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Abstract

Factorial Gaussian graphical Models (fGGMs) have recently been pro-
posed for inferring dynamic gene regulatory networks from genomic high-
throughput data. In the search for true regulatory relationships amongst the
vast space of possible networks, these models allow the imposition of cer-
tain restrictions on the dynamic nature of these relationships, such as Markov
dependencies of low order – some entries of the precision matrix are a pri-
ori zeros – or equal dependency strengths across time lags – some entries
of the precision matrix are assumed to be equal. The precision matrix is
then estimated by l1-penalised maximum likelihood, imposing a further con-
straint on the absolute value of its entries, which results in sparse networks.
Selecting the optimal sparsity level is a major challenge for this type of ap-
proaches. In this paper, we evaluate the performance of a number of model
selection criteria for fGGMs by means of two simulated regulatory networks
from realistic biological processes. The analysis reveals a good performance
of fGGMs in comparison with other methods for inferring dynamic networks
and of the KLCV criterion in particular for model selection. Finally, we
present an application on a high-resolution time-course microarray data from
the Neisseria meningitidis bacterium, a causative agent of life-threatening
infections such as meningitis. The methodology described in this paper is
implemented in the R package sglasso, freely available at CRAN, http:
//CRAN.R-project.org/package=sglasso.
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1 Introduction
Networks are an important paradigm to describe genomic processes. The gene-
regulatory system, for example, is a complex and dynamic process with many po-
tential and continuously interacting components. Networks untangle this system
in two constituting parts, namely substrates and functional dynamic relationships
between those substrates. Decreasing costs of genomic measurement technologies
have made it possible to observe genomic systems at high temporal resolutions.
This enables investigating organisms different from typical model organisms. In
this paper, we focus on the gene-regulatory system of Neisseria meningitidis. This
bacterium is often referred to as meningococcus and can cause meningitis (Ryan
et al., 2010). Neisseria meningitidis is a major cause of illness and death dur-
ing childhood in industrialized countries and has been responsible for epidemics
in Africa and in Asia (Genco et al., 2010).

One important direction in systems biology is to discover gene regulatory
networks from transcriptional data based on the observed mRNA levels of large
numbers of genes. The main goal of gene transcription is the production of mRNA
that is translated by ribosomes to make proteins. Each mRNA can be translated
several times by a ribosome in order to make proteins. This is done until mRNA
reaches the end of its life-span. The network of gene regulation can be very com-
plex, with one regulatory protein controlling genes that produce other regulators
that in turn control other genes. Gene regulatory network models can be represented
as directed or undirected graphs, where nodes are the elements, such as DNA, RNA
or proteins, and the directed or undirected edges from one node to another rep-
resent the corresponding interaction, such as activation, repression or translation.
The process is inherently dynamic, so time-course expression experiments using
microarray or RNA-seq technologies are often conducted to infer temporal interac-
tions between genes.

Dynamic Bayesian network models (Grzegorczyk and Husmeier, 2011) have
been proposed to model gene-regulatory networks for circadian regulation (Ader-
hold et al., 2014). The computational complexity of such models prevents their use
in an exploratory setting. Simpler and faster approaches have been developed for
large scale networks, such as Rhein and Strimmer (2007). Recent works on Gaus-
sian Graphical Models (GGM) constrained with the `1-penalty function(Meinshausen
and Bühlmann, 2006; Friedman et al., 2008) have spurred new developments in fast
methods for large genomic network structure learning (Abegaz and Wit, 2013).
Most inference methods of graphical models do not allow for borrowing strength
across edges. Dynamic networks, however, naturally suggest various forms of “net-
work persistence”, which can improve network identification, particularly in the
case of small samples. The factorial Gaussian graphical model (fGGM) of Wit and



Abbruzzo (2015) is developed to this aim and is the modelling framework that we
consider in this paper.

One of the bottlenecks in current network identification methods is the issue
of model selection in such penalized graphical models. Although some knowledge
exist on the optimal asymptotic regime of the tuning parameter (Bühlmann and Van
De Geer, 2011), little is known for small numbers of observations. Foygel and Dr-
ton (2010) proposed an extended BIC for graphical models, which has nice asymp-
totic consistency properties, but unknown behaviour for small samples. Liu et al.
(2010) developed a stability selection method for model identification by means
of resampling, which is particularly suitable for moderate numbers of variables.
However, for a small number of samples the method is rather unstable, whereas for
slightly larger number of variables, it becomes computationally expensive.

In this paper, we address these issues in the more general context of penal-
ized GGM with generic symmetry restrictions on the entries of the concentration
matrix (Højsgaard and Lauritzen, 2008). The fGGM can be seen as a special case
of this new class of graphical model. In Section 2, we briefly review the fGGM
and introduce the `1-penalized estimator of a GGM with symmetry restrictions. We
derive the asymptotic properties of this estimator and discuss the computational
aspects of the estimation, for which we propose a new cyclic coordinate descent
algorithm. In Section 3, we review the available model selection criteria for this
class of models. We propose a suitably re-scaled version of the KLCV criterion of
(Vujačić et al., 2015) and a new criterion inspired by the covariance penalty theory
of (Efron, 1986, 2004). The model selection criteria are evaluated on simulated
data from two realistic biological scenarios and compared with existing ones. Fi-
nally, in Section 4, we apply the proposed methodologies to the inference of the
underlying dynamic regulatory network in Neisseria meningitidis.

2 Gene regulatory network model

2.1 Factorial Gaussian graphical model

The fGGM (Wit and Abbruzzo, 2015) is suitable for modeling longitudinal mul-
tivariate data observed at T time points. For example, we may be interested in
understanding how the system of interactions among several genomic components
evolves in response to environmental or internal stimuli. Let Yt = (Y t

1 , . . . ,Y
t
p)
> be a

p-dimensional random variable at time point t and assume that the T p-dimensional
random vector Y = (Y>1 , . . . ,Y>T )> follows a multivariate normal distribution with
zero expectation and covariance matrix Σ. Under this setting the concentration ma-



Table 1: Some equality constrains on the elements of the submatrices Θt(t+h) usable
to specify the fGGM model.

self-self cond. dependence at lag h network cond. dependence at lag h

i. θ th
ii = 0 zero effect i. θ th

i j = 0 zero effect
ii. θ th

ii = sh constant effect ii. θ th
i j = nh constant effect

iii. θ th
ii = sth time effect iii. θ th

i j = nth time effect
iv. θ th

ii = sh
i unit effect iv. θ th

i j = nh
i j unit effect

v. θ th
ii = sth

i interaction effect v. θ th
i j = nth

i j interaction effect

trix, i.e. Θ = Σ−1, admits the following natural block decomposition,

Θ =


Θ11 Θ12 . . . Θ1T
Θ>12 Θ22 . . . Θ2T

...
... . . . ...

