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Abstract

The post-2007 global financial crisis, characterised by huge firm losses, especially in
the USA and Europe, initiated a new strand of literature, where default models are ad-
justed for unobserved risk factors, including measurement errors, missing firm specific
and macroeconomic variables. These new models assume that default correlations are
not only driven by observable firm-specific and macroeconomic factors, but also by unob-
served risk factors. This thesis present three empirical essays.

The first essay estimates and predicts the within-sector failure rate and dependence of
firms on the London Stock Exchange. The study offers an additive lognormal frailty model
that accounts for both unobserved factors and regime changes. The analysis reveals that
during distressed market periods the sector-based failure rates and dependencies tend
to be high. The second essay proposes a novel approach based on a bias-corrected es-
timator to investigate the impact of informative firm censoring and unobserved factors on
hazard rates of US firms. The approach uses inverse probability of censoring weighted
scheme that explicitly accounts for firm specific factors, economic cycles, industry-level
dependence and market activities induced by unobservable factors. The analysis shows
that during distressed market periods the effect of informative censoring averagely in-
creases the hazards rates, and varies across industries. The third essay employs a
mixed effects Cox model to estimate the failure dependence caused by firms’ exposure
to country-based and group-level unobserved factors within the Eurozone. The empirical
results show that a higher failure dependence among firms in groups of countries with
similar economic and financial conditions than countries with different conditions.

Overall, the thesis contributes to the empirical literature on firm default in the broad
area of corporate finance by offering a different approach of capturing default dependence
and its variations during unfavourable market conditions and adjusting for the effects of
non-default firm exit on active firms.
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Chapter 1

Introduction

The task of determining the financial health of businesses has attracted much attention
among academics and practitioners over the last years. The seminal papers by Beaver
(1967) and Altman (1968), who used univariate and multiple discriminant analyses (MDA,
hereafter) respectively to discriminate financially healthy businesses from unhealthy ones,
were the pioneers of a new way of estimating corporate failures using financial ratios.
Since then, several models have been developed in the literature on corporate default.
In the 1980s, some studies raised concerns about the basic assumptions of the MDA:
independent variables normally distributed, probability of failure known a priori, and equal
variance-covariance matrices across default and non-default categories (see, for example
Zavgren, 1983; Karels and Prakash, 1987). To address these concerns, some authors
proposed probit and logit models to estimate defaults without imposing those assump-
tions (see for example Ohlson, 1980; Zmijewski, 1984). These models have been then
extended in order to deal with time-varying covariates and sector dynamics (see Gilbert
et al., 1990; Platt and Platt, 1990; Charitou et al., 2004; Campbell et al., 2008).

However, when estimating failure rates, it is important to take into account the time
to an event, e.g. failure or censoring. Therefore, the use of survival or duration models,
where the dependent variables is the time a firm spends in an active group, has been
encouraged. More specifically, duration models (e.g. Cox proportional hazard models)
with static firm performance (firm characteristics are fixed over the period of existence;
see Lane et al., 1986) and dynamic one (see Shumway, 2001; Kavvathas, 2001; Chava
and Jarrow, 2004; Duffie et al., 2007; Bharath and Shumway, 2008), captured by time-
varying specific and macroeconomic covariates, have been used.

In a related study on default rates in the presence of unobserved factors, Das et al.
(2007) argued that those models based on the assumption that failure rates of firms are
independent (firm failure rates are uncorrelated ) are likely to produce bias in the estimates
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of hazard rates. Against this background, various works have taken into account failure
dependence induced by unobserved risk factors at country or industry levels using frailty
factors (see Duffie et al., 2009; Chava et al., 2011; Koopman et al., 2011; Koopman et
al., 2012; Qi et al., 2014; Azizpour et al., 2015; among others), that are regarded as “a
random component designed to account for variability due to unobserved individual level
factors that is otherwise unaccounted for by the other predictors in the model” (Kleinbaum
and Klein, 2012, pg. 326).

The thesis investigates the impact of unobserved risk factors on firms by using firm
failure prediction models, and draws motivation from the argument that taking into account
firm failure dependence results in more accurate estimates of hazard rates. As such, the
study contributes to the empirical literature of corporate default in three regards. First, it
offers a new way to measure default correlations in hazard rates during distressed market
periods. Second, it shows how to capture the effects of non-default firm exit on active firms
specifically during unfavourable conditions. Finally, it provides an approach to control for
the effects of country-based and group level unobserved factors on firms. The results
suggest that neglecting the effects of default correlations and non-default firm exit, and
country and group levels unobserved effects may likely lead to underestimation of default
rate of firms especially during distressed market periods.

The above contributions are offered within three empirical essays. The first essay,
which contains the second chapter, explores the effects of unobserved risks factors un-
der two regimes, namely normal and distressed market periods, on firms in the UK. The
second essay, included in the third chapter, performs bias correction in hazard rate mod-
els that do not explicitly account for informative firm censoring using US corporate data.
The third essay, contained in the fourth chapter, examines the effects of unobserved risk
factors at country and group levels on firms listed in the Euro area.

Chapter 2 examines corporate failure dependence induced by firms’ exposure to un-
observed risk factors (frailty factors) under extreme market conditions on the London
Stock Exchange over the period 1985-2012. These factors may include missing and mea-
surement errors in covariates, variations in managerial flexibility, regulatory requirements,
firm culture, cost control, and employee skills (see e.g. Lancaster, 1990; Hougaard, 2000;
Chava et al., 2011). The chapter contributes to the extant literature in some respects.
First, we propose an additive lognormal frailty model that accounts for both extreme
and normal market regimes using a lognormal distribution. The lognormal distribution
offers much more flexibility in estimating dependence among units (e.g. firms and coun-
tries) within a multivariate context (see Hougaard, 2000; Dutchateau and Janssen, 2008;
Wienke, 2011; Hangal, 2011, among others) than other distributions, such as the Gamma
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one (see Chapter 2). As a result, the additive lognormal frailty model is likely to provide
more accurate estimates of corporate failure dependence under extreme market con-
ditions. Second, to the best of our knowledge, this is the first work that explores the
corporate failure dependence at industry level in the UK using listed firms on the London
Stock Exchange. Lastly, using a naı̈ve recursive extraction approach, we compare the
one-step ahead prediction performance of the additive lognormal model with that of the
multiplicative gamma frailty model by Chava et al. (2011).

In our empirical analysis, we employ covariates used in previous studies (see Shumway,
2001; Duffie et al., 2007; Bharath and Shumway, 2008), such as one year trailing stock
return, one year trailing market return, distance to default probability, 3 month T-bill rate,
market value of equity (or equity), firm age, excess return, total assets, total liabilities to
total assets, and net income to total assets.

The empirical analysis delivers three main results. First, the frailty factor is significant
across all the specifications, a result consistent with findings in previous papers (see
Duffie et al., 2009; Chava et al., 2011; Koopman et al., 2011, 2012; Qi et al., 2014;
Azizpour et al., 2015; among others). This result shows evidence of firm failure clustering
on the London Stock Exchange, especially during distressed periods. Second, the regime
switch factor, which accounts for extra failure rate variations during distressed periods,
is positive and significant for all the models. The factor increases as one moves from
a less severe distressed period to a more severe distressed one. This adjustment in the
failure rates during distressed periods is more accurate when using the additive lognormal
frailty model than the multiplicative gamma frailty one. Lastly, the additive model tend to
produce more accurate estimates and extracts (predicts) of the industry level frailties and
dependence as compared to the multiplicative gamma frailty model. These results are
supported by a better goodness-of-fit of our model. In order to deal with the variations of
unobserved factors during distressed market periods, characterised by higher variations
in hazard rates, we construct and use root mean square deviations metric to measure
the deviations of these factors from their expected value. High values of this metric are
desirable as opposed to low values for the classical root mean square error, which is not
an appropriate measure when aiming to capture the effects of unobserved factors.

Chapter 3 aims to estimate the failure rates of public listed firms on the following
exchanges NYSE, NASDAQ and NYSE MKT LLC, over the period 1980-2013, while con-
sidering the potential effects of informative firm censoring. Firms may leave the mar-
ket voluntarily or involuntarily. This activity can reveal the financial conditions of such
firms and, to some extent, of other firms. For instance, two financially healthy firms may
form a synergy to enhance corporate market power, profitability, and shareholders’ wealth
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through the activities of mergers and acquisitions (M&As). Also, a financially distressed
firm may be willing to be acquired in order to survive (see Andrade et al., 2001; Lambrecht
and Myers, 2007; Alexandridis et al., 2010, among others). In addition, firms with weak
corporate governance structures are more likely to be delisted (see Marosi and Massoud,
2008; Hostak et al., 2013, among others). All these market activities are likely to impact
on the hazard rates of the surviving firms, and neglecting to account for this may generate
bias in the hazard rate estimates.

This study proposes a novel empirical approach for estimating failure rates condi-
tional on informative firm censoring, unobserved factors and extreme market conditions.
In particular, the study aims to estimate the probability of non-default firm exit and the
corresponding impact on hazard rate. In doing so, the estimates of the hazard rate are
compared to those obtained using the multivariate gamma frailty and additive lognormal
frailty models of Chava et al. (2011) and Atsu and Costantini (2015), respectively. These
two models do not explicitly account for informative censoring and are likely to underesti-
mate hazard rates, especially during distress market periods.

This work contributes to corporate failure dependence literature by performing bias-
correction in the models of Chava et al. (2011) and Atsu and Costantini (2015), and
it applies inverse probability of censoring weighted (IPCW, hereafter) (see e.g. Robins,
1993; Robins and Finkelstein, 2000; Scharfstein and Robins, 2002). This allows us to
quantify the potential effects of informative firm censoring, as dynamic weights, from
two perspectives. First, we construct the weights by using time varying firm-specific and
macroeconomic factors. Second, we combine firm-specific and macroeconomic factors
with industry level unobserved factors to estimate the weights. This is done because
some market activities, such as M&As, tend to cluster by industry (see e.g. Andrade et
al., 2001; Harford, 2005).

As for the regression analysis, we employ the following covariates: one year trailing
stock return, one year trailing market return, distance to default probability, firm age, 3
month T-bill rate, and industry level distress indicator. The analysis points to three main
results. First, the distressed indicator is positive and significant in all the models, providing
the evidence of higher hazard rates during distressed market periods. The bias-corrected
models adjust hazard rates up during distressed periods more accurately than the models
of Chava et al. (2011) and Atsu and Costantini (2015). Second, models by Chava et
al. (2011) and Atsu and Costantini (2015) underestimate the effects of unobserved risk
factors and failure rate dependence as compared to the weighted models. Lastly, the
bias-corrected models are comparatively more efficient than the benchmark models, as
they tend to produce smaller standard errors.
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Chapter 4 investigates failure rates and dependence caused by firms’ exposure to
both country-based and group level unobserved risk factors in the Euro area over the
period 1994Q1-2014Q4. The Euro area offers some advantages to its members, such
as free movement of trade and capital, reduction of transaction costs, elimination of ex-
change rate uncertainty, price transparency, and potential development and integration of
financial markets, but it also implies costs to state members, such as the loss of monetary
independence. The recent financial crisis and the European banking and debt crises have
hit the Euro countries in different ways. While the PIIGS economies (Portugal, Ireland,
Italy, Greece, and Spain) have been hit harder, other countries have suffered less, even
though the contagion effect have propagated to Belgium and France (see Metiu, 2012;
Arghyrou and Kontonikas, 2012; Ludwing, 2014). As a result, financial conditions of firms
have been seriously affected (see Bhattacharjee et al., 2009; Bonfim, 2009; Chen, 2010;
Tang and Yan, 2010; Jacobson et al., 2013, among others), and businesses within the
Euro area have struggled to survive, with a large impact on hazard rates. This suggests
that internal (country-based) and external (group level) unobserved risk factors should be
considered when estimating default rates.

The chapter contributes to the extant literature in some respects. First, this study takes
into account the impact of external unobserved factors (due to the Euro membership)
along with the internal ones, while previous studies treat countries as standalone entities.
Second, this study is the first to estimate the default rate of firms and their dependence
for 11 selected Eurozone countries, with a focus on the following groups of countries:
the PIIGS, the PIIGSB (Belgium is part of the PIIGS), the PIIGSF (France belongs to the
PIIGS), and the PIIGSBF (both Belgium and France are members of the PIIGS).

To estimate the default rates, this study uses a mixed effect Cox model, which allows
us to nest frailty factors at country and group levels. We use one year trailing stock return,
one year trailing market return, distance to default probability, firm age, and 3 month T-bill
rate as covariates. The regression analysis offers three results. First, there is a significant
evidence of failure dependence caused by firm’s exposure to country level unobserved
factors. Second, when countries are grouped together, failure clustering tend to be larger,
as firms are subject to an extra risk due to the impact of unobserved factors at the group
level. Third, models that do not account for the distance to default probability tend to
perform poorly as compared with their counterparts.

Chapter 5 presents conclusions and recommendations.
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Chapter 2

Modelling corporate failure
dependence of UK public listed firms

2.1 Introduction

The estimates of failure probability and its correlation play a central role in contemporary
risk management for corporations, regulators, investors and academics. In particular,
they can be used by: a wide range of stakeholders to explore how economic cycles and
corporate default risk are related over a period; rating agencies to rate firms; banks and
bank regulators to determine minimum capital requirements; financial institutions to dis-
criminate good credit applicants from the bad ones (Shumway 2001; Duffie et al, 2007,
Duan et al., 2012, among others).

In this study, we explore the dynamics of corporate failure dependence and its varia-
tions across various sectors on the London Stock Exchange (LSE, henceforth) over the
period 1985-2012. To this end, we use a multivariate frailty reduced form model that
accounts for unobserved factors.

