 1) and αi(k) = 1, that is, the channels
from 1 to i − 1 suffer from packet dropouts at timek, the
MPC scheme will utilize the data transmitted by channeli
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Fig. 1. The structure of the MPC system with redundant channels.

to execute the control tasks. Furthermore, whenαj(k) = 0
for j = 1, 2, · · · , N , no information would be received
by controllers. Obviously, the more redundant channels are
applied in the networked communication, the more reliability
will be guaranteed. On the other hand, the implementation
of such a protocol needs some additional detection devices
at each channel terminal to check whether the packet loss
occurs. Therefore, there is a trade-off between the cost of
equipment/energy and the quality of service.

In this paper, for the polytopic uncertain discrete-time linear
system (1), we consider the following static output feedback
(SOF) controller in the framework of MPC

u(k + n|k) = F (k)y(k + n|k), n = 0, 1, 2, . . . (3)

whereu(k+ n|k) andy(k+ n|k) are then-th step prediction
of control input and measurement output at timek, F (k) is
the feedback gain to be designed. For simplicity, we denote
x(k|k) = x(k), u(k|k) = u(k) and y(k|k) = y(k). In
order to reflect the actual requirement of practical engineering,
the constraints on control input and measurement output for
discrete-time linear system (1) are given by

{ ∣
∣[u(k + n|k)]p

∣
∣ ≤ ūp, n ≥ 0, p = 1, 2, . . . , nu (4a)

∣
∣[y(k + n|k)]q

∣
∣ ≤ ȳq, n ≥ 1, q = 1, 2, . . . , ny (4b)

where[·]p([·]q) denotes thepth(qth) element of a vector or the
pth(qth) row of a matrix.

According to the principle of MPC, the closed-loop system
can be obtained from (1) and (3) as follows

x(k + 1) =
[
A(k) +B(k)F (k)Γ(k)

]
x(k) (5)

where

Γ(k) = α1(k)C1(k) +

N∑

i=2

{ i−1∏

j=1

(1− αj(k))αi(k)Ci(k)
}

.

Furthermore, associated with the above closed-loop system,
construct a min-max optimal cost of the form

J(k) :=min
F (k)

max
A(l),B(l),C

(l)
1 ...C

(1)
N

∈Ω

J̃(k, x(k)) (6)

where

J̃(k, x(k)) = E

{ ∞∑

n=0

[∥
∥x(k + n|k)

∥
∥
2

Q
+
∥
∥u(k + n|k)

∥
∥
2

R

]}

with given symmetric positive-definite weighting matricesQ
andR.

Our aim in this paper is to develop techniques to deal with
the SOF MPC issue for polytopic uncertain discrete-time linear
system (1) withN redundant channels. More specifically, we
like to design a controller of the form (3) for the system (1)
with control and output constraints such that, for all admissible
parameter uncertainties and packet dropouts, the following two
requirements are satisfied simultaneously:

R1) the closed-loop system (5) is asymptotically stable in
mean-square sense;

R2) an upper bound is obtained by solving the given min-
max optimization problem at each timek.

B. Preliminaries

For the convenience of the later discussion, we give some
important definitions and lemmas as follows.

Definition 1: The set

Π(P (k), γ(k)) = {z ∈ R
nx : E

{
zTP (k)z

}
≤ γ(k)}

is called an ellipsoid in mean-square sense, whereP (k) ∈
R

nx×nx is a positive definite matrix andγ(k) ∈ R is a positive
scalar.

Lemma 1: [11] For any symmetric positive definite matrix
P ∈ R

nx×nx , the map̺ → ̺TP̺ is convex, i.e.

( n∑

i=1

δi̺i

)T

P
( n∑

i=1

δi̺i

)

≤
n∑

i=1

δi̺
T
i P̺i, ∀̺i ∈ R

nx (7)

where
∑n

i=1 δi = 1.
Proof: Expanding(̺i − ̺j)

TP (̺i − ̺j) ≥ 0 (i, j =
1, 2, · · · , n) gives

̺Ti P̺j + ̺Tj P̺i ≤ ̺Ti P̺i + ̺Tj P̺j ,

then, for any scalarsδi ≥ 0 subject to
∑n

i=1 δi = 1 and any
̺i, one has

(
n∑

i=1

δi̺i)
TP (

n∑

i=1

δi̺i)

=

n∑

i=1

δ2i ̺
T
i P̺i +

n∑

i=1

n∑

j=1,j 6=i

δiδj(̺
T
i P̺j + ̺Tj P̺i)

≤
n∑

i=1

δ2i ̺
T
i P̺i +

n∑

i=1

n∑

j=1,j 6=i

δiδj(̺
T
i P̺i + ̺Tj P̺j)

= (δ1 + . . .+ δn)

n∑

i=1

δi̺
T
i P̺i

=

n∑

i=1

δi̺
T
i P̺i.

