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This paper deals with the robust H∞ state estimation problem for a class of memris-
tive recurrent neural networks with stochastic time-delays. The stochastic time-delays
under consideration are governed by a Bernoulli distributed stochastic sequence. The
purpose of the addressed problem is to design the robust state estimator such that
the dynamics of the estimation error is exponentially stable in the mean square, and
the prescribed H∞ performance constraint is met. By utilizing the difference inclusion
theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition
of the desired estimator is derived. Based on it, the explicit expression of the estimator
gain is given in terms of the solution to a linear matrix inequality (LMI). Finally, a
numerical example is employed to demonstrate the effectiveness and applicability of
the proposed estimation approach.
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1. Introduction

The past few decades have witnessed constant research interests on various aspect-
s of recurrent neural networks (RNNs) due primarily to their wide applications
in many fields such as image processing (Chen et al. 2006), pattern recognition
(Nasrabadi and Li 1991), and dynamic optimization (Xia and Wang 2004), etc. In
neural networks, owning to the limit of communication capacity, time delays often
occur in the signal transmission among neurons. It is well-known that time delays
are the main source causing system oscillations and instability. Therefore, the time-
delayed neural networks have received increasing research attention, and a great deal
of results have been available in the literature, see e.g. Lian and Wang (2015) and
the references therein. The time-delays under consideration include constant/time-
varying delays, distributed delays and mixed delays. For the RNNs with such types
of delays, a lot of results have been obtained on the dynamical behavior analysis of
the solution such as global asymptotic stability (Cao, Yuan, and Li 2006), global ex-
ponential stability (Arik 2004; Liang and Cao 2003; Liu, Wang, and Liu 2006; Zeng
and Wang 2006), robust stability (Zhang, Xu, and Zeng 2009), and delay-dependent
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multistability (Huang and Cao 2010). Recently, a new kind of time-delay, called s-
tochastic time delays, has received increasing research attention. For example, in
Zhang, Wang, Li, and Fei (2013), the stochastic time delays have been taken into
account in the neural networks and a delay-derivative-dependent stability criterion
has been derived.
State estimation problem has been an ongoing research issue that attracts increas-

ing attention from researchers in the area of complex networks (Ding et al. 2012;
Shen et al. 2013), especially in the area of neural networks. This is because, in the
large-scale neural networks, it is not easy to directly access the neuron states and
only partial information about the neuron states is available in terms of the network
outputs. Therefore, it is of practice significance to estimate the neurons through the
available network outputs. In the past decade, there are a number of papers have
attempted to develop state estimation scheme for the neural networks with various
types of delays. For example, in Huang, Feng, and Cao (2010), the state estimation
problem has been investigated for static neural networks with time-varying delay
and, in Kan, Shu, and Li (2014), a robust state estimator has been designed for
the discrete-time neural networks where the mixed time-delays have been taken in-
to consideration. Recently, in Bao and Cao (2011), a delay-distribution-dependent
state estimation problem has been studied for the discrete-time stochastic neural
networks with random delays.
As is well known, in the theoretical modeling of traditional neural circuits, the

system parameters are determined by the electric components such as capacitance
and resistance. Recently, memristor has received increasing research attention due
to its advantages over resistance such as small size, low energy consumption and
storage capacity. As the rapid development of the memristor, the memristive recur-
rent neural networks have stirred a great deal of research interests, and considerable
research efforts have been made on the dynamical behavior analysis issues of mem-
ristive recurrent neural networks such as stability issues (Zhang, Shen, Yin, and Sun
2013) and synchronization problems (Wu and Zeng 2013). It should be pointed out
that, in the existing literature, almost all the memristive recurrent neural networks
concerned are continuous-time. Actually, the discrete-time neural networks could be
more suitable to model digitally transmitted signals in a dynamical way. Besides, the
H∞ performance index of state estimator could be to ensure that the energy gain
from the noise inputs to the estimation error is less than a certain level. However, to
the best of the authors’ knowledge, the state estimation problem for discrete-time
memristive recurrent neural networks (DMRNNs) with stochastic time-delays has
not been adequately addressed in the literature yet, not to mention that the H∞
performance index is imposed simultaneously. It is, therefore, the purpose of this
paper to shorten such a gap.
In this paper, the robust H∞ state estimation problem is investigated for a class

