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Abstract 

 

This paper presents the development of a fatigue mission synthesis algorithm, called 

Wavelet Bump Extraction (WBE), for summarising long records of fatigue road load 

data. This algorithm is used to extract fatigue damaging events or bumps in the record 

that cause the majority of the fatigue damage, whilst preserving the load cycle 

sequences. Bumps are identified from characteristic frequency bands in the load 

spectrum using the 12th order Daubechies wavelet. The bumps are combined to produce 

a mission signal which has equivalent signal statistics and fatigue damage to the original 

signal. The WBE accuracy has been evaluated by observing the cycle sequence effects 

of the bump loadings. The WBE was compared with the time domain fatigue data 

editing method, so that the effectiveness of WBE can be verified. Using WBE, a 

substantial compression of the load-time history could be achieved for the purpose of 

accelerated fatigue tests in the automotive industry. 
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1. Introduction 

 

Fatigue damage analysis is one of the key stages in the design of vehicle structural 

components. One of the vital input variables is the load history. For ground vehicles, 

these can cover an extremely wide range of uses and hence a representative road load 

time history is hard to quantify. By necessity, vehicle development requires accelerated 

fatigue testing and this is often accomplished by correlating test tracks with public road 

data. Both roads and test tracks generate variable amplitude (VA) load time histories 

[1]. For the laboratory fatigue test, VA loadings need to be edited by removing small 

amplitude cycles for reducing the test time and costs. Such a technique is known as 

fatigue data editing. Using this approach, large amplitude cycles that cause the majority 

of the damage are retained, and thus a shortened loading consists of large amplitude 

cycles is produced.  

 

Several data editing techniques have been developed for use in the time domain [2]. 

Some computational algorithms were developed to omit the small amplitude cycles so 

as to retain the large amplitude cycles, such as: the application of the local strain 

parameter and linear damage rule in selecting the edit levels of VA loading while 

retaining the original history’s sequence [3], the use of a nonlinear damage rule 

incorporating overstrain and sequence effect [4], the use of a damage window joining 

function to produce an edited signal [2,5] and the application of Smith-Watson-Topper 

(SWT) parameter to determine the range of low amplitude cycles that should be 

eliminated [6]. In the frequency domain, a time history is low pass filtered on the 

basis that high frequency cycles have small amplitudes which are not damaging [5]. 
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Although high frequency cycles tend to be small in amplitude they are still 

superimposed on the lower frequency components and therefore add to the in order to 

contribute to the total fatigue damage. This filtering method does not shorten the 

signal, therefore the number of points of the edited loading is similar to the original 

loading. The time-frequency approaches have also been applied to the problem of 

fatigue data editing through its use in spike removal and de-noising [7].  

 

Since the nature of significant fatigue damaging events must play a part in determining 

the degree of damage occurring, it seems appropriate to see a method to summarise road 

load data whilst preserving cycle sequence. It is proposed to explore a method based on 

the Mildly Nonstationary Mission Synthesis (MNMS) algorithm which was applied in 

vibration and comfort research [8-10]. Realising the MNMS algorithm is not suitable 

for fatigue studies [11], has led to the development of the Wavelet Bump Extraction 

(WBE) algorithm. The WBE algorithm is designed to identify and extract the fatigue 

damaging events, or bumps, from a VA road load time history to produce a shortened 

mission signal [12]. Consequently, it is important to maintain fatigue damage of the 

mission signal as close to the original signal, with the retention of the original load 

sequences.  
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2. Theoretical Background 

 

2.1 Fatigue Life Prediction under VA Loadings 

 

It is common that the service loads acquired on components of machines, vehicles, and 

structures are analysed for fatigue life using crack growth approaches. This approach is 

suitable for high capital valued structures, such as large aircraft, space shuttle, pressure 

vessels and oil rigs [1]. The ability to inspect for cracks and monitor their growth until a 

maximum allowable defect size is reached, enables the useful life to be extended 

beyond the original design life. However, it is not generally feasible for applying the 

crack inspection process for the inexpensive components that are made in large 

numbers. Applying periodic inspections on these components would generally increase 

the maintenance cost. Examples of components which fall in this category are 

automobile engine, steering and suspension parts [13]. For these components, it is 

important to predict crack initiation in order to avoid fatigue failure by replacing the 

part from service at the appropriate time.  

 

A fatigue life estimation based on the related strain-based approach is usually used in 

these cases [1,14]. The strain-life fatigue model relates the plastic deformation that 

occurs at a localised region where fatigue cracks begin to the durability of the structure. 

This model is often used for ductile materials at relatively short fatigue lives. This 

approach is also can be used where there is little plasticity at long fatigue lives. 

Therefore, this is a comprehensive approach that can be used in place of the stress-based 

approach. 
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Current industrial practice for fatigue life prediction is to use the Palmgren-Miner (PM) 

linear damage rule. For strain-based fatigue life prediction, this rule is normally applied 

with strain-life fatigue damage models. The first strain-life model is the Coffin-Manson 

relationship, i.e.  
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where E is the material modulus of elasticity, εa is a true strain amplitude, 2Nf  is the 

number of reversals to failure, σ’f  is a fatigue strength coefficient, b is a fatigue strength 

exponent, ε’f is a fatigue ductility coefficient and c is a fatigue ductility exponent. 