Then, the proof is completed.
Lemma 2:Let the matrixC ∈ R

m×n be of full-row rank.
There always exist two orthogonal matricesU ∈ R

m×m and
V ∈ R

n×n such that
{

C̃ := UCV = UC
[

V1 V2

]

=
[

Σ 0
]

,

Σ = diag{σ1, σ2, . . . , σm}
(8)
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whereV1 ∈ R
n×m andV2 ∈ R

n×(n−m), σi (i = 1, 2, . . . ,m)
are nonzero singular values ofC. Thus, if matrixW has the
following structure

W =
[
V1 V2

]
[
W1 0
0 W2

] [
V T
1

V T
2

]

= V1W1V
T
1 + V2W2V

T
2

(9)

whereW1 ∈ R
m×m > 0,W2 ∈ R

(n−m)×(n−m) > 0, then
there exists a nonsingular matrix̃W ∈ R

m×m such that
W̃C = CW .

Proof: The proof is similar to that of Lemma 2 in [23],
and is omitted here.

Note that Lemma 2 plays a critical role to handle the
equality condition in the subsequent stability analysis.

III. M AIN RESULTS

In this section, for all admissible parameter uncertainties
and packet dropouts, the stability of the polytopic uncertain
discrete-time linear system without constraints is firstlydis-
cussed and the desired SOF MPC controller is obtained by
solving an optimization problem. Then, in terms of established
results, the stability analysis and the controller design for
the case with constraints are addressed by changing the
corresponding constraints into linear matrix inequality (LMI)
conditions.

A. Unconstrained SOF MPC

The following lemma will be used in deriving our main
results.

Lemma 3:Let the symmetric positive-definite matricesQ
and R be given. For system (1) controlled by (3), if there
exist a positive scalarγ(k), two symmetric positive definite
matricesW (k) and W̃ (k), and a matrixY (k) such that, for
l = 1, 2, . . . , L, the LMI (10) (at the bottom of this page) and

W̃ (k)
[

C
(l)
1 . . . C

(l)
N

]
=

[

C
(l)
1 . . . C

(l)
N

]
W̄ (k)

(11)

hold, then we have

E[V (k + n+ 1)]− V (k + n)

< − xT (k + n|k)Qx(k + n|k)− uT (k + n|k)Ru(k + n|k)
(12)

where

V (k + n) = xT (k + n|k)P (k)x(k + n|k), n ≥ 0

Γ̃(l) = α̃1C
(l)
1 +

N∑

i=2

[ i−1∏

j=1

(1− α̃j)α̃iC
(l)
i

]

W̄ (k) = diag{W (k), . . . ,W (k)
︸ ︷︷ ︸

N

}, P (k) = γ(k)W−1(k).

Proof: See Appendix A.
Remark 2:The inequality condition (12), which provides a

connection between the stability analysis and the cost function,
has been widely applied in MPC issues. In this paper, such a
condition is dependent of the redundant channels as well as
its statistical characteristic.

It is obvious that if condition (12) holds, thenlimn→∞ x(k+
n|k) = 0, and henceV (∞) = 0. Summing up both sides of
(12) fromn = 0 to n = ∞ yields

J(k) ≤ V (k|k) = xT (k)P (k)x(k) (13)

which leads to the following optimization problem:

OP1 : max
A(l),B(l),C

(l)
i

(i=1,2,...,N)∈Ω

J(k) ≤ V (k|k) (14)

The OP1 problem provides an upper bound on the ro-
bust performance objective. Furthermore, noting thatP (k) =
γ(k)W−1(k), one hasV (k) ≤ γ(k) if

[
1 xT (k)

x(k) W (k)

]

≥ 0. (15)

It is clear from (12) and (15) thatΠ(P (k), γ(k)) = {x(k) ∈
R

nx : E{xT (k)W−1(k)x(k)} ≤ γ(k)} is an invariant
ellipsoid in mean-square sense for the predicted states of
the uncertain system. Furthermore, the unconstrained SOF
MPC controller for the polytopic uncertain discrete-time linear





























W (k) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗√
QW (k) γ(k)I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

A(l)W (k) +B(l)Y (k)Γ̃(l) 0 W (k) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗√
α̃1B

(l)Y (k)C
(l)
1 0 0 W (k) ∗ ∗ ∗ ∗ ∗ ∗ ∗√

α̃1RY (k)C
(l)
1 0 0 0 γ(k)I ∗ ∗ ∗ ∗ ∗ ∗

√

(1 − α̃1)α̃2B
(l)Y (k)C

(l)
2 0 0 0 0 W (k) ∗ ∗ ∗ ∗ ∗

...
...

...
...

...
...

. . . ∗ ∗ ∗ ∗
N−1∏

j=1

√
(1 − α̃j)α̃NB(l)Y (k)C

(l)
N 0 0 0 0 0 0 W (k) ∗ ∗ ∗

√

(1− α̃1)α̃2RY (k)C
(l)
2 0 0 0 0 0 0 0 γ(k)I ∗ ∗

...
...

...
...

...
...

...
...

...
. . . ∗

N−1∏

j=1

√

(1− α̃j)α̃NRY (k)C
(l)
N 0 0 0 0 0 0 0 0 0 γ(k)I





























≥ 0

(10)
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system withN redundant channels is designed by proceeding
with the following minimization problem in terms of some
LMIs at each instantk:

OP2 : min
W (k),W̃ (k)>0,Y (k)

γ(k), s.t. (10), (11) and (15).