Θ>1T Θ>2T . . . ΘT T

 , (1)

where Θtt gives information about the conditional dependence structure among the
p random variables at the time t, and Θt(t+h) gives information about the conditional
dependence structure between Yt and Yt+h. The fGGM model is based on a natu-
ral interpretation of the elements of the submatrices Θt(t+h) = (θ th

i j ); the diagonal
elements θ th

ii are called self-self conditional dependences at temporal lag h and rep-
resent the (negative) self-similarity of a given random variable across different time
points. The off-diagonal elements θ th

i j are the conditional dependencies among the
p random variables with time lag h. Similarly to the factorial analysis of variance
model, the fGGM is totally specified by imposing a set of equality constraints to
the elements of Θ. Table 1 reports some of the possible restrictions that the applied
researcher may use to specify Θt(t+h) in the context of dynamic networks. Other
kinds of restrictions can also be used depending on the researcher’s objectives. The
algorithm that we propose in Section 2.4, is developed for estimating structured
penalized concentration matrices with generic linear equality constraints.

From a modelling point of view, these symmetric restrictions have two im-
portant consequences. First, we gain a better comprehension of the dynamic condi-
tional dependence structure among the p underlying substrates. Second, we obtain
a more parsimonious representation of the model reducing the total number of pa-
rameters that we need to estimate. To gain more insight, let us consider a simple
example in which we have only two time points. In this case the block structure (1)



Time1

Time 2v11 v21

v31 v41

v12 v22

v32 v42

Figure 1: Example of a fGGM with four vertices measured across two time points

is equal to

Θ =

(
Θ11 Θ12
Θ>12 Θ22

)
.

The graphs associated to the diagonal submatrices Θ11 and Θ22, denoted as Gtt =
(V,Ett) where V = {1, . . . , p} and Ett = {(i, j) | θ t0

i j 6= 0}, give us information about
the conditional independence structure among the p random variables at the t-th
time point. The graph G12 = (V ×V,E12), where E12 = {(i, j) | θ 11

i j 6= 0} provides
information about the conditional dependence between Y 1

i and Y 2
j . Figure 1 shows

a fGGM specified using time effects for the self-self conditional effects at lag zero
and constant effect for the conditional dependence at lag zero. Graph G12 is mod-
eled using a constant effect for the self-self conditional effects at lag one and zero
effect for the conditional dependence. The fGGM can be seen as a special case of
the model proposed in Højsgaard and Lauritzen (2008), which is a Gaussian graph-
ical model with generic symmetric restrictions on the elements of the concentration
matrix.

2.2 `1-penalized GGM with symmetry restrictions

In the previous section, we defined an important class of graphical models by con-
sidering specific equality constraints on the concentration matrix. These constraints
lead to a considerable reduction in the number of parameters to be estimated. How-
ever, dynamic genetic graphs are usually sparse, which means that few vertices will
be connected. For this reason we focus our statistical inference on the maximum
likelihood estimation subject to an `1-norm penalty on the concentration matrix to
induce sparsity. The advantage of the `1-norm is that it is the only convex `q norm



that induces sparsity. Exact zeros will be induced for q ≤ 1 only, while the opti-
mization problem is convex for q≥ 1, which makes it feasible for high-dimensional
problems (Banerjee et al., 2008).

We now describe the statistical inference for sparse Gaussian graphical mod-
els with generic equality constraints on the concentration matrix. This class of
model contains, as special cases, the `1-penalized Gaussian graphical models, ob-
tained when no restrictions are imposed on the concentration matrix, and the fGGM
previously described. Following the approach proposed in Højsgaard and Lauritzen
(2008), the GGM with symmetry restrictions is defined specifying the concentration
matrix as follow

Θ =
M

∑
m=1

θmTm, (2)

where Θ is a matrix of dimension K ×K, with K = pT , and θm, m = 1, . . . ,M,
are the model parameters (e.g. M = 1 if all the free parameters in the matrix are
set to be equal) and Tm = (tm

i j ) are matrices with entries tm
i j equal to zero or one,

identifying the location of the θm parameters in the precision matrix. To gain more
insight into the restriction (2), we consider the following simple example. Suppose
that we have two genes and two time points, i.e. K = 4, and that the concentration
matrix is specified as follows

Θ = θ1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+θ2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+θ3


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

=

= θ1T1 +θ2T2 +θ3T3.

In other words, we are modeling the two submatrices at lag zero, i.e. Θ11 and Θ22,
in the same way: constant effect for both diagonal and off-diagonal entries. These
equality constraints are introduced in our model by T1 and T2. The sub matrix
at lag one is modeled using the constant effect for the diagonal entries and the
zero effect for the off-diagonal entries. This equality constraint is specified by T3.
The specification (2) shows that the restricted concentration matrix lies in a linear
subspace of the space of the symmetric positive-definite matrices. Denoting by S
the empirical covariance matrix, the log-likelihood function can be written as

`(θ) =
N
2
{rT

θ −b(θ)}, (3)

where r = (r1, . . . ,rM)T , rm =−tr (STm), θ = (θ1, . . . ,θM), b(θ) =− log |Θ| and N
is the sample size. Using expression (3) the proposed `1-penalized estimator can be



formally defined as

θ̂
ρ = argmaxθ `(θ)−ρ

M

∑
m=1

wm|θm|, (4)

where wm = ∑i j tm
i j are fixed weights used to consider the effects coming from the

number of non-zero entries in each matrix Tm. As a consequence of the restric-
tion (2), we have that Θ̂ρ = ∑

M
m=1 θ̂

ρ
mTm. In the following of this paper we call the

estimator (4) the structured graphical lasso (sglasso) in order to emphasize that it
is equal to a graphical lasso estimator applied to estimate the structured precision
matrix (2).