Literature broadly groups credit risk models into structural and reduced form mod-
els, given the role that information plays in modelling default risk (see e.g. Jarrow and
Turnbull, 1992; Jarrow and Turnbull, 1995; Duffie and Singleton, 1999; Duffie and Lando,
2001; Jarrow and Protter; 2004; Giesecke, 2006; among others). However, reduced form
approaches have received more attention than the structural ones (Jarrow, 2001, Jarrow
and Protter, 2004; Duan et al. 2012; Dionne and Laajimi, 2012; Figlewski et al., 2012;
Yeh et al., 2015), since these models are primarily based on the information available to
the market.1 In this chapter, we employ the reduced form approach, and to estimate the

1For a comprehensive comparison between structural and reduced form models, see Jarrow and Protter
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parameters of the model and within-sector dependence, we consider covariates used in
previous works, such as one year trailing market return, one year trailing stock return, 3
month T-bill rate, distance to default probability, excess return, net income to total assets,
total liabilities to total assets, stock volatility, market value (or equity), and firm age (see
Shumway, 2001; Duffie et al., 2007; Bharath and Shumway, 2008).

This chapter makes some contributions to the literature on corporate finance. First, we
propose an additive lognormal frailty model with two regime changes (distressed and nor-
mal regimes). While the literature predominately features gamma distribution (see e.g.
Chava et al., 2011; Wienke, 2011), we use the lognormal distribution as it offers much
more flexibility in modelling the dependence structures within a multivariate context (see
e.g. Hougaard, 2000; Duchateau and Janssen, 2008; Wienke, 2011). The lognormal
distribution is positively skewed and the dependence measure (or association) is directly
proportional to the skewness of the distribution: the higher the value of association, the
greater the skewness which makes the right tail longer (Lee and Wang, 2003). As the data
on corporate failure is highly skewed during distressed periods, a power transformation of
the frailties as to make them normal-like may help to better capture the dependence on a
log-scale (Hougaard, 2000). Therefore, under extreme market conditions, the lognormal
tends to properly explain the frailties and the corresponding dependence structures, and
the additive lognormal frailty model may provide more accurate information on corporate
failure dependence as compared to models which use gamma distribution. Second, we
investigate the dynamics of corporate failure dependence on the LSE. To the best of our
knowledge, this is the first study to look at corporate failure dependence in the UK. We
also test the robustness of our model under different levels of sector distress (degrees of
departure from normal market conditions), given the fact that the effects of unobserved
sector specific factors tends to be more pronounced when markets move to severe dis-
tressed conditions, and compare its performances with those of the model by Chava et al.
(2011). The comparison is carried out using measures of goodness-of-fit. Lastly, and this
is another novelty of the study, we investigate one-step ahead predictive performances
of our model and the model by Chava et al. (2011), using a naı̈ve recursive extraction
approach.

Our empirical analysis delivers three main results. First, the frailty factor is always sig-
nificant across all the model specifications as in previous studies (see Duffie et al., 2009;
Chava et al., 2011; Koopman et al., 2011, 2012; Qi et al., 2014). Further, the significance
of the within-sector frailties provides evidence of firm failure clustering, which tends to
occur more during distressed market conditions. Second, the adjustment factor in hazard

(2004).
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rate during distressed market periods is also significant, and this implies that firms on the
LSE are more inclined to move faster towards failure. Lastly, the additive lognormal frailty
model tends to better estimate and predict within-sector frailties and dependencies than
the multiplicative gamma frailty model when moving away from normal market conditions,
as it is evidenced by information criteria results. This seems to favour the use of the addi-
tive lognormal frailty model when estimating and predicting correlations and failure rates
among firms during distressed market conditions in the UK.

The rest of the chapter is organized as follows. Section 2.2 reviews previous studies
on the dynamics of corporate default risks. Section 2.3 presents methodology and data.
Section 2.4 discusses the empirical findings and Section 2.5 concludes the study.

2.2 Literature review

Literature broadly classifies failure prediction models into first, second and third genera-
tion models. The first generation models (FGMs) primarily employed discriminant analysis
(see e.g. Beaver, 1967, 1968; Altman, 1968; Deakin, 1972) and risk indexing (e.g. Tamari,
1966; Moses and Liao, 1987) to compute credit scores as to differentiate healthy firms
from financially distressed ones. The second generation models (SGMs) (see Ohlson,
1980; Zmijewski, 1984; Zavgren, 1985; Gentry, 1987) improve over the FGMs by us-
ing binary response models, such as logit and probit, where the dependent variable of
failed and active firms is assigned value 1 and 0, respectively. The third generation mod-
els (TGMs), which largely feature duration analysis (Shumway, 2001; Kavvathas, 2001;
Chava and Jarrow, 2004; Hillegeist et al., 2004; Duffie et al., 2007; Bharath and Shumway,
2008; among others), account for changes in firms’ characteristics over a period, as op-
posed to FMGs which consider only one-period data set of firms. In addition, these mod-
els accounts for time in different ways using: (i) time varying covariates; (ii) time spent by
a firm in the surviving group as the dependent variable; and (iii) firm age as a significant
prognostic factor (see Shumway, 2001).

In their study on US corporate default data, Das et al. (2007) observed excess default
correlation induced by unobserved factors (or frailty factors), and showed that models
based on the assumption that corporate defaults are conditional independent after ad-
justing for observable factors tend to underestimate default clustering. To address this
issue, Duffie et al. (2009) developed a dynamic frailty model, which explicitly accounts
for default correlations, to estimate default rate of a set of 2793 US non-financial firms
for monthly data over the period 1979-2004. The frailty factor is allowed to revert to its
mean in the event of shocks. The empirical analysis confirmed the existence of common

8



latent factors (frailty), that account for about 40 percent extra variations of corporate de-
fault rates, even after taking observable factors into account, with very high firm default
prognostic effects. Using various goodness-of-fit and quantile tests, the authors con-
cluded that corporate default models that do not incorporate unobserved factors produce
downward biased estimates. The use of such models may produce misleading results
concerning the minimum capital requirement of firms, which are likely to hold capital that
does not necessarily reflect their risk profiles.

Using an augmented dataset of Duffie et al. (2009), Koopman et al. (2011) proposed
a new non-Gaussian panel data model that incorporates the principal components of a
large data set of macroeconomic and financial covariates of US firms. The authors argued
that their framework is more appropriate for the estimation and forecast of the dynamic
corporate failure rates using both observable and unobservable risk factors. The empiri-
cal results showed that the dynamic frailty factor plays a crucial role, even after controlling
for at least 80 percent of the changes in over 100 macroeconomic and financial covari-
ates, and models with frailty outperform those without frailty in out-of-sample analysis.
Koopman et al. (2011) argued that including frailty factors in corporate default models
enhances the estimation and forecasting abilities of such models.

In a related study, Koopman et al. (2012) proposed a new decomposition approach
for systematic default risk. Using high-dimensional, nonlinear and non-Gaussian dynamic
factor models, the work simultaneously measured the effect of macroeconomic/financial,
frailty and industry-level risk factors on US corporate default rate variations (or clustering)
over the period 1971Q1-2009Q1. The empirical results revealed that: (i) systematic and
industry factors accounts for approximately 35% of default rate variations, and about 33%
of the default clustering is accounted for by the macroeconomic and financial factors; (ii)
the frailty factor captures about 40% of the default rate variation; and (iii) 25% of the latter
is accounted for by the industry effects. The authors argued that the frailty component
plays a major role as compared to other components because: (i) it tends to capture a
higher portion of corporate default rate variations before and during times of crisis, as their
unified technique is able to detect systematic credit risk build-up in the years 2002-2008;
and (ii) it accounts for missing sources of default rate variations. Koopman et al. (2012)
concluded that the dynamics of default rate variations are more appropriately captured
when frailty effects are taken into account.

Qi et al. (2014) tested the significance of an unobserved systematic risk factor in a
corporate default prediction exercise using a univariate frailty approach by Duffie et al.
(2009) for the US corporate data of 3650 active and 508 failed firms over the period 1979-
2010. The results showed that the unobserved risk factor is more highly informative than
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the observed factors in the in-sample analysis, while its predictive power improvement is
very lower for the out-of-sample forecasting exercise.

Using financial and industrial default timings in the US over the period 1970-2012,
Azizpour et al. (2015) examined whether corporate default clustering in US are caused
by frailty and contagion. The authors developed a new model and various tests using
time dependent observable factors, dynamic frailty factor and past defaults. The results
showed that frailty and contagion induce default clustering after accounting for the effects
of macroeconomic and firm specific factors, and in addition the past firm failures tend to
explain a portion of the conditional default rates.

Chava et al. (2009) argued that economy-wide frailty models do not provide relevant
industry-level information about default rates, since they do not account for changes in
specific industry-level. Therefore, the authors developed a multiplicative frailty model to
estimate and predict firm defaults and recovery rates using observable and unobservable
covariates for the US data over the period 1980-2008. The estimates are used to model
and predict the loss distribution of bonds and loans. Chava et al. (2011) improved over
the model by Duffie et al.(2009) by adopting two regimes (normal and distressed industry
level periods) frailty modelling framework. The choice of a shared frailty allows the authors
to explore the contagion effects at the industry level. The model of Chava et al. (2011) as-
signs a different frailty factor to each industry, whereas the model by Duffie et al.’s (2009)
uses a single frailty for all industries. The empirical results revealed that default mod-
els that control for regime switching and industry level frailties have a higher explanatory
power of portfolio loss dynamics as compared to economy-wide frailty models.

2.3 Methodology and data

In this section, we first present our additive lognormal frailty model and the multiplicative
gamma frailty of Chava et al. (2011), and then we describe the data.

2.3.1 Additive lognormal frailty model

Our additive lognormal frailty model is based on the approach of Clayton (1978). Let
T ∈ [0,∞) be the time to event or time until a firm either fails or leaves the sample as
a result of non-failure events (e.g. mergers and acquisitions). Our data set contains s

clusters (sectors) and in each cluster there are ni members (firms) (see Duchateau and
Janssen, 2008). In our sample, the sum of firms across all the sectors is the total number
of firms, n =

∑s
i=1 ni. Given a time horizon [0, T ∗], staggered firm entry is allowed and
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some firms may leave the sample period due to non-failure events. In addition, some firms
may experience failure event or survive beyond the end of the sample period, T ∗, and a
firm is considered censored if it leaves the sample period through non-failure reasons or
survives beyond T ∗. The information consists of the set (Tij, δij, Xij(t), ũi) for i = 1, ..., s

and j = 1, ..., ni. The term Tij is the event time (either failure or censored time) of the
jth firm in the ith sector, δij is the corresponding censoring indicator which takes value 1
when Tij is the failure time and 0 if Tij is the censoring time, and δi =

∑ni

j=1 δij is the total
number of failures in the ith sector. The vector Xij(t) is the set of time-varying covariates
for the jth firm in the ith sector in the counting process style of input. Finally, ũi is the
unobserved information or the frailty term for ith sector. The frailty factor is defined as “a
random component designed to account for variability due to unobserved individual-level
factors that is otherwise unaccounted for by the other predictors in the model” (Kleinbaum
and Klein, 2012, page 326). These factors may include missing and measurement errors
in covariates, variations in managerial flexibility, regulatory requirements, firm culture,
cost control, and employee skills (see e.g. Lancaster, 1990; Hougaard, 2000; Chava et
al., 2011).

We use the classical shared frailty modelling approach of Clayton (1978) to derive our
additive lognormal frailty model. The classical shared frailty model is based on the Cox
proportional hazard (PH) semi-parametric framework and is defined as follows:

hij(t) = h0(t)ũiexp(Xij(t)β), (2.1)

where hij(t) is the conditional hazard rate for the jth firm in the ith sector (conditional on
the frailty factor, ũi), h0(t) is an arbitrary baseline hazard and β is a p-dimensional vector
of coefficients of the covariates, Xij(t). We rewrite the frailty factor ũi in terms of a random
effect or log-frailty as: w̃i = log ũi or ũi = exp(w̃i). Then, equation (2.1) becomes:

hij(t) = h0(t) exp(log(ũi))exp(Xij(t)β)

= h0(t)exp(Xij(t)β + w̃i). (2.2)

Equation (2.2) represents the classical lognormal shared frailty model. It contains two
terms: the fixed effects term, which involves the covariates, and the random term, w̃i, with
an expected value, E(W̃ ) = 0 and a finite variance, V ar(W̃ ) = γ. We follow Chava et al.
(2011) to construct the log-frailty term as a combination of sector-specific log-frailty term,
wi, and a time-varying sector distress indicator, Zi(t), which takes value 1 for distressed
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sectors at time t and 0 otherwise. As such, we have:

w̃i(t) = log ũi = log(ui∆
Zi(t))

= log ui + log ∆Zi(t). (2.3)

Equation (2.3) can be re-written as:

w̃i(t) = πZi(t) + wi, (2.4)

where π = log(∆) is the additive factor in the regime-switch lognormal frailty context that
accounts for the extra variations in hazard rates induced by distressed market periods.

Substituting equation (2.4) into (2.2), the additive lognormal frailty model (regime-
switch lognormal frailty model) is given by:

hij(t) =

h0(t)exp(Xij(t)β + πZi(t) + wi) if sector i is distressed,

h0(t)exp(Xij(t)β + wi) otherwise,
(2.5)

where h0(t)exp(Xij(t)β + wi), and hij(t) = h0(t)exp(Xij(t)β + πZi(t) + wi) are the hazard
functions for normal and distressed periods, respectively.