It should be noted that once the minimization is solved, only
the first prediction inputu(k) will be implemented.

Now, we are ready to give the main result for the closed-
loop system without constraints.

Theorem 1:Let the symmetric positive-definite matricesQ
and R be given. Consider the unconstrained discrete-time
linear system with N-redundant-channel described by (1)-(3).
For the initial statex(k) at time instantk, if there is a feasible
solution to the optimization problem (OP2), then there also
exists a feasible solution at time instantt ≥ k. Furthermore,
the closed-loop system with the unconstrained SOF MPC
control lawF (k) = Y (k)W̃−1(k) is locally stable in mean-
square sense and the cost functionJ(k) has an upper bound
γ(k) at timek.

Proof: Along the similar line in [13], the proof on stability
can be divided into three steps. The first step is to show that
an ellipsoidΠ(P (k), γ(k)) is an invariant set in mean-square
sense for the predicted statex(k + n|k), whereP (k) and
γ(k)) is the solution of the optimization problem (OP2). The
second step is to discuss the feasibility of (OP2) for anyt > k
when it is solvable at timek, and the last step is to prove the
stability in mean-square sense in light of the invariant setand
the feasibility of (OP2). Let us now go ahead step by step.

1) Invariant set: According to (12) in Lemma 3 and (15),
one has

E
{
xT (k + n+ 1|k)P (k)x(k + n+ 1|k)

}

< E
{
xT (k + n|k)P (k)x(k + n|k)

}
< γ(k)

which means thatΠ(P (k), γ(k)) is an invariant set for the
predicted statex(k + n|k).

2) Feasibility: Assuming that the optimization problem
(OP2) is feasible at timek, we need only prove that such
an optimization problem is also feasible for all future states
x(k + n|k + n). Firstly, one has the relation

x(k + n|k + n) = x(k + n),

x(k + 1|k) =
(
A(k) +B(k)F (k)Γ(k)

)
x(k|k)

x(k + 1) =
(
A(k) +B(k)F (k)Γ(k)

)
x(k),

for some(A(k), B(k)) ∈ Ω

(16)

Then, noting the invariant setΠ(P (k), γ(k)), the solution of
the optimization problem (OP2) at timek satisfies

E
{
xT (k + n|k)P (k)x(k + n|k)

}
< γ(k), n ≥ 1

which, by using (16), implies

E
{
xT (k + 1|k + 1)P (k)x(k + 1|k + 1)

}
< γ(k).

Furthermore, it is obvious that only the constraint (15) in
problem (OP2) is dependent of the states, and thus LMIs (10),
(11) and (15) are true at timek+1. In other words, the feasible
solution at timek is also feasible at timek + 1. This process
can be continued for all time.

3) Stability: In order to prove the stability, we only
need to show that the quadratic functioñV (x(k|k)) =
xT (k|k)P ∗(k)x(k|k) is a strictly decreasing in mean-square
sense, whereP ∗(k) is the optimal solution of problem (OP2).
Firstly, according to the part ofFeasibility, one has

E
{
xT (k + 1|k + 1)P ∗(k + 1)x(k + 1|k + 1)

}

< E
{
xT (k + 1|k + 1)P ∗(k)x(k + 1|k + 1)

} (17)

On the other hand, we know from the part ofInvariant set
that if u(k + n|k) = F (k)y(k + n|k) (F (k) is obtained from
the optimal solution at timek, one has

E
{
xT (k + 1|k)P ∗(k)x(k + 1|k)

}

< E
{
xT (k|k)P ∗(k)x(k|k)

}
, x(k|k) 6= 0

(18)

Noting (16), and combining inequalities (17) and (18), we
have

E
{
xT (k + 1|k + 1)P ∗(k + 1)x(k + 1|k + 1)

}

< E
{
xT (k|k)P ∗(k)x(k|k)

} (19)

Therefore, xT (k|k)P ∗(k)x(k|k) is strictly decreasing in
mean-square sense for the closed-loop system. This means that
x(k) → 0 ask → ∞. Finally, according to Lemma 3, it is not
difficult to see that the cost functionJ(k) has an upper bound
γ(k) at timek, which completes the proof.

Remark 3: In this paper, we have examined how the input
and output constraints, polytopic uncertainties and redundant
channel transmission protocols influence the performance of
the controlled systems in terms of MPC scheme. In Theorem
3, all the system parameters as well as the occurrence prob-
abilities for channels and the vertices of polyhedral domains
are reflected in the linear matrix inequalities and therefore the
proposed iterative algorithm shows robustness and reliability
features. In the following section, an example is provided to
show the usefulness and reliability of the proposed control
scheme.

B. Constrained SOF MPC

At first, we give two transformations for input and output
constraints (4a)-(4b). And then, by incorporating these trans-
formed constraints into the optimization (OP2), the stability
criterion for polytopic uncertain discrete-time linear system
with both control input and measurement output constraints
will be presented.