2.3 Asymptotic properties

In this section, we study the asymptotic behaviour of the proposed estimator (4).
Before dealing with the technical details, we fix the necessary notation. First of all,
in this section we shall drop the dependence of the estimator on the tuning parameter
ρ . Furthermore, the true parameter vector is denoted by θ ? and the corresponding
concentration and covariance matrices are denoted as Θ? and Σ?, respectively. By
S = {m : θ ?

m 6= 0} we denote the set of indices identifying the true parameters
different from zero and we let s = ∑m∈S wm. The set of M equality constraints
used in definition (2) can be divided into two disjoint subsets denoted as D and
O. The first one contains the indices identifying the equality constraints on the
diagonal entries of the matrix Θ, i.e. n ∈ D if and only if Tn is a diagonal matrix.
The set O contains the remaining indices, formally m ∈ O if and only if Tm is not
a diagonal matrix. For each n ∈ D we define the set Vn = {i : tn

ii = 1}. It easy to
see that the cardinality of the set Vn is equal to wn and that K = ∑n∈D wn. In the
same way, for each m ∈ O we define the sets Em = {(i, j) : tm

i j = 1} and Vm = {i :
exists a j such that (i, j) ∈ Em}. Finally, we let K = maxn∈D wn∨maxm∈O |Vm|.

Theorem 1 is based on the assumption that exist two positive constants,
denoted as k and k, such that

k ≤ λ (Σ?)≤ λ (Σ?)≤ k, (5)

where λ (Σ?) and λ (Σ?) are the smallest and largest eigenvalues of Σ?, respectively.
This assumption is standard and used in Bickel and Levina (2008), Rothman et al.
(2008) and Guo et al. (2011). It guarantees that the true concentration matrix exists
and is well-conditioned.



Theorem 1. If ρ �
√

logmaxm∈O |Vm|/N and under the assumption (5), the sglasso
estimator is such that

‖θ̂ −θ
?‖2 = Op

√(K + s) logK
N

 .

Proof. The proof is based on the approach originally proposed in Rothman et al.
(2008). First observe that ∆̂ = θ̂ −θ ? can be defined as minimizer of the following
function

D(∆) =
M

∑
m=1

∆mtr (STm)− (logdetΘ− logdetΘ
?)+ρ

M

∑
m=1

wm(|θ ?
m +∆m|− |θ ?

m|).

Let rN = (K+s) logK/N and consider the closed ball BC = {∆ : (∑M
m=1 wm∆2

m)
1/2≤

C
√

rN}, where C is a positive constant. Since D(∆) is a convex function and D(∆̂)≤
D(0) = 0, if we show that the function D(∆) restricted to the boundary ∂BC is
positive, we can conclude that ∆̂ ∈ BC, which means that

‖θ̂ −θ
?‖2 ≤ ‖Θ̂−Θ

?‖F =

(
M

∑
m=1

wm∆̂
2
m

)1/2

≤C
√

rN → 0.

As shown in Rothman et al. (2008), using assumption (5) the second term in D(∆)
can be bounded as follows

logdetΘ− logdetΘ
? ≤ tr {Σ?(Θ−Θ

?)}− 1
4

k2‖Θ−Θ
?‖2

F

=
M

∑
m=1

∆mtr (Σ?Tm)−
1
4

k2
M

∑
m=1

wm∆
2
m,

then we have that

D(∆)≥ 1
4

k2
M

∑
m=1

wm∆
2
m +

M

∑
m=1

∆mtr {(S−Σ
?)Tm}+ρ

M

∑
m=1

wm(|θ ?
m +∆m|− |θ ?

m|).

To handle the term ∑
M
m=1 ∆mtr {(S−Σ?)Tm}, observe that

M

∑
m=1

∆mtr {(S−Σ
?)Tm}= ∑

m∈O
∆mtr {(S−Σ

?)Tm}+ ∑
n∈D

∆ntr {(S−Σ
?)Tn}. (6)



Using Lemma A.3. in Bickel and Levina (2008) the two terms in (6) can be easily
bounded as follows

| ∑
m∈O

∆mtr {(S−Σ
?)Tm}| ≤ ∑

m∈O
|∆m| ∑

(i, j)∈Em

|si j−σ
?
i j|

≤ ∑
m∈O
|∆m|

(
wm max

(i, j)∈Em
|si j−σ

?
i j|
)

≤ ∑
m∈O

wm|∆m|C1

√
log |Vm|

N

≤ C1

√
logmaxm∈O |Vm|

N ∑
m∈O

wm|∆m|

≤ C1

√
logmaxm∈O |Vm|

N

M

∑
m=1

wm|∆m|

= C1

√
logmaxm∈O |Vm|

N

(
∑

m∈S
wm|∆m|+ ∑

m6∈S
wm|∆m|

)
,

and

|∑
n∈D

∆ntr {(S−Σ
?)Tn}| ≤ ∑

n∈D
|∆n| ∑

i∈Vn

|sii−σ
?
ii | ≤ ∑

n∈D
|∆n|

(
wn max

i∈Vn
|sii−σ

?
ii |
)

≤ ∑
n∈D

wn|∆n|C2

√
logwn

N
≤C2

√
logmaxn∈D wn

N ∑
n∈D

wn|∆n|.

Using the reverse triangular inequality, the last term in D(∆) can be easily bounded
as follows

M

∑
m=1

wm(|θm +∆m|− |θ ?
m|)≥ ∑

m 6∈S
wm|∆m|− ∑

m∈S
wm|∆m|.

Combining all the previous inequalities we have

D(∆) ≥ 1
4

k2
M

∑
m=1

wm∆
2
m−

(
C1

√
logmaxm∈O |Vm|

N
−ρ

)
∑

m 6∈S
wm|∆m|

−

(
C1

√
logmaxm∈O |Vm|

N
+ρ

)
∑

m∈S
wm|∆m|−C2

√
logmaxn∈D wn

N ∑
n∈D

wn|∆n|.



Letting ρ = εC1
√

logmaxm∈O |Vm|/N, with ε ≥ 1, the second term in the previous
decomposition is non-negative then it can be removed obtaining

D(∆) ≥ 1
4

k2
M

∑
m=1

wm∆
2
m−C1

√
logmaxm∈O |Vm|

N
(1+ ε) ∑

m∈S
wm|∆m|

−C2

√
logmaxn∈D wn

N ∑
n∈D

wn|∆n|

≥ 1
4

k2
M

∑
m=1

wm∆
2
m−C1

√
logK

N
(1+ ε) ∑

m∈S
wm|∆m|−C2

√
logK

N ∑
n∈D

wn|∆n|.

