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Abstract 

Adopting natural ventilation as a low impact retrofit strategy for space cooling is attractive due to the 

cooling potential of untreated outdoor air for large periods of the extended cooling season, particularly 

in northern climates. Furthermore, it is important to characterise the performance of natural 

ventilation components in successfully transferring the cooling potential of outdoor air to the occupied 

zone. This paper presents an analysis of the results from 25 individual ventilation rate tests of a single 

sided slot louver ventilation system installed in a low energy retrofit application and 13 tests from a 

pre-retrofit window opening, taken as a control space. Parameters permitting characterisation of 

different permutations for combined momentum and buoyancy driving forces during each test were 

also recorded allowing an investigation of the existence of any underlying patterns as well as the 

relative effect of the different opening configurations. Analysis shows that different patterns emerge 

for the dominant driving forces depending on opening configuration in the slot louver system. Owing 

to the primary airflow exchange mechanisms normally present, the transient evolution of the 

normalised tracer gas concentration during tests is analysed using the concentration fluctuation 

amplitude. The slot louver ventilation system has led to steadier ventilation rates. Opening height and 

geometry is shown to have a significant effect on the net contribution from momentum driving forces 

and the fluctuation amplitude of the ventilation rate and this effect is wind direction dependant. 

Ventilation rates are shown to correlate well with fluctuation amplitude. The nature of the ventilation 

rate during tests for different wind directions is shown to vary depending on wind patterns at the 

building envelope.   

Keywords: mean and fluctuating ventilation, dominant forces, warren plot, buoyancy asymptote 

1 INTRODUCTION 

While experimental data exists for single sided ventilation rates, (Dascalaki et al 1996) (Dascalaki et 

al. 1995) (de Gids and Pfaff. 1982) (Caciolo et al 2011), information is not exhaustive for openings 

other than common window types. Single sided ventilation techniques are generally reserved for 

single cell (Irving et al 2005), isolated spaces and when considering older office buildings that need 

retrofitting, the floor plan can often be designed in this manner and not intended as open plan spaces. 

Developing ventilation components that can be applied externally in a retrofit program, provide 

sufficient weather protection and are effective at ensuring good ventilation rates by responding to 

contributing airflow mechanisms is central to ensuring successful implementation of climate change 

adaptation strategies. This paper presents an analysis of the mechanisms contributing to time average 

single sided ventilation rates from test results for a slot louvre ventilation component operated as part 

of a single sided ventilation strategy. It considers two key aspects of the ventilation rate; the combined 

effect of momentum and buoyancy forces on mean ventilation rates and analysis of the nature of the 

ventilation rate during tracer decay tests using a fluctuation parameter, 𝜎𝑐𝑛. The objective is to 

investigate the conditions contributing to mean ventilation rates for a slot louvre system used in single 

sided ventilation. Data presented was recorded in a full scale test room for different opening 

configurations. 
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Nomenclature   

   
Symbols Subscripts 

𝐴𝑟 Archimedes Number 𝑖 inside  

𝐹 Flow Number 𝑜 outside  

𝐶𝑑 discharge coefficient 𝑖𝑒 internal to external 

𝑅𝑒 Reynolds Number 𝐴𝐶𝐻 Air change rate 

𝑇 temperature (K) 𝑡 Tracer, total 

𝐻 height, (m) 𝑡ℎ Thermal, stack effect 

𝑔 Acceleration due to gravity, (m s2⁄ ) 𝑜𝑝𝑒 opening 

𝑣 Velocity (wind), (m s⁄ ) 𝑒 effective 

𝑄 Mean ventilation rate, (𝑚3𝑠−1) 𝑤 wind , test space envelope wall  

𝐴 opening area (m2) 𝑁 Normalised concentration 

𝛽 Power law exponent 𝑖𝑛𝑡 Zone interior 

L Characteristic length (m) h hydraulic 

𝜌 Density (kg m3⁄ ) cn concentration (relating to fluctuations) 

𝐶 tracer gas concentration  (ppm) 𝑐 Particular combination 

𝑡 time, (h) 𝑖 Parameter  

𝑃 Total pressure (kg/ms2) 𝑗 Parameter  

𝜎 standard error of estimate of predictions  𝑏 Baseline buoyancy asymptote 

K Variable, 1/3𝐶𝑑 R Reference Flow Number 

𝜉 Flow resistance   

𝛼 Flow coefficient Abbreviations 

b Linear flow coefficient CS Control space 

𝑝 pressure (kg/ms2) RS Retrofit space 

  P Parallel  direction 

  L Leeward  direction 

 W Windward  direction 

    

    

A literature review has revealed little reported work of full scale experiments characterising how slot 

louvre systems with low hydraulic diameters perform within ventilation strategies where mechanisms 

such as turbulent eddy diffusion play an important function. For example Kang investigated how 

different louvre ventilator angles installed in the windward face of a factory wall changed indoor 

velocity field and turbulence. They showed that louvre ventilator angle can increase the internal mean 

velocity and turbulence further away from the ventilation inlet. However it didn’t consider shear 

induced flow and also used a double sided ventilator to direct the internal flow and also had a roof 

mounted exhaust point (Kang and Lee 2008). Nakanishi et al showed that the pressure loss 

characteristic varies significantly relative to louvre angle and the differential pressure was close to a 

quadratic function of impinging wind velocity at normal incidence (Nakanishi et al 2007). However 

different impinging wind incidence angles were not investigated, buoyancy wasn’t included and the 

louver angle at air entry was flipped compared to the louvre system presented in this paper. Hughes et 

al have also looked at the effect of external louvre angle on the ventilation performance of the 

windcatcher system and have demonstrated that the louvres follow aerodynamic stall theory (Hughes 

and Ghani 2010).      

