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Abstract

Background: Sparse Gaussian graphical models are popular for inferring biological networks, such as gene

regulatory networks. In this paper, we investigate the consistency of these models across different data

platforms, such as microarray and next generation sequencing, on the basis of a rich dataset containing

samples that are profiled under both techniques as well as a large set of independent samples.

Results: Our analysis shows that individual node variances can have a remarkable effect on the connectivity of

the resulting network. Their inconsistency across platforms and the fact that the variability level of a node may

not be linked to its regulatory role mean that, failing to scale the data prior to the network analysis, leads to

networks that are not reproducible across different platforms and that may be misleading. Moreover, we show

how the reproducibility of networks across different platforms is significantly higher if networks are summarised

in terms of enrichment amongst functional groups of interest, such as pathways, rather than at the level of

individual edges.

Conclusions: Careful pre-processing of transcriptional data and summaries of networks beyond individual edges

can improve the consistency of network inference across platforms. However, caution is needed at this stage in

the (over)interpretation of gene regulatory networks inferred from biological data.

Keywords: Gaussian graphical models; gene regulatory network; microarray; next-generation sequencing

Introduction

One important direction in systems biology is to dis-

cover gene regulatory networks from transcriptional

data based on the observed mRNA levels of a large

number of genes. The nodes of the network are genes

and the edges are the corresponding interactions, such

as activation, repression or translation. Transcrip-
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Full list of author information is available at the end of the article

tional data can be generated using two different high-

throughput technologies: gene expression microarrays

[18] and tag-based sequencing methods, like Deep-

SAGE [12, 21] and RNA-seq [19].

Statistical models have been proposed in the lit-

erature for reverse engineering networks from data

and different adaptations have been developed to deal

with the high dimensionality and complexity of bi-

ological networks in particular, e.g. [8, 15, 22, 31].

Amongst these approaches, Gaussian graphical mod-



Vinciotti et al. Page 2 of 12

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

els have shown to be particularly popular. The com-

putationally efficient method introduced by [8] allowed

the estimation of these models for the case of a large

number of nodes relative to the sample size (p � n)

via the use of an L1 penalised likelihood approach.

This approach is suited to microarray data, as the

data are continuous and, after normalization, well-

approximated by a multivariate normal distribution.

A number of papers have extended the original model

to different cases, such as dynamic networks from mi-

croarray data [1], hub-type networks from microarray

data [31], condition-specific networks from microarray

data [7] and networks from next generation sequencing

data, which are discrete, e.g. [4, 36].

After the advent of next generation sequencing tech-

nologies, a number of studies have evaluated the con-

sistency between the two platforms, both at the level

of expression values and at the level of differentially

expressed genes, e.g. [12, 27, 30, 33, 37]. The general

conclusion from these studies is that sequencing tech-

nologies not only allow to identify transcripts that have

not been previously annotated, but they also allow to

better quantify very low and very high expression tran-

scripts, which would be masked by microarray’s back-

ground noise and saturation effects, respectively. In the

intermediate range, there is high replication and de-

tection amongst the two platforms, although platform

specific and dataset-specific effects can limit the level

of consistency significantly [27]. A small number of

studies has gone beyond expression and differential ex-

pression. In particular, [29] studied the consistency of

clustering methods on microarray and RNA-seq data

and [11] studied the consistency of co-expression net-

works on microarray and RNA-seq data, where the

networks are inferred by Pearson correlation values.

Linked to the work of [11], the aim of this paper is

to quantify the consistency, across platforms and sam-

ples, of biological networks inferred by sparse Gaussian

graphical models. We consider a rich dataset contain-

ing samples that are profiled under both microarray

and sequencing techniques as well as a large set of

independent samples [39]. We assess the consistency

of networks both at the level of individual edges and

at the level of enrichment among pathways extracted

from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database (http://www.genome.jp/kegg).

For the latter, we make use of a recently developed

test for network enrichment [28].