Lemma 4:The constraints on the control input and the
measurement output (4a) and (4b) are satisfied if there exist
three symmetric and positive definite matricesW (k), X (k),
Y(k) and one matrixY (k) such that, forp = 1, 2, . . . , nu and
q = 1, 2, . . . , ny, the following inequalities:







[
X (k) Y (k)Υ(l)

∗ W (k)

]

≥ 0,
[
X (k)

]

pp
≤ ū2

p (20a)
[
Y(k) ∆(l)

∗ W (k)

]

≥ 0,
[
Y(k)

]

qq
≤ ȳ2q (20b)
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hold, where [X (k)]pp ([Y(k)]qq) is the pth (qth) diagonal
element of matrixX (k) (Y(k)) and

Υ(l) = α1(k)C
(l)
1 +

N∑

i=2

{ i−1∏

j=1

(1 − αj(k))αi(k)C
(l)
i

}

Θ
(l)
i = A(l)W (k) +B(l)Y (k)C

(l)
i , i = 1, 2, . . . , N

∆(l) = α1(k)C
(l)
1 Θ

(l)
1 +

N∑

i=2

{ i−1∏

j=1

(1− αj(k))αi(k)C
(l)
i Θ

(l)
i

}

.

Proof: For the control input constraint (4a), it follows
from (11) and Lemma 1 that

∣
∣
[
u(k + n|k)

]

p

∣
∣
2

=
∣
∣
[
F (k)y(k + n|k)

]

p

∣
∣
2

=
∣
∣
∣epF (k)

{

α1(k)C1(k + n) +

N∑

i=2

( i−1∏

j=1

(
1

− αj(k)
)
αi(k)Ci(k + n)

)}

x(k + n|k)
∣
∣
∣

2

≤
L∑

l=1

δl
∣
∣epY (k)W̃−1(k)Υ(l)x(k + n|k)

∣
∣
2

≤
L∑

l=1

δl
∣
∣epY (k)Υ(l)W−1/2(k)W−1/2(k)x(k + n|k)

∣
∣
2

(21)

where ep is the pth row of an nu-ordered identity matrix.
Furthermore, by utilizing the Cauchy-Schwarz inequality and
(15), one has

∣
∣
[
u(k + n|k)

]

p

∣
∣
2

≤
L∑

l=1

δl
∥
∥epY (k)Υ(l)W−1/2(k)

∥
∥
2

×
∥
∥W−1/2(k)x(k + n|k)

∥
∥
2

≤
L∑

l=1

δl
∥
∥epY (k)Υ(l)W−1/2(k)

∥
∥
2

=

L∑

l=1

δlepY (k)Υ(l)W−1(k)
(
Y (k)Υ(l)

)T
eTp

(22)

By using the Schur Complement Lemma, one can obtain
∣
∣[u(k + n|k)]p

∣
∣ ≤ ūp when the inequality (20a) is true.

In what follows, by applying the same method, we can
obtain that the constraint on measurement output described

by (4b) satisfies
∣
∣
[
y(k + n|k)

]

q

∣
∣
2

≤
L∑

l=1

δl

∣
∣
∣eq

{

α1(k)C
(l)
1

(
A(l) +B(l)F (k)C

(l)
1

)

+

N∑

i=2

( i−1∏

j=1

(1− αj(k))αi(k)C
(l)
i

(
A(l)

+B(l)F (k)C
(l)
i

))}

x(k + n|k)
∣
∣
∣

2

=

L∑

l=1

δl

∣
∣
∣eq∆

(l)W−1/2(k)W−1/2(k)x(k + n|k)
∣
∣
∣

2

≤
L∑

l=1

δl

∥
∥
∥eq∆

(l)W−1/2(k)
∥
∥
∥

2

=

L∑

l=1

δleq∆
(l)W−1(k)∆(l)T eTq .

(23)

By using the Schur complement Lemma again, one can
obtain

∣
∣[y(k+ n|k)]q

∣
∣ ≤ ȳq when the inequality (20b) is true,

which completes the proof.
After the transformation of the constraints into LMIs, the

corresponding optimization problem on SOF MPC subject to
both control and output constraints can be presented as follows

OP3 : min
{W (k),W̃ (k),X (k),Y(k)}>0,Y (k)

γ(k),

s.t. (10), (11), (15), (20a) and (20b).

For addressed problem with both input and output con-
straints, we have the following theorem whose proof is similar
to Theorem 1, and thus is omitted here.

Theorem 2:Let the symmetric positive-definite matricesQ
and R be given. Consider the uncertain discrete-time linear
system with N-redundant-channel, and both input and output
constraints described by (1)-(4b). For the initial statex(k) at
time instantk, if there is a feasible solution to the optimization
problem (OP3), there also exists a feasible solution at time
instantt ≥ k and the closed-loop system with the constrained
SOF MPC control lawF (k) = Y (k)W̃−1(k) is locally stable
in mean-square sense. Furthermore, the cost functionJ(k) has
an upper boundγ(k) at timek.

