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ABSTRACT 

Collectins such as surfactant proteins SP-A, SP-D, and mannan-binding lectin (MBL), as well 

as complement protein C1q are evolutionarily conserved innate immune molecules. They are 

known to opsonize a range of microbial pathogens (bacteria, fungi, virus, and parasites) and 

trigger effector clearance mechanisms involving phagocytosis and/or complement activation. 

Collectins and C1q have also attracted attention in studies involving pregnancy as they are 

expressed in the female reproductive tissues during pregnancy; a unique state of immune 

suppression with increased susceptibility to infectious diseases. Recent studies are beginning 

to unravel their functional significance in implantation, placentation, pregnancy maintenance 

and parturition in normal and adverse pregnancies. Collectins and C1q, expressed in 

gestational tissues during pregnancy, might alter the status of mother’s immune response to 

the allogenic fetus and the microenvironment, thereby serving as important regulators of 

fetus-mother interaction.  Here, we discuss the functional roles that have been assigned to SP-

A, SP-D, MBL and C1q in pregnancy and parturition. 
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Introduction 

The innate immune system is activated by receptors that recognize pathogen-associated 

molecular patterns (PAMPs) and bring about inflammatory responses, thus acting as 

immunomodulators (Janeway and Medzhitov, 2002). These receptors have the ability to 

distinguish self from non-self molecules by recognizing the specific orientation of hydroxyl 

groups of hexoses (mannose, glucose, fructose and N-acetyl-D-glucosamine) and charge 

patterns, which are present on the surface of microbes (Medzhitov, 2007). This binding 

promotes clearance of pathogens via neutralisation, agglutination, and/or phagocytosis 

(Kawai and Akira, 2010).  

Collectins belong to a family of evolutionarily conserved mammalian pattern 

recognition molecules that are characterized by calcium-dependent (C-type lectin) 

carbohydrate binding domain (Epstein et al., 1996). Its members include surfactant protein A 

and D (SP-A and SP-D), mannose binding lectin (MBL), scavenger receptor collectin 

placenta-1 (CL-P1), collectin liver-1 (CL-L1), collectin kidney-1 (CL-K1), conglutinin, 

collectin of 43 kDa (CL-43), and collectin of 46 kDa (CL-46) (Kishore et al., 2006).  

SP-A, SP-D and MBL are soluble oligomeric proteins. The structural organization of 

SP-A, SP-D and MBL includes four distinct regions: a short cysteine containing N-terminal 

region with disulphide bonds, a proline rich triple-helical collagen region with Gly-X-Y 

repeats, a hydrophobic α-helical coiled coil neck region, and a C-terminal lectin 

/carbohydrate recognition domain (CRD) region (Kishore et al., 2006). The collagen domain 

is known to have receptors on various immune cells including calreticulin-CD91 receptor 

complex (Gardai et al, 2003). Humans contain two highly similar SP-A genes, SPA-1 

(SFTPA-1) with 5 exons and SP-A2 (SFTPA-2) with 6 exons (Katyal et al., 1992; 

McCormick et al., 1994). SP-A is composed of 650 kDa, hexameric structure of six trimers. 

Its collagen domain with 23 Gly-X-Y repeats is interrupted by a kink giving rise to a 

structure resembling a bouquet of tulips (Voss et al., 1988). SP-D appears as a cruciform 

structure due to its tetrameric structure (520 kDa) with 4 trimers (Figure 1) (Crouch et al., 

1994).  

MBL is composed of six 96 kDa trimeric subunits and with bouquet-like structure 

similar to SP-A due to kink interruption within 19 Gly-X-Y repeats. Unlike other collectins, 

MBL can activate the lectin pathway of the complement cascade via MBL associated serine 

proteases (MASPs) (Ji et al., 1997; Thiel  et al., 1997; Thiel, 2007; Degn et al., 2012). MBL2 

gene encoding functional human MBL protein has 3 single nucleotide polymorphisms (SNPs) 
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at codon 52 (variant D-alelle, Arg52 Cys), codon 54 (Variant B-allele, Gly54 Asp) and codon 

57 (Variant C allele, Gly57 Glu). SNPs within the MBL2 at codon 54 consist of two variants: 

allele A (wild type) and allele B (Madsen et al, 1994; Madsen et al, 1995). SP-A, SP-D and 

MBL have been extensively shown to involved in innate immune anti-microbial defence via a 

range of mechanisms including modulation of adaptive immunity, and thus, feature centrally 

in the regulation of inflammation.  

Complement component C1q (460 kDa) is the first subcomponent of the complement 

classical pathway with three polypeptide chains (A, B and C). The A, B and C chains 

comprise of N terminal domain with cysteine residues, a collagen-like region (CLR), and a 

C-terminal globular domain (gC1q) (Sellar et al., 1992). C1q is involved in innate host 

defence and several modulatory process including pathogen clearance, apoptosis, 

angiogenesis, chemotaxis, cell differentiation, adhesion, migration, coagulation via platelets, 

autoimmunity, isotype switching, tolerance (Kishore et al., 2004).  

The human genes for SP-A, SP-D and MBL are located on the long arm of 

chromosome 10 between 10q21-24 (Crouch et al., 1993). All three A, B and C chains of 

human C1q are located on chromosome 1p34.1-1p36.3 (Sellar et al., 1992) (Table 1). The 

ciliated alveolar epithelial type II pneumocytes and non-ciliated bronchial Clara cells in lungs 

are the major source of SP-A and SP-D (Ballard et al., 1986; Persson et al., 1988). Unlike 

most of the collectins largely synthesized by lungs, MBL and C1q are synthesized in the liver 

(Kawasaki et al., 1978). However, extra-pulmonary and extra-hepatic biosynthesis of 

collagens have been reported (Table 2). Using RT-PCR, expression of SP-A, SP-D, MBL and 

C1q transcripts have also been shown in salivary glands, lacrymal glands (Madsen et al., 

2003), pancreas, bile ducts, thymus, prostate (Madsen et al., 2000), colon (Eliakim et al., 

1997), small and large intestine (Uemura et al., 2002), brain, spleen (Wagner et al., 2003), 

Kidney (Ezekowitz et al., 1988), epithelial cells, mesenchymal cells (Morris et al., 1978), 

dendritic cells (Vegh et al., 2003), microglial cells (Farber et al., 2009) (Table 2).  

The roles of collectins and C1q are not solely restricted to recognition and elimination 

of pathogens. Evidence clearly demonstrates that these soluble defence collagens are at the 

crossroads of both innate and adaptive immunity as they regulate inflammation, host-

pathogen interaction, immune tolerance and offer immune protection at multiple levels. 

Furthermore, their deficiency and dysregulated expression has been associated with 

infectious diseases. An intriguing feature of collectins (SP-A, SP-D, and MBL) is that they 

exhibit dual immunological function (pro-inflammatory and anti-inflammatory) based on 

their interaction with candidate receptors, SIRP-α and calreticulin/CD91 (Gardai et al., 
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2003). Recent studies have highlighted the importance of these soluble proteins in novel 

functions related to maintenance of pregnancy (implantation, vascular remodeling, and 

placental formation) and parturition. Here, we discuss collectins and C1q with respect to their 

cellular sources, their expression in the female reproductive system, and their roles in 

pregnancy and parturition.  

 

Expression of collectins and C1q in the female reproductive system 

Peripheral blood and serum  

During pregnancy, no significant changes can be observed in the levels of SP-A in maternal 

serum before (7-74 ng/ml) or after labor (9.6-73.6 ng/ml) (Cho et al., 1999). The 

concentration of serum MBL in various individuals varies depending on the SNPs in the 

promoter region and the coding region (exon-1) of the MBL-2 gene (Bodamer et al., 2006). 

The structural mutation in exon-1 (encoding a single polypeptide region, a cysteine rich 

region and a part of collagen region) of the MBL-2 gene has been proposed to impair higher 

oligomer formation preventing the functional ability of MBL to activate the complement 

lectin pathway via MASPs (Matsushita et al., 1995; Terai et al., 2003; Roos et al., 2003). It 

may be concluded that polymorphisms in the promoter region significantly decrease the 

serum MBL level, and hence, very little amount of higher oligomeric forms of MBL can be 

observed in serum when compared to trimeric and tetrameric forms. During pregnancy, MBL 

genotypes and polymorphisms correlate with the serum concentration of MBL. Hence, serum 

levels of MBL increase in the first trimester and then decrease in the 6
th

 week post-partum 

(van de Geijn et al., 2007a). In another study, levels of MBL in the peripheral blood remain 

relatively constant throughout pregnancy in all three trimesters and at delivery, but decreases 

sharply after delivery (Thevenon et al., 2009).  