Method

Data

The data used in this study contain DeepSAGE (DS)

sequencing of 21bp tags and corresponding Affymetrix

expression data from total blood RNA samples from

unrelated individuals from the Netherlands Twin

Register (NTR) [5] and the Netherlands Study of

Depression and Anxiety (NESDA) [24]. From the

NTR/NESDA cohorts, we selected healthy (and thus

non-diabetic) individuals at the extremes of the fasting

glucose serum level distribution: 41 individuals with

fasting glucose concentrations ≤ 4.8 mmol/l; 53 in-

dividuals with fasting glucose concentrations ≥ 5.9

mmol/l. This selection comprised 28 males and 66

female individuals. Microarray and DeepSAGE data

generation, processing and quality control have been

described previously [13, 35, 39]. In addition, we used

Affymetrix-profiled blood samples of 1272 additional

participants of the NTR and NESDA studies, selected

using the same glucose based criterion as above. In par-

ticular, of these there are 418 high glucose and 854 low

glucose samples. We later refer to the three datasets

as DS (the 94 DeepSAGE samples), MA(DS) (the 94

corresponding microarray samples) and MA(Add) (the

1272 additional microarray samples). Together with

gene expression data, a number of corresponding co-

variates are used: age (in years), sex, Body Mass Index

(BMI), glucose level and smoking (yes and no). These
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were obtained during the interview at the time of blood

draw. Glucose was measured in blood plasma using the

Vitros 250 glucose assay (Johnson and Johnson).The

DS samples are corrected for GC content.

For the analysis, we select the 1500 most highly ex-

pressed genes for which there are concept profiles, i.e.

for which there is information in the literature in at

least 5 papers. This group of genes is expected to be

least affected by observational noise in their expres-

sion measurements and, therefore, to be most consis-

tent across platforms. This aids in focussing on the

actual contribution of network modelling to the con-

sistency across platforms, which is the focus of this

paper. From these 1500 genes, we select 1435 genes

that are common to both DS and microarray data.

For microarray data, we take the average expression

of all probes targeting the same gene. Figure 1 (left)

shows the correspondence between count data and ex-

pression data for the 1435 genes, averaged over the

94 samples. The correlation between the two is 0.49,

suggesting a moderate reproducibility across the two

platforms at the level of expression data. The right

plot shows a very high reproducibility for the microar-

ray experiments between the 94 samples and the 1272

independent samples.

Sparse Gaussian graphical models

In this paper, we use Gaussian graphical models for

inferring networks from data. A Gaussian graphical

model makes the assumption that the vector of nodes

D follows a multivariate Gaussian distribution, so

D ∼ N(µ,Σ),

with mean vector µ and variance-covariance matrix Σ.

Of particular importance is the inverse of the variance-

covariance matrix, also called precision or concentra-

tion matrix, which is usually denoted by

Θ = (θij) = Σ−1.

This matrix holds a special role in Gaussian graphical

models: in fact, zeros in the precision matrix corre-

spond to conditional independence between the corre-

sponding variables, i.e. the absence of an edge in the

corresponding graph. In particular, there is a direct

link between the precision value θij and the partial

correlation ρij between Di and Dj conditioning on all

other nodes, as

ρij = − θij√
θiiθjj

. (1)

Thus inferring the network of interactions can be re-

casted into the problem of estimating the precision

matrix Θ and extracting its zero structure. Of par-

ticular importance for the analysis in this paper is

the fact that the diagonal of the matrix Θ is given

by the inverse of the conditional variances, i.e. θii =
1

var(Di|Dj , j 6= i)
[34]. Thus, the scale of individual

nodes can play a significant role in the dependency

structure.