It is noted that, for the output-feedback control problem
considered in this paper, the statex(k) is not guaranteed to
be measurable and the condition (15) cannot be conveniently
verified in practice. To deal with this issue, we provide some
easy-to-test conditions ensuring the validity of (15) in the
following lemma.

Lemma 5:Consider system (5). If there are positive defi-
nite matricesW (k),M(k) and matricesY (k) such that the
following inequalities

[
W (k) ∗

A(l)W (k) +B(l)Y (k)Υ(l) M(k)

]

≥ 0, (24)

W (k) ≥ M(k), W (k) ≥ S, xT
0 S

−1x0 ≤ 1, (25)
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hold wherex0 is the initial state and matrixS > 0 is given
according to the engineering requirement, then the condition
(15) is true.

Proof: Let us assume that the conditions (24) and (25)
are satisfied atk = 0. It is easy to see that‖x0‖2W−1 ≤
‖x0‖2M−1 ≤ ‖x0‖2S−1 ≤ 1, which implies that the condition
(15) is satisfied at timek = 0. Now, for the case ofk = 1,
according to (5) and (24), we can obtain that‖x(1|0)‖2M−1 ≤
‖x0‖2W−1 . Furthermore, considering condition (25) as well as
the conclusion atk = 0, we have‖x(1|0)‖2W−1 ≤ ‖x0‖2S−1 ≤
1. Based on the definition of invariant set in the proof of
Theorem 1, it is concluded that‖x(1)‖2W−1 ≤ 1, which means
that the condition (15) is also true atk = 1. Such a procedure
can be repeated and we can eventually prove that (15) is true
at all times.

Due to the equality constraint (11), it would not be easy to
solve the optimization problem (OP2) or (OP3). In order to
overcome such a difficulty, the following theorem is proposed
with the aid of Lemma 2.

Theorem 3:Let the symmetric positive-definite matricesQ
and R be given and the matricesC(l)

1 = C
(l)
2 = . . . =

C
(l)
N = C (l = 1, 2, · · · , L) be of full-row rank. Consider

the uncertain discrete-time linear system with N-redundant-
channel as well as the input and output constraints described
by (1)-(4b). For the initial statex(k) at time instantk, as-
sume that there exist positive scalarγ(k), symmetric matrices
X (k),Y(k),W1(k),W2(k) and any matrixY (k) such that the
following optimization problem at time instantk is feasible for
the initial statex(k):

OP4 : min
{W1(k),W2(k),M(k),X (k),Y(k)}>0,Y (k)

γ(k),

s.t. (10), (20a), (20b), (24) and (25).

Then, there also exists a feasible solution at time instantt ≥ k.
Furthermore, the closed-loop system with the constrained SOF
MPC control law

F (k) = Y (k)UTΣW−1
1 (k)Σ−1U (26)

is locally stable in mean-square sense and the cost function
J(k) has an upper boundγ(k) at time k where W (k) =
V1W1(k)V

T
1 + V2W2(k)V

T
2 , U , Σ, V1 and V2 come from

the singular value decomposition of matrixC satisfying
UC[ V1 V2 ] = [ Σ 0 ].

Proof: NotingW (k) = V1W1(k)V
T
1 +V2W2(k)V

T
2 , one

has from Lemma 2 that

UT
[
Σ 0

]
V TW (k) = W̃ (k)UT

[
Σ 0

]
V T (27)

that is

UT
[
Σ 0

]
V TV

[
W1(k) 0

0 W2(k)

]

V T = W̃ (k)UT
[
Σ 0

]
V T .

It is easily obtained that

W̃−1(k) = UTΣW−1
1 (k)Σ−1U. (28)

Therefore, if the optimization problem (OP4) is solvable, the
equality constraint (11) holds. The rest of the proof follows
from Theorem 2 and the proof is now complete.

Remark 4: It is easy to see that the equality constraint
(11) is now excluded in the optimization problem (OP4).
Therefore, the optimization problem (OP4) can be effectively
solved by using Matlab LMI toolbox, where the singular value
decomposition approach plays a critical role in dealing with
this optimization problem.

Remark 5:As we know, the algorithm based on the stan-
dard LMI system has a polynomial-time complexity. Specif-
ically, the numberN (ε) of flops needed to compute anε-
accurate solution is bounded byO(MN 3log(V/ε)), where
M is the total row size of the LMIs of the proposed algo-
rithm, N is the total number of scalar decision variables,
V is a data-dependent scaling factor, andε is the relative
accuracy set for algorithm [5]. For the discussed closed-
loop system (5), the variables dimensions can be seen from
x(k) ∈ R

nx , u(k) ∈ R
nu and y(k) ∈ R

ny . Furthermore,
notice that the optimization problem (OP4) involves con-
ditions (10), (20a), (20b), (24) and (25), one hasM =
[(7 + N)L + 3]nx + [(N + 1)L + 1]ny + (L + 1)nu and
N = (nx + 1)nx + 1

2 (nu + 1)nu + nuny + 1. Thus, the
computational complexity of the presented algorithm can be
represented asO(NLn7

x). Obviously, such a computational
complexity depends polynomially on the variable dimensions.