of memristive recurrent neural networks with stochastic time-delays. The main con-
tributions of this paper can be summarized as follows: 1) we make the first attempt
to address the robust H∞ state estimation problem for discrete-time memristive
recurrent neural networks; 2) stochastic time-delays are taken into account in the
framework of DMRNNs for the first time; and 3) a robust H∞ state estimator is
designed for discrete-time memristive recurrent neural networks, which guarantees
that the estimation error system is exponentially mean-square stable and the H∞
performance is met. Finally, a numerical simulation example is employed to verify
the effectiveness of the proposed state estimation scheme.
Notation The notation used here is fairly standard except where otherwise stat-

ed. Rn and Rn×m denote, respectively, the n-dimensional Euclidean space and the
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set of all n×m real matrices. A⊗B denotes the Kronecker product of matrices A
and B. I denotes the identity matrix of compatible dimension. The notation X ≥ Y
(respectively, X > Y ), where X and Y are symmetric matrices, means that X − Y
is positive semi-definite (respectively, positive definite). AT represents the trans-
pose of A, Sym{A} denotes the symmetric matrix A+ AT . diag{· · · } stands for a
block-diagonal matrix. E{x} stands for the expectation of the stochastic variable
x. ||x|| describes the Euclidean norm of a vector x. l2([0,∞);Rm) is the space of
square-summable m-dimensional vector functions over [0,∞). co{u, v} denotes the
closure of the convex hull generated by real numbers u and v.

2. Problem Formulation

Consider the following class of DMRNNs consisting of n neurons:
x(k + 1) =D̆(x(k))x(k) + Ă(x(k))f(x(k)) + δ(k)B̆(x(k))g(x(k − τ1))

+ (1− δ(k))B̆(x(k))g(x(k − τ2)) + Lς(k),

x(k) =Ψ(k), k ∈ Γ

(1)

where x(k) =
[
x1(k) x2(k) · · · xn(k)

]T
is the neural state vector; D̆(x(k)) =

diag{d1(x1(k)), d2(x2(k)), · · · , dn(xn(k))} is the self-feedback matrix; Ă(x(k)) =(
aij(xi(k))

)
n×n

and B̆(x(k)) =
(
bij(xi(k))

)
n×n

are the connection and the delayed

connection weight matrices, respectively; ς(k) =
[
ς1(k) ς2(k) · · · ςn(k)

]T
is the ex-

ternal disturbance input vector belonging to l2([0,∞);Rn), L = diag{l1, l2, · · · , ln}
is the disturbance intensity; f(x(k)) =

[
f1(x1(k)) f2(x2(k)) · · · fn(xn(k))

]T
and

g(x(k)) =
[
g1(x1(k)) g2(x2(k)) · · · gn(xn(k))

]T
are the nonlinear functions stand-

ing for the neuron activation functions; τ1 and τ2 are two positive scalars denoting
the transmission delays, and δ(k) is a stochastic variable accounting for the ran-

domly occurring transmission delay. Ψ(k) =
[
ψ1(k) ψ2(k) · · · ψn(k)

]T
describes the

initial condition, and ψi(k) define on Γ := {−max{τ1, τ2},−max{τ1, τ2}+1, · · · , 0}.
For the neuron activation functions f(x(k)) and g(x(k)) are assumed to be con-

tinuous and satisfy the following conditions (Liu, Wang, and Liu 2006):{
[f(x)− f(y)− ρ1f (x− y)]T [f(x)− f(y)− ρ2f (x− y)] ≤ 0,

[g(x)− g(y)− ρ1g(x− y)]T [g(x)− g(y)− ρ2g(x− y)] ≤ 0
(2)

for all x, y ∈ Rn (x ̸= y), where ρ1f , ρ
2
f , ρ

1
g and ρ2g are real matrices.

The stochastic variable δ(k) is a Bernoulli-distributed white sequence taking val-
ues on 0 or 1 with the following probabilities

Prob{δ(k) = 1} = δ̄, Prob{δ(k) = 0} = 1− δ̄ (3)

where δ̄ ∈ [0, 1] is a known constant.
Along the similar lines in Chua (1971); Wu and Zeng (2013), di(x(k)), aij(x(k))

and bij(x(k)) are state-dependent functions with the form

di(xi(·)) =

{
d̂i, |xi(·)| > κi,

ďi, |xi(·)| ≤ κi,
sij(xi(·)) =

{
ŝij , |xi(·)| > κi,

šij , |xi(·)| ≤ κi
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where s stands a or b, the switching jumps κi > 0, |d̂i| < 1, |ďi| < 1, ŝij and