In the case of high-dimensional networks, that is

where the sample size n (number of experiments) is

smaller than the number of nodes p (number of genes),

a sparse estimate of the precision matrix Θ can be ob-

tained by imposing an L1-penalty constraint on the

entries of the precision matrix. This results in the pe-

nalised likelihood optimization

max
Θ

[log |Θ| − Trace(SΘ)− λ||Θ||1] ,

with S the sample covariance matrix and λ the penalty

parameter controlling sparsity. [8] provide an efficient

optimization procedure for this problem, by maximis-

ing the penalised log-likelihood iteratively for each

node and, at each step, by re-writing the problem into

an equivalent lasso regression problem. The latter is es-

timated efficiently using coordinate descent methods.
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Network Inference

We adopt a Poisson regression model for the Deep-

SAGE data to correct for spurious confounders in mea-

suring the interaction between the genes. Let Yi =

(Yi1, . . . , Yip) be the count data for gene i under p ex-

periments. Let X = (X1, . . . , Xc) be a vector of covari-

ates. Then

Yij ∼ Poisson(λij)

log(λij) = log(nj) +

C∑
c=1

xTjcβic,

with nj the total number of counts in experiment j,

xj = (xj1, . . . , xjC) the vector of covariates for sample

(experiment) j and βi the vector of parameters for gene

i. For microarray data, a multiple regression model

is used to correct for the same covariates, with the

exception of GC content and total number of counts

which are specific to count data.

We then extract the residuals of the regression mod-

els. For the Poisson regression, we take the deviance

residuals defined by

dij = sign(yij − λ̂ij)
√

2yij log
yij

λ̂ij
− 2(yij − λ̂ij).

These are approximately normally distributed [20] and

are used for network modelling.

This two-step method does not take into account the

uncertainty of the regression estimates and could, es-

pecially when the number of samples is similar to the

number of regressors, lead to biased estimates. We ac-

count for this uncertainty by non-parametrically boot-

strapping the data and repeating the analyses on the

bootstrap samples. This provides typically asymmet-

ric confidence intervals of the quantities of interest that

will account both for the bias and the under-estimated

variance of the original two-step estimation procedure.

In order to assess the impact of individual node

variances and of correction for confounding effects on

the resulting inferred network and on the consistency

of network models across different samples and plat-

forms, we fit sparse Gaussian graphical models in the

following three cases:

1 Residuals standardised to have mean zero and

variance one per node.

2 Residuals not standardised.

3 Normalised expression data standardised to have

mean zero and variance one but not corrected for

confounding effects.

For the first and the third case, we use the package

huge [38], which automatically scales the data prior to

network inference. In terms of the choice of the penalty

parameter λ, we select this based on the rotation infor-

mation criterion (ric) approach, which is available in

the R function huge.select. We take the optimal net-

work for the case of standardised residuals from the 94

DS samples. This returns a network with 1435 nodes

and 29865 edges. We then select λ for all other net-

works in such a way that all networks in the compar-

ative study are of similar size. For the second case,

we use the function glasso in the package glasso [9],

which does not automatically scale the data.

Given the estimated networks, the test developed by

[28], and implemented in the R package neat, is used

to detect enrichment of the networks among KEGG

pathways. In particular, the test detects whether the

number of edges between two pathways in the inferred

network is larger than what is expected by chance. For

this, we download all human KEGG pathways using

the R package KEGGREST [32]. Out of the total 299

pathways, we filter 62 pathways as those that contain

at least 20 of the selected genes and test for enrich-

ment amongst any pair of pathways. Finally, we rank

the p-values and build a network with 62 nodes (the

pathways) and with edges corresponding to the top

enrichments.

Throughout the analysis, the agreement between any

two networks is measured using the product-moment
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correlation between the corresponding adjacency ma-

trices. This is implemented in the function gcor of

the R package sna. The function qaptest in the same

package is used to compute the p-values under a re-

labelling of the nodes of the network.

Results and Discussion

The Confounders Effect

In a first set of experiments, we evaluate the impact

of confounders on network inference and thus justify

the choice of performing the network modelling on the

residuals. In order to do this, we fit networks under

two cases. In the first case the data are scaled but not

corrected for confounders (with the exception of GC

and number of experiments for DS data). In the second

case, the data are scaled and corrected for confounders

as explained before.