 

Some of the realistic service situations involve non-zero mean stresses. Two mean stress 

effect models are used in the strain-life fatigue damage analysis, i.e. Morrow and SWT 

strain-life models. Mathematically, the Morrow model is defined by  
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where σm is the mean stress. The SWT strain-life model is mathematically defined by 
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where σmax is the maximum stress for the particular cycle.  

 

Several limitations were found in the implementation of the PM linear damage rule. 

Using this approach, the fatigue damage is accurately calculated for constant amplitude 

(CA) loadings, but it may lead to the erroneous prediction for VA loadings [15]. 

Considering the importance of sequence effects and the limitation of the PM linear 
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damage rule for analysing VA loadings, therefore, a suitable approach needs to be 

identified.  

 

Several studies related to the fatigue life prediction on metal components were 

performed in order to solve the problem under VA loadings. For examples, a model 

derived from random vibration theory [16], non-linear damage summation models [17] 

and the fracture mechanics approach [18]. Even though these approaches gave better 

improvement, however, they were difficult to associate with fatigue life prediction 

programmes for general use. Therefore, a general strain-life fatigue damage model, or 

known as Effective Strain Damage (ESD) has been introduced [19]. This model is based 

on crack growth and crack closure that works well for a wide variety of materials, load 

spectra, component geometries, strain magnitudes and mean-strain effects. The model is 

mathematically defined as following  

          (4) B
fNAE )(* =∆ε

where E is the elastic modulus of a material, ∆ε* is a net effective strain range for a 

closed hysteresis loop that is related to fatigue crack growth. A and B are the material 

constants, and Nf  is the number of cycles to failure. The magnitude of E∆ε* for a given 

cycle is a function of crack-opening stress, Sop, level and it is dependant on the prior 

stress and strain magnitudes in the loading history. The expression of can be 

expanded to 

*ε∆E

E∆ε* = E (εmax - εop) - Eεi       (5) 

where εmax and εop is the maximum strain and the crack-opening strain of the particular 

cycle, respectively. εi is the intrinsic fatigue limit strain range under the VA loading 

condition. In order to consider the cycle sequence effects in the fatigue life calculation, 
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a decay parameter, m, is used to define the change in a crack-opening stress between 

two adjacent cycles. ∆Sop is defined as  

           (6) )( cussop SSmS −=∆

where Scu is the current opening stress and Sss is the steady-state opening stress. Scu is 

defined as the Sop value of the previous cycle. Sss is defined as the following equation: 
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where α and β are the material constants, Smax is the maximum stress of the previous 

largest cycle in the time history, Smin is the minimum stress of the previous largest cycle 

and Sy is the cyclic yield stress.  

 

2.2 Wavelet Transforms 

 

Many experimental signals exhibit time-varying, or nonstationary characteristics, which 

provide a challenge in signal analysis [21]. Traditional approach for the frequency 

domain analysis of the time series was performed using the Fourier transform. This kind 

of analysis is not suitable for nonstationary signal, as it cannot provide any information 

of the spectrum changes with respect to time [22]. Realising the limitation of the Fourier 

transform for nonstationary signals, therefore the wavelet transform is more suitable. 

The wavelet transform is the functions in the time-scale domain and it is a significant 

tool for presenting local features of a signal. The wavelet transform gives a separation of 

components of a signal that overlap in both time and frequency and it gives a more 

accurate local description of the signal characteristics. Using the wavelet domain 

analysis, the time and frequency of an oscillating signal can be detected [23].  
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Wavelets are analytical functions )(tψ  which are used to decompose a signal  into 

scaled wavelet coefficients W . The continuous wavelet transform is a time-scale 

method that can be expressed as 
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where )(, tbaψ  are the scaled wavelets and  is the complex conjugate of *ψ ψ . The basis 

wavelet )(tψ  can be chosen from a number of functions which satisfy a set of 

admissibility conditions. The admissibility conditions is mathematically defined as  
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where ( )ωΨ  is the Fourier transform of the mother wavelet. This condition is used for 

the inversion process of the wavelet transform. 

 

A natural extension of continuous analysis is the discretisation of time b’ and scale a 

according to ,  where m and n are integers, maa 0= 00' bnab n= 00 ≠b  is the translation 

step.  This implies the construction of a time-scale grid, and thus a discrete wavelet 

transform can be defined by 
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When the wavelets )(, tnmψ  form a set of orthonormal functions there is no redundancy 

in the analysis, i.e. the procedure can be precisely inverted. The discrete wavelet 

transform based on such functions is called the Orthogonal Wavelet Transform (OWT).  

 

There are many wavelet families and one of the most famous is the Daubechies [24] that 

has the orthogonal basis functions. It is the discrete wavelet transform that allows the 

decomposition and reconstruction of the input signal in order to observe the signal 
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characteristics within the specific frequency band. Various applications of the 

orthogonal wavelet transform can be found in previous studies, such as in the 

application using nonstationary signals for the mechanical damage detection [25], the 

signal compression and de-noising process [26] and the application of MNMS for the 

comfort and vibration cases [8-10,27]. This transform was also performed in a fatigue 

study, i.e. the compression of nonstationary signals measured from a light railway train 

component [7] and the automobile data sets [11]. 