šij are constants. Then, denoting d−i = min{d̂i, ďi}, d+i = max{d̂i, ďi}, a−ij =

min{âij , ǎij}, a+ij = max{âij , ǎij}, b−ij = min{b̂ij , b̌ij}, b+ij = max{b̂ij , b̌ij}, D− =

diag{d−1 , d
−
2 , · · · , d−n }, D+ = diag{d+1 , d

+
2 , · · · , d+n }, A− = (a−ij)n×n, A

+ = (a+ij)n×n,

B− = (b−ij)n×n, B
+ = (b+ij)n×n, one has D̆(x(k)) ∈

[
D−, D+

]
, Ă(x(k)) ∈

[
A−, A+

]
and B̆(x(k)) ∈

[
B−, B+

]
.

Define

D̄ :=
D+ +D−

2
= diag

{d+1 + d−1
2

,
d+2 + d−2

2
, · · · , d

+
n + d−n

2

}
,

Ā :=
A+ +A−

2
=

(a+ij + a−ij
2

)
n×n

, B̄ :=
B+ +B−

2
=

(b+ij + b−ij
2

)
n×n

.

The matrices D̆(x(k)), Ă(x(k)) and B̆(x(k)) can be written as

D̆(x(k)) =D̄ +∆D(k), Ă(x(k)) = Ā+∆A(k), B̆(x(k)) = B̄ +∆B(k) (4)

where ∆D(k) =
∑n

i=1 eisi(k)e
T
i , ∆A(k) =

∑n
i,j=1 eitij(k)e

T
j and ∆B(k) =∑n

i,j=1 eipij(k)e
T
j , ek ∈ Rn is the column vector with the kth element being 1 and

others being 0, si(k), tij(k) and pij(k) are unkonwn scalars satisfying |si(k)| ≤ d̃i,

|tij(k)| ≤ ãij and |pij(k)| ≤ b̃ij with d̃j =
d+
j −d−

j

2 , ãij =
a+
ij−a−

ij

2 and b̃ij =
b+ij−b−ij

2 .
∆D(k),∆A(k) and ∆B(k) are the parameter matrices of the following structures

∆D(k) =HF1(k)E1, ∆A(k) = HF2(k)E2, ∆B(k) = HF3(k)E3 (5)

where H =
[
H1 H2 · · · Hn

]
and Ei =

[
ET

i1 E
T
i2 · · · ET

in

]T
(i = 1, 2, 3) are known real

constant matrices with Hi =
[
ei ei · · · ei

]︸ ︷︷ ︸
n

, E1j =
[
eT1 e

T
2 · · · d̃jeTj · · · eTn

]
, E2j =

[
ãj1e

T
1 ãj2e

T
2 · · · ãjneTn

]
and E3j =

[
b̃j1e

T
1 b̃j1e

T
2 · · · b̃j1eTn

]
. Fi(k) (i = 1, 2, 3) are

unknown time-varying matrices which are given by

Fi(k) =diag{Fi1(k), · · · , Fin(k)}, F1j(k) = diag{0, · · · , 0︸ ︷︷ ︸
j−1

, sj(k)d̃
−1
j , 0, · · · , 0︸ ︷︷ ︸

n−j

},

F2j(k) =diag{tj1(k)ã−1
j1 , · · · , tjn(k)ã

−1
jn }, F3j(k) = diag{pj1(k)b̃−1

j1 , · · · , pjn(k)b̃
−1
jn }.

It is not difficult to verify that the matrices Fi(k) (i = 1, 2, 3) satisfy F T
i (k)Fi(k) ≤ I.

Suppose that the measurement output and the output to be estimated of the
neural network (1) are given as follows:

y(k) =Cx(k) +Nξ(k), (6)

z(k) =Mx(k) (7)

where y(k)∈ Rm is the measurement output, z(k)∈ Rr is the output to be estimated,
ξ(k) ∈ Rl is the disturbance input belonging to l2([0,∞);Rl).
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In order to estimate the neuron state x(k), we employ the following state estimator

x̂(k + 1) =D̄x̂(k) + Āf(x̂(k)) + δ̄B̄g(x̂(k − τ1))

+ (1− δ̄)B̄g(x̂(k − τ2)) +K(y(k)− Cx̂(k)),

ẑ(k) =Mx̂(k),

x̂(k) =0, k ∈ Γ

(8)

where x̂(k) ∈ Rn is the estimate of the neuron state x(k), ẑ(k) ∈ Rr is the estimate
of the output z(k), and K ∈ Rn×m is the estimator gain to be determined.
From (1), (6), (7) and (8), the dynamics of the estimation error can be obtained

as follows:

e(k + 1) =(D̄ −KC)e(k) + ∆D(k)x(k) + Āf̃(k) + ∆A(k)f(x(k))