The results on our data show a high correlation

between the networks in the two cases, with 95%

bootstrapped confidence intervals (0.56, 0.94) for DS,

(0.68, 0.75) for MA(DS) and (0.95, 0.98) for MA(Add).

The agreement is particularly high in the MA(Add)

case due to the larger sample size. However, looking at

the difference between the two networks for each of the

three datasets, we can see how genuine regulatory in-

teractions, when one transcript directly regulates the

expression of another transcript, may be masked by

confounding effects. Figure 2 shows two examples of

edges that are found in the MA(DS) network when not

correcting for confounders but they are not found when

correcting for confounders. In general, any two differ-

entially expressed genes may be highly correlated, but

they may not be directly interacting, i.e. this may be a

spurious correlation caused by a third factor. One way

of distinguishing between direct and indirect interac-

tions is by correcting for confounders: if the correlation

is still at the the level of residuals (i.e. partial correla-

tion), then it may be a sign of a genuine relationship.

In conclusion, regulatory interactions between genes

may be masked by confounders effects. Although their

effect in the network reconstruction is found to be

small for our particularly study, performing this step

increases the chances of detecting genuine regulatory

mechanisms. For the remaining of the paper, we there-

fore fit networks to the residuals, after correcting for

the confounders mentioned in the description of the

data.

The Node Variance Effect

The fact that the variance of a node has an impact on

the dependency structure is natural for models that are

based on estimating the inverse of covariances, as ex-

plained in the description of Gaussian graphical mod-

els. Due to computational stability of the estimation

procedure, in most cases the variables are standard-

ized prior to the estimation of the dependency struc-

ture. However, this is not always included in the im-

plementations that are made available. For example,

the original implementation of sparse Gaussian graph-

ical models in the glasso package [9] does not auto-

matically standardize the variables. Of 44 citations of

the package in Google scholar, we found that 14 use

glasso for inferring biological networks, and only 3

of these make explicit mentioning to standardization

of the data. This is the same for JGL [6], where the

variables are only centralised per condition, and for

SparseTSCGM [2], where the variables are not standard-

ized. Amongst other implementations of sparse Gaus-

sian graphical models, huge [38] automatically scales

the data, and similarly, the function sugm in the flare

R package [16] is based on estimation of the inverse of

the correlation matrix and, thus, is scale independent.

These are only few examples of the most popular im-

plementations. In general, the decision as to whether

to scale the data or not is not always done automati-

cally by the software, so it is important to appreciate

the impact of this choice on the resulting network and
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the implications when interpreting the network for bi-

ological findings.

Figure 3 plots the connectivity of each node versus

its variance (both in the log scale) for the networks

inferred from non-scaled data (case 2). Figure 3 (a) is

for the case of DS data, whereas (b) is for the case

of MA(DS) data. A similar relationship exists for the

MA(Add) data. The plots show how the connectivity

of a node is strongly linked with its variance. The panel

(c) of the figure shows how the variance of a node is

not consistent across platforms. Thus the conclusion is

that the networks inferred in this analysis from non-

scaled data will mainly reflect measurement scale and

platform specific effects rather than biological effects.

In addition, Figure 4 shows how the residuals with the

largest variances tend to correspond to the highly ex-

pressed genes. Looking at the list of these genes, we

find various markers for cellular composition. In par-

ticular, as the data come from blood samples, many of

the highly expressed genes are related to blood mark-

ers, e.g. HBB is the gene with the highest variance and

is the most connected gene of the DS network (1307

edges), whereas HLA-C is the highest connected gene

in the MA(DS) network (811 edges). Markers for cel-

lular composition are in general not expected to have

also a regulatory role, thus the network on non-scaled

data may show features that, in some cases, may be

consistent across platform but they may not necessar-

ily be linked to regulation.