C. Algorithm for constrained SOF MPC

To present the algorithm for constrained SOF MPC, we as-
sume that the matricesC = C

(l)
1 = . . . = C

(l)
N , l = 1, 2, . . . , L

with full-row rank. The proposed algorithm includes two parts,
that is,Off-line part andOnline part.

Algorithm:
Off-line part

Step 1. For the given matricesC = C
(l)
1 = . . . = C

(l)
N

, l =
1, 2, . . . , L, find two orthogonal matricesU andV to satisfy
the conditions in Lemma 2.

Online part

Step 2. Choose initial statex0 and proper matrixS > 0.

Step 3. At sampling instantk, measure the plant output and solve the
optimization problem (OP4).

Step 4. For the latest measure outputs, calculateu(k) by (3) and (26),
and then act it on the plant. Set the timek = k + 1 and go
back to Step 3.

Remark 6: If the optimization (OP4) is feasible at time
k, then the first computed inputu(k) = F (k)y(k|k) is
implemented on the controlled plant. At the next instant, the
outputy(k + 1) is measured and the optimization is repeated
to computeF (k + 1).

Remark 7: In this paper, for the purpose of the discussion
convenience and the model simplification, the sampling period
is designed according to the online optimization time of MPC
algorithm. In other words, the online optimization time, the
bounded of which can be determined in advance, is less than
sampling period. Such a method avoids the waiting step of
sampling period duration. Furthermore, in order to obtain
the desired controller gain, Lemma 2, which is essentially a
singular decomposition, is developed. In comparison with ones
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Fig. 2. System configuration for a DC motor with redundant channel
transmission.

in [23], our condition in Lemma 2 is not a single equality
constraint on matrixC, but a series of equality constraints
on matricesCi due to the redundant channel framework
application.

IV. A PPLICATION TO THEDC MOTOR CONTROL SYSTEM

In this section, a DC motor system is utilized to demonstrate
the effectiveness of the proposed algorithm.

The loop equation for the electrical circuit and the mechan-
ical torque balance in a DC motor system can be, respectively,
described by [3]

u(t) = ea(t) = L dia(t)
dt +Ria(t) + eb(t), (29)

J dω(t)
dt +Bω(t) + Tl(t) = Kia(t) (30)

where u(t) = ea(t) is the armature winding input volt-
age; eb(t) = Kbω(t) is the back-electromotive-force (EMF)
voltage; L is the armature wingding inductance;ia(t) is
the armature winding current;R is the armature winding
resistance;B is the system damping coefficient;K andKb are,
respectively, the torque constant and the back-EMF constant;
Tl(t) is the load torque; andω(t) is the rotor angular speed.

By letting x1(t) = ia(t), x2(t) = ω(t), u1(t) = ea(t),
u2(t) = Tl(t), the electromechanical dynamics of the DC
motor (29)-(30) can be described by the following state-space
description:

{
dx1(t)

dt = −R
Lx1(t)− Kb

L x2(t) +
1
Lu1(t)

dx2(t)
dt = K

J x1(t)− B
J x2(t)− 1

J u2(t)
(31)

For the addressed example, the parameters of DC motor
system are presented in the following Table I [3]:

By setting sampling periodT = 0.05s and denoting
x(t) = [ x1(t) x2(t) ]T , u(t) = [ u1(t) u2(t) ]T and
y(t) = [ ia(t) ω(t) ]T = [ x1(t) x2(t) ]T , then the

TABLE I
DC MOTOR PARAMETERS

Parameters Value

J Inertia 42.6× 10−6kg ·m2

L Inductance 0.170H

R Resistance 4.67Ω

B Damping coefficient 47.3× 10−6N ·m · s/rad

K Torque constant 14.7× 10−3N ·m/A

Ke Back-EMF constant 14.7× 10−3V · s/rad

system (31) can be discretized as follows:






x(k + 1) =

[
0.2379 −0.0022
8.96 0.9223

]

x(k)

+

[
0.158 1.643
1.643 −1131

]

u(k)

, Ax(k) +Bu(k)

y(k) =

[
1 0
0 1

]

x(k) , Cx(k)

(32)

For real-world systems, due to measurement inaccuracy and
external disturbance, the parameter uncertainties are inevitable
in system modeling. Thus, we assume that the system matrix
A of DC motor system is polytopic uncertain and the vertexes
of polyhedral domain are

A(1) =

[
0.2379 −0.0022
8.96 0.9223

]

, A(2) =

[
0.2879 −0.0012
9.23 0.8125

]

,

B(1) =

[
0.158 1.643
1.643 −1131

]

, B(2) =

[
0.098 0.965
1.213 −1246

]

.

Furthermore, the number of redundant channels isN = 3
and the measurement matrices areC1 = C2 = C3 = C.
The probabilities of successfully transmitted packets on three
channels are taken as̃α1 = 0.7, α̃2 = 0.8 and α̃3 = 0.9.

In this example, let the initial state and the reference output
bex0 = [0.3 3]T andyr = [3 300]T . The weighting matrices
are selected asQ = R = I2, the constraints on control input
and measurement output are considered asū = [30 0.3]T and
ȳ = [5 400]T . The simulation results are shown in Figs. 3-6.