+ δ̄B̄g̃1(k) + (δ(k)− δ̄)B̆g(x(k − τ1)) + δ̄∆B(k)g(x(k − τ1))

+ (δ̄ − δ(k))B̆g(x(k − τ2)) + (1− δ̄)B̄g̃2(k) + (1− δ̄)∆B(k)

× g(x(k − τ2)) + Lς(k)−KNξ(k),

e(k) =Ψ(k), k ∈ Γ

(9)

where e(k) = x(k) − x̂(k), f̃(k) = f(x(k)) − f(x̂(k)) and g̃r(k) = g(x(k − τr)) −
g(x̂(k − τr)) (r = 1, 2).

Then, setting η(k) =
[
xT (k) eT (k)

]T
and letting the output estimation error be

z̃(k) = z(k)− ẑ(k), we have the following augmented system

η(k + 1) =W̃1η(k) + W̃2f⃗(k) + δ̄W̃3g⃗
1(k) + (δ(k)− δ̄)W̃4g⃗

1(k)

+ (δ̄ − δ(k))W̃4g⃗
2(k) + (1− δ̄)W̃3g⃗

2(k) +W5ζ(k),

z̃(k) =M⃗η(k),

η(k) =
[
xT (k) ψT (k)

]T
, k ∈ Γ

(10)

where

f⃗(k) =
[
fT (x(k)) f̃T (k)

]T
, g⃗r(k) =

[
gT (x(k − τr)) (g̃

r(k))T
]T

(r = 1, 2),

M⃗ =
[
0M

]
, ζ(k) =

[
ςT (k) ξT (k)

]T
, W̃1 =W1 +∆D(k), W̃2 =W2 +∆A(k),

W̃3 =W3 +∆B(k), W̃4 =W4 +∆B(k), W2 = diag{Ā, Ā}, W3 = diag{B̄, B̄},

W1 =

[
D̄ 0
0 D̄ −KC

]
, W4 =

[
B̄ 0
B̄ 0

]
, W5 =

[
L 0
L −KN

]
,

∆D(k) =

[
∆D(k) 0
∆D(k) 0

]
, ∆A(k) =

[
∆A(k) 0
∆A(k) 0

]
, ∆B(k) =

[
∆B(k) 0
∆B(k) 0

]
.

Definition 1. The augmented system (10) with ζ(k) = 0 is said to be exponentially
mean-square stable if there exist constants ϵ > 0 and 0 < λ < 1 such that

E{∥η(k)∥2} ≤ ϵλk max
i∈Γ

E{∥η(i)∥2}, ∀k ∈ N.
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The aim of this paper is to design an H∞ state estimator for DMRNNs with
stochastic time-delays given by (1). More specifically, we are interested in looking for
the gain matrix K such that the following two requirements are met simultaneously:
1) The augmented system (10) with ζ(k) = 0 is exponentially mean-square stable;
2) Under zero initial conditions, for a given disturbance attention level γ > 0 and

all nonzero ζ(k), the output estimation error z̃(k) satisfies

∑∞

k=0
E{∥z̃(k)∥2} ≤ γ2

∑∞

k=0
∥ζ(k)∥2. (11)

3. MAIN RESULTS

In this section, the stability and the H∞ performance are analyzed for the aug-
mented system (10). A sufficient condition is established to guarantee that the aug-
mented system (10) is exponentially mean-square stable and the H∞ performance
is achieved. Then, the explicit expression of the desired estimator gain is given in
terms of the solution to certain matrix inequality.