C1q levels in normal pregnancies were significantly lower than in non-pregnant 

women, and levels in spontaneous abortions were significantly higher than in normal 

pregnancies. Furthermore, it has been shown that artificial and spontaneous abortions can be 

prevented by treatment, which decreases C1q levels within 7 days (Saitoh et al., 1983). 

 

Non-pregnant female reproductive tract  

Maternal endometrium undergoes cyclic changes regulated by steroid hormones during the 

menstrual cycle that directs the differentiation of endometrial epithelial and stromal cells 

crucial for uterine receptivity and implantation for pregnancy (Kannan et al., 2010). The first 

direct demonstration of SP-D mRNA and protein expression in the uterus suggested the 
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possible roles and significance of collectins in innate host defense against pathogens (Madsen 

et al., 2000).  Protein and mRNA expression of SP-A and SP-D have been observed in the 

female vagina, uterus, ovary, cervix, and oviduct (Table 2, Figure 2) (Akiyama et al., 2002; 

Oberley et al., 2004; Leth-Larsen et al., 2004). In humans, a strong expression of SP-D in the 

epithelium of the endometrial glands is observed that increases towards the secretory phase of 

regular menstrual cycle compared to the proliferative phase (Leth-Larsen et al., 2004). In 

mouse uterus, SP-D has shown to be hormonally regulated, with peak levels present at estrus, 

which then decreases at diestrus (Kay et al., 2015). Ovariectomised mice showed 

significantly reduced expression of SP-D in uteri; following treatment with estrogen and 

progesterone, SP-D expression increased nine-fold (Kay et al, 2015). Further, treatment with 

progesterone during diestrus reduced the level of SP-D making them vulnerable to infection 

(Oberley et al., 2007).  

SP-A is reported to be expressed by both pre-and post-menopausal vaginal stratified 

squamous epithelium and vaginal lavage fluid (MacNeill et al., 2004). Using 

immunohistochemistry, SP-A expression within the glandular and stromal cells has been 

observed in the maternal endometrium during the early proliferative phase (day 6-7) of the 

menstrual cycle. The levels of MBL in the vaginal epithelial cells vary in a cycle-dependent 

manner with greater changes occurring in the secretory phase of the menstrual cycle. This 

change, which is associated with progesterone, implicates the protective role of MBL in the 

female genital tract (Bulla et al., 2010). These findings strongly suggest that cyclic variations 

in SP-A, SP-D and MBL expression are hormonally regulated.   

 

Amniotic fluid and umbilical cord 

Amniotic fluid (AF) is in constant contact with the fetus throughout pregnancy. It protects 

and supports fetal development (Underwood et al., 2005). Secretions of soluble immune 

factors from the fetal lungs travel into the AF (Condon et al., 2004), which is likely to have 

anti-microbial functions (Underwood et al., 2005). SP-A and SP-D are detected in the AF 

during the mid-pregnancy and their concentrations significantly increases with advancing 

gestational age reaching maximum at term (ranging between 1.2 and 15 µg/ml) (Miyamura et 

al., 1994). SP-D level gradually increases from 0.11 µg/ml (14-16
th

 week) to 26.3 µg/ml (38-

42
nd

 week). SP-A is highly regulated near term; it shows a clear rise from 3 µg/ml (30-31
st
 

week) to 24 µg/ml (40-41
st
 week) when compared to SP-D (Miyamura et al., 1994). At term 

(39
th

 week), the levels of SP-A and SP-D reach their maximum 4978 µg/ml and 793 µg/ml, 
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respectively (Miyamura et al., 1994). Thus, changes in the AF levels of SP-A and SP-D can 

act as a biomarker to assess fetal maturity (Table 3). At term, there is at least 2-fold increase 

in the levels of SP-A in the umbilical cord blood in newborn babies delivered by spontaneous 

labor between 36 and 38 weeks (4.8-50.2 ng/ml) when compared to those delivered through 

cesarean section i.e., with no labor (2.7-21.7 ng/ml) (Cho et al., 1999).  

A similar pattern of increase in the AF level for MBL is observed with advancing 

gestational age (Malhotra et al., 1994); however, it varies significantly before and after 35 

weeks of gestation (304 µg/ml and 1070 µg/ml, respectively) compared to the serum level of 

MBL (995 µg/ml) (Malhotra et al., 1994) (Table 3). The C1q level in AF is less than 0.5 

µg/ml compared to its level in the plasma (80 µg/ml) (Miyamura et al., 1994). The level of 

fetal MBL in the umbilical cord blood (venous and artery 0.70 µg/ml) is low when compared 

with the maternal peripheral blood before elective cesarean section (1.11 mg/ml) (Kielgast et 

al., 2003; Oudshoorn et al., 2008). The gestational age-dependent changes in the AF levels of 

collectins may have distinct roles at different stages of pregnancy and parturition in addition 

to a protective role against infection and inflammation. 

 

Pregnant uterus (amnion, chorion, decidua, myometrium and placenta) 

SP-A and SP-D are present in the human fetal membranes, amniotic epithelium and chorionic 

membrane (Han et al., 2007), the chorio-decidual layer of the late pregnant uterus (Miyamura 

et al., 1994), trophoblast of late normal placental villi, early human placenta (Sati et al., 

2010), cytotrophoblast, intermediate trophoblast, and syncytiotrophoblast of early gestation 

(Miyamura et al., 1994; Leth-Larsen et al., 2004) (Table 2; Figure 3).  Cytotrophoblasts and 

mesenchymal cells have been shown to express MBL during early pregnancy (Kilpatrick et 

al., 1995; Yadav et al., 2016). MBL is synthesized by human term placenta and decidua 

(Yadav et al, 2014). Complement-activating natural IgG is found deposited on the placental 

tissues (Richani et al., 2005; Bulla et al., 2008). Both early (C1q and C4) and late (C5, C6, 

C9) complement components are seen in the placenta. C1q is widely distributed around the 

fetal vessels, spiral arteries, trophoblast, decidual endothelial cells, and extravillous 

trophoblasts (EVT) (Figure 2 and 3) (Bulla et al., 2008, 2009; Agostinis et al., 2010). We 

recently showed the expression of SP-A, SP-D and C1q in early human decidua specifically 

on stromal cells and EVT by immunohistochemistry. Transcripts of A, B and C chains of C1q 

were also detected in early human decidual stromal cells (Madhukaran et al., 2015a). SP-A 

and SP-D are synthesized by human term and first trimester placental and decidual tissues 
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(Yadav et al, 2014; Yadav et al, 2016). As the expression of collectins in gestational tissues is 

established, an underlying role that directs cellular processes and other signaling pathways in 

pregnancy needs to be examined.  

 

Role of collectins and C1q in early pregnancy  

Recently, the expression and localization of SP-A, SP-D and C1q was examined in human 

decidua within the decidual trophoblast and stromal cells (DSCs) (Bulla et al., 2009; 

Madhukaran et al., 2015a). There is evidence to suggest that transcription factor PU.1 

regulates the decidual expression of C1q in early pregnancy (Madhukaran et al., 2015b). This 

suggests that C1q, regulated by PU.1, may be a critical factor in trophoblast and stromal cell 

development (differentiation and proliferation) at the feto-maternal interface.  

Our preliminary analysis using triple immunofluorescent staining identified 

trophoblast (verified by intracellular marker cytokeratin 7, CK-7) exhibiting the expression of 

PU.1 and C1q within the first trimester decidual cells (Figure 4). A considerable percentage 

of the decidual cells stained for trophoblasts and cytoplasm of trophoblasts were positive for 

C1q. In addition, PU.1 positive cells accounted for 70-80% of trophoblasts expressing C1q, 

pointing to considerable variation in the localization of PU.1 in the nucleus and cytoplasm of 

the trophoblasts. These data suggest that cytoplasmic localization of PU.1 widespread in the 

cells of trophoblast lineage might be essential for regulating the cross-talk between 

trophoblast and C1q function throughout gestation and for mediating immunotolerance and 

implantation. Understanding the role of PU.1 expression on trophoblast lineage development 

can have a significant impact on the immunotherapy for adverse pregnancy such as abortion, 

miscarriage, and preeclampsia (PE) (Madhukaran et al, unpublished). Our study validates a 

previous report showing that C1q localizes to the EVT and promotes its invasion, spiral 

artery remodeling and normal placentation at the feto-maternal interface (Singh et al., 2011). 