 

3. Development of the Wavelet Bump Extraction (WBE) Algorithm 

 

A flowchart describing the WBE processing is presented in Fig. 1 and three main stages 

can be observed: the wavelet decomposition process; the identification and extraction of 

fatigue damaging events; and the construction of a mission signal. 

 

INSERT FIG. 1 

 

The first stage of the WBE algorithm is to calculate the power spectral density (PSD) of 

the input signal to determine its frequency domain characteristics. A PSD is used to 

convert a signal from the time domain to the frequency domain using the fast Fourier 

transform (FFT) method. To convert a time domain signal into the frequency domain, 

the signal is separated into a number of discrete sinusoidal waves of varying amplitude, 

frequency and phase. The FFT forms a complex vector of values which each value 

represents the amplitude and phase of the particular sinusoidal wave at a particular 

frequency. In the relation of the PSD with the FFT, the PSD is a normalised density plot 
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describing the mean square amplitude of each sinusoidal wave with respect to its 

frequency. The PSD is mathematically defined as the Fourier transform of its auto-

correlation function.  

 

An example of the PSD plot is shown in Fig. 2 which illustrate the distribution of the 

signal vibrational energy across the frequency domain. In this figure, the time history 

was transform into the frequency domain using the FFT in order to obtain its PSD 

distribution. In this PSD plot, each frequency step value is characterised by amplitude, 

Ak, as following equation  

 )(2 kk fSfA ⋅∆=                                     (8) 

where  is underlying PSD of the Gaussian signal and  is the harmonic 

frequency. In the WBE algorithm, the PSD is applied in the wavelet grouping process of 

the input signal. 

)( kfS kf

 

INSERT FIG. 2 

 

Using the orthogonal wavelet transform, the 12th order Daubechies wavelet was chosen 

as the main wavelet function to decompose the input signal into the respective wavelet 

levels. The 12th order representation was adopted because of its successful application in 

several previous studies involving automotive road data [8-11,27]. Since Daubechies’ 

wavelets of order N provides 1
2
−

N  vanishing moments, the 12th order Daubechies 

wavelet is adequate for the WBE application since greater than two vanishing moments 
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are rarely required when compressing speech or video signals which these signals are 

more complex compared to a road load time history [28].  

 

Wavelet decomposition process is equivalent to a multiple band-pass filter bank, 

dividing the vibrational energy of the original signal amongst the wavelet levels. Each 

wavelet level describes the time behaviour of the signal within a specific frequency 

band. The wavelet levels corresponds to a certain frequency range and retains all time 

domain features related to the transient events in the original road data. The wavelet 

levels are then grouped in such a way that each group isolates a single frequency band 

of the whole PSD. Following this logic, some groups will combine several wavelet 

levels while others may consist of only one individual wavelet level. Each wavelet 

group is defined by the user to cover frequency regions of specific interest such as high 

energy peaks caused by a subsystem resonance. This subdividing of the original signal 

(Fig. 3) permits analysis to be performed for each frequency region independently. 

 

INSERT FIG. 3 

 

In the second stage of WBE, fatigue damaging events, or bumps, are identified in the 

each wavelet group. A bump is defined as an oscillatory transient which has a 

monotonic decay envelope either side of a peak value. Bump identification is achieved 

in each wavelet group time history by means of an automatic trigger level that is 

specific to the wavelet group.  
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At the program launch (as illustrated in Fig. 1 and 2), the user is asked to specify initial 

trigger level values for each wavelet group. Trigger level determination is performed by 

specifying the percentage value of the peak for the wavelet group, which is denoted as 

C1. The user is also asked to specify the trigger step, which is denoted as C2, which is a 

percentage value which can be applied to the peak of each wavelet group. In addition, 

the user is asked to specify an acceptable percentage difference between the root-mean-

square (r.m.s.) and the kurtosis of the mission signal and the original signal (denoted as 

RD and KD, respectively). Both statistical parameters are used in order to retain a 

certain amount of the signal vibrational energy and amplitude range characteristics.  

 

The trigger level for each wavelet group is automatically determined to achieve the 

requested statistics (simultaneous analysis for both RD and KD) for each wavelet group. 

Referring to the flowchart of Figure 3.2, other parameters used in the WBE algorithm 

are D1 and D2. Both parameters are defined as the calculated difference of r.m.s. (for 

D1) and kurtosis (for D2) between a current iteration of the mission signal and the 

original signal.  

 

In the stage of identifying the trigger level value for each wavelet group, the 

simultaneous comparison between the values of D1 with RD and the values of D2 with 

KD are required. If the values of D1 and D2 are not found in the ranges of ±RD (or -RD 

< D1 < +RD) and ±KD (or -KD < D2 < +KD), respectively, the algorithm will then 

compute the trigger level step (C2) in order to calculate for a new trigger level value. 

This process is iterated until D1 and D2 meet the user-defined value of both RD and 

KD, thus the final trigger levels can then be finalised.  
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Since the WBE algorithm tends to retain signal energy and signal amplitude range in the 

experimental road load data, the use of ±10% difference in r.m.s. and kurtosis of the 

mission and the original signal is suitable. The percentage value of ±10% is chosen for 

the bump identification process in order to produce a shortened mission signal which 

has close global statistical parameter (PSD, r.m.s. and kurtosis) values to those of the 

original signal. Related studies of the difference in the global signal statistical values 

between the mission and the original signals using the experimental road load data sets 

can be found in related literature [10,11], with the application of the Mildly 

Nonstationary Mission Synthesis (MNMS) algorithm.  