Noting that

∑
m∈S

wm|∆m| ≤
√

∑
m∈S

wm

√
∑

m∈S
wm∆2

m ≤
√

s

√
M

∑
m=1

wm∆2
m

∑
n∈D

wn|∆n| ≤
√

∑
n∈D

wn

√
∑

n∈D
wn∆2

n ≤
√

K

√
M

∑
m=1

wm∆2
m,

we can write that

D(∆) ≥ 1
4

k2
M

∑
m=1

wm∆
2
m−C1

√
s logK

N
(1+ ε)

√
M

∑
m=1

wm∆2
m−C2

√
K logK

N

√
M

∑
m=1

wm∆2
m

≥ 1
4

k2
M

∑
m=1

wm∆
2
m−

√
(K + s) logK

N
{C1(1+ ε)+C2}

√
M

∑
m=1

wm∆2
m.

When we evaluate the function D(∆) on ∂BC, the previous inequality can be written
as follows

D(∆)≥C2rN
1
4

k2−CrN{C1(1+ ε)+C2}=C2rN

(
1
4

k2−C1(1+ ε)+C2

C

)
> 0,

for C sufficiently large.

The importance of this theorem is that on some mild assumptions, the sglasso
estimator is consistent.

2.4 A cyclic coordinate descent algorithm

From a computational point of view, the maximization problem used in defini-
tion (4) is a challenging task. One method is the LogdetPPA algorithm, which



combines a proximal point algorithm (PPA) inside a preconditioned conjugate gra-
dient solver needed for Newton’s method (Wang et al., 2010). This solver was used
in Wit and Abbruzzo (2015) to deal with fGGM. For a single tuning parameter,
this method can be quite efficient, but solving an entire solution path for a range
of tuning parameters is non-trivial. Instead, we propose a cyclic coordinate descent
method. The main idea underlying this family of algorithms is to choose, at each
iteration, an index and then optimize the objective function with respect to the corre-
sponding parameter keeping all the remaining indexes fixed. This kind of algorithm
was originally proposed for lasso regression models in Wu and Lange (2008) and
studied in more detail in Friedman et al. (2007). In Friedman et al. (2010), the
cyclic coordinate descent algorithm is extended to `1-penalized generalized linear
models.

In order to simplify our notation, in what follows we denote by `(θm) the
log-likelihood function (3) seen as a function of the parameter θm while the re-
maining parameters are kept fixed at the current values. Suppose that we have the
sglasso estimator θ̂ ρ ′ for a given value of the tuning parameter, say ρ ′, and we want
to compute a new estimate for ρ < ρ ′. If ρ is close enough to ρ ′, then θ̂ ρ is in a
neighborhood of θ̂

ρ ′
m and, consequently, we can approximate `(θm) by a standard

Taylor expansion. Formally

`(θm) ≈ `(θ̂ ρ ′)−ρ

M

∑
n 6=m

wn|θ̂ ρ ′
n |+

+
∂`(θ̂ ρ ′)

∂θm
(θm− θ̂

ρ ′
m )+

1
2

∂ 2`(θ̂ ρ ′)

∂θ 2
m

(θm− θ̂
ρ ′
m )2−ρwm|θm|

= C(θ̂ ρ ′)+
1
2

∂ 2`(θ̂ ρ ′)

∂θ 2
m

(θm− ϑ̂
ρ ′
m )2−ρwm|θm|, (7)

where C(θ̂ ρ ′)= `(θ̂ ρ ′)−ρ ∑
M
n6=m wn|θ̂ ρ ′

n |− 1
2{∂

2`(θ̂ ρ ′)/∂θ 2
m}−1{∂`(θ̂ ρ ′)/∂θm}2 is

a constant with respect to θm and ϑ̂
ρ ′
m = θ̂m−{∂ 2`(θ̂ ρ ′)/∂θ 2

m}−1∂`(θ̂ ρ ′)/∂θm. Us-
ing approximation (7), the original maximization problem can be locally substituted
by the simpler problem

min
θm∈R

1
2

Im(θ̂
ρ ′)(θm− ϑ̂

ρ ′
m )2 +ρwm|θm|, (8)

where Im(θ̂
ρ ′) =−∂ 2`(θ̂ ρ ′)/∂θ 2

m is the Fisher information for θm evaluated at θ̂ ρ ′ .
The problem (8) can be solved in closed form, i.e. θ̂

ρ
m = S(ϑ̂ ρ ′

m ;wmI−1
m (θ̂ ρ ′)ρ),

where S(x;λ ) = sign(x)(|x| − λ )+ is the soft-threshold operator (Friedman et al.,
2007). Using this result, the proposed cyclic coordinate descent algorithm can be



Algorithm 1 Pseudo-code of the proposed cyclic coordinate descent algorithm
1: inizialize θ̂ ρ to a previous estimate
2: Compute Θ̂ρ = ∑

M
m=1 θ̂

ρ
mTm and Σ̂ρ = Θ̂−1

ρ

3: repeat
4: for m = 1 to M do
5: ∂`(θ̂ ρ)/∂θm = tr {Tm(Σ̂

ρ −S)} . wm/2 operations
6: Im(θ̂

ρ) = tr {TmΣ̂ρTmΣ̂ρ} . O(w2
m) operations

7: ϑ
ρ
m = θ̂

ρ
m + I−1

m (θ̂ ρ){∂`(θ̂ ρ)/∂θm}
8: θ̂

ρ
m = S(ϑ ρ

m ;wmI−1
m (θ̂ ρ)ρ)

9: Σ̂ρ ←{Θ̂ρ + θ̂
ρ
mTm}−1 . O(K2) operations

10: end for
11: until a convergence criterion is met

described by the pseudo-code reported in Algorithm 1. A closer look at the pseudo-
code reveals that in each inner loop we need to compute the inverse of the concen-
tration matrix in step 9. Standard algorithms require O(K3) operations, which can
be prohibitive when p or T are large. However, as the inversion involves a sum
of two matrices, it is possible to reduce the computational burden to only O(K2)
operations, using the iterative algorithm proposed in Miller (1981). We have im-
plemented the solver in our R-package sglasso. In particular, the fGGM described
in Section 2.1, with time, unit and interaction effects, can be inferred using the
function fglasso. At the moment, the package can handle efficiently covariance
matrices of up to size 1000×1000, e.g. 100 genes across 10 time points.