The classical shared lognormal frailty model is a special case of our additive lognormal
frailty model when π = 0. The shared lognormal frailty model does not incorporate regime
changes in the impact of the lognormal frailties. Although the multiplicative gamma frailty
model may show high predictive power (see Chava et al., 2011), we argue that our additive
lognormal frailty model offers much more flexibility than the gamma frailty model due to the
properties of the lognormal distribution within the multivariate context (Hougaard, 2000;
Duchateau and Janssen, 2008; Wienke, 2011). This flexibility stems from the dependence
between the right tail of the distribution and the association parameter (Lee and Wang,
2003), and its power transformation property (Hougaard, 2000).

To estimate the parameters in equation (2.5), we use the penalised partial likelihood
(PPL, hereafter) approach of McGilchrist and Aisbett (1991):

lp(β, π, γ|w) = lpart(β, π|w)− lpen(γ|w), (2.6)

where

lpart(β, π|w) =
s∑
i=1

ni∑
j=1

δij

Xij(t)β + πZi(t) + wi − log

 ∑
j∈R(Tij)

exp(Xij(t)β + πZi(t) + wj)

 ,

(2.7)
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which is the conditional likelihood given the log-frailties and

lpen(γ|w) =
1

2γ

s∑
i=1

w2
i , (2.8)

represents the penalised term (the distribution of the log-frailties). This term penalises
the likelihood by subtracting large values of the penalty term from the full data log like-
lihood, if the real values of the log frailties are far from their mean (see Duchateau and
Janssen, 2008). The term R(Tij) in equation (2.7) is the risk set (the set of surviving firms
or firms still at the risk of an event). The PPL does not depend on the baseline hazard
function, making it possible to estimate the parameters of the likelihood without knowing
the shape of the baseline hazard rate. This characteristic of PPL makes our estimates ro-
bust, regardless of the shape of the baseline hazard rate (see e.g. Cox, 1975; Duchateau
and Janssen, 2008; Allison, 2010), although estimates can be, to some extent, not fully
efficient, but this inefficiency is normally immaterial (see Efron, 1977). However, the esti-
mates are consistent and asymptotically normal (see e.g. Cox, 1975; Allison, 2010).

Let β∗ = (β, π) be the coefficients of the following covariates X = (Xij(t), Z(Tij)).
Equation (2.7) can be the re-written as follows:

lpart(β
∗|w) =

s∑
i=1

ni∑
j=1

δij

Xβ∗ + wi − log

 ∑
j∈R(Tij)

exp(Xβ∗ + wj)

 . (2.9)

Therefore equation (2.6) becomes:

lp(β
∗, γ|w) =

s∑
i=1

ni∑
j=1

δij

Xβ∗ + wi − log

 ∑
j∈R(Tij)

exp(Xβ∗ + wj)

− 1

2γ

s∑
i=1

w2
i . (2.10)

For any value of the log-frailty variance, γ, we employ the marginal log-likelihood in
Ripatti and Palmgren (2000) (see also Therneau and Grambsch, 2000; Therneau et al.,
2003; SAS/STAT 13.2) to derive the extended PPL of equation (2.10):

lm(β∗, γ) = −1

2
log(γI) + log(

∫
exp[lp(β

∗, γ)]dw), (2.11)

where I is the identity matrix of order s×s and s is the number of sectors in the sample. We
use the approximation of Ripatti and Palmgren (2000) to derive the likelihood in equation
(2.11):

lm(β∗, γ) ≈ −1

2
log(γI) + log(|H22(β∗, γ, w∗)|)− lp(β∗, γ, w∗), (2.12)
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where H is the negative Hessian of the PPL for a given value of γ. We use the PHREG
procedure in SAS to maximize the likelihood in equation (2.12). For the variance of the
frailty, ũit, which follows a lognormal distribution with an expected value, E(Ũ) = 1, and a
finite variance, V ar(Ũ) = θ, it is required that γ = log(θ+1) (see Duchateau and Janssen,
2008).

In our empirical analysis, we compare the performance of the first specification of our
model with the multiplicative frailty model (see Chava et al. 2011) in order to empirically
ascertain whether the additive lognormal frailty model is comparatively better than the
latter. In what follows, we briefly describe the multiplicative gamma frailty model of Chava
et al. (2011):2

hij(t) =

h0(t)ui∆
Zi(t)exp(Xij(t)β) if sector i is distressed,

h0(t)uiexp(Xij(t)β) otherwise.
(2.13)

For estimation feasibility, the authors assumed that the sector frailties follow a two
parameter gamma distribution, i.e. ui(t) = G(Ai(t), Ci(t)) with the shape parameter
Ai(t) = 1/θ(t) +

∑nij

j=1,Tij<t
δij and scale parameter Ci(t) = 1/θ(t) +

∑nij

j=1,Tij<t
H(Tij),

where H(Tij) =
∫ Tij

0
(∆Zi(t)exp(Xij(t)β)dt. Based on the above assumption, the authors

derived the sample marginal likelihood for all sectors as

l(θ,∆, β) =
s∑
i=1

li(θ,∆, β), (2.14)

where

li(θ,∆, β) = log Γ(δi + 1/θ)− log Γ(1/θ)− (1/θ) log(θ) +

ni∑
j=1

δij(Xij(Tij)β

+Zi(Tij) log(∆))− (δi + 1/θ) log(1/θ +

ni∑
j=1

H(Tij)), (2.15)

for each sector i. The term Γ(.) is the gamma function with an expected value of 1 and a
finite variance, θ.3

In order to select the best specification of our model and compare it with that of Chava
2For further details, readers can refer to Chava et al. (2011). Here, we change some of the notations in

Chava et al. (2011) to ease the comparison of the two models.
3Chava et al. (2011) applied the expectation maximization (EM) approach, while we use PPL technique.

However, for a gamma distribution, the EM and PPL procedures lead to the same results (for details in
this respect, see Duchateau and Janssen, 2008). For consistency, therefore, we maximise equation (2.14)
using the PPL procedure.
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et al. (2011), we use the Akaike Information Criterion (AIC), the corrected Akaike Infor-
mation Criterion (AICC), and the Bayesian Information Criterion (BIC) as defined below:

AIC = −2logL+ 2k, (2.16)

AICC = AIC +
2k(k + 1)

n− k − 1
, (2.17)

BIC = −2logL+ klogn, (2.18)

where −2LogL is the partial likelihood which is obtained by using the rank of events
(Singer and Willett, 2003), k and n denote the number of parameters and events, re-
spectively (see Xie, 1994; Raftery, 1995).

2.3.2 Data

Data are taken from DataStream and Worldscope for the London Stock Exchange (LSE).
It covers the period 1985-2012 due to data availability. Our sample contains 889 firms,
which consists of 524 active, 174 merged or acquired and 191 failed firms, which trans-
lates into 13,343 yearly firm observations. To study the within-sector dependencies and
frailties, we employ 29 subsectors from the 10 major DataStream sectors on the LSE (see
Table 2.1). As regards the definition of failure, we follow the convention of legal definition
of failure (see, e.g., Charitou et al., 2004; Christidis and Gregory 2010; Tinoco and Wil-
son, 2013) and select firms in this category. Given our sample, we specifically employ the
UK insolvency Act 1986 to select failed firms. The Act states that, “A company is insol-
vent (unable to pay its debts) if it either does not have enough assets to cover its debts
(i.e. value of assets is less than amount of liabilities), or if it is unable to pay its debts as
they fall due”, and such a company has the option to go into either (i) administration, (ii)
company voluntary arrangement (CVA), (iii) receivership, (iv) liquidation or (v) dissolution.
We select the failed firms from the DataStream “DeadUK” category and cross-checked
at Bloomberg bankruptcy segment, Wall Street Journal (European segment) and the UK
Bankruptcy & Insolvency Website for companies with at least four years firm-specific data.

2.3.2.1 Dependent variable

The dependent variable in a duration or event study is the time taken for a subject to
experience an event. In our study, the event may be either a firm fails, exits a market
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through mergers and acquisitions, or survived beyond the sample period of the study.
Therefore, the dependent variable is always stated with an event indicator, which assume
value 1 for the occurrence of the event of interest and 0 otherwise. We construct the
dependent variable by using the counting process input method of Andersen and Gill
(1982) for the following reasons. First, it enables us to easily incorporate time varying
covariates in our study. Second, the number of firms in the risk set, firms still at risk, at
each period keeps changing due to constant firm entry and exit on the market. When
these changes are not taken into account, less accurate estimates of the hazard rates for
all our specifications may be produced. Therefore, we allow for staggered or late entry of
firms and adjust the parameters for this effect. For instance, assume that it takes 5 years
for a firm to be hit by an event. If the firm fails, we create the intervals (0, 1], (1, 2], (2, 3],
(3, 4], and (4, 5] for year 1, 2, 3, 4, and 5, respectively. The event indicator is 0 for the
years 1, 2, 3, and 4, when the firm is still active, but takes 1 for the 5th year, when the
firm failed. We can therefore simply reconstruct the intervals as triplets: (0, 1; 0], (1, 2; 0],
(2, 3; 0], (3, 4; 0], and (4, 5; 1], where the first and second values are the beginning and the
end of the year, and the last number is the event status. For example, the interval (1, 2; 0]

indicates the value of the dependent variable for the end of the second year, where 1 and
2 are the beginning and end of the second year; the third value 0 is the event indicator
since the firm is still traded at the end of the second year.4 When the firm is censored,
for example, through merger and acquisition activities, we now construct the following
intervals: (0, 1; 0], (1, 2; 0], (2, 3; 0], (3, 4; 0], and (4, 5; 0]. The event indicator is 0 for all the
intervals since the firm left the sample as a result of a non-failure event.

2.3.2.2 Independent variables

We categorise our data set into macro-financial, firm-specific and sector level distressed
indicator variables of firms. First, we employ the following macro-financial and market
covariates:

(a) LSE market-wide one year trailing return, calculated by cumulating monthly market
returns (Shumway, 2001). This covariate is a measure of the overall market perfor-
mance, which can be used as an indicator for future performance of the UK economy.

(b) The 3 month T-bill rate, which is used as a measure of short term rates (Das et al.,
2007, Duffie et al., 2007, Qi et al., 2014).

4In the counting process input style setting, the end of an immediate previous year is assumed to be the
beginning of the next year. For the triplet (1, 2; 0], the value 1 is the end of the first year, which is assumed
to be the beginning of the second year.
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Second, for the firm-specific covariates, we use two types of covariates, namely market
driven and books (including balance sheets and income statements).
For market driven variables, we use:

(c) One year trailing cumulated monthly returns. The returns of stocks of distressed firms
closed to a potential default are normally sold at discounted prices, making it a good
hazard rate predictor (Shumway, 2001).

(d) The standard deviation of the monthly firm’s equity returns: indicates how stock re-
turns deviate from their expected value.

(e) Excess returns, computed as the difference between the stock return and the market
return (Shumway, 2001, Bharath and Shumway, 2008).

(f) Market value of equity (simply equity): the product of the number of outstanding
shares and current equity price (e.g. Shumway, 2001; Bharath and Shumway, 2008).

(g) Firm age: defined as the period between the time a firm is listed and the time of an
event (Shumway, 2001).

(h) The face value of firm’s debt, as the sum of debt in current liabilities and half of long
term debt (see Vassalou and Xing, 2004.)

(i) Distance to default probability (a probabilistic measure of volatility adjusted leverage
in the framework of structural model of Merton, 1974). We adopt the approach of
Bharath and Shumway (2008) to construct this measure because: (i) it is much easier
to implement in practice, since it does not require solving complex equations iteratively
in the classical Merton’s (1974) method; and (ii) it has slightly better in and out-sample
predictive power, as compared to Merton’s Distance-to-Default metric (Bharath and
Shumway, 2008).

For book-based covariates, we employ:

(j) The ratio of net income to total assets: a measure of firm profitability over the years
of operation (Zmijewski, 1984, cited in Shumway, 2001).

(k) Total liabilities to total assets, a leverage ratio, measures the firm’s ability to meet it
future financial obligations (Zmijewski,1984, cited in Shumway, 2001).

Third, in order to test the robustness of our model to different levels of sector distress
(degrees of departure from normal market conditions), we construct five sector level dis-
tress indicators following Gilson et al. (1990), Opler and Titman (1994) and Acharya et
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al. (2007).5 Let r(t) be the median equity return of a sector during a given year t and ε(n)

be a real number that only takes on the values -0.10, -0.15, -0.20, -0.25, and -0.30 for the
integer n = 1, ..., 5, respectively. We define a sector level distress indicator as:

Z(n) =

1 if r(t) < ε(n)

0 otherwise.
(2.19)

For example, the first sector level distress indicator is Z(1), which takes value 1 if the
median equity return of a sector during a given year in the sample period of our analysis is
less than -10 percent and 0 otherwise. Explicitly, this sector level distress is said to occur
if the returns of over half of the number of stocks within a given sector is less than -10
percent in a particular year. The third sector level distress indicator, Z(3), corresponds
to Chava et al.’s (2011) sector level distress indicator. This indicator takes value 1 if
the median equity return of a sector during a given year is less than -20 percent and 0
otherwise. By our construction, the sector distress indicator 3 represents a more severe
market conditions than sector distress indicator 1. All of these indicators are used to
control regime changes in the sample period of our analysis.

To ensure that our results are not affected by outliers, we winsorized all the variables
at 1 and 99 percentiles except distance to default probability (see e.g. Shumway, 2001;
Bharath and Shumway, 2008). By construction, the distance to default probability is [0,1]
bounded.