Fig. 3 describes the phenomena of packet dropouts for three
channels with the aforementioned probabilities. Fig. 4 presents
the upper-bound of cost function in 3 communication cases,
that is, the case with only channel 1, the case with channels
1 and 2, and the case with all channels. From this figure, we
can easily see that the upper-bound with all channels is the
smallest and tends to a stable value at the fastest speed. While,
the upper-bound with only channel 1 is the biggest and can not
converge to a certain value. Furthermore, the output responses
under different communication cases are depicted in Fig. 5,
in which we can find that the system output with all channels
can track the reference very well, oppositely the system output
with only channel 1 works terribly. Fig. 6 depicts the control
inputs, in which the curve with all channels is the best. In a
word, the more channels are employed, the better performance
will be obtained. This example validates the effectivenessof
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Fig. 3. Random packet dropouts in three channels.
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Fig. 4. Upper bounds under different communication cases.

the proposed SOF MPC algorithm in guaranteeing the system
stability and in improving the system performance.

V. CONCLUSION

In this paper, the SOF MPC problem has been investigated
for a class of polytopic uncertain discrete-time linear systems
with redundant channels, and input and output constraints.
With the aid of a set of Bernoulli distributed random variables,
a new measurement model has been proposed to describe the
redundant channel communication protocol. Based on such
a model, some optimization problems have been presented
step by step to carry out the feasibility analysis of designed
MPC scheme and the robust stability analysis of the closed-
loop system. Furthermore, by using the singular value decom-
position approach, an easy-to-use MPC algorithm has been
provided to obtain the desired sub-optimal control sequence
and an upper-bound of quadratic cost function. Finally, a DC
motor system with redundant channels has been exploited to
show the effectiveness of the SOF MPC scheme proposed
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Fig. 6. Control inputs under different communication cases.

in this paper. In the future, we might further investigate the
MPC problem with redundant-channel transmission subject to
some other network-induced phenomena such as time-delay
and quantization [6]–[9].

VI. A PPENDIX

A: Proof of Lemma 3
Consider the quadratic function as follows:

V (k + n|k) = xT (k + n|k)P (k)x(k + n|k), n ≥ 0 (33)

Calculating the difference ofV (k+n|k) along the trajectory
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of (5) and taking the mathematical expectation, we have

E
{
∆V (x(k + n|k))

}

= E
{
V (k + n+ 1|k)− V (k + n|k)

}

= E
{
xT (k + n+ 1|k)P (k)x(k + n+ 1|k)

− xT (k + n|k)P (k)x(k + n|k)
}

= E

{

xT (k + n|k)
{
[A(k + n) +B(k + n)F (k)Γ(k + n)]T

× P (k)[A(k + n) +B(k + n)F (k)Γ(k + n)]

− P (k)
}
x(k + n|k)

}

= xT (k + n|k)
{[

A(k + n) +B(k + n)F (k)Γ̄(k + n)
]T

× P (k)
[
A(k + n) +B(k + n)F (k)Γ̄(k + n)

]
− P (k)

−
[
B(k + n)F (k)Γ̄(k + n)

]T
P (k)B(k + n)F (k)

× Γ̄(k + n) + α̃1

[
B(k + n)F (k)C1(k + n)

]T
P (k)

×B(k + n)F (k)C1(k + n) +

N∑

i=2

( i−1∏

j=1

(1− α̃j)α̃i

×
[
B(k + n)F (k)Ci(k + n)

]T
P (k)

×B(k + n)F (k)Ci(k + n)
)}

x(k + n|k)

≤ xT (k + n|k)
{[

A(k + n) +B(k + n)F (k)Γ̄(k + n)
]T

× P (k)
[
A(k + n)B(k + n)F (k)Γ̄(k + n)

]
− P (k)

+
[√

α̃1B(k + n)F (k)C1(k + n)
]T

P (k)

×
[√

α̃1B(k + n)F (k)C1(k + n)
]

+

N∑

i=2

( i−1∏

j=1

(1− α̃j)α̃i

(
B(k + n)F (k)Ci(k + n)

)T

× P (k)B(k + n)F (k)Ci(k + n)
)}

x(k + n|k) (34)

where

Γ̄(k + n) = α̃1C1(k + n) +
N∑

i=2

[ i−1∏

j=1

(1 − α̃j)α̃iCi(k + n)
]

.