 

2 EXPERIMENTAL SETUP 

A total of 25 full scale ventilation rate tests from the retrofit space for different component opening 

configurations were compared to 13 tests in a control space in the existing building with dynamically 

similar characteristics. Ventilation components tested are described in section 3. Experimental 

measurements were recorded using a CO2 tracer gas decay technique with a linear regression 

http://www.tandfonline.com/loi/tjov20?open=14#vol_14
http://www.tandfonline.com/toc/tjov20/14/4


O’Sullivan PD and Kolokotroni M (2016). Non dimensional analysis and characterisation of driving forces for a single sided slot louver 
ventilation system.  International Journal of Ventilation, Vol 14,  4, (doi:10.1080/14733315.2016.11684091) 

 

3 
 

technique applied to spatially averaged and normalised concentration values. 2 NDIR sensors were 

used in the test space with measured values adjusted for background CO2 levels. All tests were 

completed under normal operating mode for the ventilation system resulting in the inclusion of effects 

from some complex geometry at the openings and two opening apertures serving the retrofit test space 

each time. Figure 1 outlines the physical geometry of the control space room and the retrofit space 

room as well as NDIR sensor locations and vertical temperature measurement locations; Figure 2 

shows the two envelopes at different locations of the same building, while Table 1 includes a 

summary of test conditions. A detailed summary of the experimental setup and test conditions for 

both retrofit space and control space has recently been published by the authors and is not repeated 

here (O’Sullivan and Kolokotroni, 2014).  

 

Figure 1: Control Space (CS.01) geometry details (left) and Retrofit space geometry details (right) with 

configuration RS.02 shown in Orange, configuration RS.03 shown in blue with RS.04 being both RS.02 and 

RS.03 combined.  

 

Figure 2: Control Space envelope (left) and retrofit space envelope (right) with dimensions of room locations at 

CIT, Cork, Ireland. 

 

Table 1: Schedule of experimental tests and conditions 

Config. 
No of 

tests 

Range of test 

durations 

Average 

Conc. 

uniformity 

(Ave) Start 

PPM Range 

(Adjusted.) 

(Ave) End 

PPM Range 

(Adjusted.) 

Average 

B.G. PPM 

(%)  

CS-1.0/M 13 24 – 90 min 2.57 % 3181-6203 175-1214 10.3 

RS-2.0/M 6 26 – 60 min 1.51 % 3538-5431 364-1481 12.3 

RS-3.0/A 6 31 – 60 min 4.46 % 3511-5051 703-1327 13.4 

RS-4.0/A/M 13 30 – 161 min  2.37 % 3647-4746 212-1067 13.0 
CS=Control Space; RS= Retrofit Space; M = Manual; A=Automated with manual override  
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3 VENTILATION COMPONENT DETAILS 

3.1 Slot louvre ventilation system (Configuration/RS.02, RS.03, RS.04/Figure 1-Right) 
The installed slot louvre system has a net 50% free open area for airflow and overall structural 

opening dimensions are 0.30m (w) x 1.60m (h) with a net opening area of 0.102 m
2
 (2 openings at 

low level and 2 openings at high level in the test space). On the internal side of the slot louvres there 

are automated higher level insulated doors and manual lower level insulated doors providing different 

control mechanisms. The ventilation system forms part of an externally applied retrofit fenestration 

module supplied with two glazed sections and two ventilation sections. The louvres are manufactured 

in anodized aluminium alloy 6063-T6 with a resulting smooth surface finish, see Figure 3. Each of the 

ventilation openings has 17 airflow slots across the louvre bank. Taken individually the louvre slots 

have an extremely low porosity at 0.057%. Table 2 summarises key information regarding the slot 

louvre system.  

 

Figure 3: Slot louvre details (left) sample louvre profile, (middle) dimensions (right) installation section 

 

3.2 Top hung outward opening window (Configuration - CS.01/Figure 1-left) 

The control space ventilation component consists of an outward opening top hung window unit. This 

was used as a basis for comparison of time average ventilation rates and ventilation unsteadiness 

during tests with the slot louvre system. Details are summarised in Table 1 and in (O’Sullivan and 

Kolokotroni. 2014). There appears to be limited data available on full scale performance of this type 

of window in the literature. Recently Grabe presented work characterising flow resistances for 

different window types (Grabe 2013). Based on laboratory tests of buoyant flow through the openings 

he proposed different resistances for inlet and outlet areas where openings were asymmetrical (i.e. a 

combination of triangular and rectangular). He proposed an empirical law between flow resistance 

and total opening area for awning windows similar to the one used in the control space. Based on this 

we have estimated a 𝐶𝑑 using equation (1) below: 