In general, the connectivity of a network inferred

from non-scaled data is strongly influenced by the in-

dividual node variances. As shown by Figure 5, the

network on non-scaled data has a very pronounced

right tail, i.e. a small number of highly connected

nodes (hubs), whereas the network on scaled data has

a more uniform level of connectivity. The plots show

how the effect is more pronounced for the DS than for

the MA(DS) network, as in count data the variance

scales with the mean and there is therefore a larger

variability in node variances.

If networks on non-scaled data exhibit a gene vari-

ance effect and if the measurement scales are not con-

sistent across platforms, then one would expect a lower

consistency of networks across samples and platforms

if the data are not standardized. Table 1 shows the cor-

relations of networks across different samples and plat-

forms, distinguishing the case of scaled and not-scaled

data. The correlation between adjacency matrices is

computed using the function gcor of the R package

sna. Firstly, the table shows varying levels of corre-

lations, which all tested significant using the qaptest

function (p-values < 0.001). Secondly, the networks on

the same data, but scaled versus non-scaled, are rather

different, particularly for the DS case, where the cor-

relation is only 0.18. This is less pronounced for the

MA(Add) case, due to the larger sample size. Thirdly,

the correlation across samples improves when the data

are scaled, e.g. 0.26 between MA(DS) and MA(Add)

when they are both scaled versus 0.22 when they are

not scaled, and 0.06 between DS and MA(Add) when

they are both scaled versus 0.04 when they are not.

The correlations between the scaled networks tested

significantly larger than those between the non-scaled

networks (p-values < 0.001). Fourthly, the correlation

across platforms is significant, but generally very low

(top second and third quadrant), even when the data

are scaled. We will expand on this point in the next

section.

Agreement of Enrichment Networks

Table 1 shows a very small agreement of network mod-

els, particularly across different platforms. The ques-

tion could therefore be asked whether the overlap be-

tween the two networks is at all biologically relevant. In

this section, we aim to summarise the networks at the

higher level of functional groups and interactions be-

tween these. In particular, we summarise the networks
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in terms of interactions among 62 KEGG pathways.

The test neat [28] is used to detect enrichment among

any pair of pathways. Figure 6 shows the quantile-

quantile plots (q-q plots) of the p-values for all pair-

wise comparisons. Under no enrichment, the p-values

should follow a uniform distribution. In that case, the

q-q plot would follow the diagonal line. For the case

of DS and MA(DS), it is obvious how scaling the data

returns networks that are enriched of biological edges,

as the q-q plots are those of right-skewed distributions.

The node variance effect of the networks on non-scaled

data may therefore mask biological facts and the de-

tection of biologically meaningful interactions. For the

case of MA(Add), there is detection of interactions

among pathways both for the networks on scaled and

non-scaled data. In fact, Table 1 showed a relatively

large agreement between the two networks (correlation

0.54). This is most likely due to the significantly larger

sample size of MA(Add) (1272 versus 94), which limits

the effect of the variances of individual nodes on the

network inference.

Considering the case of scaled data, we build net-

works among pathways testing for ”Overenrichment”

at a 10% significance level. The resulting networks

have 240 edges in the case of DS, 240 edges for MA(DS)

and 427 edges for MA(Add). Figure 7 shows the in-

tersection of the three networks. The network reveals

some links between pathways that are supported by

existing literature. For example, the link between the

Focal Adhesion and Calcium pathways is found signif-

icant in the DS network (p-value 0.006, 34 links be-

tween the two pathways), MA(DS) (p-value 0.041, 32

links) and MA(Add) (p-value 0.009, 39 links). Look-

ing closely at the links, there are many connections

between the protein tyrosine kinase 2 (PTK2B) from

the calcium pathway with genes in the focal adhe-

sion pathway, for example a link between VAV1 and

PTK2B in the DS network that was found previously

by [10]. In the other direction, AKT2 from the focal

adhesion pathway was found to be regulated by cal-

cium signalling [26] and the link between AKT2 and

calcium-dependent regulators such as CALM3, which

is found in the microarray networks, is supported by

[23, 25].