 

Fig. 4a presents a set of possible trigger levels for an individual wavelet group to 

determine a bump. Bump identification is performed by means of a search which 

identifies the points at which the signal envelope inverts from a decay behaviour. The 

two inversion points, one on either side of the peak value, define the temporal extent of 

the bump event and are shown in Fig. 4b. 

 

INSERT FIG. 4 

 

After all the bumps are identified in the respective wavelet groups, a method of 

searching the bump start and finish points from the original time history has been 

introduced (Fig. 4c). This is the final stage of the WBE algorithm, which is performed 

to extract bump segments from the original signal. If a bump event is found in any of 

the wavelet groups a block of data covering the time frame of the bump is taken from 

the original data set, retaining the amplitude and phase relationships of the original 
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signal. Since the bump segments are extracted based on the statistically determined 

trigger level values, these segments retain higher amplitude range and should create the 

majority of fatigue damage. Finally, the bump segments are sorted in the order of the 

original bump segment sequences to produce a mission signal.  

 

4. Application of the WBE Algorithm  

 

Two test signals have been applied with WBE for the purpose of algorithm validation. 

A synthetic test signal, named as T1 (see Fig. 5a), was defined with 16,000 data points 

and sampled at 400 Hz. The logic of creating T1 was to observe the ability of the 

algorithm to deal with any signal containing large transients in a small amplitude 

background, so that the bump events can be properly identified. This signal consists of a 

combination of sinusoidal and random signals of various amplitudes and frequencies, 

and it was intentionally defined to be a mixture of both high amplitude events and low 

amplitude harmonic background. The second, named as T2 (see Fig. 6a), is a fatigue 

strain signal that was measured on the lower suspension arm of a vehicle travelling at 34 

km/h over a pavé test track. It was sampled at 500 Hz for a total of 23,000 data points 

that produced a total record length of 46 seconds. This signal exhibits a slight change in 

mean of the whole signal with a little low frequency content. This data set was chosen 

because it contained many small amplitude and high frequency bumps in the signal 

background.  

 

INSERT FIG. 5 

INSERT FIG. 6 
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Using the WBE algorithm, the signals were decomposed into the wavelet levels and the 

levels were then grouped into the particular frequency bands. T1 was decomposed into 

11 wavelet levels and four wavelet groups were formed. T2 was decomposed into 12 

wavelet levels that were assembled into four wavelet groups. The wavelet group time 

histories are shown in Fig. 5b for T1 and Fig. 6b for T2. For both data sets, Wavelet 

Group 1 and Wavelet Group 4 exhibit the low and high frequency data distribution, 

respectively.   

 

In order to identify the bumps, trigger level values were set based on the r.m.s. and 

kurtosis difference between the original and mission signals. For this case, the ±10% 

difference in r.m.s. and kurtosis of the mission and the original signal was used for 

analysing experimental road load data sets. This is important in order to retain the signal 

energy and amplitude ranges [10,11]. Therefore, the shortened mission signal produced 

by the WBE algorithm has approximately the same global statistical values (PSD, r.m.s. 

and kurtosis) to those of the original signal. 

 

For T1, the bump events cannot be properly extracted at the ±10% statistical difference. 

For this signal, the bumps were extracted using a ±75% difference in r.m.s. and kurtosis 

between the original and the mission signals. A large difference in r.m.s. and kurtosis 

values was required in the case of signal T1 as approximately 75% of the original signal 

contained low amplitude cycles, which significantly contributed to the r.m.s. and 

kurtosis calculations. Finally, T1 is also used to show the appropriate high amplitude 

events being extracted from the original time history, see Fig. 5b. For T2, a ±10% 

statistical difference was used in order to produce a mission signal which has equivalent 
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signal statistics to the original signal. High amplitude events are slightly difficult to 

quantify due to the signal being measured on the pavé surface, which includes many 

high energy impacts. The right side of Fig. 5b for T1 and Fig. 6b for T2 show high 

amplitude events were identified in each wavelet group. 

 

The identified bumps in the wavelet groups of T1 (Fig. 5b) and T2 (Fig. 6b) show 

different bump patterns in terms of their frequency content were observed in lower 

frequency band (Wavelet Group 1) and higher frequency band (Wavelet Group 4). The 

bump in Wavelet Group 1 exhibits a decay enveloping of the transient shape as it has a 

longer time length. For Wavelet Group 4, it is difficult to observe the bump decay 

shape. It is due to the bump the time extent became shorter in the higher frequency 

wavelet group. From this observation, it is suggested that a bump in lower frequency 

band influences to the length of the bump segment and the mission signal.  

 

Using a method of searching the bump start and finish points as introduced in Fig. 4c, 

the extracted bump segments are shown in Fig. 5c for T1 and Fig. 6c for T2. In these 

figures, all bump segments were located at their original position in the original signals. 