Table 2.2 presents the summary statistics of the covariates used to estimate the coef-
ficients of the additive lognormal and multiplicative gamma frailty models in Section 2.4.
The distance to default probability and sector level distress indicator have 0 and 1 as their
minimum and maximum values, respectively. The stock return, market return, and excess
return are bounded below and up by -91.520% and 220.557%, -22.167% and 57.840%,
and -93.948% and 169.800%, respectively. The excess return has a higher standard de-
viation than those of the stock and market return variables. The range of the ratios net
income to total assets, and the total liabilities to total assets are respectively 3.830% and
1.438%, while the former deviates more from its mean value as compared to the latter.
The values of ln(age), ln(equity), ln(face value of debt) and ln(total assets) fall with the
following intervals (0.000, 3.296), (11.920, 21.964), (2.606, 16.764), and (7.498, 18.368),
respectively. The 3 month T-bill is bounded by (0.434%,14.332%), with not less than half
of the values are more than 5.150. The lowest value of firm volatility is 0.077% while

5Chava et al. (2011) also followed the same authors when constructing their sector distress indicator.
Here, we take a step further and construct four extra sector distress indicators.
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Table 2.1: Sector names
Sector ID Name

1 UK-DS Oil and Gas Producers
2 UK-DS Oil Equipment and Services
3 UK-DS Alternative Energy
4 UK-DS Chemicals
5 UK-DS Basic Resource
6 UK-DS Construction and Materials
7 UK-DS Aerospace and Defence
8 UK-DS General Industrials
9 UK-DS Electronic and Electrical Equipment
10 UK-DS Industrial Engineering
11 UK-DS Industrial Transportation
12 UK-DS Support Services
13 UK-DS Automobiles and Parts
14 UK-DS Food and Beverage
15 UK-DS Personal and Household Goods
16 UK-DS Health Care Equipment and Services
17 UK-DS Pharmaceuticals and Biotechnology
18 UK-DS Retail
19 UK-DS Media
20 UK-DS Travel and Leisure
21 UK-DS Fixed Line Telecommunications
22 UK-DS Mobile Telecommunications
23 UK-DS Electricity
24 UK-DS Gas, Water and Multiutilities
25 UK-DS Insurance
26 UK-DS Real Estate
27 UK-DS Financial Services(3)
28 UK-DS Software and Computer Services
29 UK-DS Technology Hardware and Equipment

Notes: We choose the 29 sub-sector due to data availability and the similarity between some of the
sub-sectors. Financial Services (3) is a subsector of firms that provide financial services. This group

excludes banks, real estate and insurance firms.
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Table 2.2: Descriptive statistics
Variable Mean Std. Dev. Min 25th P. Median 75th P. Max
Distance to default prob. 0.692 0.263 0.000 0.666 0.778 0.852 1.000
Stock return(%) 8.760 27.998 -91.520 -6.818 7.406 20.986 220.557
Market return (LSE)(%) 10.922 16.940 -22.167 2.590 13.170 24.080 57.840
3 month T-bill rate (%) 5.746 3.253 0.434 4.480 5.150 6.850 14.332
ln(age) 1.971 0.898 0.000 1.386 2.079 2.708 3.296
ln(equity) 16.716 1.965 11.920 15.509 16.706 17.936 21.964
Inverse of volatility 3.704 1.847 0.975 2.406 3.359 4.600 10.331
Excess return (%) 1.355 32.428 -93.948 -15.188 0.000 14.005 169.800
Stock volatility (%) 0.340 0.181 0.077 0.216 0.296 0.413 1.025
ln(face value of debt) 10.027 2.779 2.606 8.338 10.164 11.936 16.764
ln(total assets) 12.488 2.132 7.498 11.150 12.420 13.781 18.368
Total liab. to total assets 0.487 0.285 0.006 0.264 0.498 0.664 1.444
Net income to total assets 0.849 0.830 -0.055 0.090 0.683 1.298 3.825
Sector distress indicator 0.073 0.259 0.000 0.000 0.000 0.000 1.000

Notes: All covariates are winsorized at 1 and 99 percentiles, except distance to default probability covariate.
The terms 25th P. and 75th P. are the 25th and 75th percentiles, respectively.

the highest value is 1.025%, whereas those of the inverse volatility are 0.975 and 10.331
respectively.

2.4 Empirical analysis

In this section, we present our empirical analysis based on the additive lognormal frailty
and the multiplicative gamma frailty models using the three sets of covariates. First, we
run regressions with and without firm age for the standard shared frailty and additive log-
normal frailty models (see Section 2.4.1) using covariates from Duffie et al. (2007) as to
examine the impact of age on firm performance in both models. Then, we employ the
second set from Shumway (2001) (see Section 2.4.2). Lastly, we repeat the estimation
exercise using covariates from Bharath and Shumway (2008) as to study the impact of
accounting-based and market driven variables on our model and the shared frailty model.
In Section 2.4.3, we compare the performance of the best model specification based on
market driven covariates from Duffie et al. (2007) with that of the multiplicative gamma
frailty model under various levels of market distress. We evaluate the impact of the depar-
ture from market normality on the within-sector frailties, associations and the predictive
characteristics of the covariates. In Section 2.4.4, we investigate one step-ahead fore-
casts for the within-sector failure rates and the corresponding dependencies of our model
and the multiplicative gamma frailty model by using a naı̈ve recursive extraction approach.
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Table 2.3: Additive lognormal frailty model. Dependent variable: Time to event
Lognormal shared frailty Additive lognormal frailty

M1 M2 M3 M4
Frailty variance 0.306

(0.150)

∗∗ 0.246
(0.131)

∗ 0.307
(0.126)

∗∗ 0.288
(0.147)

∗∗

Additive factor 2.472
(0.251)

∗∗∗ 2.422
(0.250)

∗∗∗

Distance to default prob. 1.771
(0.473)

∗∗∗ 1.971
(0.469)

∗∗∗ 1.703
(0.467)

∗∗∗ 1.885
(0.464)

∗∗∗

Stock return −0.017
(0.003)

∗∗∗ −0.016
(0.003)

∗∗∗ −0.015
(0.003

∗∗∗ −0.015
(0.003)

∗∗∗

Market return(LSE) 0.785
(0.065)

∗∗∗ 0.786
(0.065)

∗∗∗ 0.762
(0.062)

∗∗∗ 0.763
(0.062)

∗∗∗

3 month T-bill rate −1.419
(0.194)

∗∗∗ −1.373
(0.194)

∗∗∗ −0.938
(0.174)

∗∗∗ −0.897
(0.174)

∗∗∗

ln(age) −0.392
(0.103)

∗∗∗ −0.360
(0.105)

∗∗∗

Marginal log likelihood -632.873 -626.172 -589.175 -583.697
Likelihood ratio test 522.766∗∗∗ 531.960 ∗∗∗ 610.471∗∗∗ 619.239∗∗∗

[0.000] [0.000] [0.000] [0.000]
Wald test 325.698∗∗∗ 330.184∗∗∗ 376.084∗∗∗ 382.385∗∗∗

[0.000] [0.000] [0.000] [0.000]
Pseudo-deviance 1265.746 1252.344 1178.350 1167.394
AIC 1275.746 1264.344 1190.350 1181.394
AICC 1276.070 1264.801 1190.807 1182.006
BIC 1277.151 1266.030 1192.036 1183.361

Notes: The parameter estimation is done using covariates from Duffie et al. (2007). The exact approxi-
mation is used to control for ties in the survival times of firms in our sample when deriving the penalised
partial likelihood. The standard errors and p-values are in round and square brackets, respectively. The
parameters are adjusted for the within-sector dependencies or correlations. AIC, AICC and BIC denote
the Akaike information criterion, the corrected Akaike information criterion, and the Bayesian information
criterion, respectively. ∗, ∗∗, and ∗∗∗ denote significance at 10%, 5% and 1% level, respectively.

2.4.1 Parameters estimation results using covariates of Duffie et al.
(2007)

In our first specification of the model we use ln(age), distance to default probability, one
year trailing market return, one year trailing stock return, and 3 month T-bill rate. The
results are presented in Table 2.3. Models 1 and 2 (M1 and M2) represent the classical
shared frailty models, whilst models 3 and 4 (M3 and M4) denote the additive lognormal
frailty models.

The findings show that the estimated coefficient of distance to default probability is
positive and statistically significant. In addition, one year trailing stock return, 3 month T-
bill rate, and ln(age) are all negative and statistically significant, while one year trailing LSE
stock return is unexpectedly positive and statistically significant. The frailty variance of
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each model (M1-M4) is a measure of the within-sector dependence or correlation between
lifetimes of firms in the sectors. We argue that older firms with high stock returns are more
likely to survive than younger firms with low stock returns (see e.g. Shumway, 2001). In
addition, firms closer to default tends to exhibit higher probabilities of distance to default.
As for the 3 month T-bill rate, the results show that this covariate tend to decrease the
hazard rate. All in all, our results related to overall market are in line with those in Duffie
et al. (2009) who argued that the unexpected positive sign of a market index should
“not be an evidence that a good year in the stock market may in itself be bad news for
default risk” (Duffie et al. 2009, page 2102). This could be attributed to the fact that in the
subsequent years of a boom, a firm’s distance to default probability is likely to overstate
its financial prospects.

When comparing the overall fit of models M1-M4 by using AIC, AICC and BIC mea-
sures, it emerges that: (i) M4 is the best model, while M1 is the worst model; (ii) the
additive lognormal frailty specifications fit the data better than the share frailty models; (iii)
estimates from our model may be used as early warning systems for firms.

2.4.2 Parameters estimation results using covariates of Shumway
(2001) and Bharath and Shumway (2008)

The second set of covariates is taken from Shumway (2001). They are the logarithm of
total assets (ln(total assets)), excess return, total liabilities to total assets, stock volatility,
and net income to total assets. The results using these covariates are presented in Table
2.4. Model 5 (M5) is the classical frailty model, whilst model 7 (M7) is the additive log-
normal frailty model. The estimates of these models show that the coefficients of excess
return, net income to total assets and ln(total assets) are negative and statistically signif-
icant, whilst total liabilities to total assets and stock volatility are positive and statistically
significant.

As for the last specification of the model, we use distance to default probability, loga-
rithm of face value of debt (ln(face value of debt)), logarithm of equity (ln(equity)), excess
return, inverse of firm volatility, and net income to total assets (see Bharath and Shumway,
2008).

In Table 2.4, model 6 (M6) is the classical shared frailty model, whereas model 8 (M8)
is the additive lognormal frailty model. The results show that ln(equity), excess return,
inverse of firm volatility and net income to total assets have a negative and significant
impact on hazard rates, whereas ln(face value of debt) and distance to default probability
covariates have a positive and significant effect on hazard rates. Again, the estimates
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Table 2.4: Additive lognormal frailty model. Dependent variable: Time to event
Lognormal shared frailty Additive lognormal frailty

M5 M6 M7 M8
Frailty variance 0.200

(0.100)

∗∗ 0.178
(0.098)

∗∗ 0.240
(0.120)

∗∗ 0.223
(0.118)

∗

Additive factor 2.396
(0.202)

2.393
(0.198)

Distance to default prob. 0.846
(0.349)

∗∗∗ 0.715
(0.358)

∗∗∗

ln(equity) −0.499
0.054

∗∗∗ −0.487
(0.056)

∗∗∗

Inverse of volatility −0.283
(0.066)

∗∗∗ −0.271
(0.066)

∗∗∗

Excess return −0.012
(0.002)

∗∗∗ −0.009
(0.002)

∗∗∗ −0.010
(0.002)

∗∗∗ −0.006
(0.002)

∗∗∗

Stock volatility 1.748
(0.330)

∗∗∗ 1.756
(0.336)

∗∗∗

ln(face value of debt) 0.125
(0.042)

∗∗∗ 0.146
(0.044)

∗∗∗

ln(total assets) −0.318
(0.040)

∗∗∗ −0.267
(0.040)

∗∗∗

Total liab. to total assets 0.910
(0.326)

∗∗∗ 0.822
(0.247)

∗∗∗

Net income to total assets −0.429
(0.113)

∗∗∗ −0.305
(0.111)

∗∗∗ −0.388
(0.115)

∗∗∗ −0.274
(0.113)

∗

Marginal log likelihood -727.920 -710.766 -659.434 -639.839
Likelihood ratio test 327.435∗∗∗ 360.117∗∗∗ 467.586∗∗∗ 505.431∗∗∗

[0.000] [0.000] [0.000] [0.000]
Wald test 353.269∗∗∗ 348.813∗∗∗ 484.286∗∗∗ 469.825∗∗∗

[0.000] [0.000] [0.000] [0.000]
Pseudo-deviance 1455.840 1421.532 1318.868 1279.678
AIC 1467.840 1435.532 1332.868 1295.678
AICC 1468.297 1436.144 1333.480 1296.469
BIC 1469.526 1437.499 1334.835 1297.926

Notes: See notes in Table 2.3.

of all the models in these specifications are adjusted for the within-sector dependencies.
The two specifications, though having slightly different covariates, produce similar results.

After accounting for unobserved sector-based effects, it emerges that: (i) more prof-
itable firms with lower debts are less likely to fail than those with less profitability and high
debt; (ii) firms with higher market value are less susceptible to failure as compared to
those with lower market value; and (iii) firms with high returns and relatively less volatile
are likely to have higher survival rates; and (iv) firms could, to some extent, benefit from
their size, since an increase in the latter decreases the instantaneous rate of failure.

In Table 2.4, we also report results for AIC, AICC and BIC. The additive frailty
models (M7 and M8) seems to fit the data better than the shared frailty models (M5 and
M6), which collaborates the results in Section 2.4.1. These result may be informative for
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decision making process on the LSE.