Table 2 shows the agreement among the three net-

works in terms of correlation. Comparing this table

with Table 1, we observe the same agreement between

MA(DS) and MA(Add) (p-value 0.532), but a signifi-

cantly higher agreement across platforms: 0.11 versus

0.04 for DS-MA(DS) (p-value 0.019) and 0.12 versus

0.06 for DS-MA(Add) (p-value 0.017). Overall, this

suggests a higher level of consistency at the level of in-

teractions between pathways, rather than at the level

of individual edges.

In many cases, the biological objective of the analysis

is to detect differences in regulatory patterns among

biological conditions. Then the interest is in the dif-

ferential networks, that is in the edges that are found

only in one of the conditions. Consistency of differ-

ential network analyses among different samples and

platforms is therefore also important. In order to assess

this, we fitted networks on high glucose and low glu-

cose samples separately. A similar agreement to that in

Table 1 was found across platforms, both for high and

low glucose networks. We then considered the networks

containing the edges that are in high glucose but not in

low glucose. We found 18686 edges unique to high glu-

cose from the networks inferred from DS data, 25522

edges in the networks inferred from MA(DS) data and

15974 edges in the networks inferred from MA(Add)

data. But the three networks altogether have only 100

edges in common, suggesting that the detection of dif-

ferences at the level of individual edges is not robust.

In contrast to this, when enrichment among pathways

is considered, Figure 8 shows a low level of pathway

enrichment for all three networks, particularly for the
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network from the DS data. Similar results are ob-

tained when considering the networks unique to low

glucose. For example, there are 21218 edges unique to

high glucose from the networks inferred from DS data,

24684 edges in the networks inferred from MA(DS)

data and 13489 edges in the networks inferred from

MA(Add) data, but the three networks altogether have

only 98 edges in common. This means that the net-

works, across samples and platforms, have little signa-

ture of differences between high and low glucose con-

ditions. Of course, there may be genuine differences,

but there is not enough evidence in the data to pick

these up. These examples show that consistency across

platforms can be particularly low for differential net-

works, since one is looking for a robust detection of

edges that are in one condition but not in the other

condition, so sensitivity as well as specificity of sparse

Gaussian graphical models play a role in this case.

Discussion and Conclusion

The aim of this paper was to assess the consistency of

networks inferred by sparse Gaussian graphical mod-

els across different samples and data platforms. To this

aim, we used a rich dataset containing samples that are

profiled under both techniques as well as a large set of

independent samples. We first of all showed the impact

of confounding effects (such as age and gender) on the

network reconstruction. The effect was not very strong

in our study. Nevertheless, we show how confounding

effects may return spurious interactions amongst genes

and may mask the search for genuine regulatory inter-

actions. Although the inference method does not cor-

respond to any generative model of the data, i.e., it is

impossible to set up a sampling scheme that exactly

correspond to the two-step inference procedure, we

have investigated how realistic sampling schemes for

genetic networks are affected by confounding variables.

The results, included in the supplementary materials,

show that the inferred precision matrix in the two-

step procedure relates closely the underlying network

in all kind of confounding scenarios. Moreover, [3] show

that the precision matrix can approximately be inter-

preted in terms of conditional odds ratios, which are

more natural ways to interpret conditional indepen-

dence for count data. Given these considerations, we

recommend to devise an appropriate regression model

and fit networks to the residuals of this model, i.e. to

data adjusted for confounders.

Our analysis of the inferred networks shows that in-

dividual node variances can have a remarkable effect

on the connectivity of the resulting network. In partic-

ular, they result in hub-type networks with hubs made

of the nodes with the highest variances. The incon-

sistency of node variances across platforms and the

fact that the variability level of a node may not be

linked to its regulatory role mean that, failing to scale

the data prior to the network analysis, leads to net-

works that are not reproducible across different plat-

forms and that may be misleading. This point is of

particular importance given that not all available im-

plementations of sparse Gaussian graphical models au-

tomatically scale the data and thus this step is often

left to the user. Failure to scale the data prior to net-

work modelling may in part explain the belief, partic-

ularly in the early days of network modelling of bio-

logical systems, that biological networks are scale-free

and the later contributions which questioned this as-

sumption, e.g. [14, 17] and references therein.