Fig. 5c shows that the correct high amplitudes were extracted from T1. For T2, nine 

bump segments were extracted from the original time history. In order to produce the 

WBE mission signal, these extracted bump segments were assembled together in order 

to produce a shortened time history, or called a mission signal, as illustrated in Fig. 5d 

for T1 and Fig. 6d for T2. In terms of time compression, the T1 mission signal is 12.5 

seconds and 31.3% of the original signal. For T2, the length of the mission signal is 18.8 

seconds and 40.9% of the original signal.  
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5. Experimental Stages 

 

5.1 Determination of the Material Properties  

 

Experiments were performed to determine the mechanical properties of the chosen 

material, hence to validate the WBE algorithm. Material properties which can be 

determined from experiments were monotonic mechanical properties from a tensile test 

and cyclic mechanical properties from uniaxial CA loading fatigue tests. The 

experimental CA data were used to define the parameter of strain-life models.  

 

The material chosen for the test samples was BS 080A42 steel and often used in the 

suspension components of passenger cars. Specimens (see Fig. 7 for the geometry) were 

manufactured as an hourglass profile round bar for tension-compression loading which 

complied with ASTM E606-92 [29]. They were hand polished using several grades of 

silicone carbide abrasive paper and finished with 6-µm diamond compound. An Instron 

8501 servo-hydraulic test machine was used in displacement control mode for all tests.  

 

INSERT FIG. 7 

 

A tensile test was performed to obtain the monotonic properties. Using this test the 

values of modulus of elasticity, the ultimate tensile strength and the 0.2% static yield 

stress were found to be at 210 GPa, 624 MPa and 342 MPa, respectively. The detail 

monotonic properties of BS 080A42 steel are listed in Table 1. Stress and strain data 

from nine different strain amplitudes of CA loading fatigue tests were used to plot the 
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strain-life curve, as illustrated in Fig. 8a. The parameters of the Coffin-Manson 

relationship were also tabulated in Table 1. Data in this table were then used to define 

the strain-life models of Eq. (1) – Eq. (3). 

 

INSERT FIG. 8 

 

INSERT TABLE 1 

 

In order to observe the cycle sequence effects in the WBE processing, uniaxial fatigue 

tests of VA loadings were performed using the experimental signal of T2. Nine bump 

segment loadings of T2 (see Fig. 6c) were used for the uniaxial VA loading fatigue 

tests. Details of time position of these segments were listed in Table 2, showing B6 is 

the longest bump segment at 4.6 seconds and B2 is the shortest bump segment at 0.2 

seconds. 

 

INSERT TABLE 2 

 

5.2 Determination of the Parameters for Fatigue Damage Model  

 

The parameter values of Table 1 were used to define the parameter in Coffin-Manson, 

SWT and Morrow relationships, see Eq. (1) – Eq. (3). For the ESD model, Eq. (4), the 

parameter values of the material constants A and B were determined from the CA 

fatigue test data. A relationship between damage stress range (E∆ε*) versus cycles to 

failure is plot as in Fig. 8b. The material constants of A = 119,000 MPa and B = –0.5 
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were determined using a linear regression curve fitting of the CA loading fatigue test 

data, resulting the final expression of Eq. (4) is  

210000 (∆ε*)  = 119000 ( Nf )
-0.5         (9) 

 

The values of Si (from iEε ) in Eq. (5), m in Eq. (6), and α, β in Eq. (7) were used to 

calculate the value of ∆ε*. If there is no experimental data to help determine Si, it can be 

inferred from the graph of fatigue intrinsic limit versus modulus of elasticity [30]. Using 

this graph, it gives the approximate Si value at a particular value of modulus of 

elasticity, E. The values of α and β  were determined using the experimental data of 

crack opening stress versus maximum stress [31]. The m value was determined from a 

curve fitting using the experimental data of crack opening stress against number of 

cycles [32]. For this study, no experimental data was available to determine the m, α 

and β values. Since the main objective of this research was to develop the fatigue data 

editing algorithm associated with cycle sequence effects, the measurement for 

determining these three parameters under VA loadings was not undertaken. Therefore, 

the m, α and β values were assumed from related studies on other carbon steels.  

 

Previous works using SAE 1045 steel [19,31,32] showed that different values of α and 

β had been used for the ESD strain-life model. These values are then being used in the 

analysis of this paper in order to observe the sensitivity of the ESD model using 

different values of α and β when calculating the fatigue life.  
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Table 3 presents the fatigue lives obtained using different values of α and β (for SAE 

1045 steel) for the original and the mission signals of T2. It can be seen that there were 

no changes in fatigue life (for T2 and its mission signal) with different values of α and 

β. The finding of this analysis suggested that the α and β parameters were not a major 

factor in the fatigue life prediction when using the ESD model. From the latest research 

of this model [32] using SAE 1045 steel which is a carbon steel, the values of m, α and 

β were 0.002, 0.55 and 0.23, respectively. Since BS 080A42 is also a carbon steel, 

therefore, the m, α and β  values of SAE 1045 steel were used in this study.  

 

Fig. 8c shows the comparison of the strain-life curves using the ESD model and the 

Coffin-Manson relationship. Both the ESD and Coffin-Manson strain-life curves have a 

close correspondence to the experimental data. From this comparison, it is concluded 

that the ESD strain-life model is also suitable for the fatigue life calculations. 