Theorem 1. Let the estimator parameter K be given. The augmented system (10)
with ζ(k) = 0 is exponentially mean-square stable if there exist positive definite
matrices P = diag{P1, P2}, Qi = diag{Qi1, Qi2} (i = 1, 2) and positive scalars
λj (j = 1, 2, 3) satisfying the following inequality:

Φ̃ =



Θ̃11 0 0 Θ̃14 Θ15 Θ16

∗ Θ̃22 0 0 Θ̃25 0

∗ ∗ Θ̃33 0 0 Θ̃36

∗ ∗ ∗ Θ̃44 Θ45 Θ46

∗ ∗ ∗ ∗ Θ̃55 Θ56

∗ ∗ ∗ ∗ ∗ Θ̃66

 < 0, (12)

where

ϕf1 = I ⊗ Sym{1
2ρ

fT
1 ρf2}, ϕf2 = I ⊗ (ρf1 + ρf2)/2,

ϕg1 = I ⊗ Sym{1
2ρ

gT
1 ρg2}, ϕg2 = I ⊗ (ρg1 + ρg2)/2 (r = 1, 2),

Θ̃11 = W̃ T
1 PW̃1 − P +Q1 +Q2 − λ1ϕ

f⃗
1 , Θ̃14 = W̃ T

1 PW̃2 + λ1ϕ
f⃗T
2 ,

Θ15 = δ̄W̃ T
1 PW̃3, Θ16 = (1− δ̄)W̃ T

1 PW̃3, Θ̃22 = −Q1 − λ2ϕ
g⃗1

1 ,

Θ̃25 = λ2ϕ
g⃗1T

2 , Θ̃33 = −Q2 − λ3ϕ
g⃗2

1 , Θ̃36 = λ3ϕ
g⃗2T

2 ,

Θ̃44 = W̃ T
2 PW̃2 − λ1I, Θ45 = δ̄W̃ T

2 PW̃3, Θ̃55 = δ̄2W̃ T
3 PW̃3 − λ2I,

Θ46 = (1− δ̄)W̃ T
2 PW̃3, Θ56 = δ̄(1− δ̄)W̃ T

3 PW̃3, Θ̃66 = (1− δ̄)2W̃ T
3 PW̃3 − λ3I.

Proof: Construct the following Lyapunov-Krasovskii functional for system (10)

V (η(k)) = V1(η(k)) + V2(η(k)) + V3(η(k)) (13)

where V1(η(k)) = η(k)TPη(k), V2(η(k)) =
∑k−1

i=k−τ1
η(i)TQ1η(i) and V3(η(k)) =∑k−1

i=k−τ2
η(i)TQ2η(i).

6
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In the case of ζ(k) = 0, we calculate the difference of V1(k) along (10) as follows:

E{∆V1(η(k))}

=E{[ηT (k)W̃ T
1 PW̃1η(k) + f⃗T (k)W̃ T

2 PW̃2f⃗(k) + δ̄2g⃗1T (k)W̃ T
3 PW̃3g⃗

1(k)

+ (1− δ̄)2g⃗2T (k)W̃ T
3 PW̃3g⃗

2(k) + 2ηT (k)W̃ T
1 PW̃2f⃗(k) + 2δ̄ηT (k)W̃ T

1 PW̃3

× g⃗1(k) + 2(1− δ̄)ηT (k)W̃ T
1 PW̃3g⃗

2(k) + 2δ̄f⃗T (k)W̃ T
2 PW̃3g⃗

1(k) + 2(1− δ̄)

× f⃗T (k)W̃ T
2 PW̃3g⃗

2(k) + 2δ̄(1− δ̄)g⃗1T (k)W̃ T
3 PW̃3g⃗

2(k)]− ηT (k)Pη(k)}.

(14)

Similarly, we obtain

E{∆V2(η(k))} =E{ηT (k)Q1η(k)− ηT (k − τ1)Q1η(k − τ1)}, (15)

E{∆V3(η(k))} =E{ηT (k)Q2η(k)− ηT (k − τ2)Q2η(k − τ2)}. (16)

By setting ϑ(k) =
[
ηT (k) ηT (k − τ1) η

T (k − τ2) f⃗
T (k) g⃗1T (k) g⃗2T (k)

]T
, the com-

bination of (14)–(16) results in

E{V (η(k + 1))− V (η(k))} =
∑3

i=1
E{∆Vi(η(k))} = E{ϑT (k)Φϑ(k)} (17)

where

Φ =

[
Θ11 Π12

∗ Π22

]
, Π22 =


Θ22 0 0 0 0
∗ Θ33 0 0 0
∗ ∗ Θ44 Θ45 Θ46

∗ ∗ ∗ Θ55 Θ56

∗ ∗ ∗ ∗ Θ66

 , Π12 =
[
0 0 Θ14 Θ15 Θ16

]
,

Θ11 = W̃ T
1 PW̃1 − P +Q1 +Q2, Θ14 = W̃ T

1 PW̃2, Θ22 = −Q1,

Θ33 = −Q2, Θ44 = W̃ T
2 PW̃2, Θ55 = δ̄2W̃ T

3 PW̃3, Θ66 = (1− δ̄)2W̃ T
3 PW̃3

and Θ15,Θ16,Θ45,Θ46,Θ56 are defined in Theorem 1.
Taking (2) into consideration, one has

