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Abstract

Gold immunochromatographic strip (GICS) has become a popular membrane-based diagnostic tool in a variety
of settings due to its sensitivity, simplicity and rapidness. This paper aims to develop a framework of automatic
image inspection to further improve the sensitivity as wellas the quantitative performance of the GICS systems.
As one of the latest methodologies in machine learning, the deep belief network (DBN) is applied, for the first
time, to quantitative analysis of GICS images with hope to segment the test and control lines with a high accuracy.
It is remarkable that the exploited DBN is capable of simultaneously learning three proposed features including
intensity, distance and difference to distinguish the testand control lines from the region of interest that are obtained
by pre-processing the GICS images. Several indices are proposed to evaluate the proposed method. The experiment
results show the feasibility and effectiveness of the DBN inthe sense that it provides a robust image processing
methodology for quantitative analysis of GICS.

Index Terms

Gold immunochromatographic strip; deep belief networks (DBNs); restricted Boltzmann machine (RBM);
quantitative analysis; image segmentation.

I. INTRODUCTION

Deep belief network (DBN), proposed by Hinton [8] in 2006, isan extensively studied and widely
used deep learning model. It is remarkable that the deep learning model is a biologically inspired model
which mimics the layered structure of the cortex [30]. Essentially, DBN is a greedy and multi-layer
formed learning model combined by a stack of restricted Boltzmann machines (RBMs). Unlike other
multi-layer and nonlinear models, the distinct merit of DBNis its capability of obtaining the states of
hidden layers units by one forward pass. In the last few years, DBN has drawn increasing research attention
in many application fields such as recognition, signal and information processing, image processing and
classification [6], [9], [19], [20], [26], [30], [33]. Therefore, we propose to use the DBN approach for
quantitative analysis of a gold immunochromatographic strip.

Gold immunochromatographic strip (GICS), labeled with thecolloidal gold nanoparticle, is on the basis
of an immunochromatographic process that utilizes the highspecificity of antigen-antibody reaction and
provides rapid determination of target analyte. In the pastdecade, the GICS has been extensively studied
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and widely applied to the biomedical and related areas for determination of analytes in specimens due to its
fascinating advantages including short assay time, ease ofuse, good specificity and satisfactory stability
[21], [24], [32]. Up to now, a variety of material-selection-based approaches have been introduced by
biochemical researchers to enhance the quantification performance of GICS, see e.g. [12], [14], [27]). On
the other hand, it should be highlighted that the research onmodeling the biochemical reactions of GICS
with aim to optimize assay performance has stirred considerable research interest, see e.g. [22], [23],
[37]–[39], [41], [42], [44]. A focus of research in this areahas been on how to exploit the quantitative
instruments of GICS for more sensitive and quantitative performance, see [1], [5], [11], [13], [15], [16],
[25], [40], [43] and the references therein.

Among many available detection schemes for quantitative instruments developed throughout the years,
the most frequently used methods rely on the reflectance photometers to obtain the GICS signals, see
e.g. [5], [11], [16]. At the same time, there has been a growing research interest in the development
of image-basedinstruments for GICS, see e.g. [1], [13], [15], [25], [40], [43]. The critical design
specification for image-based system is the image processing technology whose significance has now
been well recognized in the bioinformatics community. In particular, it is of vital importance to look
for an efficient image segmentation method to accurately distinguish the test and control lines from
the GICS image. In recent years, a number of methods have beenintroduced to achieve the goal of
segmenting the test and control lines of GICS images. Some typical methods include the Otsu threshold
segmentation approach, the fuzzy c-means (FCM) clusteringmethod and the cellular neural network
(CNN) [1], [15], [25], [40], [43]. A common limitation yet a major challenge for these methods, however,
is that the acquired GICS image usually involves unavoidable noises caused by various factors including
temperature, humidity, colloidal gold and non-uniform permeation of specimens. Also, it is often difficult
to ensure the accuracy for images of low concentration wherethe noises take a great proportion and the
signal-noise-ratio is therefore small (i.e. the intensities of some background noises are much higher than
the signals) [43]. To address these issues, we propose to usethe recently developed deep belief network
(DBN) algorithm, a state-of-the-art machine learning technique, for the GICS image segmentation in this
paper.

It should be mentioned that it is a challenging task to process the GICS images due to their inherent
features outlined as follows. First, in order to enhance theefficiency, we just concentrate on the region
of interest with the test and control lines immobilized on the strip. Therefore, the obtained GICS images
should be pre-processed to acquire the region of interest via some commonly used image segmentation
operators. Second, both lines in the reading window might become blurred, uncertain and mixed with
the background since they are generally made/smeared via a roller in a non-uniform manner. In addition,
when the sample to be detected (such as urine, blood, serum) flows over the membrane, some interference
noises are inevitable on the detection window of strip [43].In order to overcome the challenges mentioned
above, we intend to establish a DBN-based framework for quantitative analysis of the GICS by accurately
extracting the test and control lines from the acquired GICSimages.