 

In order to calculate the fatigue life of a VA loading using the ESD model, which the 

results were presented in Table 3, this loading was reconstructed based on the original 

load sequences in the time history. The time history reconstruction process is needed in 

order to associate the use of strain-life fatigue prediction method with cycle sequence 

effects. In the calculation, the time history was rainflow counted [34] for the extraction 

of the fatigue cycles. These cycles were then sorted based on the original peak-valley 

sequences in order to produce similar sequences as the original time history. For 

example, a reconstructed cycle history is shown in Fig. 9 for the first bump segment 

(B1).  
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INSERT FIG. 9 

 

6. Results and Discussions 

 

6.1 Which Strain-life Model for the WBE Algorithm?  

 

The results of fatigue life determined using VA loadings were tabulated in Table 4. 

Parameters in Table 1 were used to predict the fatigue lives based on the Coffin-

Manson, Morrow and SWT, and the prediction results were also tabulated in Table 4. In 

this table, the ESD fatigue lives of the eleven VA loadings using the parameters 

determined in the Section 5.2. 

 

INSERT TABLE 4 

 

The experimental uniaxial fatigue lives were compared with the predicted values (Table 

5). Fig. 10 shows the correlation of fatigue lives between experiment and all four strain-

life models. Each data point represents a loading condition in Table 4. The correlated 

fatigue lives between the ESD model and experiments were distributed around the 1:1 

line and within the range of ± a factor of 2. However, the correlation points produced 

from three other strain-life models (Coffin-Manson, Morrow and SWT) were located 

outside the range of ± a factor of 2. It shows that there were close correspondences 

between the predicted fatigue lives using the ESD model and the experimental fatigue 

lives.  
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INSERT FIG. 10 

 

From the results in Table 4, the average difference of fatigue life between the Coffin-

Manson, Morrow and SWT strain-life models to the respective experimental results is 

358%, 333% and 580%, respectively. Using the ESD model, the smallest difference was 

found to be of 17%. The results show a better accuracy of the ESD model to predict the 

fatigue lives of VA loadings compared to Coffin-Manson, Morrow and SWT models. 

The analysis of the experimental and analytical results using the T2 bump segments 

show a better accuracy for the ESD model to predict the fatigue lives of VA fatigue 

loadings compared to other strain-life models.  

 

Based on the literature review, the ESD model was identified as a solution for fatigue 

life prediction using VA loadings. However, it is also important to validate the WBE 

algorithm with the fatigue life calculation using the established strain-life model for CA 

loading cases, i.e. the Coffin-Manson, Morrow and SWT strain-life models. The 

analysis using these three CA-based strain-life models, however, produced an 

overestimation in the fatigue life prediction when compared to the experimental results. 

This fatigue life overestimation occurred because of the use of these three strain-life 

models with the Palmgren-Miner linear damage rule which do not account for load 

interaction effects in the VA time histories. Since the ESD model has been developed 

[19] to solve the problem in fatigue life prediction under VA loadings, a close 

correlation (refer to Fig. 10) and the smallest difference (refer to Table 4) between this 

prediction and experimental results were expected to be produced from the research of 

this paper.  
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Considering the smallest fatigue life difference between predictions and experiment was 

found in the ESD model (17%), finally, it is concluded that the ESD model is the most 

suitable to predict the fatigue damage of VA loadings. The combination of ESD and 

WBE provide a novel development of the wavelet-based fatigue data editing technique 

with the extraction of bump segments or fatigue damaging events, and the preservation 

of the original load cycle sequences. 

 

6.2 Comparison between WBE and the Time Domain Editing Technique  

 

Since the WBE algorithm is a new fatigue data editing technique, it is important to 

compare this technique with an established procedure. According to research by El-

Ratal et al. [2], the time domain fatigue data editing was recommended for accelerated 

fatigue tests, as the phase and amplitude of the original signal was retained in the 

shortened signal. The time correlated fatigue damage (TCFD) method, which was 

performed using nSoft® software package, was acknowledged as the technique applied 

[2] for editing VA fatigue loadings. Hence, this was used to compare with the WBE 

algorithm. TCFD is used to remove non-damaging sections of the time history on the 

basis of time correlated fatigue damage windows of the input signal. Windows with low 

amplitude cycles which contained minimal fatigue damage were removed. Using this 

approach, both the percentages of damage retention and the required acceleration 

factors, or one of them, could be set as editing targets [35]. 

 

In order to have the TCFD compressed signals at the similar time-length to the T2 

mission signal, the original signal were reduced at 40.9%. This allowed the value of 
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2.45 to be as an acceleration factor for TCFD. In addition, the original fatigue damage 

was preserved at 100% for this signal. Fig. 11a shows the signals at similar time length 

which were obtained using the WBE algorithm and the TCFD method.  

 

INSERT FIG. 11 

 

The signals produced from WBE and TCFD were compared according to the r.m.s. 

value, the kurtosis value and the PSD plot. The r.m.s. and kurtosis comparison were 

chosen for their ability to characterise a random signal, and the frequency distributions 

in PSD were selected in order to observe the vibrational energy distribution of the time 

series. The comparison results are tabulated in Table 5, which WBE produced the signal 

with the r.m.s. and kurtosis closest to the original signal when compared to TCFD. The 

differences were found to be at 0.6% and 5.9% for the r.m.s. and kurtosis values, 

respectively. At this time compression and small differences in global signal statistical 

parameters between the edited and original signal gave an indication of the WBE 

effectiveness in the fatigue data editing application.  