Further, the evidence that C1q produced by decidual endothelial cells (DECs) suggests that it 

acts as a link between the endovascular trophoblasts and spiral artery endothelial cells, 

involving the MAP kinase pathway via gC1qR, a receptor for the globular head region of 

C1q (Bulla et al., 2008; Agostinis et al., 2010;  Agostinis et al., 2012).  

SP-D levels in the uteri progressively decrease from 0.5 days post coitus (dpc) to 2.5 

dpc during early pregnancy, suggesting relevance of uterine SP-D in peri-implantation period 

in mice (Kay et al, 2015). SP-D gene deficient mice showed significantly increased pre-

implantation loss, leading to a considerably reduced litter size (Kay et al, 2016, unpublished). 
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During spontaneous abortion, SP-A was significantly downregulated while SP-D was 

upregulated at the feto-maternal interface (Yadav et al, 2016). 

There is a paucity of information regarding the role of SP-A and SP-D in early human 

pregnancy. A prospective (pilot) study was carried out in decidua obtained from 17 pregnant 

women: 12 with normal pregnancy undergoing elective termination of pregnancy between 7
th

 

to 10
th

 week of gestation and 5 with a history of miscarriages (2 samples from early 

pregnancy and 3 from after labor). Expression of SP-A1, SP-A2, SP-D, C1q A, C1q B, and 

C1qC was measured in both groups at week 7, 8, 9, 10, 39 and after labor. The levels of SP-

A1 and C1qB during early gestation (Week 7-10) were significantly higher in women with 

normal pregnancy (Figure 5 A) and recurrent pregnancy loss (RPL) case (39+1) with a 

history of 2 miscarriages (Figure 5B). The number of human decidua needs to be increased to 

prove the statistically significant differences in expression of SP-A1, SP-A2, SP-D, C1qA, 

C1qB and C1qC genes in human decidua (Madhukaran et al, unpublished). Thus, evaluating 

the gene expression of collectins and C1q can be clinically significant for predicting the 

outcome of pregnancy. Our studies provide considerable evidence that the human SP-A1 and 

C1qB are associated with normal and complicated pregnancy, but their functional 

significance is not yet known. It is likely that SP-A1 might play a role in influencing 

immunosuppressive properties on T-lymphocytes. It has been earlier shown that an 

interaction between SP-A1 and TGF-β triggers   immunosuppressive effect on IL-2 secreted 

by T lymphocytes (Kunzmann et al., 2006). 

MBL was first observed in the endothelial cells and Hofbauer cells (placental 

macrophages) in the first trimester placenta. Within the decidua, endovascular trophoblasts 

and endothelial spiral arteries express MBL (Kilpatrick et al., 1995). The increased MBL 

level in the maternal blood and serum during early normal pregnancy (first trimester) appears 

to suggest an involvement of MBL in normal placentation and establishment of pregnancy 

(van de Geijn et al., 2007a).  

The ability of SP-A, SP-D, MBL and C1q to act as opsonins confirms enhanced 

opsonization and phagocytosis of recognized pathogens thus contributing to the innate 

immune response (Nauta et al., 2004; Kishore et al., 2006). All these properties makes it 

possible to suggest that the expression of collectins and C1q in early gestational tissues may 

have a wide range of protective functions, including eliminating pathogens, apoptotic 

materials, and simultaneously, modulating the immune response during early pregnancy, all 

of which require further investigation. While the significance of collectins in parturition has 

been of intense focus over the past decade, the importance of collectins in implantation, 
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immune tolerance, regulation of normal placental development and function, regulation of 

trophoblast invasion, differentiation, proliferation and migration remain to be investigated. In 

addition, there have been no reports on gestational tissue-specific functions of SP-A, SP-D, 

MBL and C1q in early pregnancy.  

 

Collectins and C1q in parturition and complicated pregnancy 

Parturition is an inflammatory process and is associated with significant upregulation of SP-

A, SP-D and MBL levels in AF, with advancing gestational age (Miyamura et al., 1994). Any 

mutations, SNPs, unusual expression or deficiency involving SP-A, SP-D, MBL, or C1q can 

be associated with pregnancy complications. Multiple etiologies for various pregnancy 

complications have been described; however, over one-half of the cases remain unexplained. 

Although the physiology of pregnancy, initiation and regulation of parturition in human and 

mice are quite distinct (Bezold et al., 2013), studies using murine models, deficient or over- 

expressing genes, have been used to understand the role of SP-A, SP-D, MBL or C1q in 

pregnancy.  

 

SP-A and SP-D 

SP-A, SP-D and MBL level reaches maximum at term in AF, which suggests its association 

with pregnancy maintenance and parturition. Parturition is marked by local production of 

numerous factors including pro-inflammatory cytokines and hormones (glucocorticoids and 

PGF2α) (Myatt and Sun, 2010). Expression of SP-A in mouse fetal lungs (after 17 dpc) and 

its secretion in AF provide a signal for initiation of parturition (Condon et al., 2004; 

Mendelson and Condon, 2005). Gestational increase in the AF SP-A level augments the 

production of IL-1β, NF-κB and PGF2α and infiltration of AF macrophages into fetal 

membrane, myometrium, uterus and cervix, which probably serve as a signal for labor 

(Condon et al., 2004). In pregnant mice, intra-amniotic injection of purified SP-A at 15.5 dpc 

stimulates IL-1β production, leading to preterm delivery within 6-24 hr (Figure 6). 

Conversely, injecting anti-SP-A antibodies into the mice amniotic sac can delay parturition 

by up to 24 hours (Condon et al., 2004). The view by Condon et al. that fetal SP-A triggers 

the onset of labor is consistent with our recent finding that SP-A and SP-D levels are low 

during pre- (17.5dpc) and near (19.5 dpc) parturition in the murine decidua (Madhukaran et 

al., 2015c). Despite the elevated SP-A and SP-D levels in the AF at term, the transcript level 

of decidual (maternal) SP-A was absent. The withdrawal of decidual SP-A might be 

responsible for controlling the functional activation of fetal-derived SP-A which regulates 
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parturition at term by two different pathways: the endocrine pathway where SP-A in the fetal 

circulation reaches the placenta and the uterus directly, or with the support of maternal SP-A 

produced before term. In the paracrine pathway, the fetal lung-derived SP-A enters the AF to 

exert its effect by increasing AF concentration (26
th

 week to 32
nd

 week) on the fetal 

membrane (amnion and chorion) to transmit the signal to the myometrium and cervix for the 

initiation of labor. A better understanding of the role of the fetal SP-A in signalling 

parturition is required to define the association of fetal and maternal SP-A in parturition. This 

will also enable us to recognize and prevent the inflammatory responses stimulated in various 

pregnancy complications  

In contrast, SP-D levels were found to decrease with the gestation age from 17.5 dpc 

to 19.5 dpc in murine decidua (Madhukaran et al., 2015c). We suspect that increased SP-D 

level at 17.5 dpc could reflect paracrine effect on fetal membrane, cervix and myometrium 

involved in hindering prostaglandin E2 activation required for labor. The subsequent 

decrease in SP-D at 19.5 dpc might be functional withdrawal of SP-D prerequisite for 

upregulation of PGE2, cyclo-oxygenase enzyme-2 (COX2) and increased myometrial 

sensitivity to estrogen in association with labor process. Altogether, SP-A and SP-D in 

decidua indirectly regulate parturition. We also demonstrated the host defense role for SP-A 

and SP-D in the decidua at term, which has the ability to inhibit the release of TNF-α upon 

LPS challenge, as an indicator of intrauterine infection preventing preterm labor and birth 

(Madhukaran et al., 2015c). 