The main novelty of our work is primarily twofold.1) A new framework of automatic image inspection
is established to solve the problems in the quantitative evaluation of gold immunochromatographic strip,
where the DBN algorithm is applied to accurately extract thetest and control lines. 2) By learning three
features including intensity, distance and difference, the presented DBN can distinguish the test and control
lines from the region of interest that is obtained by pre-processing the GICS images. It is shown from the
experiment results that the proposed method provides high accuracy in terms of the performance of the
segmentation, the feature parameter, the fitting line and the peak signal-to-noise ratio.

The remainder of this paper is organized as follows. In Section II, the gold immunochromatographic
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strip assay and the problem formulation are presented. Section III provides a detailed introduction on the
restricted Boltzmann machine, the deep belief networks, aswell as the applications in the segmentation
of GICS images. Section IV mainly discusses the performanceof image segmentation via the deep
belief network and also evaluates its overall performance in terms of some well-defined criteria. Finally,
conclusions are drawn in Section V.

II. THE GOLD IMMUNOCHROMATOGRAPHIC STRIP IMAGE AND PROBLEM FORMULATION

Gold immunochromatographic strip, which is labeled with the colloidal gold nanoparticle, is on the
basis of an immunochromatographic process that utilizes the high specificity of antigen-antibody reaction
and provides rapid determination of target analyte. The GICS, as shown in Fig. 1, is formed by a variety
of constituents including a sample pad, a conjugate pad, an absorbent pad, and a nitrocellulose membrane
on which the reaction occurs. There are generally two formats of GICS, namely, sandwich and competitive
formats. Here, we only discuss the sandwich format which uses two antibodies to bind the analyte in
between. With the presence of an antigen in the sample, a sandwich-type compound is formed between
the labeled antibody and the antibody immobilized on the membrane. After that, the red or purple red
color caused by the accumulation of gold nanoparticle at thetest and the control lines would appear on the
membrane. Particularly, the signal intensity of the test line is directly related to the concentration of the
target analyte in the samples. Therefore, the concentration of the target analyte can be assessed visually
or by a reader system forquantitativeanalysis by monitoring the signal of the sandwich-type compound
on the test line [37]–[39].
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Fig. 1. The schematic structure of the gold immunochromatographicstrip

In this paper, the human chorionic gonadotropin (hCG) is selected as the target analyte in experiments. It
is of great significance to quantitatively determine the concentration of hCG that can be used as indicators
of a number of diseases such as ectopic pregnancy differentiation and fetal Down syndrome screening. In
particular, ten different concentrations of hCG have been added into GICS strips in the experiments and,
therefore, we can capture GICS images at the fixed time pointsas shown in Fig. 2.

Remark 1:As discussed in the introduction, there are essential difficulties in processing the GICS image
because of 1) an additional step of pre-processing introduced to acquire the region of interest through
commonly used image segmentation operators; 2) the blurriness of the test and control lines resulting
from their production process; and 3) the interference noises existing on the detection window of strip.
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It is, therefore, the main objective of this paper to overcome the difficulties identified above by launching
a quantitative analysis on the GICS via accurately segmenting the test and control lines from the acquired
GICS images.
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Fig. 2. Images of GICS with different concentrations(from the leftside: 0, 10, 35, 75, 100, 150, 200, 300, 400, 500mIU/ml).

III. D EEP BELIEF NETWORKS FORQUANTITATIVE ANALYSIS OF THE GICS

In this section, we introduce the restricted Boltzmann machine and the deep belief networks (see e.g. [8],
[9], [20], [26], [33] for more details), which will be applied to the GICS image segmentation when learning
features to distinguish the test and control lines.

A. Restricted Boltzmann Machine

The restricted Boltzmann machine (RBM) [8], as shown in Fig.3, is a bipartite graph in which visible
units v are linked to hidden unitsh through undirected weighted connections. In general, visible units
represent observations, and hidden units tend to representfeatures. A special characteristic of RBM is
that there are no connections in any two visible units and also any two hidden units. Due to different
situations, there are two types of RBMs, namely, Bernoulli-Bernoulli RBM with binary visible and hidden
units, and Gaussian-Bernoulli RBM where hidden units are binary but the visible units are linear with
Gaussian noise.

h1 h2 h3 hn

v1 v2 v3 v4 vm

h

v

w

Fig. 3. Schematic diagram of RBM.