E{V (η(k + 1))− V (η(k))}

≤E
{∑3

i=1
E{∆Vi(η(k))} − λ1[f⃗(k)− (I ⊗ ρf1)η(k)]

T [f⃗(k)− (I ⊗ ρf2)η(k)]

−
∑2

r=1
λr+1 [⃗g

r(k)− (I ⊗ ρg1)η(k − τr)]
T [⃗gr(k)− (I ⊗ ρg2)η(k − τr)]

≤E{ϑT (k)Φ̃ϑ(k)}

(18)

where Φ̃ is defined by (12). Since Φ̃ < 0, we have E{V (η(k + 1)) − V (η(k))} ≤
−ϵE{∥η(k)∥} where ϵ = −λmax(Ψ). Then, by following the similar analysis in Liang,
Wang, and Liu (2009), the exponential mean-square stability of the augmented
system (10) with ζ(k) = 0 can be shown and hence this proof is complete.
In the following theorem, the H∞ performance analysis is conducted and a suffi-

cient condition is derived to guarantee that the output estimation error z̃(k) satisfies
the H∞ performance constraint (11).

7
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Theorem 2. Let the estimator parameter K be given. The augmented system (10)
with ζ(k) = 0 is exponentially mean-square stable and the output estimation error
z̃(k) satisfies the H∞ performance constraint (11) under the zero initial condition
for all nonzero ζ(k) if there exist positive definite matrices P = diag{P1, P2},
Qi = diag{Qi1, Qi2} (i = 1, 2) and positive scalars λj (j = 1, 2, 3) satisfying the
following inequality:

Φ̂ =



Θ̂11 0 0 Θ̃14 Θ15 Θ16 Θ17

∗ Θ̃22 0 0 Θ̃25 0 0

∗ ∗ Θ̃33 0 0 Θ̃36 0

∗ ∗ ∗ Θ̃44 Θ45 Θ46 Θ47

∗ ∗ ∗ ∗ Θ̃55 Θ56 Θ57

∗ ∗ ∗ ∗ ∗ Θ̃66 Θ67

∗ ∗ ∗ ∗ ∗ ∗ Θ77


< 0, (19)

where Θ̂11 = W̃ T
1 PW̃1−P +Q1+Q2+M⃗

T M⃗−λ1ϕf1 ,Θ77 = −γ2I+W T
5 PW5,Θ17 =

W̃ T
1 PW5,Θ47 = W̃ T

2 PW5,Θ57 = δ̄W̃ T
3 PW5,Θ67 = (1 − δ̄)W̃ T

3 PW5 and other pa-
rameters are defined in Theorem 1.

Proof: The proof of the exponential mean-square stability for (10) in the case of
ζ(k) = 0 follows immediately from Theorem 1 since that the inequality (12) is
implied by (19). For the H∞ performance analysis, we choose the same Lyapunov-
Krasovskii functional and calculate the difference of V (η(k)) along (10) as follows:

E{V (η(k + 1))− V (η(k)) + ∥z̃(k)∥2 − γ2∥ζ(k)∥2} = E{ϖT (k)Φ̄ϖ(k)}

where

ϖ(k) =
[
ηT (k) ηT (k − τ1) η

T (k − τ2) f⃗
T (k) g⃗1T (k) g⃗2T (k) ζT (k)

]T
and

Φ̄ =

Θ̄11 Π12 Θ17

∗ Π22 Π23

∗ ∗ Θ77


with Θ̄11 = W̃ T

1 PW̃1 − P +Q1 +Q2 + M⃗T M⃗ , Π23 =
[
0 0 ΘT

47 Θ
T
57 Θ

T
67

]T
and other

parameters defined in Theorems 1 and 2.
Using (2) and (19), we have

E{V (η(k + 1))− V (η(k)) + ∥z̃(k)∥2 − γ2∥ζ(k)∥2} < 0. (20)

Under the zero initial condition, summing up (20) from 0 to ∞ with respect to
k, and considering E{V (η(∞)} ≥ 0, we obtain (11), which accomplishes the proof
of Theorem 2.
According to the H∞ performance analysis conducted in Theorem 2, a design

method of the H∞ state estimator for (1) is provided in Theorem 3.