Before labor, decidual SP-A is highly expressed when compared to the levels in those 

with labor. Surprisingly, SP-A-induced (100 µg/ml) pro-inflammatory soluble factors (IL-6, 

IL-8, TNF-α, IL-1β, MCP-1, MMP-3 and VEGF) did not exhibit any significant difference in 

stromal cells (Snegovskikh et al., 2011). Additionally, detailed investigation of prostaglandin 

(PGF2α) production revealed that the presence of SP-A in the endometrium selectively 

inhibits PGF2α production, suggesting that endometrial SP-A expression may specifically 

regulate prostaglandins during labor (Snegovskikh et al., 2011). In human myometrial cells, 

SP-A from the fetal membrane induces actin stress fibre formation by controlling F-actin 

filament organization, suggesting that SP-A regulates the initiation and maintenance of 

uterine contraction (of smooth muscle cells) for labor (Garcia-Verdugo et al., 2008; Breuiller-

Fouché et al., 2010; Sotiriadis et al., 2015).  

Despite strong indications that SP-A is an important signal linked with parturition, 

little is known about the underlying molecular events. Moreover, fetal macrophages were not 

found in the maternal tissue (myometrium) at term (Kim et al., 2006) and SP-A gene-



 12

deficient mice were able to go into spontaneous labor (Korfhagen et al., 1998; Montalbano et 

al., 2013). Subsequent studies proved SP-A to be anti-inflammatory (Figure 6). In vitro 

interaction of AF SP-A with human placental amnion has been proposed to down-regulate the 

expression of IL-1β, CXCL2 and CXCL5, a mechanism essential for initiation of parturition 

(Lee et al., 2010). Injection of SP-A into the extra-amniotic space within the uterus exposed 

the anti-inflammatory role of fetal lung SP-A with downregulated expression of 

inflammatory molecules (IL-1β, TNF-α, NF-κB and CCL5) via TLR2 in the placenta and 

fetal tissues. Simultaneously, SP-A was shown to enhance the expression of anti-

inflammatory molecules (CXCL1 and IL-10) within the placental, fetal and uterine tissues 

that can prolong the gestation (Agrawal et al., 2013). A recent study has examined 

inflammatory and contractile genes from mice deficient in SP-A or SP-D. Prolonged 

gestation was observed for ~10-12 hrs in SP-A deficient mice (2
nd

 and 3
rd

 litter) with reduced 

levels of IL-1α, IL-1β and IL-6 in the myometrium compared to the wild-type mice.  

Furthermore, the expression of contractile genes (oxytocin receptor and connexin-43) was not 

significantly higher than control delaying parturition (Montalbano et al., 2013). Induction of 

oxytocin receptor (OXTR) and connexin 43 (CX43) expression and secretion of GROα 

(chemokine CXCL1) and IL-8 by the myometrial cell line, ULTR, following treatment with 

SP-A and SP-D provides further evidence that the two collectins play a key role in 

modulating events prior to labour by reconditioning the human myometrium and thus shifting 

the uterus from a quiescent to a contractile state (Sotiriadis et al., 2015).  

The association of transcription factor, Forkhead box M1 (FOXM1), with lung 

maturity and expression of SP-A has been examined in an animal study. FOXM1 was utilized 

for studying the fetal lung development due to its regulatory functions related to cellular 

proliferation, differentiation, vascular remodelling and metabolism. The study found that as 

FOXM1 (mRNA and protein) expression increased, SP-A (mRNA) expression decreased in 

rabbit fetal lungs (Hahn et al., 2013). A significant delay in parturition of nearly 38 hrs has 

been recently reported in steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) double-

deficient mice with reduced expression of NF-κB, PGF2α, and contractile genes (oxytocin 

receptor, connexion-43, cyclooxygenase 2, prostaglandin-endoperoxide synthase 2), SP-A, 

lysophosphatidylcholine acyltransfereae-1 (LPCAT-1), pro-inflammatory 

glycerophospholipid and platelet-activating factor (PAF) in near term fetal lungs, maternal 

myometrium and in fetal AF (Gao et al., 2015). Exogenous injection of SP-A (3 µg/sac) or 

PAF (0.25 ng/sac) into the amnion of SRC-1/2- deficient mice at 17.5 dpc activated the 
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downstream signals in parturition cascade by enhancing NF-κB and contractile genes. SP-A 

or PAF injection lowered both steroidogenic acute regulatory protein (StAR) and P4 in 

circulation (Gao et al., 2015). This correlation between SRC-1/2 and SP-A or PAF expression 

highlights fetus signal in parturition. Therefore, maturation of fetal lungs and SP-A secreted 

from lungs may be used as a potential marker for forecasting lung maturity and survival of 

the fetus by generating a signal to initiate labour at term. The importance of SP-D in 

parturition has also been shown by the finding that methionine allele SP-D gene 

polymorphism (methionine allele, Met31Thr) in the fetus is associated with spontaneous 

preterm birth within the Northern Finland population (Karjalainen et al., 2012).  

Since SP-A serves as a key signal molecule for initiation of parturition, levels of AF 

SP-A at term in labor (spontaneous human parturition) and without labor have been 

measured. AF SP-A level was shown to decrease (1.2-10.1 µg/ml) in spontaneous labor at 

term when compared to women not in labor (2.2-15.2 µg/ml) (Chaiworapongsa et al., 2008b). 

However, an insignificant difference in the levels of SP-A was observed in maternal serum 

before and after labor (Cho et al., 1999). The biological significance of placental SP-A, SP-D 

and MBL in parturition is further supported by the altered levels of SP-A, SP-D and MBL in 

spontaneous term labor (Yadav et al., 2014).  Another study using SP-A or SP-D over-

expressing mice has shown that maternal challenge with an increasing concentration of LPS 

(intraperitoneal injection of smooth LPS) from 17 dpc till term (12 µg, 15µg, 20µg and 25 

µg/mouse) modulates the LPS-induced cytokine response within the mother and the fetus 

inducing spontaneous preterm labor (Figure 6). Increased expression of TNF-α and IL-10 in 

AF and fetal membrane was detected when compared to the wild type controls (Salminen et 

al., 2008, 2011, 2012). Thus, higher SP-A or SP-D concentrations do not correlate with the 

timing of labor, but instead, they increase the risk of preterm birth and fetal mortality. It is 

likely that an increase in maternal SP-A or SP-D levels during infection induced preterm 

labor can be a useful marker to predict the outcome of pregnancy, though it would require 

extensively planned, large clinical studies.  

 

MBL  

Very little is known about the role of MBL in parturition. Due to the increase in the level of 

MBL in first trimester till term with sharp decrease after delivery, MBL is believed to be 

involved in the parturition process and onset of labor.  MBL-2 gene polymorphism has been 

reported to affect the immunological events in normal pregnancy. The presence of MBL-2 
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gene polymorphism is beneficial at times but not in all cases, as it is also associated with 

complicated pregnancies. In immunocompromised women with genetic polymorphisms and 

low levels or deficiency of MBL during mid-pregnancy are related to functional changes in 

the placenta; in particular, placental lesions, placental insufficiency, and inflammatory 

infiltrates are associated with low gestational age and low birth weight (van de Geijn et al., 

2008), recurrent abortions, idiopathic recurrent late pregnancy loss (Christiansen et al., 2009), 

unexplained recurrent miscarriages (Christiansen et al., 2002; 1999; 2009; Kruse et al., 2002), 

chorioamnionitis, and PE (van de Geijn et al., 2007b; Holmberg et al., 2008). There is also an 

increased expression of MBL in uterine lumen during oocyte collection in patients with 

unexplained infertility when compared to tube infertility patients (Oger et al., 2009).  