3 Model selection for fGGMs
The behaviour of the factorial Gaussian graphical model estimator (4) and its cor-
responding precision matrix Θ̂ρ is closely related to selecting the optimal value of
the tuning parameter. Although we are guaranteed consistency for some asymptotic
regime of ρ , as we have shown in the previous section, the choice of ρ for finite
samples is less clear. The aim of this section is to provide an overview of available
methods in these scenarios and to make recommendations about sensible choices in
practical circumstances. We will consider the behaviour of various model selection
criteria in two realistic biological scenarios to evaluate their usefulness.

Model selection ideas have centered around two main ideas (Wit et al.,
2012): either minimizing the distance of the selected model to the true model or
maximizing the probability of selecting the true model. The first idea centers around



the concept of Kullback-Leibler divergence,

KL(Θ̂ρ |Θ?) = EΘ?
lY (Θ̂ρ)

lY (Θ?)
,

where the expectation is taken over Y from the true model with parameters Θ?. The
second idea is based on the probability of the true model, here interpreted as the
underlying graph G, integrating out all the parameters

P(Ĝρ |data) =
∫

Θ

P(data|Θ, Ĝρ)P(Ĝρ)

P(data)
dΘ.

The aim of minimizing the first Kullback-Leibler divergence is related to getting
models that have good predictive properties. It is closely related to minimizing
prediction errors, cross-validation and the covariance penalty theory (Efron, 1986,
2004). Maximizing the posterior model probability is related to obtaining the true
underlying structure of the model, focussing on having the right features, in our
case the correct links of the graph.

The above quantities involve population parameters and in order to use them
in practice, they need to be estimated. The estimates are typically referred to as
information criteria. As a result from a Laplace expansion in the integral in either
the Kullback-Leibler or the posterior model probability, a bias correction quantity
to the observed likelihood is derived, which involves a quantity that is typically
referred to as the degrees of freedom of the model. In simple regression models, the
quantity can be shown to be equal in expectation to the number of covariates in the
model. This has been a powerful concept, both practically and philosophically. The
immediacy of the trade-off between model fit and model complexity has made the
degrees of freedom a key concept in the model selection literature.

Although it easy to define the degrees of freedom in a graphical model as
the non-zero entries of the concentration matrix,

df1(Θ̂ρ) = |{θ̂ ρ
m | θ̂ ρ 6= 0}|,

there are several problems with this idea. Within the classical theory of linear re-
gression models, it is well known that the degrees-of-freedom are equal to the num-
ber of covariates but for non-linear modelling procedures this equivalence is not
satisfied. Furthermore, the number of parameters is an asymptotic concept and in
modern applications, such as in high-dimensional graphical models, we are rarely



in this regime. In fact, the degrees of freedom in a graphical model, i.e. the differ-
ence between the observed likelihood and the expected likelihood, has the following
form,

df2(Θ̂ρ) = EΘ?`Y (Θ̂ρ)− `y(Θ̂ρ)

= −N
2

tr {Θ̂ρ(S−Θ
?−1)} (9)

= −N
2

M

∑
m=1

θ̂
ρ
m tr {Tm(S−Σ

?)}. (10)

where `y(Θ̂ρ) is the observed likelihood as an estimate of EΘ?`Y (Θ̂ρ) and Σ? de-
notes the true covariance matrix. In recent years, several authors have studied the
problem of how to generalize the classical notion of degrees-of-freedom for penal-
ized regression models. For the lasso estimator, Zou et al. (2007) developed an
adaptive model selection criterion to select the regularization parameter based on
a rigorous definition of degrees of freedom based on the covariance penalty the-
ory (Efron, 1986, 2004). This approach was also used in Augugliaro et al. (2013)
to derive the notion of degree-of-freedom for a differential-geometric extension of
the least angle regression method (Efron et al., 2004). Since expression (3) shows
that the probability density function of the Gaussian distribution with equality con-
straints on the precision matrix belongs to the exponential family, we can easily use
Theorem 2 in Efron (1986) to derive a genuine extension of the notion of degrees-
of-freedom for the proposed estimator, i.e.

gdf(ρ) =
N
2

M

∑
m=1

cov(rm, θ̂
ρ
m) =−

N
2

M

∑
m=1

EY [θ̂
ρ
m tr {Tm(S−Σ

?)}]. (11)

We refer to the left-hand-side of (11) as the generalized degrees-of-freedom (gdf)
of the proposed estimator, since it generalizes the classical notion of degree-of-
freedom. It is effectively the expected value of the expression (10) and rather than
expressing the quality of a particular estimator Θ̂ρ , it evaluates the choice of the
value ρ on average.

3.1 Information criteria for fGGM

The Kullback-Leibler divergence and the posterior model probability, as well as the
concepts of degrees-of-freedom, that we introduced in this section, involve popu-
lation parameters and therefore cannot be calculated on a particular dataset. Given



such dataset, so-called information criteria are estimates of either the Kullback-
Leibler divergence or the posterior model probability. Among the standard ap-
proaches, the Akaike Information Criterion (AIC) (Akaike, 1973),

AIC(ρ) =−N
(

log |Θ̂ρ |− tr(Θ̂ρS)
)
+2df(Θ̂ρ),

is an estimate for the former, whereas the Bayesian Information Criterion (BIC) (Schwarz,
1978),

BIC(ρ) =−N
(

log |Θ̂ρ |− tr(Θ̂ρS)
)
+df(Θ̂ρ) logN,

is an estimate for the latter. Modifications and extensions of these criteria have been
suggested in the literature, such as the extended BIC (Foygel and Drton, 2010),
modified BIC (Gao et al., 2012) and RIC (Lysen, 2009). There are two main issues
facing the use of these measures. On the one hand, the traditional definition of the
degrees of freedom as the number of non-zero parameters in penalized inference
is not very well defined. Shrinked parameters should probably count as fewer than
a real parameter, but it is not clear by how much. On the other hand, the number
of observations in genomic experiments are typically so small that the asymptotic
assumptions on which the AIC and BIC are based are equally suspect.