𝐶𝑑(𝑐𝑠) =  (𝜉)−1/2 = (0.0018 ∙ 𝐴𝑡(𝑐𝑠) ∙ 1000 − 0.1351)
−1/2

= 0.422  (1) 
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Table 2: comparison of purpose provided ventilation opening types in CS & RS 

Parameter CS RS Units 

Plain structural opening dimensions (W x H) 0.92 x 1.14 0.30 x 1.60 m 

Total opening area At 0.32 0.42 m
2
 

Porosity 0.18 0.057 (%) 

Total opening “wetted” perimeter 5.96 0.99 m 

Hydraulic diameter (dh) (At & based on “wetted” perimeter) 0.214 0.02 m 

Aspect Ratio (L/dh)  1.070* 1.075 (-) 

Opening type (categories according to Etheridge 2011) short short (-) 

*Note: length dimension for CS measured along perimeter of opening window section 

 

4 CHARACTERISING DRIVING FORCES  

4.1 Previous work analysing driving forces  

The mechanisms that produce airflow in single sided ventilation are generated through varying 

combinations of wind and buoyancy forces acting at the opening. Depending on wind direction the 

dominant mechanisms are either from a pulsating flow due to pressure difference at the opening, 

turbulent diffusion through a mixing layer at the opening plane or a combination of both. When due to 

buoyancy forces alone, the flow will be bidirectional with a neutral pressure at the opening mid height 

point. The temperature difference at the opening results in a buoyancy effect that produces a stable 

airflow exchange. However, at low wind speeds and a leeward direction the effective enveloped 

temperature has been shown to be reduced due to a recirculation zone counteracting buoyancy effects 

resulting in air change rates lower than in the absence of wind (Caciolo et al 2013).  When wind is 

normal to the opening plane a pulsation airflow effect will dominate increasing compression of the air 

mass but not necessarily adding to ventilation rate. Cockroft and Robertson suggested that 37% of the 

volume flowrate across the opening due to pulsation will contribute to an air change rate (Cockroft 

and Robertson. 1976).  The local wind speed at the opening is very much dependant on wind direction 

due to changes in flow patterns along the envelope given different wind directions. Larsen shows how 

air change rate depends on wind direction with effect more pronounced at low wind speeds and the 

dominating force differs between wind speed and ∆Tie depending on the ratio between these forces 

and the wind direction (Larsen and Heiselberg 2008). When working with steady envelope flow 

models an empirical power law, equation (2) below, has been used to describe flow in situations 

where the geometry is complex and flow is assumed as being independent of 𝑅𝑒.   

𝑄 =  𝛼∆𝑝𝛽 (2) 

When flow is best predicted using 𝛽 = 1.0 we have a linear relationship with the constant 𝑏 derived 

empirically although according to Etheridge and Sandberg (Etheridge and Sandberg 1996) it can have 

a physical meaning: 

𝑄 =  𝑏∆𝑝 (3) 

When envelope flow models are based on orifice flow theory, we have 𝛽 = 0.5 and for the flow due 

to buoyancy alone case, employing a still air discharge co-efficient 𝐶𝑑,  using the ideal gas law to 

substitute temperature for density, we have: 
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𝑄 =  
1

3
𝐶𝑑𝐴 (

∆𝑇𝑔𝐻

𝑇
)

1/2

 (4) 

Within these two extremes 𝛽 can have an influence on the ability of a given model to correctly predict 

ventilation rates obtained experimentally as shown for example by Sharples et al (Sharples and 

Chilengwe 2006). In addition to buoyant flows a number of semi empirical models have attempted to 

account for contributions from wind effects. Warren and Perkins (Warren and Parkins 1985) proposed 

2 separate correlations for buoyancy and wind effect, taking the larger of the two to quantify 

ventilation rate. Dascalaki (Dascalaki et al 1996) proposed an alternative correlation to take account 

of wind effects. See also for example (Crommelin and Vrins. 1988), (De Gids and Pfaff. 1976), 

(Wang and Chen 2012). When studying permutations of contributing forces for ventilation rate tests 

Warren used the relationship between a dimensionless ventilation parameter, Flow Number 𝐹𝑅, and an 

adjusted Archimedes Number, 𝐴𝑟0.5. The purpose of the Warren plot is to separate out the data 

dominated by buoyancy effect. Warren plots have been used by researchers to analyse air change rate 

data, for example see (Warren and Parkins 1985) (Van Der Mass. 1992), (Caciolo et al 2011). 

Archimedes Number, 𝐴𝑟, is used as a measure of the relative magnitudes of the buoyancy (gravity) 

forces and the momentum (inertial) forces acting on elements of fluid. This ratio can be expressed in 

(5) where L is a characteristic height. 