Bodamer et al. have examined polymorphisms in the coding and promoter regions of 

MBL-2 in premature infants. In particular, codon 52 was demonstrated to have a significant 

association with the group of infants born preterm (before 36 weeks) compared with the 

infants born at term (Bodamer et al., 2006). In a correlation study between MBL levels and 

recurrent miscarriage, a low level of serum MBL (0.1 mg/ml) was observed in blood samples 

obtained from both male and female partners with recurrent miscarriage (Kilpatrick et al., 

1996, 1999). Furthermore, decreased MBL levels at the feto-maternal interface have been 

reported to be insufficient to regulate infection-induced inflammatory response leading to 

fetal loss (Kilpatrick et al., 1995). Taken together, maternal gene polymorphisms (Codon 52 

and Codon 54) with low MBL serum levels pose greater risk to the fetus by increasing 

susceptibility to infection. The pro-inflammatory reactions induce preterm labor and birth (< 

29 weeks) with reduced weight owing to reduced fetal growth and development. Further 

studies are thus required to identify the role of fetal variant MBL genotype in causing 

premature delivery and preterm birth. In contrast, others reported that MBL-2 genotypes on 

promoters MBL variants (-550 C > G and -221 G>C) and structural MBL variants with 

missense mutation (R52C, G54D, G57E) in exon 1 with low levels of MBL did not 

contribute or influence unexplained recurrent pregnancy loss or miscarriage (Baxter et al., 

2001; Berger et al., 2013). 

In the gene encoding MBL, six SNPs are identified at position -550 H/L (G/C) and -

221 X/Y (C/G) in the promoter region, +4 P/Q (C/T) in the translated region. Three 

polymorphisms located in exon 1 at codon 52 A/D (Arg→Cys), codon 54 A/B (Gly → Asp) 

and codon 57 A/C (Gly → Glu). The SNPs in promoter region at position -550 and -221 form 

four haplotypes HY, LY, LX, HX  out of which 7 coding variants are observed –HYPA, 

LXPA, LYQA, LYPA, HYPD, LYPB and LYOC (Madsen et al., 1995, 1998). High MBL 
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levels in serum have been demonstrated to have pro-inflammatory properties against the fetus 

resulting in preterm labor. Maternal serum from women undergoing normal deliveries had 

high fetal MBL genotype levels (H/L)YA/(H/L)YA and (H/L)YA)/LXA associated with a 

significantly shorter gestational age (before 29 weeks of gestation) when compared with 

intermediate (LXA/LXA and (H/L)YA/O) and low  (LXA/O and O/O) MBL serum genotype 

group. Approximately 13% of the fetuses delivered were of high MBL serum genotype levels 

while 3% were intermediate and low MBL serum genotype groups (van de Geijn et al., 

2008).  

In normal pregnancy, EVT invades the decidua until it reaches the inner third of the 

myometrium and the extent of trophoblast invasion therefore needs to be regulated. 

Inadequate tapering of maternal arteries and improper trophoblast invasion is associated with 

PE (Rodeck and Whittle, 2009). PE is a common pregnancy disorder characterized by 

abnormal placental function, hypertension, and proteinuria. Several studies have attempted to 

associate MBL levels and MBL genotypes with PE; most of them showed functional 

association of MBL levels with PE pathogenesis. In a comparative study, plasma from 

pregnant women with and without PE were examined by proteomic analysis.  Wang et al. did 

not find any significant association between MBL levels in plasma and PE compared with 

normal pregnancies (Wang et al., 2007). Similarly, a high frequency of maternal MBL 

genotype (3 structural and 2 promoter polymorphisms) did not show any association with PE 

(van de Geijn et al., 2007b).  

The gene polymorphisms of MBL-2 gene in the structural region as well as promoter 

region that contribute to low levels of MBL showed a significant association with the 

pathogenesis of PE in Brazilian women (Vianna et al., 2010). Maternal MBL-2 genotype 

(variant B allele, codon 54) is implicated in a protective role against the development of PE 

and PE-associated intrauterine growth restriction (IUGR) via complement activation (Figure 

7). The frequency of MBL-2 gene polymorphism compared between women with PE and full 

term controls were examined. Importantly, higher MBL-2 genotype levels were detected in 

PE women (~86-95%) compared to full-term controls (~70-83%) (Sziller et al., 2007a). 

Excessive lectin pathway activation and an increase in placental MBL levels are likely to 

impair trophoblast invasion and spiral arteries formation, resulting in activation of hypoxic 

signaling pathway related to PE (Girardi et al., 2006). With an increase in maternal MBL-2 

genotype activity, their ability to activate complement is affected, as low serum MBL levels 

are unable to interact with MASPs, thus protecting the placenta against development of PE. 

Maternal variant A (wild type allele) in codon 54 of MBL2 has been proposed to increase 
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MBL levels in serum that is associated with the development of PE (Figure 7). Recently, 

Agostinis and colleagues implicated MBL as a major protein found to be increased in the sera 

obtained from PE patients, which is potentially responsible for inhibiting the cell 

communication between fetal trophoblasts and decidual endothelial cells preventing 

trophoblast invasion (Agostinis et al., 2010). This is consistent with the findings in earlier 

studies in which C1q expressed by decidual cells (endothelial cells and trophoblasts) was 

shown to enhance the cross-talk between fetal trophoblasts and decidual endothelial cells 

essential for trophoblast migration and invasion, spiral artery formation, vascular remodeling 

and placental development (Bulla et al., 2008; Agostinis et al., 2010). The best evidence for 

protective role of MBL has come from studies of abortion-prone mouse model (CBA/J X 

DBA/2) of PE. MBL-A has been detected at the early stages of pregnancy (3.5dpc) while 

MBL-A deficiency demonstrated to prevent pregnancy loss. Furthermore, DBA/2-mated 

CBA/J mice were able to prevent fetal loss efficiently after polyman2 (mannosylated 

molecule that binds to MBL-A with high affinity) treatment (Petitbarat et al, 2015). Thus, 

increased levels of MBL in PE may contribute to the failure of the endovascular invasion of 

trophoblast cells.  

In another study, however, no systematic functional activity of MBL-MASP2 levels 

were found to correlate with the disease onset, severity, fetal growth restriction, or birth 

weight linked to PE (Csuka et al., 2010). The study classified PE and normal pregnant 

participants into three groups, namely MBL deficient, MBL normal and MBL high. 

Importantly, complement activation was relatively higher in both MBL high as well as MBL 

deficient categories. It is speculated that altered (both low and high) levels of MBL can give 

rise to dysregulated complement activation, thus contributing to PE (Csuka et al., 2010). This 

may explain why some of the studies did not find a significant association of PE with MBL 

levels. It is likely that deficiency or low levels of MBL in pregnancy probably lead to 

accumulation of apoptotic cell debris, excessive inflammatory responses, and an enhanced 

production of autoantibodies, resulting in adverse pregnancy outcomes.  In the case of IUGR 

neonates at birth, the concentration of MBL level in the cord blood remains significantly low, 

confirming that altered levels of MBL contribute to adverse pregnancies (Briana et al., 2012). 

Given that IUGR neonates are more susceptible to infections, MBL’s role in host defense in 

these neonates is easy to understand. Therefore, altered serum MBL levels can be useful as a 

biomarker for spontaneous abortion, PE and IUGR.  
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C1q 

C1q deficiency is associated with improper placental formation, trophoblast invasion, 

impaired angiogenic balance and an increased risk of fetal death resulting in miscarriages, 

preterm delivery, and PE (Agostinis et al., 2010; Singh et al., 2011). Lower concentration of 

anti-C1q antibodies and higher levels of IL-15 have been observed in ectopic pregnancies and 

missed abortions when compared to complicated pregnancies (Daponte et al., 2013). Storelli 

et al. have reported that mothers exposed to polychlorinated biphenyls (PCBs) are at a higher 

risk of spontaneous miscarriage, stillbirth and fetal resorption (Storelli et al., 2011). Decidual 

levels of gC1qR correlate with enhanced PCBs content in plasma in mothers who underwent 

spontaneous abortion (Gu et al., 2012). Reduced percentage of apoptotic cells were observed 

in human trophoblast cell line treated with PCBs compared with cells treated with PCBs and 

gC1qR small interfering RNA (Gu et al., 2012). This upregulation of gC1qR may have 

evolved as a defense mechanism to reduce damage to the human trophoblast cells exposed to 

PCBs resulting in complicated pregnancies.  

Villitis of unknown etiology (VUE) is a complication of pregnancy characterized by 

inflammation in the chorionic villi. It can be caused by either maternal infection or when 

placental tissues are affected by immune system i.e. NK cell attack via cytotoxic T cells 

(Tamblyn et al., 2013). Distribution of C1q has been observed in the placenta with VUE and 

within the stroma of inflamed villi suggesting an important contribution of C1q in Villitis 

(Altemani et al., 1992). 