Other estimators have been suggested in the literature, in an attempt to over-
come the limitations of AIC and BIC measures. StARS (Liu et al., 2010) is based on
a resampling approach, which is particularly suitable for moderate numbers of vari-
ables but becomes computationally expensive for a large number of variables and
rather instable for small sample sizes. Vujačić et al. (2015) derived the following
estimator of the cross-validated Kullback-Leibler divergence:

KLCV (ρ) =−N
(

log |Θ̂ρ |− tr(Θ̂ρS)
)
+2

N

∑
i=1

pi(Θ̂ρ ,S),

where the cross-validated estimate of the degrees of freedom, pi, is given by

pi(ρ) =
vec[(Θ̂−1

ρ −Si)◦ Iρ ]
tvec[Θ̂ρ{(S−Si)◦ Iρ}Θ̂ρ ]

2N−2
, (12)

where Iρ is the indicator matrix, whose entry is 1 if the corresponding entry in the
precision matrix Θ̂ρ is nonzero and zero if the corresponding entry in the precision
matrix is zero. This estimator is not only computationally efficient, but it takes also
parameter shrinkage into account.

The original KLCV was proposed for graphical models without constraints.
The equality constraints and the structural zero constraints reduce the number of
parameters in the graphical model and the bias correction term can be adjusted



accordingly. The bias correction term we use in this paper is p∗i , which is defined
as

p∗i = cpi,

where c is the ratio of M, the number of free parameters used in the graphical
model, and K(K +1)/2, the total number of parameters of the unconstraint graphi-
cal model.

In addition to the estimators described above, we propose a new estimator
which is motivated by the covariance penalty theory of Efron (1986). In particular,
we propose

CovPen(ρ) =−N
(

log |Θ̂ρ |− tr(Θ̂ρS)
)
+2ĝdf(ρ),

with

ĝdf(ρ) =
N
2

(
ρ

M

∑
m=1

wm|θ̂ ρ
m |+

∑
N
i=1 y>i Θ̂

(−i)
ρ yi

N
−K

)
, (13)

and using the notation previously introduced. The technical details of the derivation
of ĝdf(ρ) are placed in the Appendix.

3.2 A simulation study

We perform a simulation study to compare the different model selection criteria.
We consider two simulated data from realistic biological processes. In particular,
we use the software COPASI 4.16 (Hoops et al., 2006) to simulate data from two
biochemical networks: the Drosophila circadian clock based on the PER and TIM
genes, as published in (Leloup and Goldbeter, 1999), and the MAPK cascade model
from (Huang and Ferrell, 1996). The circadian network has 10 proteins, for which
we simulate data over 10 hours every 6 minutes, whereas the MAPK network has 22
proteins, for which we simulate data over 17 milliseconds every 0.17 milliseconds.
Figure 2 shows the two real networks, from which the data are simulated using a
Gillespie algorithm (direct method).

We use the fGGM model described before, where:

i. lag zero submatrices, i.e. Θtt , are modelled using model (iv) according to
Table 1;

ii. lag one submatrices, i.e. Θt(t+1), are also modelled by unit effects;
iii. the entries of the remaining submatrices are equal to zero.

We compare this model with a Time Series Chain Graphical Model (TSCGM), as
proposed in Abegaz and Wit (2013) and implemented in the SparseTSCGM R pack-
age, and the graphical lasso (Glasso), as proposed in (Friedman et al., 2008) and
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Figure 2: True biochemical networks of (a) the circadian clock and (b) MAPK
processes.

implemented in the huge R package. We select the tuning parameter using various

model selection criteria and for the selected network we report: recall
( TP

TP+FN

)
,

precision
( TP

TP+FP

)
, True Negative Rate (TNR) and F1 score

( 2TP
2TP+FN+FP

)
.

For a fair comparison with Glasso, Table 2 reports these measures only on the lag
0 networks. The dynamic nature is not captured in the Glasso method and under
all kinds of model selection methods it performs poorly (F1 scores 0-0.077 on the
Circadian Clock and 0-0.262 on MAPK). The TSCGM method does account for
the dynamic nature of the data and performs much better (F1 scores 0.216 - 0.242
on the Circadian Clock and 0.323-0.387 on MAPK). The fGGM performs compa-
rably to TSCGM on the MAPK network (F1 scores 0.321 - 0.337) but better on the
Circadian Clock example (F1 scores 0.364 - 0.368).

Figure 3 shows the behaviour of the model selection criteria for the fGGM
model on the two datasets. KLCV shows a clear minimum and tends to lead to the
selection of sparser models, compared with AIC, BIC and CovPen which lead to
similar selections. On the MAPK network, KLCV and CovPen lead to the same se-
lection, but KLCV is considerably faster as it does not need the re-estimation of the
precision matrix at each fold (Vujačić et al., 2015). Overall, the simulation shows a
comparable performance between fGGM and TSCGM and a good performance of
KLCV as a model selection criterion for fGGM.



Circadian Clock MAPK
Recall Precision TNR F1 Recall Precision TNR F1

fGGM
AIC 0.400 0.333 0.800 0.364 0.520 0.232 0.802 0.321
BIC 0.400 0.333 0.800 0.364 0.520 0.232 0.802 0.321

KLCV 0350 0.389 0.863 0.368 0.560 0.241 0.797 0.337
CovPen 0.400 0.333 0.800 0.364 0.560 0.241 0.797 0.337

TSCGM
AIC 0.190 0.250 0.848 0.216 0.240 1.000 1.000 0.387
BIC 0.190 0.333 0.899 0.242 0.200 0.833 0.995 0.323

eBIC 0.190 0.286 0.873 0.229 0.200 0.833 0.995 0.323
BICmod 0.190 0.286 0.873 0.229 0.200 0.833 0.995 0.323

GIC 0.190 0.333 0.899 0.242 0.200 0.833 0.995 0.323
Glasso

AIC 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000
BIC 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000

eBIC 0.000 0.000 1.000 0.000 0.780 0.152 0.500 0.255
RIC 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000

StARS 0.050 0.167 0.938 0.077 0.440 0.186 0.779 0.262

Table 2: Reconstruction performance of various model selection criteria applied
to three main network reconstruction models: factorial gaussian graphical models
(fGGM) used in this paper and originally proposed in Wit and Abbruzzo (2015),
time series chain graphical models (TSCGM) as proposed in Abegaz and Wit (2013)
and the graphical lasso (Glasso) as proposed in (Friedman et al., 2008).
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Figure 3: Model selection criteria for fGGM on data simulated from (a) the circa-
dian clock and (b) MAPK processes.