In an RBM, the joint probability distribution of visible andhidden unitsp(v, h|θ) is defined by the
energy function. For a given state(v, h), the energy function of Bernoulli-Bernoulli RBM is [8]:

E(v, h|θ) = −

m
∑

i=1

n
∑

j=1

wijvihj −

m
∑

i=1

bivi −

n
∑

j=1

ajhj (1)

whereθ = (w, b, a) denotes the unknown model parameter,wij is the connection weight betweenvi and
hj , andbi andaj are their biases, respectively.m andn represent the numbers of visible and hidden units.
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As such, based on the energy function, the joint probabilitydistributionp(v, h|θ) is given as follows:

p(v, h|θ) =
e−E(v,h|θ)

Z(θ)
(2)

whereZ(θ) =
∑

v,h

e−E(v,h|θ) represents the normalization factor or the partition function. Then, the marginal

probability with which the model assigns to a visible vectorv (also called likelihood function) is given
by:

p(v|θ) =

∑

h

e−E(v,h|θ)

Z(θ)
(3)

Because there are no connections in any two visible units andalso any two hidden units, the conditional
probabilitiesp(h|v, θ) andp(v|h, θ) are factorial and can be calculated by:

p(hj = 1|v, θ) = σ(
m
∑

i=1

wijvi + aj) (4)

p(vi = 1|h, θ) = σ(
n

∑

j=1

wijhj + bi) (5)

whereσ(x) = (1 + e−x)−1.
The purpose of iteration in RBM is to find an appropriate parameterθ = (w, b, a) so as to fit the given

training data. Actually,θ = (w, b, a) can be computed via maximizing the log likelihood function in the
given training data (T denotes the size of the training data):

θ∗ = arg max
θ

T
∑

t=1

ln p(v(t)|θ) (6)

According to the contrastive divergence (CD) algorithm proposed by Hinton [7], the update rules are
given as follows:

∆wij = ǫ(〈vihj〉data− 〈vihj〉recon) (7)

∆bi = ǫ(〈vi〉data− 〈vi〉recon) (8)

∆aj = ǫ(〈hj〉data− 〈hj〉recon) (9)

whereǫ is the learning rate,〈·〉data means the expectation of distribution defined by the training data, and
〈·〉recon represents the expectation of distribution defined by the reconstruction model.

Similarly, the energy function of Gaussian-Bernoulli RBM is:

E(v, h|θ) =

m
∑

i=1

(vi − bi)
2

2
−

m
∑

i=1

n
∑

j=1

wijvihj −

n
∑

j=1

ajhj (10)

and the corresponding conditional probabilities can be computed as follows:

p(hj = 1|v, θ) = σ(
m
∑

i=1

wijvi + aj) (11)

p(vi|h, θ) = N(

n
∑

j=1

wijhj + bi, 1) (12)

whereN(µ, δ) represents a Gaussian distribution with meanµ and varianceδ.
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B. Deep Belief Network

Deep Belief Network (DBN) was proposed by Hinton [8] in 2006 and, since then, DBN has been
extensively investigated and widely employed in both theory and applications of various deep learning
tasks. As shown in Fig. 4, the DBN is a neural network constructed from multi-layer RBM and one-layer
Backpropagation (BP). DBN is actually a greedy and multi-layer-formed learning model combined with a
stack of RBMs. A distinguishing feature of the DBN is its capability of obtaining states of hidden layers
units by one forward pass. In the course of training a DBN, thefirst step is the so-called pre-training that
stacks a lot of RBMs layer by layer in a bottom-up manner. Oncethe parameters of the lower-layer RBM
are determined by learning, the vectors of hidden feature activations can be utilized as the input of visible
units for the higher-layer RBM. Then, in the fine-tuning stage, the error back propagation approach is
utilized to adjust the weights of whole network.

RBM1

RBM2

RBM3

BP

x

h
(1)

h
(2)

h
(3)

Output Layer

w
(4)

w
(3)

w
(2)

w
(1)

Error

Expected Lables

Fine-turning

Fine-turning

Fine-turning

Fine-turning

E
ro

o
r

B
ac

k
p
ro

p
ag

at
io

n

Fig. 4. Schematic diagram of a DBN.