2.4.3 Impact of sector distress on within-sector dependence

In sections 2.4.1 and 2.4.2 the information criteria measures confirm that our additive
frailty model performs better than the shared frailty model. We then explore the perfor-
mance of the additive lognormal frailty (ALFM) and multiplicative gamma frailty (MGFM)
models under various levels of distressed market conditions in terms of data fit. We em-
ploy the five different levels of severity conditions, namely Z(1), Z(2), Z(3), Z(4), and Z(5)

(see Section 2.3.2). These conditions are in order of severity. For instance, the distressed
market period Z(1) is less severe than the distressed market period Z(3).

We use the same set of covariates in specification M4 (see Table 2.3) to estimate the
parameters of the additive lognormal frailty model and the multiplicative gamma frailty
model, respectively, while accounting for each of the five different distressed market con-
ditions.6 For example, ALFM1 and MGFM1 are the additive lognormal frailty and the
multiplicative gamma frailty models under distressed market condition Z(1), respectively
(see Table 2.5). In particular, we combine each market distress indicator with the set of
covariates in specification M4 in Table 2.3, and use the new set of covariates to estimate
the parameters of the additive lognormal frailty and the multiplicative gamma frailty mod-
els. For instance, for Z(1), we combine it with distance to default probability, stock return,
market return, 3 month T-bill rate, and ln(age) as to form a new set of covariates that is
used to estimate the additive lognormal frailty and the multiplicative gamma frailty models
(see ALFM1 and MGFM1 in (Table 2.5).

The estimation results show that the coefficients of the covariates in all the regressions
are similar as expected. However, the scale factor increases as the degree of severity of
sector distress rises. For example, in a less severe distressed period, the estimated value
of the scale factor is 1.864 for the additive lognormal frailty model (ALFM1), while this
value is 2.422 in a more severe distressed period (see ALFM3). As for multiplicative
gamma frailty model, the estimated values of the scale factor are 1.853 and 2.408 (see
MGFM1 and MGFM3), respectively. Therefore, the scale factor for the extra variations
in the hazard rates for both models increases as the market conditions becomes more
severe. However, our model seems to be robust to different market conditions, as it
appropriately accounts for the extra randomness induced by the distressed periods, and
it performs better than the multiplicative gamma frailty model (MGFM) in measuring the
within-sector dependence (see frailty variances in Table 2.5) during distressed market

6Model 4 is the best model amongst all the specifications and more market driven.
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Table 2.5: The impact of levels of sector distress on within-sector dependence
Panel A: Additive lognormal frailty model

ALFM1 ALFM2 ALFM3 ALFM4 ALFM5
Frailty variance 0.281

(0.144)

∗∗ 0.321
(0.157)

∗∗ 0.288
(0.147)

∗∗ 0.284
(0.147)

∗∗ 0.300
(0.153)

∗∗

Scale factor 1.864
(0.253)

∗∗∗ 2.159
(0.250)

∗∗∗ 2.422
(0.250)

∗∗∗ 2.851
(0.256)

∗∗∗ 3.218
(0.282)

∗∗∗

Distance to default prob. 1.924
(0.467)

∗∗∗ 1.895
(0.465)

∗∗∗ 1.885
(0.464)

∗∗∗ 1.839
(0.463)

∗∗∗ 1.809
(0.458)

∗∗∗

Stock return −0.015
(0.003)

∗∗∗ −0.015
(0.003)

∗∗∗ −0.015
(0.003)

∗∗∗ −0.014
(0.003)

∗∗∗ −0.013
(0.003)

∗∗∗

Market return 0.752
(0.062)

∗∗∗ 0.764
(0.062)

∗∗∗ 0.763
(0.062)

∗∗∗ 0.745
(0.062)

∗∗∗ 0.752
(0.062)

∗∗∗

3 month T-bill rate −1.097
(0.189)

∗∗∗ −0.969
(0.179)

∗∗∗ −0.897
(0.175)

∗∗∗ −0.823
(0.169)

∗∗∗ −0.757
(0.166)

∗∗∗

ln(Age) −0.364
(0.105)

∗∗∗ −0.361
(0.105)

∗∗∗ −0.360
(0.105)

∗∗∗ −0.357
(0.106)

∗∗∗ −0.354
(0.106)

∗∗∗

Marginal log likelihood -598.894 -591.425 -583.697 -570.804 -563.708
Likelihood ratio test 588.594∗∗∗ 606.143∗∗∗ 619.239∗∗∗ 644.525∗∗∗ 659.174∗∗∗

[0.000] [0.000] [0.000] [0.000] [0.000]
Wald test 353.609∗∗∗ 368.564∗∗∗ 382.385∗∗∗ 410.846∗∗∗ 404.346∗∗∗

[0.000] [0.000] [0.000] [0.000] [0.000]
Pseudo-deviance 1197.788 1182.850 1167.394 1141.608 1127.416
AIC 1211.788 1196.850 1181.394 1155.608 1141.416
AICC 1212.400 1197.462 1182.006 1156.220 1142.028
BIC 1213.755 1198.817 1183.361 1157.575 1143.383

Panel B: Multiplicative gamma frailty model
MGFM1 MGFM2 MGFM3 MGFM4 MGFM5

Frailty variance 0.220
(0.108)

∗∗ 0.257
(0.122)

∗∗ 0.228
(0.112)

∗∗ 0.225
(0.111)

∗∗ 0.220
(0.110)

∗∗

Scale factor 1.853
(0.251)

∗∗∗ 2.144
(0.250)

∗∗∗ 2.408
(0.249)

∗∗∗ 2.840
(0.256)

∗∗∗ 3.218
(0.284)

∗∗∗

Distance to default prob. 1.935
(0.468)

∗∗∗ 1.908
(0.466)

∗∗∗ 1.897
(0.465)

∗∗∗ 1.855
(0.464)

∗∗∗ 1.832
(0.459)

∗∗∗

Stock return −0.015
(0.003)

∗∗∗ −0.015
(0.003)

∗∗∗ −0.015
(0.003)

∗∗∗ −0.014
(0.003)

∗∗∗ −0.013
(0.003)

∗∗∗

Market return 0.751
(0.062)

∗∗∗ 0.763
(0.062)

∗∗∗ 0.761
(0.062)

∗∗∗ 0.743
(0.062)

∗∗∗ 0.752
(0.062)

∗∗∗

3 month T-bill rate −1.100
(0.190)

∗∗∗ −0.973
(0.180)

∗∗∗ −0.900
(0.175)

∗∗∗ −0.820
(0.169)

∗∗∗ −0.749
(0.166)

∗∗∗

ln(Age) −0.368
(0.104)

∗∗∗ −0.365
(0.105)

∗∗∗ −0.362
(0.105)

∗∗∗ −0.358
(0.106)

∗∗∗ −0.354
(0.106)

∗∗∗

Marginal log. likelihood -797.804 -784.520 -776.700 -763.991 -756.789
Likelihood ratio test 586.363∗∗∗ 604.063∗∗∗ 616.886∗∗∗ 642.677∗∗∗ 656.858∗∗∗

[0.000] [0.000] [0.000] [0.000] [0.000]
Wald test 350.689∗∗∗ 365.668∗∗∗ 379.738∗∗∗ 409.226∗∗∗ 400.407∗∗∗

[0.000] [0.000] [0.000] [0.000] [0.000]
Pseudo-deviance 1595.608 1569.040 1553.400 1527.982 1513.578
AIC 1609.608 1583.040 1567.400 1541.982 1527.578
AICC 1610.220 1583.652 1568.012 1542.594 1528.190
BIC 1611.575 1585.007 1569.367 1543.949 1529.545

Notes: See notes in Table 2.3. 25



periods.
For robustness of analysis, we also estimate the within-sector failure rates (frailties)

and random effects (log-frailties)(see section 2.1) using our model, ALFM3, and model of
Chava et al. (2011), MGFM3. The results are presented in Figure 2.1 (see panels A and
B).

It emerges that firms in sectors with frailties greater than one tend to fail faster than
firms with frailties less than one. For instance, firms in the Real Estate sector (see sector
ID. 26 in Table 2.1) with a frailty of 1.918 for ALFM3 (1.676 for MGFM3) are likely to fail
faster than firms in the Fixed Line Telecommunications sector (see Sector ID. 21 in Table
2.1) with a frailty of 0.907 for ALFM3 (0.890 for MGFM3). Therefore, these figures confirm
the results in Table 2.5, and they seem to suggest that under distressed market periods,
the additive lognormal frailty model is likely to outperform the multiplicative gamma frailty
model.

As for the overall model fit of ALMF (ALFM1-ALFM5) and MGFM (MGFM1-MGFM5)
specifications, we compare ALFM1 to MGFM1, ALFM2 to MGFM2, and so on, using AIC,
AICC and BIC. It is shown that ALFM1 is preferred to MGFM1, when the median stock
return is less than -10% in distress periods, ALFM2 outperforms its counterpart MGFM2,
when the median stock return is less than -15%. This implies that the additive frailty model
may offer more accurate information on changes in hazard rate driven by various levels
of distress severity on the LSE than the multiplicative frailty model.

2.4.4 Out-of-sample extraction of failure rates

The accuracy of the estimates of failure rates plays a central role in stakeholders’ deci-
sions. In this section we use an out-of-sample parameter extraction approach to extract
sector-level failure rates (frailties are not observable). We present the results of one step-
ahead extracts by using our model and the multiplicative gamma frailty model. More,
specifically we consider one-year horizon, as often required by most regulatory require-
ments (see for instance the Bank for International Settlements), and compute the addi-
tional deviations from the expected future values. We then evaluate the accuracy of the
extraction by using the root mean square of the deviations: the higher the value of this
metric, the higher the accuracy.

We proceed as follows. We use a naive recursive scheme for one-step ahead extrac-
tion over the following years: 2010, 2011 and 2012. For instance, to extract the within-
sector frailty (or sector-level failure rate) and the corresponding dependence for 2010, we
define a sample from 1985 to 2010 and estimate the parameters using the period 1985
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Panel A:  Within-Sector Dependences 
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Figure 2.1: Estimated failure rates and log-failure rates for models ALFM3 and MGFM3.
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- 2009 by holding out 2010. In this way, we obtain the frailties at the beginning of 2010.
We do the same for 2011 and 2012. This naive extraction scheme is repeated for all the
sectors under consideration. Finally, for each sector i, we construct the root mean square
deviation (RMSDi) as follows:

RMSDi =

√√√√ 3∑
t=1

(ŷi,t − E(ũi,t))2/3, (2.20)

where ŷi,t denotes the extracted value, E(ũi,t) is the expected value of frailty for sector
i = 1, ..., 29 and t = 1, 2, 3, where t = 1 indicates the year 2010, t = 2 is the year 2011,
t = 3 is the year 2012.7 We use the expected value of the frailty as the actual value since
it is not observable at the end of 2010. For instance, ŷ5,2, the extracted failure rate for
the UK Basic Resource sector (ID.5) for the year 2011. Table 2.6 presents the additive
lognormal model and multiplicative gamma frailty model extractions based on the within-
sector dependencies (see Table 2.7). Results for the RMSD are illustrated in Table 2.8.

The results in Table 2.6 show that there are differences in the extracted values over
time and across sectors for both models. This extraction allows us to distinguish between
firms in sector which are likely to fail faster or slower in the event of firm failure clustering.
Firms in sectors with estimates larger than 1 (fast-failure regime) are likely to fail faster,
whilst those with estimates smaller than 1 (slow-failure regime) are likely to fail slower.
For instance, firms in the UK Oil and Gas Production Sector (ID. 1) are likely to fail faster,
while those in the UK Health Equipment and Services sector (ID. 16) are likely to fail
slower. Furthermore, these results reveal some interesting trends in firm failure. First, in
a fast-failure regime, the multiplicative gamma frailty model tends to underestimate these
rates across sectors, while the additive lognormal frailty tends to predict these rates more
accurately. For instance, for the UK Real Estate Sector (ID. 26), the extractions of the
failure rates for the multiplicative model are 1.469, 1.631 and 1.676, whereas those for
the additive lognormal frailty model are 1.753, 1.853 and 1.918, respectively. In addition,
these dynamics also hold for a mixed regime, where firms are likely to fail slower in some
years and faster in others (see e.g. sector ID. 14). Second, in the slow-failure periods,
the multiplicative gamma frailty tends to overestimate the rates, whilst additive lognormal
frailty model predicts (extracts) these rates more accurately. For example, for the UK
Alternative Energy Sector (ID. 8), the predictions of the multiplicative gamma model for
the rates are 0.979, 0.906 and 0.882 and those of the additive model are 0.966, 0.893 and

7The impact of frailties on hazard rates during distressed periods tends to be more pronounced and
hence we construct a metric for capturing the additional variations in hazard rates across the years for each
sector. Therefore, high values of our metric are desirable.
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Table 2.6: Within-sector failure rate extractions, ŷi,t.
ALFM MGFM

Sec. ID 2010 2011 2012 2010 2011 2012
1 1.437 1.246 1.313 1.235 1.163 1.210
2 0.848 0.746 0.727 0.894 0.754 0.730
3 0.966 0.893 0.870 0.979 0.906 0.882
4 0.974 0.904 0.899 0.976 0.901 0.893
5 0.733 0.682 0.656 0.772 0.663 0.630
6 0.832 0.801 0.801 0.869 0.799 0.795
7 0.778 0.749 0.744 0.837 0.757 0.748
8 0.788 0.732 0.699 0.845 0.733 0.693
9 0.889 0.924 0.933 0.906 0.909 0.913
10 1.015 1.297 1.285 0.990 1.201 1.188
11 1.052 1.244 1.299 1.020 1.163 1.200
12 0.640 0.797 0.800 0.653 0.760 0.757
13 1.147 1.417 1.424 1.079 1.274 1.279
14 0.964 1.014 1.044 0.961 0.983 1.003
15 1.471 1.655 1.680 1.285 1.459 1.473
16 0.739 0.952 0.924 0.800 0.930 0.899
17 1.364 1.533 1.540 1.210 1.377 1.379
18 1.375 1.604 1.667 1.231 1.432 1.474
19 0.813 0.534 0.519 0.830 0.503 0.483
20 1.595 1.626 1.687 1.397 1.467 1.510
21 1.147 0.927 0.906 1.078 0.914 0.890
22 1.300 1.243 1.224 1.159 1.164 1.149
23 0.910 0.883 0.878 0.941 0.895 0.888
24 0.824 0.759 0.731 0.875 0.768 0.735
25 0.949 0.928 0.915 0.951 0.903 0.886
26 1.735 1.853 1.918 1.469 1.631 1.676
27 0.451 0.432 0.425 0.462 0.394 0.384
28 1.121 1.011 0.992 1.058 0.963 0.940
29 1.411 1.333 1.441 1.236 1.232 1.311