4 Regulatory network of Neisseria meningitidis
We apply the methodology to microarray data from a high-resolution time-course
experiment using the sequenced Neisseria meningitidis serogroup B strain MC58
(Tettelin et al., 2000). The expression of 2129 transcripts was determined using
dendrimer labelling of the parent of the sequenced strain with established meth-
ods (Jordan and Saunders, 2009; Saunders and Davies, 2012), in rapidly growing
liquid cultures at 10 minute intervals in the early and log phases of growth (0 to
130 minutes) and at 20 minute intervals thereafter (to 250 minutes). Two biologi-
cal replicate cultures, grown in parallel, were sampled. In this study, we focus on
60 transcripts that have been found to be differentially expressed upon deletion of
the master regulator FarR in highly replicated microarrays studies and have been
validated by qPCR and gel shift assays (Nigel Saunders, unpublished), but whose
regulatory mechanisms are largely unknown (See table in the supplementary mate-
rial for the list of genes). For the analysis, we combine two consecutive time points
into one time point, in order to increase the number of observations per time point to
four. We finally scale the data to have mean zero and variance one for each protein
and across all time points.

The resulting precision matrix has dimension 600×600, thus about 180,000
parameters to be estimated. To improve the comprehension of the model used to
study the data set and reduce the number of parameter, we fit a fGGM specified as



follows:

1. lag zero submatrices: we assume that diagonal and off-diagonal entries of
the lag zero submatrices are modeled by unit effects, i.e. the conditional
dependence structure is persistent across all ten time points;

2. lag one submatrices: the diagonal and off-diagonal entries of the lag one
submatrices are also modeled by unit effects;

3. the entries of the remaining submatrices are set equal to zero.

This reduces the number of parameters from about 180,000 to a manage-
able number less than 5,500. Furthermore, the shrinkage induced by the l1-penalty
further stabilizes the estimates. Using the KLCV measure for model selection, the
optimal value of ρ is found to be 0.453

A number of analyses were conducted to evaluate the robustness of the se-
lected network on the 60 proteins. Firstly, we performed a bootstrap analysis: for
each protein, we simulated 100 bootstrap samples by adding noise to the real data
at a level of variability estimated by fitting a smoothing spline to the time series
data. We then fitted a factorial graphical model to the bootstrap data with ρ = ρ∗.
Effectively, this post-analysis allowed us to explore the space of precision matrices
around Θ̂ρ∗ , by showing how robust the inference is to obtaining slightly different,
but equally plausible data. Overall, we found that 70.59% of the links in the lag
0 network and 21.35% of the links in the lag 1 network were found consistently
in more than 50% of bootstrap samples. We have also tested the robustness of
the network, by repeating the analysis on 8 replicates, i.e. aggregating the data by
combining four (rather than two) consecutive time points. The precision matrix is
now 300× 300, thus reducing significantly the number of model parameters. The
new criterion selected a network of similar sparsity and there was full agreement
with the earlier analysis: the 238 lag 0 links detected from the dataset with 4 repli-
cates were all detected by the analysis on the dataset with 8 replicates, where 53
additional links were found. Finally, we have compared the network inferred by
the proposed fglasso with the network inferred by the sparse vector autoregressive
approach of Abegaz and Wit (2013). From a modelling point of view, this is the
closest approach to ours, as it fits an autoregressive process of order 1 under spar-
sity constraints. The main difference is that no equality constraints are imposed in
the lag 0 and the lag 1 network. We selected the two tuning parameters so as to
have the same sparsity level of our inferred lag 0 and lag 1 networks, respectively.
The SparseTSCGM lag 0 network contained 24.3% of the fglasso lag 0 links and
the SparseTSCGM lag 1 network contained 41.57% of the fglasso lag 1 links.

Figure 4 shows the lag zero and the lag one fglasso inferred graphs on the
60 proteins (from 4 replicates), where links are found in at least 50% of bootstrap



samples. The lag 0 network is generally more connected than the lag 1 network. In
particular, NMB0035, NMB0913 and NMB1870 are the most connected nodes,
with 18, 16 and 15 connections respectively. NMB0913 further interacts with
the meningococcus-specific Neisseria adhesin A (NMB1994, NadA), which has
been highlighted by a number of studies for its role in the regulation of Neisseria
meningitidis and which is one of the components of a recombinant vaccine against
meningococcal serogroup B (Giuliani et al., 2006; Schielke et al., 2009; Pizza and
Rappuoli, 2015). In particular, nadA has been found to interact with the meningo-
coccal FarR homologue NMB1843, which was recently renamed NadR, due to its
main role in the regulation of NadA repression (Fagnocchi et al., 2012). The fglasso
network inference detects NMB1843-NMB1994 in at least 60% of bootstrap sam-
ples, whereas this interaction was not found by the SparseTSCGM method. The
fact that farR also represses itself (Fagnocchi et al., 2012) is most likely the reason
why the partial correlation value associated to this link has a positive sign. Figure
5 shows a number of other proteins that were found linked with farR and nadA.
Of particular notice is NMB0788, an amino acid ABC transporter that is found
to be repressed both by farR and nadA. This protein is further detected to repress
NMB1476 (gdhB), a NAD-specific glutamate dehydrogenase that is found to be
direct target of farR by Fagnocchi et al. (2012). In the lag 1 network, NMB1476
appears to repress NMB0888 (a pilus assembly protein pilW), which is the most
connected node in the lag 1 network (7 connections), but whose role in regulation
is largely unknown.