For theith node of the output layer, we suppose that the actual outputis oi and the expected output is
di. The sensitivityδi can be calculated by:

δi = oi(1− oi)(di − oi) (13)

For thelth hidden layer, lettingyi be the output ofith node, the sensitivityδi can be conducted according
to

δli = yli(1− yli)
∑

j

wl
ijδ

l+1
j (14)

and, finally, the weights of DBN are updated by:

wl
ij = wl

ij + εfine-tuningy
l
iδ

l+1
j (15)

blj = blj + εfine-tuningδ
l+1
j (16)
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C. Process of GICS Image via Deep Belief Networks

In this section, we introduce the process of GICS image via the deep belief network. The flowchart of
the DBN-based GICS image segmentation is shown in Fig. 5 and our aim is to learn features to distinguish
the test and control lines from the acquired strip images.

Training images

ROI

extraction

Intensity

feature

Difference 

feature

DBN

Test images

Pre-

processing

+

Feature

extraction

DBN

Segmentation

resutlt

Classification

Train the

 network

TRAINING

TESTING

Distance

feature

Input

Pre-

processing

Fig. 5. Flowchart of the DBN-based GICS image segmentation.

The main objective of segmenting the GICS image is to determine whether pixels in the image belong to
the test line or the control line and, therefore, it can be regarded as a classification problem. In general, the
size and pixel numbers of the images acquired from strip are slightly different, and this is not conducive
to the image processing. Therefore, the acquired images should be pre-processed at first so as to extract
region of interest (ROI) with the fixed size. The selection ofthe input feature is particularly important for
the DBN as it plays a key role in the performance of classification. In this paper, each pixel in the image
is treated as a sample, andthree factorshave been taken into account for selecting the input featureof
DBN.

First of all, the gray intensity of pixels in the neighborhood should be considered since the intensity
of test and control lines are generally larger than the surrounding areas. If the square window size is set
as winsize, a vector with sizewinsize ∗ winsize can be obtained. For pixels near the image border,
we use the mirroring method [26] to obtain intensity values of regions inside the window but beyond
the image border. However, as is well known, with the analyteconcentration increasing, the color in test
and control lines will deepen, while the corresponding intensity values of pixels will decrease. Based on
this observation, we introduce two input features, one is the distance feature that represents the distance
to the center, and the other is the difference feature that represents the difference of intensity values
between two lines and the background. By doing so, the DBN approach can perform well even when
analyte concentration is at a low level. It should be noted here that all input features of DBN should be
normalized.

In the training stage, three features are utilized as the input of the visible layer of the first RBM.
After training layer by layer, the correlation of input datain time and space is mapped to hidden layers
successively. Particularly, the batch method is exploitedto update the weights so as to speed up the training
rate. In the prediction process, the classification resultscan be calculated by forward propagation of the
trained DBN.
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IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. DBN for GICS Image Segmentation Results

Considering the distinguished features of the GICS images,we divide the extracted ROI into two parts
for segmenting in order to reduce the complexity of algorithm and avoid unnecessary calculations. One
part consists of the control line and corresponding background, while the other part consists of the test
line and its background. Based on the DBN approach mentionedabove, all parameters of the DBN have
been fixed for all experiments. Firstly, we find that the performance of segmentation is best when the
network has two RBM layers and each layer has100 hidden nodes. Next, we set the learning rate as1 in
the pre-training stage as well as the fine-tuning state, and the mini-batch sizes for both stages are set as
100 and 50 respectively. Finally, the number of iteration is set as20 because the classification accuracy
tends to stable after that.

As for the training sample, we use18 images with different level of analyte concentrations (from low to
high). The window sizewinsize is 13 and the dimension of input data is thus171. The extracted region
of interest (ROI) is selected as50 ∗ 90 in each image and, accordingly, the number of training sample is
18 ∗ 50 ∗ 90.

For the purpose of showing the performance of segmentation comprehensively, we choose different
level of analyte concentrations as testing sample. Three typical simulation results by using DBN approach
for segmenting the GICS images are shown in Fig. 6 when the concentrations of the target analyte are,
respectively, 75ml, 200ml and 500ml. Furthermore, the classification accuracy of all testing images are
listed in Table. I

(a)

75
m

l

(b)

(c)

20
0m

l

(d)

(e)

50
0m

l

(f)

Fig. 6. Three typical simulation results of DBN approach for segmenting the GICS images. Left column: Simulation results
of extracted ROI; Right column: Simulation results of DBN approach for segmenting the GICS images.