∆𝜌𝑔𝐿

𝑃𝑤

 (5) 

For dynamically similar flows substituting 𝜌𝑣2 for total wind pressure, 𝑃𝑤, one obtains a 

dimensionless parameter which is basically the same as that known as 𝐴𝑟 (Etheridge, 2011):  

𝐴𝑟 ≡  
∆𝜌𝑔𝐿

𝜌𝑣2
 (6) 

As mentioned above the ratio ∆𝜌/𝜌 can be replaced with ∆𝑇/𝑇 for cases of interest here. For large 𝐴𝑟 

values buoyancy forces will dominate. 𝐴𝑟0.5 can be defined in (7) where 𝐻 is the opening height in 

question. 

𝐴𝑟0.5 =  (
∆𝑇𝑖𝑒  𝑔 𝐻

�̅�𝑖  𝑣𝑤
2

)
0.5

 (7) 

The ventilation parameter, 𝐹𝑅, is a practical dimensionless number based on a reference wind velocity 

to describe wind induced ventilation. Generally where flow is buoyancy dominated 𝐹𝑅 should 

approach the asymptote defined by 𝐹𝑡ℎ in equation (9). When wind dominates 𝐴𝑟0.5 tends to zero and 

𝐹𝑅 becomes independent of 𝐴𝑟0.5. For parallel flows, according to work by Warren (Warren and 

Parkins 1985), 𝐹𝑅 should be approximately constant at 0.03. 𝐹𝑅 can be defined as: 

𝐹 =  
𝑄

𝐴𝑒𝑣𝑤

 (8) 

Plotting these vales for each test allows an interpretation of the influence wind forces have on the 

buoyancy effect, either assisting or opposing its contributing force.  

4.2 Definition of 𝑭𝒕𝒉 asymptote for ventilation components 

Dimensional analysis using the Warren plot is predicated on the correct selection of the asymptote 

through the origin defining flow number due to buoyancy alone, 𝐹𝑡ℎ, described in equation (9).  
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𝐹𝑡ℎ =  
𝑄

𝐴𝑒𝑣𝑡ℎ
2𝛽

=  
1

3
𝐶𝑑𝐴𝑟𝛽 (9) 

The gradient of this asymptote is sensitive to correct selection of both the still air discharge 

coefficient, 𝐶𝑑 and the exponent used in the power law relationship for pressure and flow (i.e. 𝛽 = 0.5 

for orifice flow). 𝐶𝑑 is an important parameter for a ventilation opening as it depends on the geometry 

of the opening and the Reynolds number, 𝑅𝑒 of the flow, and is normally taken as 0.61 for a flush 

faced sharp edged orifice. Various research studies have considered the effect on 𝐶𝑑 of different 

opening types and their geometry, shape and porosity under wind driven flow (Karava et al 2004) 

(Heiselberg et al 2001), while other studies have concentrated on the effects of wind in terms of 

direction and the effects of dynamic pressure (Chiu and Etheridge 2007). Caciolo et al (Caciolo et al 

2011) used a 𝐶𝑑 value of 0.6 to describe the flow characteristic when calculating 𝐹𝑡ℎ for various open 

window geometries while a 𝐶𝑑 of 1.0 is used in (Dascalaki et al 1996). The work by Grabe is outlined 

in section 3.2 (Grabe 2013; von Grabe et al 2014). Both Pinnock (Pinnock 2000) and Sharples et al 

(Sharples and Chilengwe 2006)  have carried out experimental work considering the use of alternative 

exponent values in the power law equation when dealing with the buoyancy alone case and slot 

louvres respectively. Pinnock proposed 𝛽 = 0.6348 and Sharples suggested 𝛽 = 0.9301. As indicated 

in section 4.1 a comparison of the value of 𝐹𝑅 with 𝐹𝑡ℎ using the warren plot indicates whether the 

non-dimensional ventilation rate is buoyancy dominant or otherwise. 𝐹𝑡ℎ can be said to be a function 

of three primary parameters based on equation (9) summarised in equation (10) as: 

𝐹𝑡ℎ = 𝑓(𝐴𝑟, 𝐶𝑑, 𝛽) (10) 

We tested the sensitivity of these parameters on the buoyancy asymptote, 𝐹𝑡ℎ, and the resulting modal 

shift from wind dominant to buoyancy dominant 𝐹𝑅. While the physical relationship between 𝐴𝑟 and 

𝛽 is not clearly defined in the literature for values other than 𝛽 = 0.5 (with 𝐴𝑟 for the cases of interest 

defined based on Bernoulli flow) it was still worthwhile to include 𝐴𝑟𝛽 as a linear coefficient in 

testing the sensitivity of 𝐹𝑡ℎ to the results. Using a sample size 𝑁 = 38 based on experimental test 

data we divided the measured distribution of all 𝐹𝑅 into 𝑞 equally sized quantiles with the 𝑘𝑡ℎ 

quantile equal to 𝑘/𝑞. For this study we set 𝑞 = 2, took the smallest 𝐹𝑅  observation to correspond to a 

probability of 0 (0/2 = 0), the largest observation to a probability of 1 (2/2 = 1), giving us the 0, 

50th & 100th percentiles from the measured data. We then selected matching 𝐴𝑟 values for each 