Theorem 3. Consider the system (1) and let the disturbance attenuation level
γ > 0 be given. The augmented system (10) is exponentially stable in mean square
and the H∞ performance constraint (11) is met for all nonzero ζ(k) under the
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zero initial condition if there exist positive definite matrices P = diag{P1, P2},
Qi = diag{Qi1, Qi2} (i = 1, 2), matrix X and positive scalars ε, λj (j = 1, 2, 3)
satisfying the following inequality:Φ̌ Ȟ εĚT

∗ −εI 0
∗ ∗ −εI

 < 0, (21)

where

Φ̌ =

[
Π̌11 Π̌12

∗ Θ̌88

]
, Π̌11 =



Θ̌11 0 0 Θ̌14 0 0 0

∗ Θ̃22 0 0 Θ̃25 0 0

∗ ∗ Θ̃33 0 0 Θ̃36 0
∗ ∗ ∗ Θ̌44 0 0 Θ47

∗ ∗ ∗ ∗ Θ̌55 0 Θ57

∗ ∗ ∗ ∗ ∗ Θ̌66 Θ67

∗ ∗ ∗ ∗ ∗ ∗ Θ̌77


, Π̌12 =



Θ̌18

0
0

Θ̌48

Θ̌58

Θ̌68

Θ̌78


,

Ȟ =

0 0 0 0 0 0 0 HT P̌ T

0 0 0 0 0 0 0 HT P̌ T

0 0 0 0 0 0 0 HT P̌ T

T

, P̌ =

[
P1

P2

]
, Ě =

S18 0 0 0 0 0 0 0
0 0 0 S48 0 0 0 0
0 0 0 0 S58 S68 0 0

 ,
Θ̌11 = −P +Q1 +Q2 + M⃗T M⃗ − λ1ϕ

f
1 , Θ̌14 = λ1ϕ

fT
2 , Θ̌18 =W T

1 P
T ,

Θ̌44 = −λ1I, Θ̌48 =W T
2 P

T , Θ̌55 = −λ2I, Θ̌58 = δ̄W T
3 P

T , Θ̌66 = −λ3I,

Θ̌68 = (1− δ̄)W T
3 P

T , Θ̌77 = −γ2I, Θ̌78 =W T
5 P

T , Θ̌88 = −P,

S18 =
[
E1 0

]
, S48 =

[
E2 0

]
, S58 =

[
δ̄E3 0

]
, S68 =

[
(1− δ̄)E3 0

]

(22)

and other parameters are defined in Theorems 1 and 2. Moreover, if the above
inequality is solvable, the state estimator gain can be determined by K = P−1

2 X.

Proof: In order to eliminate the uncertainties in (19), we use Schur complement
lemma and obtain

Ξ =

[
Π̌11 Ξ12

∗ Θ̌88

]
< 0 (23)

where Ξ12 =
[
ΛT
18 0 0 ΛT

48 Λ
T
58 Λ

T
68 Θ̌

T
78

]T
,

Λ18 = Θ̌18 + ST
18F

T
1 (k)HT P̌ T , Λ48 = Θ̌48 + ST

48F
T
2 (k)HT P̌ T ,

Λ58 = Θ̌58 + ST
58F

T
3 (k)HT P̌ T , Λ68 = Θ̌68 + ST

68F
T
3 (k)HT P̌ T

(24)

and other parameters are defined in Theorems 2 and 3.
By considering X = P2K, it follows from (24) that

Φ̌ + ȞF̌ (k)Ě + (ȞF̌ (k)Ě)T < 0 (25)

where F̌ (k) = diag{F1(k), F2(k), F3(k)} and other parameters have been defined in
(22). According to S-procedure Lemma, it can be easily shown that inequality (25)
is implied by (21). The rest of the proof follows Theorem 2 immediately.
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Remark 1. In Theorem 3, the H∞ state estimator is designed for discrete-time
memristive recurrent neural networks with stochastic time-delays in terms of the
solution to LMI (21). Note that, for a standard LMI system, the algorithm has a
polynomial-time complexity. Fortunately, research on LMI optimization is a very
active area in the applied mathematics, optimization and the operations research
community, and substantial speed-ups can be expected in the future.

To this end, the H∞ state estimation problem addressed in Section 2 has been
solved in terms of a solution to the LMI (21). In the next section, the effectiveness of
the developed state estimation approach will be verified by an illustrative example.