Notes: The reported estimates denotes the failure rate with an expected value of 1. In the event of failure
clustering, firms with estimates larger (lower) than 1 are likely to failure faster (slower). These estimates

are adjusted for the within-sector dependencies or correlations in Table 2.7.
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Table 2.7: Out-of-sample within-sector dependence extracts
ALFM MGFM

Sec. ID 2010 2011 2012 2010 2011 2012
1 0.234 0.202 0.196 0.123 0.152 0.148
2 0.339 0.334 0.358 0.206 0.334 0.369
3 0.392 0.401 0.428 0.206 0.332 0.367
4 0.307 0.313 0.335 0.177 0.265 0.288
5 0.218 0.193 0.205 0.166 0.205 0.224
6 0.268 0.285 0.307 0.178 0.268 0.291
7 0.312 0.336 0.366 0.207 0.334 0.369
8 0.315 0.297 0.308 0.207 0.305 0.331
9 0.240 0.259 0.278 0.159 0.222 0.238
10 0.197 0.181 0.191 0.130 0.137 0.146
11 0.266 0.266 0.287 0.155 0.188 0.199
12 0.132 0.112 0.118 0.115 0.108 0.114
13 0.361 0.371 0.393 0.176 0.217 0.233
14 0.251 0.235 0.250 0.157 0.193 0.203
15 0.144 0.140 0.149 0.089 0.101 0.107
16 0.297 0.228 0.228 0.207 0.195 0.202
17 0.186 0.144 0.150 0.109 0.106 0.112
18 0.131 0.118 0.121 0.086 0.089 0.091
19 0.176 0.155 0.151 0.133 0.182 0.177
20 0.088 0.082 0.082 0.060 0.065 0.065
21 0.286 0.261 0.274 0.155 0.223 0.240
22 0.291 0.271 0.285 0.146 0.191 0.205
23 0.366 0.396 0.432 0.206 0.332 0.367
24 0.329 0.340 0.361 0.206 0.334 0.370
25 0.246 0.201 0.210 0.156 0.177 0.188
26 0.103 0.087 0.089 0.066 0.066 0.068
27 0.138 0.099 0.102 0.140 0.115 0.117
28 0.150 0.127 0.132 0.102 0.112 0.118
29 0.187 0.140 0.136 0.108 0.110 0.106

Notes: The estimates represent the dependence or correlation between the lifetimes of firms in the sectors.
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0.870, respectively. The results of our model seem to offer a more accurate classification
of firms in terms of failure speed, and they may be useful for an appropriate portfolio
reshuffling.

Table 2.8: Root mean square deviations
Sec ID ALFM3 MGFM3

1 0.313 0.210
2 0.273 0.270
3 0.130 0.118
4 0.101 0.107
5 0.344 0.370
6 0.199 0.205
7 0.256 0.252
8 0.301 0.307
9 0.067 0.087

10 0.285 0.188
11 0.299 0.200
12 0.200 0.243
13 0.424 0.279
14 0.044 0.003
15 0.680 0.473
16 0.076 0.101
17 0.540 0.379
18 0.667 0.474
19 0.481 0.517
20 0.687 0.510
21 0.094 0.110
22 0.224 0.149
23 0.122 0.112
24 0.269 0.265
25 0.085 0.114
26 0.918 0.676
27 0.575 0.616
28 0.008 0.060
29 0.441 0.311

When comparing the RMSD of the two models for each sector, the additive lognormal
frailty model averagely has slightly higher values than those by the multiplicative gamma
frailty model (see Table 2.8). These findings seem to confirm the relevance of our dis-
tribution assumption on the frailties, as, on average, the additive lognormal frailty model
fits the data better than the multiplicative gamma frailty model during distressed market
periods.
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2.5 Conclusions

We use a multivariate lognormal regime-switch frailty model to estimate and predict within-
sector failure rates and the corresponding dependencies of listed firms on the London
Stock Exchange (LSE) over period 1985-2012. The model is particularly suitable for
dealing with distressed market periods. In relation to a set of observable predictive factors
of failure rates, we find significant evidence of unobserved sector-specific source of default
rates amongst the listed firms. Neglecting these unobserved sector-specific factors may
likely lead to underestimation of the hazard rates.

We also account for an adjustment factor in hazard rates and investigate the dynam-
ics of this relative to a set of crucial firm failure predictive factors when moving away
from normal market conditions. The scale adjustment increases when moving from less
to more severe distressed market conditions, whilst the desirable impact of distance to
default probability (volatility adjusted leverage) with a substantial predictive power for haz-
ard rates averagely deteriorates. However, all the other covariates also experience slight
changes in their magnitudes as expected. Interestingly, we also found that the distance to
default probability of firms is likely to overstate the financial prospects of these firms after
a boom on the LSE.

We also compare our model with the multiplicative gamma frailty model of Chava et
al. (2011). It results that the former outperforms the latter both in-sample and out-sample
estimates, as it offers much flexibility in accounting for extra variations in hazard rates in-
duced by departure from market normality and unobserved sector factors. The outcomes
in terms of goodness-of-fit are confirmed when using information criteria. We argue that
the additive lognormal frailty is likely to produce better estimates and predictions of hazard
rates, within-sector failure rates and dependencies.

Our findings have some important implications for stakeholders on the LSE. Specif-
ically, in the event of failure clustering on the LSE, the within-sector failure rates of our
model could be used by investors and other stakeholders to discriminate amongst firms
or sectors, which are likely to fail faster or slower. In this respect, investors may effec-
tively rebalance their portfolios and obtain good estimates of their portfolio risks. On the
other hand, regulators may rank firms into various risk profiles in order to suitably de-
sign new or enhance existing regulatory requirements to make firms more risk sensitive.
Further, since the hazard rate specification heavily depends on distance to default prob-
ability covariate, market participants are highly recommended not to be conservative on
firms’ distance to default probability after a market boom on the LSE. Failing to account
for this may likely lead to underestimation of default rates, within-sector failure rates and
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dependencies of firms.
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Appendix A

A.1 Definition and derivation

Let T ∈ [0,∞) be the event time, which is a continuous random variable with the prob-
ability density function f(t) and a corresponding cumulative distribution function F (t) as
follows:

F (t) = P (T ≤ t) =

∫ t

0

f(t)dt (A.1)

The survival function S(t) beyond time t is given by:

S(t) = P (T > t) = 1− F

= 1−
∫ t

0

f(t)dt, (A.2)

where S(t) is a continuous and strictly decreasing function since T is a continuous ran-
dom variable. Furthermore, we define hazard rate or function (also called failure rate) as
follows:1

h(t) = lim
∆→∞

P (t < T ≤ t+ ∆|T > t)

∆t
(A.3)

Given that T is a continuous random variable, equation (A.3) can be rewritten as

h(t) =
f(t)

S(t)
= −dS(t)

dt
(A.4)

1For detailed treatment, refer to Duchateau and Janssen, 2008; Wienke, 2011; Hangal, 2011; Kleinbaum
and Klein, 2012; and others.
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We derive an associated measure called cumulative hazard function by integrating both
sides of equation (A.4) as follows:

H(t) =

∫ t

0

h(t)dt = −lnS(t). (A.5)

Again, the survival function can be derived by integrating both sides of equation (A.5)

S(t) = exp(−H(t)) = exp(−
∫ t

0

h(x)dx) (A.6)

A.2 Cox proportional hazard model

Let Ti and δi be the event time and event indicator, respectively, for firm i. The term δi

assumes value 1 when Ti is a failure time and 0 otherwise. The Cox proportional hazard
model for firm i is given by:

hi(t) = h0(t)exp(Xi(t)β), (A.7)

where h0(t) is an unspecified term called the baseline hazard rate, Xi(t) is the set of
covariate for firm i with p-dimensional parameter estimates. Equation (A.7) can either be a
parametric, semi-parametric or non-parametric model depending on how the the baseline
hazard rate h0(t) is treated. We obtain a parametric model if we impose a distribution (see
e.g. exponential, Weibull, and gamma distributions) on the baseline hazard rate, while in
the case of semi-parametric the latter is left unspecified. In equation (A.7), for the non-
parametric models, no distribution is assumed, and hence one need to apply numerical
techniques which normally require larger samples. In this thesis, we formulate all our
models in the semi-parametric context. Specifically, we employ the Cox semi-parameter
model and its extended form (see e.g Therneau and Grambsch, 2000 for a detailed and
excellent treatment) in estimating the parameters in all the specifications in the thesis.

Cox (1972, 1975) proposed the partial likelihood approach, that do not depend on the
baseline hazard rate as follows:

Li(β) =
n∏
i=1

(
exp(X(Ti)β)∑

j∈R(Ti)
exp(X(Ti)β)

)δi
, (A.8)

where R(Ti) is the risk set (individuals at risk at time Ti). Taking natural logarithm of
equation (A.8), we obtain:
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li(β) =
n∑
i=1

δi

X(Ti)β − log

 ∑
j∈R(Ti)

exp(X(Ti)β)

 , (A.9)

A.3 Classical shared frailty model

Consider a sample of s clusters and in each cluster there are ni members. In addition,
let (Tij, δij, Xij(t)) be the observed clustered data, where (Tij, δij), Xij(t) are the event
time, censoring indicator and a set of covariates respectively for member j in cluster
i. Following McGilchrist and Aisbett (1991), we restate equation (A.7) in the context of
shared frailty as

hij(t) = h0(t)exp(Xij(t)β + wi), (A.10)

where wi = logui is a random effect or log-frailty term shared by all members in cluster i.
Equation (A.10) can be restated as

hij(t) = h0(t)uiexp(Xij(t)β), (A.11)

where ui = exp(wi) .
Further, we present the full and partial likelihoods as follows.

A.3.1 Full maximum likelihood

Following the classical approach of maximum likelihood (ML) in the literature, we construct
the conditional ML for cluster i as follows:

Li(β;Xij(t)) =
n∏
j=1

h(Xij(t), Tij; β)δijS(Xij(t), Tij; β), (A.12)

where h(.) and S(.) are hazard and survival functions, respectively.
From equation (A.11), we can rewrite equation (A.12) as:

Li(ψ, β;Xij(t)) =
n∏
j=1

h0(t)uiexp(Xij(t)β)δijexp(−H0(t)uiexp(Xij(t)β)), (A.13)

where ψ is the parameter(s) of the baseline hazard, and H(Tij) is the cumulative hazard
function. To solve the likelihood in equation (A.13), we impose an appropriate distribution
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on the frailty term ui. The gamma and lognormal distribution are widely used in the liter-
ature. The gamma distribution has closed form expressions for the likelihood, while the
lognormal do not and hence one would have to use numerical approximations. However,
the lognormal distribution offers much more flexibility as compared to gamma distribu-
tion in the multivariate frailty context (Hougaard, 2000; Klein and Moeschberger, 2003;
Duchateau and Janssen, 2008; Wienke, 2011; Hanagal, 2011; and others). To estimate
the full likelihood, sum over all the s clusters.

A.3.2 Penalised partial likelihood

The random effect is assumed to follow a normal distribution on a log-scale. We write the
likelihood which is conditioned on the random effect term wi for cluster i as:

Li(β, θ;wi) =

ni∏
j=1

f(X(Tij, δij, wi; β, θ)

=

ni∏
j=1

f(X(Tij, δij, wi; β) ∗ f(wi; θ)

= li1(β;wi) ∗ li2(θ;wi). (A.14)

The firm term, li1(β;wi) is the partial likelihood, li2(θ;wi) is the penalty term, and θ is the
variance of the random effect terms (see Duchateau and Janssen, 2008).

The terms li1(β;wi) and li2(θ;wi) are respectively given by:

Li1(β) =

ni∏
i=1

(
exp(X(Tij)β) + wi∑

j∈R(Tij)
exp(X(Tij)β) + wj

)δij
, (A.15)

and
Li2(θ;wi) = fi(θ;wi) =

1√
2πθ

exp(−w
2
i

2θ
). (A.16)

Equation (A.15) is obtained by restating equation (A.8) in the context of clustered data,
and accounting for random effect. Furthermore, taking log of equation (A.14) we obtain
the following:
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li(β, θ;wi) = logLi(β, θ;wi) = logli1(β;wi) + logli2(θ;wi)

=
n∑
i=1

δi

Xi(t)β + wi − log

 ∑
j∈R(Ti)

exp(Xi(t)β + wj)

− 1

2

(
w2
i

θ
+ log(2πθ)

)
.