However, even after scaling of the data, our analysis

shows that a large number of edges are not replicated

across platforms. We then show how the reproducibil-

ity of networks across different samples and platforms

is notably higher if networks are summarised in terms

of enrichment amongst functional groups of interest,

such as KEGG pathways, rather than at the level of

individual edges. In particular, we show, for the case

of differential networks, how conclusions from individ-



Vinciotti et al. Page 9 of 12

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

ual edges are not consistent across platforms and, once

again, how conclusions drawn from analyses of individ-

ual edges may be misleading.

Overall, while the field of network modelling makes

steady advances and new network models with higher

specificity, sensitivity and computational efficiency are

proposed in the literature, this study shows that cau-

tion is needed at this stage in the (over)interpretation

of the inferred networks for biological findings. In par-

ticular, we show how summarising the networks at the

level of functional groups of interest, such as KEGG

pathways, provides a more robust representation of

the underlying network and allows to reach conclu-

sions that are most consistent across platforms. The

network of functional groups is also of a significantly

smaller scale than the network of genes and, thus, it

can be more easily interrogated to generate hypotheses

that can be tested by further biological experiments.

Additional Files

Additional file 1: Simulation showing the effect of confounders on network

reconstruction.
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Figure 1 DS versus Microarray Expression. Left: Average (log) expression for the 1435 genes from the 94 DS samples (x-axis) and

the 94 microarray samples (y-axis). Right: Average gene expression from the 94 microarray samples versus the 1272 additional

microarray samples.

Figure 2 Confounders Effect. Two examples of the effect of confounders on the MA(DS) network: the two links are found when not

correcting for confounders, but not after correction.

Figure 3 Node Variance Effect. Node connectivity versus node variance for DS network (a), MA(DS) network (b) and node

variance from DS data versus node variance from MA data (b).

Figure 4 Node Connectivity versus Expression Node connectivity of DS network versus node expression level (measured as number

of transcripts per million (tpm)).

Figure 5 Scaling Effect on Node Connectivity Node degree distributions of DS (left) and MA(DS) (right) networks on scaled (red)

and non-scaled (blue) data. The networks have similar size (about 30000 edges).

Figure 6 Enrichment of Links between Pathways q-q plot of p-values of the enrichment test for all pairwise comparisons of 62

KEGG pathways for DS, MA(DS) and MA(Add) and distinguishing the case of scaled and not-scaled data.

Figure 7 Network of Pathways Overlap Overlap of Pathway Networks from DS, MA(DS) and MA(Add) at 10% significance level.

Figure 8 High versus Low Glucose Networks q-q plot of the enrichment test for all pairwise comparisons of 62 KEGG pathways for

the differential networks between high and low glucose.

Table 1 Correlation among the 6 networks from expression data (DS, MA(DS) and MA(Add)) and two cases (SCALED - data centered

to mean zero and variance one for each gene and NOT SCALED.)

DS MA(DS) MA(Add)

SCALED NOT SCALED SCALED NOT SCALED SCALED NOT SCALED

DS
SCALED 1.00 0.18 0.04 0.02 0.06 0.05

NOT SCALED 1.00 0.03 0.03 0.04 0.04

MA(DS)
SCALED 1.00 0.36 0.26 0.21

NOT SCALED 1.00 0.14 0.22

MA(Add) SCALED 1.00 0.54

Table 2 Correlation among the networks at the level of KEGG pathways.

DS MA(DS) MA(Add)

DS 1.00 0.11 0.12

MA(DS) 1.00 0.26

MA(Add) 1.00