𝐹𝑅 based on the measured data.  This resulted in a manageable parameter space and gave realistic 

ranges for combinations of 𝐹𝑅 and 𝐴𝑟. The range of values chosen for parameter 𝑥𝑖  in equation (9) is 

the set defined using the cardinality and interval in equation (11).  𝑖 = 1 for 𝐶𝑑, 2 for 𝛽 and 3 for 𝐴𝑟.  

|𝒙𝟏| =  8, {𝑥1,𝑗  ∈ ℝ |0.4 ≤ 𝑥1,𝑗  ≤ 0.9} 

|𝒙𝟐| = 6, {𝑥2,𝑗  ∈ ℝ |0.5 ≤ 𝑥2,𝑗  ≤ 1.0} 

|𝒙𝟑| = 4, {𝑥3,𝑗  ∈ ℝ |0.005 ≤ 𝑥3,𝑗  ≤ 0.12} 

(11) 

Each combination 𝑐, equates to a value of 𝐹𝑡ℎ with all possible combinations of parameters calculated 

from the cardinality of the Cartesian product of all sets, in this case 𝑛 = 3.  

𝑿 =  |𝒙𝟏| ∙ |𝒙𝟐|, ⋯ ,∙ |𝒙𝒏−𝟏|, |𝒙𝒏| (12) 

This configuration of parameters resulted in 192 different possible combinations. Each 𝐹𝑅 value was 

compared with only those 𝐹𝑡ℎ(𝑐) values that had the same 𝐴𝑟 (i.e. 48 𝐹𝑡ℎ(𝑐) values for each of the 4 𝐴𝑟 
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values selected), as would be on the Warren plot. An error value for each combination, 𝑒𝑐 , shown in 

equation (13) was calculated giving the difference between 𝐹𝑅 and a baseline, standard asymptote, 

denoted 𝐹𝑡ℎ(𝑏), (based on 𝐶𝑑 = 0.61 and , 𝛽 = 0.5), ∆𝐹𝑏, and 𝐹𝑅 and the particular 𝐹𝑡ℎ(𝑐) for the 

combination under consideration, ∆𝐹𝑐.  

𝑒𝑐 =  ∆𝐹𝑏 −  ∆𝐹𝑐   (13) 

For example lowering 𝐶𝑑 reduces the apparent slope of the asymptote, reducing 𝛽 actually reduces 

𝐴𝑟𝛽 values shifting 𝐹𝑅 values towards the ordinate linearly resulting in an apparent reduction of the 

asymptote, both changes manifest as a modified ∆𝐹𝑐. Figure 4 presents values for 𝑒𝑐 for each of the 

various different combinations of 𝐴𝑟, 𝐶𝑑  and 𝛽 at particular 𝐹𝑅 values. Each sub grid represents a 

particular 𝐹𝑅/ 𝐴𝑟 combination on the warren plot and the tiles within each sub grid are the 𝑒𝑐 values. 

For 𝐹𝑡ℎ(𝑐) where  𝐶𝑑 = 0.61 and 𝛽 = 0.5, 𝑒𝑐 is always shown as zero. On the warren plot, as 𝐹𝑡ℎ(𝑐) 

passes through 𝐹𝑡ℎ(𝑏), with both asymptotes co-located, 𝑒𝑐 reduces to zero, increasing again as 𝐹𝑡ℎ(𝑐) 

moves away from 𝐹𝑡ℎ(𝑏) towards 𝐹𝑅. 𝑒𝑐 continues to increase without a modal shift until it passes 

through 𝐹𝑅 a critical point where there is then a modal shift and is represented with a sign change in 

Figure 4.  

 
Figure 4: 𝑒𝑐 for all 𝑿 combinations grouped according to 𝐹𝑅(vertical axis) and 𝐴𝑟 (horizontal axis). Negative 

𝑒𝑐 values represent a modal shift with 𝐹𝑡ℎ(𝑐) passing through 𝐹𝑅 giving the critical 𝐶𝑑 𝛽⁄  combination causing 

change in contribution from wind forces. Magnitude of 𝑒𝑐 represents scale of modal shift.  

In considering Figure 4, at low 𝐴𝑟 there is little sensitivity to a modal shift from wind dominant to 

buoyancy dominant conditions. At low 𝐴𝑟 test conditions are usually wind dominant with high 𝐹𝑅 

values. At 𝐹𝑅 = 0.015 there is a modal shift at 𝐶𝑑 > 0.61 showing high sensitivity. At  0.01 < 𝐴𝑟 <

0.04 no modal shifts appear for almost all 𝐶𝑑 at 𝛽 = 0.5.Only as 𝛽 increases do we see results with 
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high sensitivity to input parameters. At 𝛽 = 0.5 sensitivity is present at 𝐹𝑅 = 0.036 for 𝐶𝑑 < 0.61 

with modal shifts taking place for these parameters, in this instance shifting from buoyancy to wind 

dominant conditions. A number of test results presented in this paper are in this range. At 𝐹𝑅 = 0.085 

and  𝐴𝑟 = 0.12 there is modal shifts at 𝐶𝑑 > 0.75 but only at 𝛽 = 0.5 and very few test results had 

these conditions. In summary there appears to be some sensitivity to 𝐶𝑑 for the tested 𝐹𝑅/𝐴𝑟 ranges 

but this is neither systematic throughout and generally low at = 0.5 . At 𝐴𝑟 < 0.04 values, where a 

lot of the measured data is situated, there is little evidence of modal shifts, irrespective of the 

magnitude of 𝐹𝑅. At mid-range 𝐴𝑟 and with 𝐹𝑅 values reported by Warren (0.025-0.035), it appears 

sensitivity to the physical geometry of the opening exists when interpreting the contribution from 

wind forces.  