(A.17)

There are s number of clusters, and to obtain the penalised partial likelihood for all
cluster, we sum equation (A.17) over s clusters:

l(β, θ;w) =
s∑
i=1

n∑
i=1

δi

Xi(t)β + wi − log

 ∑
j∈R(Ti)

exp(Xi(t)β + wj)

−1

2

s∑
i=1

(
w2
i

θ
+log(2πθ)

)
,

(A.18)
Therefore

lppl(β, θ;wi) = lpart(β;w)− lpen(θ;w), (A.19)

where

lpart(β;w) =
s∑
i=1

n∑
i=1

δi

Xi(t)β + wi − log

 ∑
j∈R(Ti)

exp(Xi(t)β + wj)

 , (A.20)

and

lpen(θ;w) =
1

2

s∑
i=1

(
w2
i

θ
+ log(2πθ)

)
. (A.21)

Equations (A.19), (A.20) and (A.21) are the penalised partial likelihood, partial part
and penalised term, respectively.
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Chapter 3

Bias correction in hazards rates:
Evidence from USA default corporate
data

3.1 Introduction

A firm exit event can be relevant to investment making decision and regulatory exer-
cise. Firms may leave the market because of mergers and acquisitions (see Draper and
Paudyal, 2006; Baker et al., 2012), failure to rebalance leverage (Pour and Lasfer, 2013),
weak corporate governance structures (Marosi and Massoud, 2008; Hostak et al., 2013,
and orders). In such cases, market participants can grasp relevant information on the gen-
eral performance of firms, and gauge the trade-off between risk and returns of a portfolio.
Therefore, it is extremely important to account for firm censoring when estimating default
rates of firms, since neglecting informative censoring may produce bias in the estimation
of the hazard rates.

This study proposes a novel approach that accounts for informative firm censoring
and unobserved factors in order to estimate the hazard rates of public listed firms on the
NYSE, NASDAQ, and NYSE MKT LLC (AMEX). In this respect, the approach here differs
from previous ones (see Dewaelheyns and Van Hulle, 2006; Duffie et al., 2007; Bharath
and Shumway, 2008; Duffie et al., 2009; Chava et al, 2011; Jacobson et al., 2013; Qi et
al., 2014; Atsu and Costantini, 2015; among others) which assume that non-default firm
exit provides no explicitly relevant information, and has no impact on the hazard rate of
active firms. We draw on the assumption that high or low risk of default firms are normally
censored, with the frequency of censoring higher and its impact more pronounced during
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distressed periods. Thus, we employ an inverse censoring probability weighted scheme
(see Robins, 1993; Robins and Finkelstein, 2000; Scharfstein and Robins, 2002).

We proceed as follows. First, we compute the censoring probability by using firm spe-
cific factors, macroeconomic conditions, and industry-level unobserved factors for each
period a firm spends in the active group across all the industries. Second, we derive the
survival probabilities from the censoring probabilities, and construct the weights as the
inverse of the survival probabilities. In this fashion, the firms, which are likely to be cen-
sored, are given higher weights than their counterparts, since such firms normally have
lower survival probabilities. Finally, we specify the maximum likelihood function of hazard
rate using the weights in order to correct for the bias in the estimates.

This study contributes to literature in two respects. First, we construct weights to deal
with potential effects of censoring, and these weights vary with changes in firm specific
and macroeconomic factors. We assume that reasons for censoring are the same across
all the industries. Further, we explicitly account for these weights in estimating the haz-
ard rates and industry level failure rates of the surviving firms. In this respect, we are
able to capture potential shocks in the covariates which hardly can be handled by a clas-
sical dummy variable approach. As a result, our approach adjusts the default rates up
and is more likely to produce accurate portfolio risk estimates as compared to the non-
informative censoring approaches. Second, since censoring activities may vary across
industries, due to diverse industry characteristics (see e.g. Andrade et al., 2001; Harford,
2005), we construct weights that combine firm specific and macroeconomic factors with
industry level activities. We derive our models by using these weights to correct the po-
tential bias in the estimates of the multiplicative frailty models of Chava et al. (2011) and
the additive frailty model of Atsu and Costantini (2015), which are used as benchmark
models.

We compare in and out-of sample performances of our bias-corrected models with
those of Chava et al. (2011) and Atsu and Costantini (2015) in order to give insight into
the estimation of default rates during distress market periods. We use distance to default
probability (see Bharath and Shumway, 2008), one year trailing S&P 500 return, one year
trailing stock return (see Shumway, 2001), 3 month T-bill rate (see Duffie et al., 2007) and
an industry distress indicator which is used to account for the extra variations in hazard
rates during distressed market periods.

Our main findings are as follows. First, an increase in one year trailing stock return
and 3 month T-bill rate cause the hazard rates to decrease. While, hazard rates tend
to increase with an increase in distance to default probability and one year trailing S&P
500 return in all the models. An increase in hazard rates decreases the expected time
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to default of firms and vice versa. Second, the significant and positive sign of the dis-
tressed indicator in both classical and our bias-corrected models provides the evidence
of high hazard rates during distressed periods, and hence these rates should be adjusted
accordingly. Our models perform the adjustment accurately than the benchmark models,
since the latter underestimate the scale of adjustment. Third, the significance of the in-
dustry level frailty factor supports the importance of multivariate frailty models that adjusts
hazard rates for industry-level factors. Our technique accurately measures the industry
level correlation induced by these factors than the benchmarks. Lastly, the standard errors
in our bias-corrected models are lower than those of the benchmark models.

We also examine the accuracy of a one step-ahead forecasts of industry level failure
rates (or frailties) and dependencies of our bias-corrected and the benchmark models
using a naive recursive extraction approach (see Chapter 2 for the details). We evaluate
the performance of these models using the root mean square deviations. The industry
level failure rates with expected value of 1 are used to discriminate among those indus-
tries which firms are likely to fail faster or slower in the event of failure clustering. More
specifically, firms which show failure rates lower than 1 tend to fail slowly, while those with
failure rates more than 1, are likely to fail faster. We perform the extraction exercise over
the time horizon 2009-2013. The results show that: (i) during slow failing periods, the
benchmark models tend to produce higher values of failure rates than the bias-corrected
models; (ii) in a faster failing periods, the benchmarks generate lower values of failure
rates as compared to the bias-corrected models.

In general, our bias-corrected models seem to perform better than the benchmark
models in-sample and out-of-sample estimation exercises.

The rest of the study is organized as follows. Section 3.2 presents the methodology
and data. Specifically, in Section 3.2.1, we briefly present the benchmark models, and
use these models to motivate and formulate our bias-corrected models in Section 3.2.2.
In addition, we present our data set and pre-estimation results for the various industries
in our sample. Section 3.3 presents the empirical results for all models, and Section 3.4
concludes the study.1

3.2 Methodology and data

In this section, we first briefly present the benchmark models, namely the multiplicative
frailty (MF) model of Chava et al. (2011) and the additive frailty (AF) model of Atsu and

1This chapter heavily draws on the literature of Chapter 2, and hence we do not review literature again.
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Costantini (2015).2 These models assume that censoring of firms on the market conveys
no relevant information to investors. This may produce potential bias in the estimates of
hazard rates, especially during distressed market periods. Then, we present our models,
which are derived from correcting the potential bias in the benchmark models by using
an inverse probability of censoring weighted (IPCW) scheme (see Robins, 1993; Robins
and Finkelstein, 2000; Scharfstein and Robins, 2002). We consider the classical and the
adjusted schemes. The classical scheme assumes that reasons for censoring are the
same across the industries, while in the adjusted scheme censoring turn to be diverse
across industries. Lastly, we describe the data set used for the empirical analysis.

3.2.1 Benchmark models

In each model, there are s industries and ni firms in each industry. We consider the
following sample period [0, T ∗]. Then, firms may: (i) enter in the sample in a staggered
manner; (ii) leave the sample through non-failure or failure events; and (iii) survive beyond
the end of the period, T ∗. The information set is (Tij, δij, Xij(t), ũi(t)), for i = 1, ..., s and
j = 1, ..., ni, where Xij(t) is the vector of time-varying covariates for firm j in industry i,
Tij denotes the event time, δij is the censoring indicator, and ũi(t) indicates an industry
frailty term. The term δij takes value 1 if Tij is failure time and 0 otherwise. The model of
Chava et al. (2011) is given by:

hij(t) =

ui∆Zi(t)exp(Xij(t)β) if sector i is distressed,

uiexp(Xij(t)β) otherwise,
(3.1)

where β represents a p-dimensional vector of regression parameters, ui is the frailty term
for a specific industry, Zi(t) is a time-varying industry level distress indicator, which as-
sumes 1 for distressed industries (with a multiplicative factor ∆) at time t and 0 otherwise.
The combination of ui and Zi(t) gives the term ũi(t). In order to estimate the parame-
ters in equation (3.1), the frailty term for all the industries is assumed to follow a gamma
distribution given by:

f(u) =
u1θ − 1

θ1/θΓ(1/θ)
exp(−u/θ) (3.2)

where Ai(t) = 1/θ(t) +
∑nij

j=1,Tij<t
δij and Ci(t) = 1/θ(t) +

∑nij

j=1,Tij<t
H(Tij) indicate the

shape and scale parameters, respectively, and H(Tij) =
∫ Tij

0
(∆Zi(t)exp(Xij(t)β)dt. In the

2For details of these models, refer to Chapter 2.
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above setting, Chava et al. (2011) constructed the marginal likelihood for all industries as
follows:

l(θ,∆, β) =
s∑
i=1

li(θ,∆, β), (3.3)

where the likelihood for each industry is given by:

li(θ,∆, β) = log Γ(δi + 1/θ)− log Γ(1/θ)− (1/θ) log(θ) +

ni∑
j=1

δij(Xij(Tij)β

+Zi(Tij) log(∆))− (δi + 1/θ) log(1/θ +

ni∑
j=1

H(Tij)), (3.4)

and the gamma function, Γ(.), has a mean of 1 and a finite variance θ.
The model of Atsu and Costantini (2015) is given by the following:

hij(t) =

exp(Xij(t)β + πZi(t) + wi) if sector i is distressed,

exp(Xij(t)β + wi) otherwise,
(3.5)

where wi is the log-frailty with mean 0 and variance γ, π = log(∆) denotes the additive
factor and Zi(t) is the industry distress indicator. Atsu and Costantini (2015) derived a
penalised partial likelihood in the spirit of McGilchrist and Aisbett (1991) as follows:

lp(β
∗, γ|w) =

s∑
i=1

ni∑
j=1

δij

Xβ∗ + wi − log

 ∑
j∈R(Tij)

exp(Xβ∗ + wj)

− 1

2γ

s∑
i=1

w2
i , (3.6)

where β∗ = (β, π) is a (p + 1)-dimensional vector of regression parameters, and R(Tij)

is the set of all firms still at risk of a default. In order to make the parameter estimation
feasible, Atsu and Costantini (2015) applied the extension and approximation of Ripatti
and Palmgren (2000) to derive equation (3.6) and equation (3.7) as below:

lm(β∗, γ) = −1

2
log(γI) + log(

∫
exp[lp(β

∗, γ)]dw), (3.7)

and

lm(β∗, γ) ≈ −1

2
log(γI) + log(|H22(β∗, γ, w∗)|)− lp(β∗, γ, w∗), (3.8)
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where I is an identity matrix of order s × s, where s is the number of industries in the
sample, and H is the negative Hessian.

3.2.2 Our approach

In our setting, firm censoring is regarded as an absorbing state, i.e. once a firm has left
the sample through either a failure or non-failure event, it does not return to it. Further to
this assumption, we present our approach based on the use of two weighting schemes
within the context of the extended Cox proportional hazard model. In the first scheme
(k = 1), termed as classical scheme, we adjust the censoring probabilities for only firm-
specific and macroeconomic covariates. While in the second scheme (k = 2), which we
call industry level adjusted scheme, we account for the industry-based unobserved factors
in addition to the firm specific and macroeconomic factors.

Let Ck
ij(t) denote the censoring probability of firm j in industry i for k type of scheme

at time t, which is defined as follows:

Ck
ij(t) =

Ck
0ij(t)exp(Xij(t)β) for k = 1,

Ck
0ij(t)ũi(t)exp(Xij(t)β) for k = 2,

(3.9)

where Ck
0ij(t) is the baseline hazard function. Specifically, the censoring probability is

conditioned on the time-varying covariates, Xij(t) for k = 1, while conditional on time-
varying covariates and the unobserved factor, ũi(t), for k = 2. For instance, C2

ij(t) is
the censoring probability conditional on firm specific, macroeconomic, and unobserved
industry level factors.