From Fig. 6, we can see that the DBN approach provides a robustmethod for accurately extracting both
lines from the GICS images with different concentrations ofthe target analyte. Especially, the concentration
of specimens in the GICS images can be low, middle or high. It can also be verified from Table. I that the
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TABLE I
THE CLASSIFICATION ACCURACY OF ALL TESTING IMAGES

Concentration Control line error ratio (%) Test line error ratio (%) Total accuracy ratio (%)
35ml 3.18 3.69 96.565
75ml 0.56 2.00 98.720
100ml 0.29 4.80 97.455
150ml 0.76 1.73 98.755
200ml 3.47 1.93 97.300
300ml 1.62 4.96 96.710
400ml 2.00 2.62 97.690
500ml 1.22 0.27 99.255

Average 1.64 2.75 97.805

DBN method in this paper has a satisfactory performance in image segmentation with high classification
accuracy. Therefore, the DBN has proven to be a novel approach for quantitative analysis of GICS systems.

B. Feature Calculation and Line Fitting

For the purpose of quantification, a feature parameter should be exploited to interpret the concentration
of the specimens. According to the Lambert-Beer law, a feature parameter named relative integral optical
density (RIOD) [15] is presented to evaluate the concentration of target analyte. TheRIOD is given as
follows:

RIOD =
IODT

IODC

=

N
∑

i=1

lg G0

GT
i

M
∑

j=1

lg G0

GC
j

(17)

whereIOD is the abbreviation for integral optical density, andIODT and IODC denote theIOD of
the test and control lines, respectively.GT andGC describe the gray intensity of pixels on the test and
control lines, respectively.G0 represents the mean gray intensity of the reading window area.

As shown in Fig. 7, a straight line is fitted for describing therelationship between the concentration and
theRIOD via the least square approach. Especially, the horizontal axis stands for the hCG concentrations,
while the y-coordinate denotes the corresponding value ofRIOD which is calculated according to Eq. (17).

It is obvious that theRIOD and the hCG concentration have good corresponding relationships by
the presented DBN approach and the adaptive cellular neuralnetwork (CNN) [40] from the Fig. 7. The
correlation coefficient of the presented DBN approach is 0.97681, while the correlation coefficient of the
adaptive CNN is 0.9689. Therefore, the presented DBN approach opens up a new way of image-based
method for quantitative analysis of GICS system.

C. Quantitative Evaluation

In this part, a well-defined quality criterion called the peak signal-to-noise ratio (PSNR) [36] is
exploited to quantify the segmentation performance of DBN method for GICS images, and also verify the
effectiveness of the test and control lines in this study. Ingeneral, the PSNR is viewed as a measurement
of peak error. In order to calculate the PSNR, the presented DBN approach firstly generates a binary mask
which classifies the pixels of GICS image as two types, one is classified as the signal (test or control
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Fig. 7. The fitted line between the concentration hCG specimens and theRIOD via the least square approach.

line, assigned to 1) and the other belongs to the background (assigned to 0). After that, the PSNR can be
calculated as follows:

PSNR = 10 log
[ R2

MSE

]

(18)

whereR stands for the maximum range of the image data type. For example, R equals to 1 when the
data type of input image is double-precision floating-point, andR equals to 255 when the data type is an
8-bit unsigned integer, etc. MSE denotes the cumulative squared error between the binary maskI1 and
the normalized original imageI2, which can be obtained by:

MSE =

∑

M,N

[I1(m,n)− I2(m,n)]2

M ×N
(19)

whereM andN represent the numbers of rows and columns in the input images, respectively.
As an important performance indicator, the PSNR describes the ratio of the signal’s peak value over

the magnitude of the background noise. Generally, we prefera larger PSNR value since the binary spot
mask in this way fits better with the raw image surface [36]. Fig. 8 shows the PSNR values of DBN
method utilized for segmenting GICS images of 8 different concentrations of hCG. It is obvious that the
DBN method possesses good performance of segmentation, which provides higher accuracy than the other
existing methods for segmenting the GICS images shown in the[43].

V. CONCLUSIONS

In this paper, we have developed a novel approach to quantitative analysis of a gold immunochromato-
graphic strip (GICS) using deep belief network (DBN) in order to enhance the robustness when accurately
segmenting the test and control lines from the GICS images. Three features (including intensity, distance
and difference) have been proposed for the DBN method to learn in order to successfully distinguish the
test and control lines from the region of interest that is obtained by pre-processing the GICS images.
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Fig. 8. The PSNR comparison of segmenting images.

Experiments have been carried out on different concentrations of hCG images. Furthermore, several
indices have also been proposed to verify the presented DBN method and demonstrate that the DBN
approach indeed gives high accuracy. Future research directions would include the modification of DBNs
via adopting adaptively control strategies (e.g. [2]–[4],[10], [17], [18], [28], [29], [34], [35]) so as to further
improve the performance of DBNs, and also developing more advanced image segmentation methods (e.g.
[31], [45]) for quantitative analysis of a GICS.
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