4.3 Selection of 𝑪𝒅 for analysis 

Notwithstanding the analysis above the value selected for 𝐶𝑑 for the control space window opening to 

facilitate analysis is 0.422 and is largely based on Von Grabe (Grabe 2013). A  𝐶𝑑 value of 0.55 is 

assumed for RS.03. The slot louvre system used here is a flush faced sharp edged orifice at the inlet 

and flow is likely unidirectional through the individual slot openings. There is a length component of 

the louvre in a circular shape (see Figure 3) that might promote some flow reattachment allowing 

viscous forces and a boundary layer to develop, reducing the flow separation that normally results in 

𝐶𝑑 being independent of 𝑅𝑒. However, for the purposes of establishing a 𝐶𝑑 value under buoyancy 

alone conditions 0.61 may be a little low but acceptable for RS.04 and RS.02 for the purposes of 

initial analysis. The RS.03 configuration has the combined effect of slot louvre and inward opening 

ventilation door due to its restricted opening angle and a 𝐶𝑑 probably lower than 0.61 as a result. 

5 TEST CONDITIONS  

Figure 5 presents polar frequency plots of wind speeds distributed according to wind direction for 

each test configuration summarised in Table 3 of (O’Sullivan and Kolokotroni. 2014). An analysis of 

wind data for each test using directional statistics (Mardia. 1972) shows that the mean resultant length 

of direction vectors, a measure of “concentration” for circular data such as wind direction, were in 

many instances close to 1.0 with low dispersion of wind orientation during individual tests. This 

suggests that wind direction was consistent during a given test and the resulting analysis can assume 

to represent the effects from flow phenomena present for this type of orientation relative to the 

ventilation opening. We have taken Parallel flow to occur between wind directions of 347.5° – 22.5° 

& 157.5° – 202.5°. 270° wind direction is normal to the ventilation opening.   

 

Figure 5: Polar frequency plots for each set of tests according to configuration  
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6 RESULTS & ANALYSIS 

Figure 6 summarises variability in recorded mean ventilation rates for each test configuration with 

mean values shown as circular points. Single sided ventilation strategies rely on a number of low and 

high frequency unsteady flow phenomena relating to wind pressure, gustiness and turbulence. Tracer 

decay rates were measured at a frequency of 1hz during each test and Figure 7 presents recorded mean 

ventilation rates as a function of mean wind direction and Figure 8 as a function of wind speed, 

grouped according to test configuration. The colour scale for data points indicates magnitude of 

envelope temperature difference for each test while the data point size indicate the amplitude of 

concentration fluctuation, 𝜎𝑐 , which is based on the estimate of error in prediction from the regression 

model fitted to the normalised concentration decay, 𝐶𝑁,  to determine the mean ventilation rates 

(O’Sullivan and Kolokotroni. 2014). This is taken as an indicator of the level of unsteadiness present 

during each test.  

 

Figure 6: Boxplot of mean ventilation rates (h
-1

) for each configuration grouped according to reference wind 

direction, (Leeward, Parallel, Windward) 

6.1 Influence of buoyancy and momentum forces 

Considering Figure 7 in all configurations the highest recorded mean ventilation rates generally 

occurred with ∆𝑇𝑖𝑒 > 4°C and a windward wind direction. Lower mean ventilation rates generally 

occurred with low ∆𝑇𝑖𝑒 which also coincided with leeward conditions. Parallel wind directions show 

less defined patterns. This suggests an important relationship exists between the magnitude of ∆𝑇𝑖𝑒 

and the wind direction. Low ∆𝑇𝑖𝑒 generally resulted in lower ventilation rates for low opening height 

RS.02 & RS.03 while some CS.01 & RS.04 tests have mean ventilation rates higher than 4.0 h
-1

 even 

at ∆𝑇𝑖𝑒 < 4.0°C. Figure 7 suggests that where the wind direction is not approximately normal to the 

surface then it is more likely to have lower ventilation rates even at relatively high ∆𝑇𝑖𝑒 values. 