4. An Illustrative Example

In this section, a numerical simulation example is given to show the effectiveness of
the derived results. The system parameters of the DMRNNs are set as follows

d1(x1(·)) =

{
0.4, |x1(·)| > 1,

0.6, |x1(·)| ≤ 1,
d2(x2(·)) =

{
0.6, |x2(·)| > 1,

0.4, |x2(·)| ≤ 1,

a11(x1(·)) =

{
0.5, |x1(·)| > 1,

0.2, |x1(·)| ≤ 1,
a12(x1(·)) =

{
0.2, |x1(·)| > 1,

−0.3, |x1(·)| ≤ 1,

a21(x2(·)) =

{
0.3, |x2(·)| > 1,

0.15, |x2(·)| ≤ 1,
a22(x2(·)) =

{
0.6, |x2(·)| > 1,

−0.18, |x2(·)| ≤ 1,

b11(x1(·)) =

{
0.2, |x1(·)| > 1,

0.5, |x1(·)| ≤ 1,
b12(x1(·)) =

{
0.3, |x1(·)| > 1,

0.2, |x1(·)| ≤ 1,

b21(x2(·)) =

{
0.2, |x2(·)| > 1,

−0.1, |x2(·)| ≤ 1,
b22(x2(·)) =

{
−0.3, |x2(·)| > 1,

0.1, |x2(·)| ≤ 1,

∆D(k) =

[
0.1 sin(0.6k) 0

0 0.1 sin(0.6k)

]
, ∆A(k) =

[
0.15 sin(0.8k) 0.3 sin(0.8k)
0.07 sin(0.8k) 0.39 sin(0.8k)

]
,

∆B(k) =

[
0.15 cos(0.5k) 0.05 cos(0.5k)
0.15 cos(0.5k) 0.2 cos(0.5k)

]
, C =

[
0.1 0.2
0.2 0.3

]
,

N =

[
0.1 0
0 0.2

]
, L =

[
0.08 0
0 0.15

]
, M =

[
0.35 0.3

]
.

The activation functions f(x(k)) and g(x(k)) are chosen as

f(x(k)) =

[
tanh(−0.3x1(k))
tanh(0.5x2(k))

]
, g(x(k)) =

[
tanh(0.10x1(k))

0.02x2(k)− 0.06tanh(x2(k))

]
,

which satisfy the constraint (2) with

ρ1f =

[
−0.3 0
0 0

]
, ρ2f =

[
0 0
0 0.5

]
, ρ1g =

[
0 0
0 −0.04

]
, ρ2g =

[
0.1 0
0 0.02

]
.

In the example, the probability is taken as δ̄ = 0.86, the stochastic time delays are
set as τ1 = 1, τ2 = 3, and the disturbance attenuation level is chosen as γ = 0.95.
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Figure 1. Output estimation error z̃(k).

By solving the LMI (21) in Theorem 3 with the help of Matlab toolbox, we can
obtain P2 and X as follows:

P2 =

[
0.1846 0.0533
0.0533 0.1436

]
, X =

[
−0.4065 0.4750
0.3992 −0.0277

]
.

Then, according to K = P−1
2 X, the desired estimator parameter is designed as

K =

[
−3.3658 2.9443
4.0281 −1.2856

]
.

In the simulation, the external disturbance inputs are assumed to be ς1(k) =
ς2(k) = ξ1(k) = ξ2(k) = 3 exp(−0.3k) cos(0.2k). Simulation results are shown in
Figs. 1-3. The output estimation error z̃(k) is presented in Fig. 1. Figs. 2 and 3 plot
the state and those estimates for node 1 and node 2, respectively. Simulation results
show that the estimator designed works well.

5. Conclusions

In this paper, the robust H∞ state estimation problem has been studied for a
class of DMRNNs with stochastic time delays. The stochastic time delays under
consideration are assumed to switch randomly between two values according to the
Bernoulli distribution. In order to estimate the neuron states, an estimator has
been constructed. By employing the difference inclusion theory and the stochastic
analysis technique, a sufficient condition has been obtained to ensure the exponential
mean-square stability of the output estimation error dynamics and the prescribed
H∞ performance requirement is met. Based on the derived sufficient condition, the
explicit expression of the desired estimator gain has been given. Finally, a numerical
example has been provided to show the usefulness and effectiveness of the proposed
estimator design method.
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Figure 2. The state and its estimate of node 1.

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (k)

T
h
e
st
a
te

a
n
d
it
s
es
ti
m
a
te

Figure 3. The state and its estimate of node 2.
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