Human placentae (20 normal and 20 PE) were studied by immunofluorescence for the 

presence of complement components; C1q was increased in PE as compared to normal 

tissues (Sinha et al, 1984). C1q knock-out
 
mice are known to show a defect in the clearance 

of apoptotic cells and developed glomerulonephritis (Botto et al, 1998). This study hinted that 

C1q deficiency might be responsible for accumulation of apoptotic trophoblasts in the 

pathogenesis of PE. An association of the absence or low levels of C1q in PE patients was 

recently shown (Agostinis et al., 2010). Subsequent studies confirmed that C1q deficient 

mice develop symptoms similar to PE; these features include hypertension, albuminuria, 

endotheliosis, decreased placental VEGF, increased soluble VEGF receptor 1 (sFlt-1), 

increased oxidative stress, decreased blood flow, increased fetal death, diminished litter size, 

abnormal invasion of trophoblasts, and increased levels of STAT-8 (inhibitor of trophoblast 

migration) (Singh et al., 2011). However, in one of the studies, C1q mRNA expression at 

placenta was not different between PE women and normal controls (Burma et al, 2012). 

Syncytiotrophoblast microvesicles (STBM) are pro-inflammatory and circulate in increased 
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amounts in PE women and C1q was observed to be one of the 538 proteins unique to PE 

STBM (Tanetta et al, 2012). Interestingly, a recent study was able to relate C1q deposits that 

occur in early onset of PE placenta, with immune tolerance and clearance of apoptotic cells. 

The authors have observed more C1q deposition in endothelial stroma, large villi and 

fibrinoid necrotic areas in the placenta of early onset than in late onset PE women. 

Additionally, C1q deposit areas had C4bp protein binding to apoptotic fragments and 

trophoblastic syncytium knots (Lokki et al., 2014). These data suggest that C1q, with C4bp 

factor released from placenta, may be responsible for immune tolerance by promoting 

clearance and phagocytic uptake of apoptotic trophoblast cells accumulated in the PE 

placenta. Association of both low and high C1q levels with PE suggests that any 

dysregulation in C1q levels may lead to anomalous placental development. .  

It is evident now that SP-A, SP-D, MBL and C1q have a regulatory role in pregnancy 

maintenance and parturition. However, there is yet a lack of clarity on the underlying 

mechanisms and roles of these proteins in different phases of pregnancy. Once we have this 

understanding, it may help devise strategies to ameliorate or prevent adverse pregnancy 

outcomes. Overall, the studies suggest that the regulation of inflammation at the feto-

maternal interface is critical, and these molecules, under hormonal influence, are integral to 

regulation of inflammation. SP-A has the ability to elicit inhibitory or stimulatory response 

favouring pregnancy maintenance and stimulating parturition driven by maternal or fetal 

demand, depending on the gestational tissues, receptors and tissue-specific cells. It is difficult 

to generalize the role of SP-A as an initiator of parturition/contraction due to inconsistency 

and significant gaps reported so far. However, observational inconsistencies could be due to 

different endocrine control of parturition in mouse and humans; besides, SP-A could be 

multifunctional. The underlying mechanism by which fetal or maternal SP-A triggers 

parturition, evidence for migration of fetal lung specific macrophages into the maternal 

compartment at term, how these regulatory proteins maintain pregnancy till term although 

their levels are lower in AF, functional significance of their increase with advancing 

gestation, hormonal stimulation of fetal lung SP-A triggering myometrial contraction and 

uterine ripening (SP-A dependent pathway) needs to be examined during pregnancy. Most 

studies have focussed on parturition and further studies on SP-A, SP-D, MBL and C1q in 

pregnancy maintenance are required to gain deeper understanding of their roles.  
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C1q and collectins in pregnancy associated infections 

During pregnancy, microbial infections of the genital tract by Escherichia coli, Klebsiella 

pneumonia, Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis, and 

intrauterine infection such as chronic hepatitis B virus (HBV), and cytomegalovirus (CMV) 

cause fetal damage leading to miscarriage, infertility, ectopic pregnancies, preterm labor via 

pro-inflammatory immune response.  

 

SP-A and SP-D  

During intra-amniotic infection (IAI), bacterial LPS lining the outer membrane of Gram-

negative bacteria trigger potent pro-inflammatory immune response resulting in 

chorioamnionitis, preterm labor, and delivery. Hence, the AF gets exposed to several 

inflammatory molecules, cytokines and soluble factors. The progressive increase of SP-A and 

SP-D in the AF during pregnancy is likely to have protective role against intrauterine 

infections by controlling the inflammatory response. Inflammation of the fetal membrane due 

to bacterial infection (chorioamnionitis) is very common in pregnant women between 26
th

- 

32
nd

 week of gestation during which the concentration of SP-A and SP-D are reduced (Lahra 

and Jeffery, 2004). However, Han et al. found no significant difference in SP-A mRNA 

expression in the chorioamniotic membrane from women with chorioamnionitis preterm 

delivery and from those without chorioamnionitis preterm delivery. However, the level of 

SP-A was increased at term in women with chorioamnionitis compared to spontaneous labor 

at term (Han et al., 2007). The comparative analysis of AF SP-A and SP-D levels examined 

in women with and without IAI showed no significant differences between the SP-A/SP-D 

and IAI infection in the AF (Chaiworapongsa et al., 2008b). Conversely, an excessive 

increase in SP-A due to maternal infection (bacterial) at term pregnancy has been shown to 

have a negative effect on pregnancy triggering labor. In animal models, intra-peritoneal 

administration of LPS on 16-17
th

 day of gestation induces SP-A, but not SP-D, secretion in 

the uterus at term pregnancy, and initiates parturition (Salminen et al., 2011, 2012). 

Chlamydia trachomatis infection in the female reproductive tract leads to fallopian tube 

damage and infertility (Paavonen and Eggert-Kruse, 1999). It has been shown that SP-D, but 

not SP-A, can inhibit Chlamydia trachomatis infection in a dose dependent manner in the 

endocervical epithelial cell line (Oberley et al., 2004, 2007). Additionally, SP-A is also 

attributed to neonatal immunity. Initially, SP-A knock-out mice were found to be more 

susceptible to LPS induced inflammatory response with high rate of fetal mortality compared 

to wild type mice. This inflammatory response was reconciled with oral administration of SP-
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A which increased the survival of the fetus (George et al., 2008). In addition, exogenous 

administration of SP-A or SP-D has also been shown to inhibit LPS mediated TNF-α via 

decidual macrophages at 17.5 dpc. Thus, decidual SP-A and SP-D appear to offer protection 

against intrauterine infection towards the term (Madhukaran et al., 2015c). The molecular 

mechanism by which the inflammatory condition is modulated is not understood fully. 

 

MBL   

Bacterial vaginosis and vulvovaginal candidiasis infection are the most common threat during 

pregnancy. During early stages of menstrual cycle, there is a significant change in the vaginal 

microbial flora within the cervico-vaginal cavity (Romero et al., 2014). MBL, produced by 

the vaginal cells, are detected in the vaginal lavage along with other normal microflora (Bulla 

et al., 2010). The polymorphism in MBL2 gene (condon 54) on exon 1 leads to unstable 

polymeric MBL proteins that are rapidly degraded (Babovic-Vuksanovic et al., 1999). 

Carriers of this allele have reduced levels of MBL in their circulation and in their vaginal 

fluid, making them more susceptible to recurrent vulvovaginal candida infection (Babula et 

al., 2003). Women with Chlamydia trachomatis infection with variant allele A or B at codon 

54 in MBL-2 gene are at a greater risk for fallopian tube occlusion than wild type allele A 

(Sziller et al., 2007b). Low levels of MBL are common in patients with tubal factor 

infertility, sepsis, and septic shock. However, there seems to be no association between MBL 

deficient genotype and tubal factor infertility (Laisk et al., 2010, 2011; Wahab Mohamed and 

Saeed, 2012). Low serum MBL levels can be used as markers for septic shock in mothers and 

to evaluate the clinical outcome in neonates. MBL-2 gene polymorphism (codon 54, allele B) 

in the lower genital tract could serve as a marker for predicting Chlamydia trachomatis 

infection associated with higher risk of fallopian tube damage and early pregnancy loss. 