In light of Lemma 1, the above inequality (34) holds if

E
{
∆V (k + n|k)

}

≤
L∑

l=1

δlx
T (k + n|k)

{(
A(l) +B(l)F (k)Γ̃(l)

)T
P (k)

(
A(l)

+B(l)F (k)Γ̃(l)
)
− P (k) +

(√

α̃1B
(l)F (k)C

(l)
1

)T
P (k)

×
(√

α̃1B
(l)F (k)C

(l)
1

)
+

N∑

i=2

( i−1∏

j=1

(1− α̃j)α̃i

×
[
B(l)F (k)C

(l)
i

]T
P (k)B(l)F (k)C

(l)
i

)}

x(k + n|k).
(35)

On the other hand, one can easily calculate

− xT (k + n|k)Qx(k + n|k)− uT (k + n|k)Ru(k + n|k)
= E

{

− xT (k + n|k)Qx(k + n|k)

−
[
F (k)y(k + n|k)

]T
RF (k)y(k + n|k)

}

= xT (k + n|k)
{

−Q−
(√

α̃1F (k)C1(k + n)
)T

R

×
(√

α̃1F (k)C1(k + n)
)
−

N∑

i=2

( i−1∏

j=1

(1− α̃j)α̃i

×
(
F (k)Ci(k + n)

)T
RF (k)Ci(k + n)

)}

x(k + n|k)

≤
L∑

l=1

δlx
T (k + n|k)

{

−Q−
(√

α̃1F (k)C
(l)
1

)T
R

×
(√

α̃1F (k)C
(l)
1

)
−

N∑

i=2

( i−1∏

j=1

(1− α̃j)α̃i

(
F (k)C

(l)
i

)T

× RF (k)C
(l)
i

)}

x(k + n|k). (36)

Taking (35) and (36) into consideration, one has

E[V (k + n+ 1|k)]− V (k + n|k)
≤ − xT (k + n|k)Qx(k + n|k)− uT (k + n|k)Ru(k + n|k)

when the following inequality is true

xT (k + n|k)
{[

A(l) +B(l)F (k)Γ̃(l)
]T

P (k)
[
A(l)

+B(l)F (k)Γ̃(l)
]
− P (k) +

[√

α̃1B
(l)F (k)C

(l)
1

]T
P (k)

×
[√

α̃1B
(l)F (k)C

(l)
1

]
+
[√

α̃1F (k)C
(l)
1

]T
R
[√

α̃1

F (k)C
(l)
1

]
+

N∑

i=2

( i−1∏

j=1

√

(1 − α̃j)α̃i

[
B(l)F (k)C

(l)
i

]T

× P (k)
i−1∏

j=1

√

(1− α̃j)α̃iB
(l)F (k)C

(l)
i

)

+

N∑

i=2

( i−1∏

j=1

√

(1− α̃j)α̃i

[
F (k)C

(l)
i

]T
R

×
i−1∏

j=1

√

(1− α̃j)α̃iF (k)C
(l)
i

)

+Q
}

x(k + n|k)

≤ 0 (37)

In what follows, for nonzerox(k+ n|k), (37) is equivalent
to

[
A(l) +B(l)F (k)Γ̃(l)

]T
P (k)

[
A(l) +B(l)F (k)Γ̃(l)

]

+
[√

α̃1B
(l)F (k)C

(l)
1

]T
P (k)

[√

α̃1B
(l)F (k)C

(l)
1

]

+
[√

α̃1F (k)C
(l)
1

]T
R
[√

α̃1F (k)C
(l)
1

]

+

N∑

i=2

( i−1∏

j=1

√

(1− α̃j)α̃i

[
B(l)F (k)C

(l)
i

]T
P (k)

×
i−1∏

j=1

√

(1− α̃j)α̃iB
(l)F (k)C

(l)
i

)

+

N∑

i=2

( i−1∏

j=1

√

(1− α̃j)α̃i

[
F (k)C

(l)
i

]T
R

×
i−1∏

j=1

√

(1− α̃j)α̃iF (k)C
(l)
i

)

+Q− P (k) ≤ 0 (38)

Pre- and post-multiplying (38) withP−1(k), then sim-
plify the results with multiplyingγ(k), and let W (k) =
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γ(k)P−1(k), we obtain:
[
A(l)W (k) +B(l)F (k)Γ̃(l)W (k)

]T
W−1(k)

[
A(l)W (k)

+B(l)F (k)Γ̃(l)W (k)
]
+
[√

α̃1B
(l)F (k)C

(l)
1 W (k)

]T

×W−1(k)
[√

α̃1B
(l)F (k)C

(l)
1 W (k)

]

+
[√

α̃1F (k)C
(l)
1 W (k)

]T
γ−1(k)R

[√

α̃1F (k)C
(l)
1 W (k)

]

+
N∑

i=2

( i−1∏

j=1

√

(1− α̃j)α̃i

[
B(l)F (k)C

(l)
i W (k)

]T
W−1(k)

×
i−1∏

j=1

√

(1− α̃j)α̃iB
(l)F (k)C

(l)
i W (k)

)

+

N∑

i=2

( i−1∏

j=1

√

(1− α̃j)α̃i

[
F (k)C

(l)
i W (k)

]T
γ−1(k)R

×
i−1∏

j=1

√

(1− α̃j)α̃iF (k)C
(l)
i W (k)

)

+WT (k)γ−1(k)QW (k)−W (k) ≤ 0. (39)

By Schur complement lemma, and definẽW (k)C
(l)
s =

C
(l)
s W (k) and F (k)W̃ (k) = Y (k) (s = 1, 2, . . . , N , l =

1, 2, . . . , L), (39) is satisfied with conditions (14) and (11).
Therefore, the proof is completed.
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