Results suggest that leeward and parallel flows at the opening are more likely to generate phenomena 

that will oppose buoyancy forces, for example turbulent diffusion reducing the effective temperature 

difference through mixing (Caciolo et al 2011). RS.04, the largest opening height, shows a more 

pronounced trend between mean ventilation rate and wind direction while CS.01 also shows some 

agreement in this regard. Furthermore 𝜎𝑐 is consistently larger under windward wind direction 

potentially showing a correlation with pulsating flow from wind gustiness and resulting air 

L P W

2

3

4

5

6

CS.01 RS.02 RS.03 RS.04 CS.01 RS.02 RS.03 RS.04 CS.01 RS.02 RS.03 RS.04

Test Configuration

M
e

a
n

 V
e

n
ti
la

ti
o

n
 R

a
te

  
h

1

http://www.tandfonline.com/loi/tjov20?open=14#vol_14
http://www.tandfonline.com/toc/tjov20/14/4


O’Sullivan PD and Kolokotroni M (2016). Non dimensional analysis and characterisation of driving forces for a single sided slot louver 
ventilation system.  International Journal of Ventilation, Vol 14,  4, (doi:10.1080/14733315.2016.11684091) 

 

11 
 

compressibility rather than turbulence mixing. This underlying trend for slot louvered systems is 

something that has not been hugely investigated in the literature. Furthermore when considering 

Figure 8 the data suggests a co-dependency exists between mean ventilation rates, ∆𝑇𝑖𝑒 and wind 

speed for the RS configurations but this same trend isn’t present in the CS dataset. In fact it suggests 

that wind speed contribution is less important for the outward opening window type and ∆𝑇𝑖𝑒 and 

wind direction are more important to predicting the resulting ventilation characteristics. Compared to 

the CS.01 configuration the reduced aspect ratio of the slot louvre system seems to reduce the effects 

of phenomena such as eddy penetration, particularly during windward conditions permitting buoyancy 

forces to better establish.     

 

 
Figure 7: scatterplot of mean ventilation rates (h

-1
) vs wind direction, (classified with ∆𝑇𝑖𝑒  & 𝜎𝑐) 

Figure 8: scatterplot of mean ventilation rates (h
-1

) vs 𝑣𝑤 (classified with ∆𝑇𝑖𝑒  & 𝜎𝑐) 
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(based on 0.1hz arithmetic averages of readings taken at 1hz), can still give a measureable indication 

of the overall unsteadiness present in a ventilated space during a tracer decay test. The cause of this 

un-steadiness however, can be due to several factors: pulsation flow, penetration of eddies (depending 

on sensor location), and static or molecular diffusion. 10 of the 13 CS.01 window opening tests 

exhibited unsteadiness at the upper end of all recorded σc values. These appeared to happen primarily 

under windward wind directions and across all wind speeds. There was no visible correlation with 

wind speed and most of these high σc instances had ∆Tie > 5.0°C although these appeared wind 

dominant according to the non-dimensional analysis in section 6.3 below. This would suggest that the 

fluctuating component of the ventilation rates is more amplified when wind is normal to the outward 

opening window case. This may be due to the nature of flow impingement with the window 

obstructing entry resulting in increased localised turbulence. The highest fluctuation value for parallel 

flow in CS.01 happened with one of the lowest average test wind speeds (1.8 𝑚𝑠−1) while the two 

other parallel flow tests showed lower unsteadiness profiles with lower non-dimensional 𝐹 values 

suggesting that with parallel flow and an outward opening window fluctuating components of 

ventilation rate are less pronounced and buoyancy driven flow is able to better establish. This may be 

due to the fact the opening section of the window does not obstruct parallel flow at the boundary layer 

of the structural opening. More parallel flow tests are needed however before this is conclusive. In the 

slot louvre system only RS.04 exhibits tests with significant unsteadiness and all these tests occurred 

at a windward wind direction and higher wind speeds with a more noticeable trend visible in Figure 7 

and Figure 8. Higher σc values are associated with higher ventilation rates in RS.04 suggesting the 

importance of dynamic phenomena such as wind gustiness to single sided ventilation rates even for 

slot louvre systems. These also generally occurred at windward wind directions. Ai and Mak (Ai and 

Mak 2014) have shown that for plain openings velocity and pressure fields are relatively stable for 

windward wind directions and the resulting unsteadiness is mainly associated with a large impinging 

mean flow rather than turbulent exchange. This would suggest a more likely correlation of σc with the 

pulsating flow of the wind than turbulent exchanges at the opening for results presented here. For 

RS.03 & RS.02, irrespective of wind direction fluctuation parameters were always low as were 

ventilation rates although a trend existed with increasing wind speeds.  

 

6.3 Non dimensional analysis 
Figure 9 presents Warren Plots for CS & all RS configurations. Figure 10 presents individual Warren 

Plots for each cardinal wind direction. The purpose of the different plots is to investigate trends that 

relate to opening geometry, test environment and associated combinations of buoyancy and 

momentum driving forces. Considering Figure 9 we see a comparable spread of 𝐹 values for both 

spaces with the retrofit 𝐴𝑟0.5 range extending further towards zero ordinate. 𝐹 values seem to display 

slightly higher dependency on 𝐴𝑟0.5 in CS.01 and RS.04. When the data is split according to RS 

opening configuration as shown, three different patterns emerge. RS.04, (𝐻𝑜𝑝𝑒 = 1.60𝑚), shows a 

pattern of buoyancy dominant ventilation irrespective of the wind direction, which seems to agree 

with data in figure 7 where the highest RS.04 ventilation rates had high ∆𝑇𝑖𝑒 values. Alternatively 