Viral infections such as HBV and CMV, and N. gonorrheae get transmitted from 

mother to the fetus. These pathogens infect the reproductive tissues such as placenta and 

chorioamniotic membrane. MBL, an acute phase reactant, is found to be increased in serum 

after viral infection (Hakozaki et al., 2002). In human pregnancy, maternal HBV promotes 

increase in fetal MBL, which probably reflects the protective role of MBL in inhibiting 

intrauterine infection transmission of HBV from the mother to fetus (Wu et al., 2013). Low 

serum levels of MBL with gene polymorphisms at codon 52 (exon I) and codon 54 (allele B) 

have been associated with disease progression and poor prognosis of HBV (Thio et al., 2005). 

In contrast, a high serum level of MBL is linked to patient survival with HBV infection 
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(Hakozaki et al., 2002). Although MBL and HBV have been extensively investigated in 

human pregnancy, the association of MBL polymorphism with prognosis of HBV infection 

remains controversial.  A study by Hohler et al. was unable to establish a connection between 

MBL polymorphisms and susceptibility to HBV infection (Hohler et al., 1998). Similarly, a 

recent study on SNPs (rs2120131, rs4935047, and rs7095891) in the MBL-2 gene in the 

Chinese Han population found no association with the susceptibility to HBV (Zhang et al., 

2013). Prenatal and perinatal neonates from CMV infected mother with MBL-2 gene 

polymorphism when compared with non-infected mothers did not show any increase in the 

susceptibility of CMV infection (Szala et al., 2011). The conflicting results may be due to 

patient recruitment (age, race, origin and previous history), different methodology, control 

samples, comparison studies, limiting within specific population, sample collected during 

different periods of pregnancy, and sample size. Further studies are needed to clarify the 

potential impact of MBL-2 polymorphism in intrauterine infection.  

There is ample evidence to suggest that Plasmodium falciparum infection plays an 

important role in pregnancy outcomes. For instances, P. falciparum-infected erythrocytes 

membrane protein-1 (PfEMP1) that has affinity for chondroitin sulfate A were observed to 

infect the red blood cells by residing in the endothelium lining the intervillous space within 

the placenta. Additionally, they up-regulate infiltration of inflammatory cells and cytokines 

response via antigen presenting cells leading to massive chronic intervillositis (MCI), IUGR 

and premature labor (Fried and Duffy, 1996). Although MBL has been reported to recognize 

and interact with P. falciparum-infected erythrocytes (Garred et al., 2003), MBL-2 

polymorphism at codon 57 in exon 1 showed no association with placental malaria infection 

with the concentration of MBL or MBL-2 genotypes measured in the intervillous space 

(Thevenon et al., 2009). MBL could opsonize P. falciparum to eliminate the infection 

through excessive complement activation (Silver et al., 2010) in placental malaria but 

simultaneously damage the normal placental function (tissue integrity, endothelial activation, 

vascular remodelling) (Silver et al., 2010). This excess complement activation may alter the 

pathogenesis of placental malaria leading to tissue hypoxia, enhanced vascular permeability, 

and improper placental vasculature contributing to adverse pregnancy outcomes. 

Furthermore, binding of MASP-2 with R439H mutation to MBL also reduces the enzymatic 

activity due to excessive complement activation (Thiel et al., 2009). This aberrant mutation 

observed in MASP-2 influences alteration in MBL-2:MASP-2 complex and complement 

activation (Holmberg et al., 2008, 2012). Thus, the modulatory role of MBL, MASPS-2 and 

downstream complement activation may suggest MASP-2 for therapeutic purpose. Further 
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studies exploring the effects of MBL and MAS-P2 mutations on placental malaria are 

needed. 

 

C1q 

Intraperitoneal injection of serum resistant N. gonorrhoeae pre-incubated with C1q shows a 

progressive increase in the infection (6-7 days) in an animal model of gonococcal bacteremia 

in rat pups (Nowicki et al., 1995). C1q is considered to be involved in clearance of apoptotic 

debris caused by infection during early pregnancy due to its presence at the feto-maternal 

interface in decidual endothelial cells (DEC) and trophoblast (Bulla et al., 2008) in normal 

pregnancy and PE (Lokki et al., 2014). Besides C1q, expression of MYD88, MD2, and TLR-

4 on DEC also contributes to an anti-inflammatory response at the feto-maternal interface 

(Masat et al., 2012). This makes C1q an attractive host defence molecule at the feto-maternal 

interface. Pathogens like Trypanosoma cruzi spread to humans by blood sucking bug 

Triatominae. It can also infect the decidua (trans-placental) by entering the mother through 

placenta and chorioamniotic membrane (Shippey et al, 2005). Once T. cruzi is in contact with 

the host, T. cruzi calreticulin protein (TcCRT; 45 kDa) moves from the endoplasmic 

reticulum to the external surface of the parasite. Maternal C1q in the placenta recognizes and 

binds to CRT entering the host (Ramos et al., 1991). This CRT-C1q interaction prevents the 

activation of the classical pathway and enhances the spreading of T. cruzi infection (Ferreria 

et al., 2004; Molina et al., 2005). Thus, C1q has both a protective role as well as detrimental 

effect in controlling intrauterine infection. 

 

Collectins and C1q in maternal autoimmune disorders 

The most common maternal autoimmune diseases found during pregnancy are autoimmune 

thyroid disease (AITD), gestational diabetes mellitus (GDM) and rheumatoid arthritis (RA) 

that cause adverse pregnancy outcomes (Stagnaro-Green et al., 2011). 

 

Autoimmune thyroid disease (AITD) or autoimmune thyroiditis 

Autoimmune thyroid disease is characterized by the stimulation of thyroid glands to secrete 

more thyroid hormones. The stimulation is due to specific thyroid autoantibodies, thyroid 

peroxidase (TPO) antibodies (Smallridge et al., 2000). Generally, the presence of maternal 

TPO antibodies results in neurophysiological dysfunction at the early stages (Pop et al., 

1995). In a study of pregnant women, serum MBL level was lower during first trimester and 

decreased further after delivery in thyroid dysfunction women than in normal controls. On 
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the other hand, women who reported to have an increased serum MBL level during first 

trimester had significantly decreased MBL levels after delivery (Potlukova et al., 2013). It is 

known that thyroid dysfunction influences the MBL level during pregnancy; consequently the 

association of MBL deficiency with thyroid dysfunction and the outcome of pregnancy have 

not yet been explained.  

 

Gestational diabetes mellitus (GDM)  

The primary cause for GDM is the glucose intolerance during pregnancy mainly due to 

pancreatic β-cell damage.  Tissue damage is caused by the autoantibodies against β-cell of 

the pancreas. MBL level in both diabetic and healthy women during pregnancy are decreased 

(Pertyńska et al., 2001). Subsequent study by same group showed no significant increase in 

MBL levels in diabetics and healthy pregnant women. But later, statistically significant 

differences in MBL levels between early and late trimesters in diabetics and healthy pregnant 

women were observed (Pertyńska et al., 2009). Women with low plasma MBL level and gene 

polymorphism in MBL2 (G54D) gene have higher risk of developing GDM in second or 

third trimesters of pregnancy when compared to R52C mutation (Megia et al., 2004). 

However, levels of MBL level during different gestational stages of pregnancy have not yet 

been definitively demonstrated in vivo. 

 

Rheumatoid arthritis (RA)  

It is a chronic systemic disease of the joints characterized by the inflammatory changes in the 

synovial membrane, articular structures and atrophy of bones. During pregnancy, MBL 

recognizes/binds to agalactosyl IgG and activates the complement system. By doing so it 

clears the autoantibodies (IgG) and recruitment of inflammatory cells associated with RA. 

Thus, the level of agalactosyl IgG is decreased while galactosylation is believed to improve 

pregnancy associated RA disease condition (van de Gejin et al., 2009). Postpartum decrease 

in IgG galactosylation and MBL leads to outburst of RA disease (Malhotra et al., 1995). The 

study by van de Gejin et al. provided further evidence of the dual function of MBL in 

pregnancy; firstly, on the role of MBL-2 clearing the pathogenic agalactosyl IgG, and 

secondly, its link with the pathogenesis of RA. Despite their relevance in defence 

mechanism, MBL genotype has no association with RA disease activity or modification of 

IgG galactosylation during pregnancy and after delivery (van de Gejin et al., 2011). The 

studies described above outline the delicate role of MBL exerted during pregnancy-associated 
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autoimmune diseases. Their role possibly differs depending on the polymorphism and the 

type of autoimmune disease. 