 

INSERT TABLE 5 

 

In terms of PSD distribution in Fig. 11b, it is difficult to judge the difference between 

these two methods. At higher frequencies, a similar pattern of PSD can be found in both 

WBE and TCFD edited signals. The dissimilarity of these two edited signals was 

presented at lower frequency distribution. In Fig. 11c, a significant difference of low 

frequency content between the WBE mission signal and the TCFD compressed signal is 
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observed, especially in the frequency range of 0-1 Hz. The low frequency content of the 

T2 original signal was preserved in the WBE mission signal, but not for the TCFD 

compressed signal.  

 

Considering better results were observed in the analysis of the WBE mission signal of 

T2, it is suggesting that the WBE algorithm is a better approach compared to TCFD. In 

order to strengthen this remark, the authors proposed further experimental studies are 

needed for improving the suitability of WBE for the fatigue data editing application. In 

addition, a comparison study between WBE and other fatigue data editing methods 

would also be useful. 

 

6.3 WBE for an Accelerated Fatigue Tests 

 

Using WBE as a fatigue data editing technique, the mission signal of T1 was 31.3% 

(12.5 seconds) of the original signal. At this record length, the mission signal retained 

100% of the original fatigue damage, see Table 6. The fatigue damage or fatigue life 

values were calculated using the ESD model, considering the lowest average difference 

of the ESD results to the experiment was obtained, as in Section 6.1. For T2, the 

mission signal length was 40.9% (18.8 seconds) of the original signal. At this length, 

100% of the original fatigue damage was retained in the mission signal, see Table 6. 

With these results, it indicates that the WBE algorithm is suitable for a fatigue data 

editing technique. 

 

INSERT TABLE 6 



 26

Fig. 12 shows the fatigue life correlation between the WBE mission signals and the 

respective original signals using all strain-life fatigue damage models. In the figure each 

data point represents a loading condition from Table 6. The correlated fatigue lives 

between the ESD model and experiments were distributed around the 1:1 line and 

within the range of ± a factor of 2. These findings suggested that the closeness of the 

fatigue life of the mission signal to the original signal. It shows the acceptability of the 

mission signals to be used for accelerated fatigue tests. In this study, finally, the ability 

of WBE to shorten VA loadings by more than half their original length, while 

simultaneously retaining 100% of the original fatigue damage in the respective mission 

signal would be expected to prove useful for accelerated fatigue tests. 

 

INSERT FIG. 12 

 

7. Conclusions 

 

This paper has discussed on the development of the new wavelet-based fatigue data 

editing algorithm, known as Wavelet Bump Extraction (WBE). This algorithm was 

designed for the purpose to extract fatigue damaging events or bump segments from a 

VA loading so as to produce a shortened or mission loading which preserves the 

original load sequences. Several concluded remarks can be pointed out based on the 

findings of this research: 

1. The WBE algorithm is identified as the first wavelet-based for shortening a VA 

loading with an approach of removing low amplitude cycles which produced little 

or no damage. 
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2. Using the WBE algorithm, the mission signal retains the majority of the original 

amplitudes, load cycle sequences within the fatigue damaging events, fatigue 

damage and the vibrational energy of a signal.  

3. Using the experimental T2 signal as a case study of this research, the fatigue 

damaging events were extracted at the ±10% r.m.s. and kurtosis difference between 

the mission and original signals. The value of ±10% was chosen for the bump 

identification process in order to produce a shortened mission signal which has 

close global statistical parameter (PSD, r.m.s. and kurtosis) values to those of the 

original signal. 

4. Based on the relationship between the prediction and experimental results, a closer 

correspondence was observed when using the ESD model. Therefore, it is 

suggested that this model was found to be a suitable approach to predict fatigue 

lives using VA loadings. 

5. A good fatigue life correlation between the WBE mission and original signals was 

observed. It shows that the suitability of the WBE mission signals for accelerated 

fatigue tests.  
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Fig. 1.  The WBE algorithm flowchart: (a) Stage 1 - wavelet decomposition and 

grouping stages. 
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Fig. 1.  The WBE algorithm flowchart: (b) Stage 2 – identification and extraction 

of fatigue damaging events, and production of the mission signal. 
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Fig. 2.  An example of a variable amplitude loading and its power spectral 

density plot. 
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Fig. 3.  Schematic diagram of the wavelet decomposition and grouping 

procedure for a variable amplitude loading, where WL and WG denoted as wavelet 

level and wavelet group, respectively. 
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Fig. 4.  Bump identification and the production of a mission signal: (a) Bump 

identification using trigger levels, (b) Decay enveloping of a bump event, (c) Seeking 

the bump start and finish points. 
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Fig. 5.  Time history plots for T1: (a) The original time history, (b) Time 

histories in normalised scale of the wavelet groups and the location of bumps in the 

respective wavelet group, (c) The extracted bump segments at their original time 

positions, (d) The mission time history. 
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Fig. 6.  Time history plots for T2: (a) The original time history, (b) Time 

histories in normalised scale of the wavelet groups and the location of bumps in the 

respective wavelet group, (c) The extracted bump segments at their original time 

positions where B1 – B9 denoted as the number of bump segment, (d) The mission time 

history. 
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(a) 

 

(b) 

Fig. 7.  Experimental set-up: (a) The geometry and dimensions of the specimen - 

all in the unit of mm unless specified, (b) A specimen at the servo-hydraulic machine 

with a 25-mm extensometer. 
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Fig. 8.  (a) The curves obtained from experiments: CA loading strain-life curve. 