RS.03 has 𝐻𝑜𝑝𝑒 = 0.76𝑚 (𝐻𝑖𝑛𝑡= 2.43m (above floor level)) and also has a potentially lower 𝐶𝑑 value 

than RS.02. It exhibits increased contributions from wind forces with similar 𝐹 values but consistently 

lower 𝐴𝑟0.5 
values compared to RS.04. It appears that with a lower opening height buoyancy forces 

have less ability to establish irrespective of ∆𝑇𝑖𝑒 resulting in lower 𝐴𝑟0.5 values and as a result 𝐹 

values appear more independent of 𝐴𝑟0.5 in lower ranges suggesting the nature of the wind 

contribution is more important than its ratio to buoyancy forces. 
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 Figure 9: Warren Plot for all CS and RS configurations varying Fth asymptotes included as dashed lines 

RS.02 (𝐻𝑜𝑝𝑒 = 0.76𝑚) ((𝐻𝑖𝑛𝑡 =  1.59𝑚) has a greater internal door opening angle than RS.03 and a 

higher 𝐶𝑑 value. It exhibits the least dependency on buoyancy forces with nearly all tests showing 

wind dominant 𝐹𝑅 values. In general results suggest that for slot louvre systems the opening height, 

𝐻, is an important factor modifying than the nature of the contribution from momentum forces (i.e. 

wind direction and magnitude) in determining whether or not they assist buoyancy forces. 

Considering figure 10 for RS configurations only, both parallel and windward wind directions show a 

pattern of reducing dependency of 𝐹𝑅 on 𝐴𝑟0.5 as its value tends to zero, a trend less pronounced with 

leeward tests. At low 𝐴𝑟0.5 𝐹𝑅 is a function of wind direction. At higher 𝐴𝑟0.5 values windward and 

parallel wind directions show a tendency of  𝐹𝑅 towards the 𝐹𝑡ℎ asymptote and the contribution from 

momentum forces are either diminished or generate conditions that favour buoyancy effects. In 

general the non-dimensional analysis indicates the contribution from momentum forces is a function 

of the overall structural opening height and location with this effect dependant on the ratio of 

momentum and buoyancy forces.  

 

 Figure 10: Warren Plots for wind directions 

Overall these results suggest that at low 𝐴𝑟0.5 wind incidence angle becomes important in 

determining whether or not wind becomes dominant. Warren plot analyses suggest these are generally 

wind dominant with low 𝐴𝑟0.5 but they consistently exhibited low 𝜎𝑐 values appearing counter 

intuitive. When comparing fluctuation rates for parallel wind directions in the RS configuration they 
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are generally lower than windward wind directions. What is apparent from the data presented is the 

characteristic of ventilation rate is a function of the combination of opening geometry and wind 

direction.  Furthermore the characteristics of the momentum forces (magnitude and direction) in turn 

influence the nature of ventilation and the resulting effect buoyancy forces will have. We have shown 

how mean ventilation rates depend on wind direction even for complex geometries such as slot 

louvers agreeing with findings from (Larsen and Heiselberg 2008) and furthermore the relative 

importance of this is also function of opening geometry and 𝐴𝑟0.5. It may not be sufficient to only 

consider ∆𝑇𝑖𝑒 when investigating this effect.   

7 CONCLUSIONS 

This paper investigated the combined effect of buoyancy and momentum forces for slot louvre 

systems and has shown the magnitude and range of 𝐴𝑟0.5 to be dependent on overall opening 

geometry. In physical terms this interdependence highlights the challenges in correctly predicting the 

airflow phenomena driving single sided ventilation for different types of ventilation components. An 

allowance for wind direction, opening height, characteristic aspect ratio and opening elevation is 

required as these will all affect ventilation rates. In conclusion the following points can be made: 

 In single sided ventilation for low wind patterns (𝑣𝑤  <  4.0 𝑚𝑠−1) wind direction plays an 

important role in determining whether buoyancy forces can properly establish.  

 The opening geometry is important in determining whether this low wind pattern dependency 

emerges at all and the opening height, aspect ratio and opening elevation are key parameters in 

determining subsequent effects of wind.  

 Slot louvre systems act as flow stabilizers dampening the unsteadiness characteristics of 

ventilation and enhance the assistive contribution to buoyancy from windward momentum forces 

potentially damping the mixing effects from turbulent diffusion in the opening. 

If σc is taken as an indicator of internal airflow environment this suggests for single sided slot louvre 

ventilation the interdependence of opening geometry, wind speed and wind  direction has a large 

influence on the effects of wind-generated air exchange mechanisms. Current semi empirical models 

for plain openings might not take proper account of this geometry dependent situation. Modification 

of thermophysical properties due to the retrofit have not necessarily reduced the magnitude of 𝐴𝑟0.5 

for similar 𝐹𝑅 values although wind driving forces can have an increased contribution in low energy 

spaces even though the slot louvre system is generally perceived as restricting flow. Additional 

measurements in the retrofit space comparing a plain opening with that where a louvre is installed 

should give further insight into how wind shear interactions with buoyant flow are modified with the 

slotted geometry generating differing ventilation rates for similar opening areas. These measurements 

would include local velocity measurements at the opening and at the boundary allowing analysis of 

the spectra of turbulence for alternative geometries amongst other phenomena; such measurements are 

under currently in progress.   
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