 

Conclusion 

Collectins and C1q are implicated in the immune-cross talk at the feto-maternal interface. 

Although they appear to increase progressively in the gestational tissues with advancing 

gestational age, their overall role in pregnancy maintenance and parturition, specific 

functions at different gestational age is not yet clear in normal and abnormal pregnancy. 

However, due to their ability to exhibit dual role (protective and detrimental), assigning 

specific role for each protein in pregnancy is difficult. Hence, further investigations are 

required to understand the direct cellular and regulatory roles played by collectins and C1q in 

normal pregnancy. Moreover, events in pregnancy are species-specific; the availability of 

animal models (gene deficient or over expressing) will enable to gain further insight into the 

role of soluble immune proteins in pregnancy.  The presence of SP-A, SP-D and C1q in early 

human decidua offers certain clues to future research aimed at their role in immune tolerance, 

implantation, angiogenesis, trophoblast invasion and tissue remodeling. Apoptosis 

(inflammatory condition) and the removal of apoptotic cells (anti-inflammatory condition) is 

a normal vital process taking place throughout pregnancy.  The role played by collectins and 

C1q in the clearance of the apoptotic cells during trophoblast invasion of early pregnancy and 

during parturition is a novel area for further investigation. Studies on SP-A and SP-D 

polymorphism and structural variants in association with pregnancy need to be investigated. 

Such studies will help us generate new hypothesis to identify key mechanism inducing 

immunotolerance. Evaluating the biological significance of C-type lectins in 

uterine/myometrial contraction, and cervical ripening that triggers contraction will provide us 

great opportunity to develop therapeutic strategies for adverse pregnancies. 
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Figure 1: Participation of SP-A, SP-D, MBL and C1q in pregnancy. Processes denoted in 

black are reported, processes denoted with red asterisks (*) are specific functions of SP-A 

and C1q while this has not been seen with SP-D and MBL, and processes denoted in red are 

not yet known but possible functional properties of soluble defense collagens being expressed 

during pregnancy. 

 

Figure 2: Expression of collectins and C1q in non-pregnant uterus 

 

Figure 3: Expression of collectins and C1q in pregnant uterus 

 

Figure 4: Immunofluorescent triple staining of CK-7, PU.1 and C1q in early human decidua. 

Decidual cells were fixed and permeabilized before incubating with primary and secondary 

antibodies against CK-7, PU.1, C1q or their corresponding control isotype. (A)-(C) Image of 

three different decidual samples showing the immunolocalization of CK-7 (AMCA, blue 

channel), PU.1 (cy3, red channel), and C1q (FITC, green channel), and composite (merge). 

(D) Isotype matched controls. 

 

Figure 5: Expression of SP-A1, SP-A2, SP-D, C1qA, C1qB, C1qC in human decidua. 

Human decidual samples were collected from healthy women undergoing elective 

termination of pregnancy or during labor. Informed and written consent for research 

participation was obtained from each patient through procedures approved by National 

University Health System and National University of Singapore’s Domain Specific Review 

Boards. Results are representative of two independent experiment performed in triplicate. 

Values are shown as mean ± standard error of the mean. 

 

(A) Expression of SP-A1, SP-A2, SP-D, C1q A, C1q B, and C1q C in human decidua 

obtained from women undergoing elective termination of pregnancy during first trimester. 

7+6: 7 weeks and 6 days of gestation; 8+2 : Average of 5 samples of 8
 
weeks and 2 days of 

gestation; 8+6: 8 weeks and 6 days of gestation; 9+0: Average of 2 samples of 9 weeks of 

gestation; 9+2: 9 weeks and 2 days of gestation; 9+5: 9 weeks and 5 days of gestation; 10+3: 

10 weeks and 3 days of gestation.  

 

(B) Expression of SP-A1, SP-A2, SP-D, C1q A, C1q B, and C1q C in human decidua 

obtained from women undergoing elective termination of pregnancy during first trimester and 

from women undergoing labor with a previous history of miscarriages. 8+4 (8 weeks and 4 

days of gestation) with 1 previous miscarriage, 9+4 (9 weeks and 4 days of gestation) with 

RPL with 4 previous miscarriages; 39+1 (39 weeks and 1 day of gestation) had RPL with 2 

previous miscarriages; Caesarean section (CS) with 2 previous miscarriages; lower segment 

caesarean section (LSCS) with 2 previous miscarriages. 

 

Figure 6: Animal studies showing the anti-inflammatory (protective) and pro-inflammatory 

(detrimental) role of SP-A in pregnancy and parturition. 

 

Figure 7: Role of MBL-2 gene polymorphism in preeclampsia via complement system. 
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Table 1: Gene organization and function of SP-A, SP-D, MBL and C1q 

 

 
Gene Chromosome Mol. 

Weight  

(kDa) 

Gly-X-Y 

repeats 

Primary  

Source 

Complement 

activation 

SFTPA 10q21-q24 26-35 23* Lungs No 

SFTPD 10q23-q23 43 59 Lungs No 

MBL 10q11.2-q21 28-32 19* Liver Yes 

C1q 1p34.1-1p36.3 32-40 23*  Liver Yes 

 

* Interrupted triplets by kink (no.). SP-A : GEMPCPP (13); MBL: GGTGQ (8); C1q A:GIRT 

(10); C1q C: GIPAIK (11). 

 

 

Table 2: Tissue distribution of SP-A, SP-D, MBL and C1q in gestational and non-gestational 

tissues 

 
Proteins Non gestational tissues Gestational tissues 

SP-A Lungs: alveolar type II cells, Clara 

cells, trachea, mesothelial tissues, 

synovial cells, gastrointestinal tract, 

pancreas, thymus, small intestine, 

colon, peritoneal wall, bile 

Amniotic fluid, amniotic epithelial cells, 

vaginal epithelium, vaginal lavage, uterus, 

ovary, amnion, chorion, fetal membrane, 

decidua, decidual stromal cells, trophoblast, 

placenta, placental villi,  

SP-D Lungs: alveolar type II cells, Clara 

cells, trachea, mesothelial tissues, 

synovial cells, gastrointestinal tract, 

pancreas, small intestine, brain, 

salivary gland, heart, kidney 

Amniotic fluid, amniotic epithelial cells, 

vagina, uterus, ovary, oviduct, fallopian tube, 

endometrium, fetal membrane, placenta,  

decidua, trophoblast, decidual stromal cells, 

placental villi,  

MBL Liver: hepatocytes, monocyte-derived 

dendritic cells; Kidney, Small 

intestine: epithelial cells, lymphoid and 

non- lymphoid organs and tissues 

Amniotic fluid, vaginal epithelial cells 

C1q Liver, monocytes, macrophages, 

epithelial cells, mesenchymal cells, 

dendritic cells, microglial cells, 

fibroblasts. 

Placenta, Fetal vessels, spiral arteries, 

trophoblasts, decidual stromal cells, decidual 

endothelial cells 

 

     

Table 3: Levels of SP-A, SP-D, MBL and C1q in amniotic fluid during mid and term 

pregnancy 
 

Proteins Amniotic fluid 

      Mid pregnancy Term pregnancy  

SP-A Not expressed 30-31
st
 week: 3 μg/ml   

40-41
st
 week: 24 µg/ml  

39
th

 week : 4978 µg/ml  

Term no labor : 2.2-15 µg/ml   

Term with labor: 1.2-10 µg/ml  

SP-D 14-16
th

 week: 0.11 µg/ml  38
th

 and 42
nd

 week: 26.3 µg/ml  

39
th

 week: 793 µg/ml  

MBL     Not known  Before 35
th

 week: 304 µg/ml  

After 35
th

 week: 1070 µg/ml 

C1q     Not known Less than 0.5 µg/ml  
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Figure 1: Madhukaran et al 
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Figure 2: Madhukaran et al 
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Figure 3: Madhukaran et al 
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Figure 4: Madhukaran et al 
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Figure 5A: Madhukaran et al 
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Figure 5B: Madhukaran et al 
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Figure 6: Madhukaran et al 
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Figure 7: Madhukaran et al 