(b) The graph of E∆ε* versus fatigue life using the CA loading fatigue data. 

(c)Comparison between the ESD, Coffin-Manson strain-life curves and the 

experimental strain-life points. 
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Fig. 9  Order of cycle history for the first bump segment (B1) of T2. 
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Fig. 10. Fatigue lives correlation of the nine bump segments between prediction 

methods and experimental results. 
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Fig. 11. (a) The WBE mission signal and TCFD compressed signal, (b) PSD 

comparison in the frequency range of 0-60 Hz, (b) PSD comparison in the frequency 

range of 0-5 Hz. 
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Fig. 12. Correlation between the mission and the original signals of T1 and T2 

using four strain-life models. 
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Table 1 

Mechanical properties of BS 080A42 steel determined from the tensile test and CA 

loading fatigue tests. 

Monotonic Properties Cyclic Propertiesof the Coffin-Manson equation 

Ultimate tensile strength, Su [MPa] 624 Fatigue strength coefficient, σ’f  [MPa] 1505 

Modulus of elasticity, E [GPa] 210 Fatigue strength exponent, b -0.144 

Static yield stress 0.2%, Sy [MPa] 342 Fatigue ductility coefficient, ε’f 0.176 

Area reduction, (%) 51.9 Fatigue ductility exponent, c -0.400 

Elongation (%) 28.4   
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Table 2 

Identification of T2 bump segments (refer to Fig. 6c for the time histories). 

Position in the original signal  

Signal Name 

 

Signal length [s] Start time [s] End time [s] 

B1 1.7 0.68 2.39 

B2 0.2 8.07 8.25 

B3 3.9 16.32 20.21 

B4 0.5 23.07 23.53 

B5 2.4 25.14 27.50 

B6 4.6 27.50 32.06 

B7 2.3 32.07 34.34 

B8 2.5 37.14 39.65 

B9 0.3 45.47 45.77 
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Table 3 

Fatigue lives of the original and the mission signals of T2 at several values of the α and 

β values using a carbon steel or SAE 1045 steel. 

Fatigue life [no. of blocks to failure] Reference α β 

T2 T2-mission 

DuQuesnay et al. 1993 [19] 0.45 0.8 178 204 

Topper and Lam 1997 [31] 0.75 0.23 178 204 

Khalil and Topper 2003 [32] 0.55 0.23 178 204 
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Table 4 

Fatigue lives of the T2 bump segments obtained from experiments and predictions. 

Fatigue Life [Number of blocks to failure] Segment 

Experiment Coffin-Manson Morrow SWT ESD 

B1 2831 5964 10462 10462 1968 

B2 17880 97000 114000 114000 19523 

B3 3996 14008 17720 17720 2400 

B4 20084 96400 163000 163000 25586 

B5 2792 13708 24566 24566 2714 

B6 843 3428 6070 6070 927 

B7 1366 6216 10409 10409 1536 

B8 1942 9370 14783 14783 2206 

B9 7500 35667 55200 55200 8181 

T2 191 642 1194 665 178 

T2-mission 319 1057 2013 1092 204 

 

 



 49

Table 5 

Comparison of the signal statistics and fatigue lives between the original, WBE mission 

and TCFD compressed signals. 

Signal Statistics  

Signal 

Signal length 

[seconds] r.m.s. kurtosis 

Original Signal 46.0 16.7 3.4 

WBE mission signal 18.8 16.6 3.6 

TCFD compressed signal 18.8 17.4 4.1 
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Table5 

The compression characteristics between the original and mission signals. 

Signal 

Identification 

Signal Statistics Fatigue Life Prediction 

(ESD model)  

 

 

Signal Name Signal 

length 

[s] 

Time 

ratio 

[%] 

 

r.m.s. 

 

Kurtosis 

WBE 

required 

difference  

Fatigue life 

[blocks to 

failure] 

Fatigue 

Life ratio 

[%] 

Original signal 40.0 1.5 7.4 69930  

T1 Mission signal 12.5 

 

31.3 2.6 2.5 

 

±75.0% 69930 

 

100 

Original signal 46.0 16.7 3.4 1035240  

T2 Mission signal 18.8 

 

40.9 16.6 3.6 

 

±10.0% 1035240 

 

100 

Note:  Time ratio (%) = (tmission / toriginal) x 100%;  Damage Ratio (%) = (Dmission  / Doriginal) x 100% 
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	Fig. 4a presents a set of possible trigger levels for an individual wavelet group to determine a bump. Bump identification is performed by means of a search which identifies the points at which the signal envelope inverts from a decay behaviour. The two



	References