In order to shed light into regulatory mechanisms, we have visualised the
network at the level of pathways and Gene Ontology (GO) terms. The GO terms
were downloaded from https://www.ebi.ac.uk/interpro/. Focussing on bi-
ological processes, 37 terms were found associated to the 60 proteins. We consid-
ered the four most common groups, namely transport (NMB0788, NMB1540,
NMB0881,NMB1122), oxidation-reduction process (NMB0401, NMB1044,
NMB0251, NMB0955, NMB1476, NMB1676, NMB2068), transmembrane transport

(NMB0213, NMB1122, NMB0318) and metabolic process (NMB0401, NMB0955,
NMB1576), and used the package pnea (Signorelli et al., 2015) to detect enrich-
ment at the network level between any pair of these groups. A moderate over-
enrichment was detected between the oxidation-reduction process and transmembrane
transport groups in the lag 0 network (p-value 0.133, 7 links between the two
groups). As for pathways, we have selected 14 out of the 98 KEGG pathways in
Neisseria meningitidis, available from the bioconductor package KEGGREST. The
selection was made to make sure that each pathway was uniquely identified by at
least one of the 60 proteins in our study. In particular, we found that 15 out of the
60 proteins (25%) belonged uniquely to one of the 14 pathways. However, only
one or two genes identified each of these pathways. As the groups are too small

https://www.ebi.ac.uk/interpro/
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Neisseria meningitidis. The links were found in at least 50% of bootstrap samples.
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Figure 5: Robustness values of links connected to farR (top) and nadA (bottom) in
the lag 0 (left) and lag 1 (right) networks.



for the network enrichment analysis, Figure 6 simply shows the networks obtained
using an AND (top) and OR (bottom) rule, respectively. In the AND case, a link
between two pathways is present if all proteins in one pathway are connected with
all proteins in the other pathway, in either the lag 0 or lag 1 network. In the OR
case, a link between two pathways is present if at least one protein in one pathway
is connected with at least one (different) protein in the other pathway, in either the
lag 0 or lag 1 network. The figure shows that the inferred networks contain many
connections among the proteins that belong to known pathways. These connections
show that core functions associated with growth are coordinated: DNA replica-
tion, amino acid metabolism (several types, particularly in the bottom figure), DNA
precursor manufacture, and redox determinants. This is to be expected for a high-
resolution time expression data involving the first 210 minutes of growth of the
bacteria. Some closely linked biological processes are also found connected, such
as the metabolism of nicotinate, nicotinamide, alanine, aspartate and glutamate, and
that of cystine and sulfur (Schoen et al., 2014).

5 Conclusions
In this paper, we have proposed a new `1-penalized estimator for GGM with equal-
ity constraints on the precision matrix, called sglasso estimator. This new estimator
allows us to apply the fGGM of Wit and Abbruzzo (2015) also when we have a lim-
ited amount of data. This model allows to borrow strength across time by imposing
suitable equality constraints, and to restrict the possible class of models by setting
many entries of the precision matrix to zero a priori or to equal values. We present a
cyclic coordinate descent algorithm for the likelihood optimization, which is more
efficient than that proposed by Wit and Abbruzzo (2015) and which is now avail-
able in the R package sglasso. We give the necessary condition for the consistency
of the proposed estimator. Then we evaluate different model selection criteria on
simulated data from two biochemical networks. The simulation study shows a com-
parable performance of the fGGM model with other dynamic network models and
a good performance of the KLCV criterion for model selection in particular. For
the latter, we use a re-scaled version of the criterion developed by (Vujačić et al.,
2015) for sparse unstructured Gaussian graphical models. The analysis on real data
leads to the selection of a sparse dynamic regulatory network of Neisseria meningi-
tidis, which is shown to be robust against sample size and re-sampling, and which
features some links that are supported by existing - but rather limited - biological
knowledge on the regulatory mechanisms of this biological system.



Interactions among Pathways (AND rule)

Aminoacyl−tRNA biosynthesis

Nicotinate and nicotinamide metabolism

Purine metabolism

DNA replication

Cysteine and methionine metabolism
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Figure 6: Enrichment analysis of the Neisseria inferred network. In the top network,
there is a link between two pathways if all genes in one pathways are connected with
all genes in the other pathways. In the bottom network, there is a link if at least one
gene in one pathway is connected with at least one gene of the other pathway.
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Appendix

Derivation of ĝdf(ρ)

In this section, we derive the estimator of equation 13. Definition (11) can be further
simplified using the Karush-Kuhn-Tucker conditions, i.e. θ̂

ρ
m is different from zero

if and only if
tr {TmS}− tr {TmΣ̂ρ}+ρwmsignθ̂

ρ
m = 0, (14)

where wm = ∑i j T m
i j . By equation (14) we have that

M

∑
m=1

θ̂
ρ
m tr {Tm(S−Σ)} =

M

∑
m=1

θ̂
ρ
m tr {TmS}−

M

∑
m=1

θ̂
ρ
m tr {TmΣ}=

=
M

∑
m=1

θ̂
ρ
m tr {TmΣ̂ρ}−ρ

M

∑
m=1

wm|θ̂ ρ
m |−

M

∑
m=1

θ̂
ρ
m tr {TmΣ}=

= tr Θ̂ρ Σ̂ρ −ρ

M

∑
m=1

wm|θ̂ ρ
m |− tr Θ̂ρΣ

= K−ρ

M

∑
m=1

wm|θ̂ ρ
m |− tr Θ̂ρΣ,

and consequently, the generalized degrees-of-freedoms can be defined as

gdf(ρ) =
N
2
[ρEY (

M

∑
m=1

wm|θ̂ ρ
m |)+EY (tr Θ̂ρΣ)−K]. (15)

Definition (15) shows that gdf(ρ) depends on two distinct expected values, i.e.
EY (∑

M
m=1 wm|θ̂ ρ

m |) and EY (tr Θ̂ρΣ). The first one can be estimated by ∑
M
m=1 wm|θ̂ ρ

m |,
since it is an unbiased estimator, while to develop an unbiased estimator of the
second expected value observe that

EY (tr Θ̂ρΣ) = EY{tr Θ̂ρEȲ (ȲȲ>)}= EȲ EY (Ȳ>Θ̂ρȲ ), (16)

where Ȳ is an independent copy of Y . The identity (16) suggests that the second
expected value can be estimated by leave-one-out cross-validation method, i.e.

ÊY (tr Θ̂ρΣ) =
N

∑
i=1

y>i Θ̂
(−i)
ρ yi/N,



where Θ̂
(−i)
ρ denotes the sglasso estimate obtained after removing the ith observa-

tion from the data. This leads to the estimator

ĝdf(ρ) =
N
2

(
ρ

M

∑
m=1

wm|θ̂ ρ
m |+

∑
N
i=1 y>i Θ̂

(−i)
ρ yi

N
−K

)
.
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