Further, we deduce a survival function for the two types as follows:

Skij(t) =

[Sk0ij(t)]
exp(Xij(t)φ) for k = 1,

[Sk0ij(t)]
exp(Xij(t)φ+U) for k = 2,

(3.10)

where Skij(t) is the survival probability for firm j in industry i at time t, and Sk0ij(t) =

exp(−
∫ T

0
Ck

0ij(t))dt is the baseline survival probability for type k. The term U is set to zero
for the classical scheme, while it is equal to ũi(t) for the industry level adjusted scheme.
Finally, we construct the weights by using the survival probability:

W k
ij(t) =

1

Skij(t)
, (3.11)

where 0 < Skij(t) < 1. We can deduce from equation (3.11) that greater weights are allot-

44



ted to firms who have lower survival probability beyond time t for any of the 2 schemes. In
other words, such firms exhibit higher probability of censoring. We perform bias correc-
tion in equations (3.3) and (3.6) using the estimated dynamic weights in equation (3.11).
In this respect, the contribution of each quarterly data point of the firms to the maximum
likelihoods is weighted accordingly. Equation (3.3) can be then written as :

l(θ∗,∆∗, βw) =
s∑
i=1

li(θ
∗,∆∗, βw), (3.12)

where each industry likelihood is given by

li(θ
∗,∆∗, βw) = log Γ(δi + 1/θ∗)− log Γ(1/θ∗)− (1/θ∗) log(θ∗) +

ni∑
j=1

δij(Xij(Tij)βw

+Zi(Tij) log(∆∗))− (δi + 1/θ∗) log(1/θ∗ +

ni∑
j=1

H∗(Tij)), (3.13)

where, βw, ∆∗ and θ∗ are the bias-corrected coefficients, multiplicative factor and frailty
variance respectively.3

Likewise, equation (3.6) becomes:

lp(β
∗
w, γ

∗|w) =
s∑
i=1

ni∑
j=1

δij

Xβ∗w + wi − log

 ∑
j∈R(Tij)

exp(Xβ∗w + wj)

− 1

2γ∗

s∑
i=1

w2
i ,

(3.14)
where equations (3.7) and (3.8) respectively become:

lm(β∗w, γ
∗) = −1

2
log(γ∗I) + log(

∫
exp[lp(β

∗
w, γ

∗)]dw), (3.15)

and

lm(β∗w, γ
∗) ≈ −1

2
log(γ∗I) + log(|H22(β∗w, γ

∗, w∗)|)− lp(β∗, γ, w∗), (3.16)

where β∗w , and γ∗ are the bias-corrected estimates. In Atsu and Costantini’s (2015)
setting, the parameters estimation is done in log-frailties, and we therefore derive the
frailty variance, θ∗, from log-frailty variance, γ∗, using the relationship: γ∗ = log(θ∗ + 1)

(see Duchateau and Janssen, 2008). We term the bias-corrected models of MF and AF
as weighted multiplicative frailty model (WMF) and weighted additive frailty model (WAF),
respectively. Further, CWAF and CWMF are the bias-corrected models for the models

3For brevity, the bias corrected shape and scalar parameters, A∗
i (t) and C∗

i (t) are not presented here.
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AF and MF using the classical weights, while the models AWAF and AWMF are obtained
using the adjusted weights. The bias-corrected estimates, β∗, β∗w, ∆∗, θ∗, and γ∗, are
expected to be more efficient as compared to their non-weighted counterparts, β, β∗, ∆,
θ, and γ. This stems from the fact that the bias correction scheme may use a richer
information set, which may include informative firm censoring, and explicitly adjusts these
estimates for potential sharp changes in the covariates of firms.

When all the weights, W k
ij(t), are equal to 1, the WMF and WAF models collapse into

models MF and AF, respectively.

3.2.3 Data

Our sample data is drawn from five main sources, namely Center for Research in Secu-
rity Prices (CRSP), COMPUSTAT, Moody’s Default and Recovery Database (DRD), the
UCLA-LoPucki Bankruptcy Research Database (BRD), and Board of Governors of the
Federal System over the period 1980-2013 for the NYSE, NASDAQ and NYSE MKT LLC
(AMEX) exchanges.

We employ the Global Industry Classification Standard (GICS) since it is widely used
by financial practitioners and also classifies firms consistently over the years as compared
to other classification systems (see Bhojraj et al., 2003).4 The GICS is a “four-tiered, hi-
erarchical industry classification system” (MSCI, 2015 page 2), which comprises of 10
sectors (first hierarchy), 24 industry groups (second hierarchy), 67 industries (third hier-
archy) and 156 sub-industries (fourth hierarchy). In order to examine the within-industry
frailties and dependence structures of firms in the same line of business activities, we use
the fourth hierarchy and exclude the financial and utility firms. We consider 127 industries
in total.

We merge market driven variables from monthly CRSP file and accounting variables
from quarterly COMPUSTAT file using PERMNO number. A PERMNO number is a pri-
mary key that uniquely identifies a stock within the CRSP setting. For the analysis, we use
event time as the dependent variable. It represents the time until a firm experiences either
a failure or non-failure event. We use the Andersen and Gill (1982) counting process style
of input in dealing with time-varying variables and staggered firm entry (for details, see
Chapter 2). The independent variables are: Distance to default probability (DDP), one
year trailing stock return of a firm (see Shumway, 2001), one year trailing S&P 500 return

4These classification systems broadly include (1) Standard Industrial Classification (SIC); (2) North
American Industry Classification System (NAICS); and (3) Fama and French (1997) algorithm. Readers
can refer to Bhojraj et al. (2003) for a detailed comparison of these systems.
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(see Shumway, 2001), 3 month T-bill rate, and an industry level distress indicator.5 DDP
is a probabilistic measure of volatility adjusted leverage, and firms with higher (smaller)
probability are closer (farer) to default. In constructing this metric, we follow Bharath and
Shumway (2008). The 3 month T-bill rate is a measure of risk free rate. Finally, to con-
struct the industry distress indicator, we follow Chava et al. (2011). The indicator takes
value 1 if the median of the stock returns of firms is less than -20 percent in a given
industry during a quarter, and 0 otherwise.

For the definition of default, we follow the literature (see Duffie et al., 2007; Das et al,
2007; Qi et al., 2014; Azizpour et al., 2015, among others), and adopt the Moody’s defi-
nition, which includes the following cases: missed interest payment, distressed exchange
offers, reorganization, and bankruptcy. On the basis of this definition, we have 1350 failed
firms and 7121 active firms in our data set, which is equal to 417,295 quarterly firms ob-
servations. For the active firms, 4048 are censored (left the sample before the end of the
study period) due to voluntary or involuntary delisting reasons, and 3073 survived beyond
the study period as shown in Table 3.1 below.

Table 3.1: Sector level statistics of active and failed firms
Sector ID Sector name Active firms Failed firms Total

10 Energy 593 115 708
15 Materials 517 93 610
20 Industrials 1189 230 1419
25 Consumer Discretionary 1352 294 1646
30 Consumer Staples 345 64 409
35 Health Care 1182 210 1392
45 Information Technology 1754 302 2056
50 Telecommunication Services 189 42 231

Grand total 7121 1350 8471
Notes: For brevity sake, we present firm status distribution at the GICS sector level. However, we use 127

industries in our empirical analysis for all the models (see Table B.1 in Appendix B).

In Table 3.2, we present the descriptive statistics for all the covariates employed in our
empirical analysis. The DDP is bounded by [0.000, 1.000], with about three quarters of the
firms’ probabilities less than 0.410. Further, the mean of the stock return and the S&P500
return are approximately the same (i.e 0.700 percent), but the stock return deviates more
from its expected value than the market index. The 3 month T-bill rate ranges between

5To construct the DDP we use as inputs: market value of an equity, as the product of share price at
the end of a quarter and the number of outstanding shares, stock return, stock volatility (monthly realised
volatilities that are scaled with the number of trading days in a given month, see Shumway, 2001), the face
value of debt, as the sum of debt in current liabilities and half of long term debt, see Vassalou and Xing,
2004.
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Table 3.2: Descriptive statistics
Variable Mean Std Dev. Min. 25th P. Median 75th P. Max.
DDP 0.230 0.186 0.000 0.034 0.221 0.410 1.000
Stock return 0.706 12.220 -98.440 -4.750 0.033 5.423 158.140
S&P 500 return 0.702 4.850 -13.202 -2.138 1.198 3.895 13.391
3 month T-bill rate 4.483 3.233 0.010 1.750 4.830 5.900 16.310
Distressed indicator 0.007 0.082 0.000 0.000 0.000 0.000 1.000

Notes: All covariates are winsorized at 1 and 99 percentiles, except DDP. Stock return, S&P 500 return
and 3 month T-bill rate are expressed in percentages. The terms 25th P. and 75th P. are the 25th and 75th
percentiles, respectively.

0.001 and 16.310, with an expected value and standard deviation of 4.483 and 3.233,
respectively. As expected, the industry level distress indicator jumps to 1 for distressed
periods, while it stays or reverts to 0 during normal market conditions. Overall, the stock
return and S&P 500 return tend to exhibit higher variations than the other variables.

3.3 Empirical analysis

In Section 3.2.2, we argue that the WAF and WMF models are likely to produce more
accurate estimates of failure rates as compared to the benchmark models, AF and MF. In
this section, we empirically explore the forging argument by comparing the performance
of our model with the benchmarks using the US data. We combine a set of covariates
from Shumway (2001), Duffie et al. (2007), and Bharath and Shumway (2008) with a
regime switch variable.

3.3.1 Parameter estimates of the benchmark models

For the benchmark models, we use the following variables: DDP, one year trailing stock
return, one year trailing S&P 500 return, 3 month T-bill rate, and a distress indicator
at industry level.6 The parameter estimates of the benchmark models are presented in
Table 3.3. AF1-AF4 represent different specifications of the additive frailty model, while
MF1-MF4 indicate different multiplicative frailty models. Models AF1 and MF1 are the
univariate specifications, where the hazard rate functions depend only on the distance to
default probability, which turns to be highly significant. In models AF2 and MF2, we control
for distressed market periods. The distance to default probability is still significant, and
the distressed indicator is also significant. In the other model specifications, we combine

6For details, see also Chapter 2.
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Table 3.3: Benchmark models. Dependent variable: Time to event
AF MF

Variables AF1 AF2 AF3 AF4 MF1 MF2 MF3 MF4
Scale factor 0.805∗∗∗

(0.258)
0.859∗∗∗
(0.264)

0.803∗∗∗
(0.259)

0.861∗∗∗
(0.265)

DDP 2.080∗∗∗
(0.156)

2.072∗∗∗
(0.156)

1.592∗∗∗
(0.158)

1.585∗∗∗
(0.158)

2.086∗∗∗
(0.156)

2.077∗∗∗
(0.156)

1.604∗∗∗
(0.158)

1.598∗∗∗
(0.159)

Stock return −0.034∗∗∗
(0.002)

−0.034∗∗∗
(0.003)

−0.034∗∗∗
(0.002)

−0.033∗∗∗
(0.003)

S&P 500 return 0.370∗∗∗
(0.010)

0.371∗∗∗
(0.010)

0.374∗∗∗
(0.010)

0.375∗∗∗
(0.010)

3 month T-bill rate −0.481∗∗
(0.244)

−0.481∗∗
(0.243)

−0.495∗∗
(0.244)

−0.495∗∗
(0.246)

Diagnostics
Industry level
Frailty variance 0.145∗∗∗ 0.146∗∗∗ 0.337∗∗∗ 0.408∗∗∗ 0.152∗∗∗ 0.154∗∗∗ 0.343∗∗∗ 0.416∗∗∗

Global
ML −10701 −10696 −10901 −10086 −12051 −12046 −11438 −11433
LR test 399.440 408.728 1688.333 1698.707 402.9341 412.2976 1972.656 1710.840

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Wald test 333.383 343.612 1968.661 1972.007 333.998 344.297 1700.355 1975.813

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Notes: The efron approximation is used to adjust for ties in the event times of firms. The standard errors
and p-values are in round and square brackets, respectively. ∗,∗∗, and ∗∗∗ denote significance at 10%, 5%
and 1% level. MR and LR indicate the marginal log-likelihood and the Likelihood ratio, respectively. In all
the models, the frailty variance is a measure of industry level dependence between the event times.

the distance to default probability and other covariates. The distance to default probability
retains its significance. In addition, stock return and 3 month T-bill rate are negative and
statistically significant at 1% and 5% levels, respectively, while S&P 500 return is positive
and significant at 1% level. In all the models, the frailty variance is statistically significant,
supporting the importance of incorporating industry level dynamics in estimating hazard
rates. Further, the failure dependence for each model falls in the range (0.145, 0.416).
Besides, the scale factor is positive and significant. This points to the importance of
accounting for higher variations in hazards rates under a departure from market normality.

The results suggest the following. First, the hazard rate rises with an increase in the
distance to default probability and S&P covariates leading to a decrease in the expected
time to default. Second, an increase in the stock return and 3 month T-bill rate variables
drive the hazard rate down causing an increase in the expected time to default.

3.3.2 Parameter estimates of the weighted models.

Using the same set of covariates as in Section 3.3.1, we now present the estimates of
our bias-corrected models. Table 3.4 presents the bias-corrected models using the clas-
sical weights. CWAF1-CWAF4 are the bias-corrected models for additive frailty model,
while models CWMF1-CWMF4 for the multiplicative frailty model. This implies that model
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CWAF1 is a bias-corrected model obtained from model AF1 by controlling for informa-
tive firm censoring using the classical weights. Likewise model WMFC1 is obtained from
MF1, and so on. The following results emerge. First, the distance to default probability
is highly significant in both the univariate (models CWAF1 and CWMF1) and multivariate
specifications (models CWAF2, CWAF3, CWAF4, CWMF2, CWMF3, and CWMF4). Sec-
ond, all the covariates retain their significance levels and the expected signs, except the 3
month T-bill rate whose significance level has improved from 5% to 1%. The correlation or
failure dependence for each model falls within the interval (0.287, 0.594). In Table 3.5, we
present the bias-corrected models using the industry level factors adjusted weights. In a
similar fashion as in Table 3.4 , we obtain model AWAF1 from model AF1 by adjusting the
parameter estimates for the potential effects of informative censoring using the industry
level factors adjusted weights. Likewise model AWMF1 is obtained from model MF1, and
so on. The results are similar to those of the results of the bias-corrected models using
classical weights, although there are marginal differences. In these models, the failure
rate dependencies fall within the interval (0.240, 0.577).

Table 3.4: Bias-corrected models using classical weights. Dependent variable: Time to
event

CWAF CWMF
Variables CWAF1 CWAF2 CWAF3 CWAF4 CWMF1 CWMF2 CWMF3 CWMF4
Scale factor 1.559∗∗∗

(0.144)
1.633∗∗∗
(0.147)

1.565∗∗∗
(0.145)

1.645∗∗∗
(0.147)

DDP 2.284∗∗∗
(0.130)

2.260∗∗∗
(0.130)

1.857∗∗∗
(0.131)

1.841∗∗∗
(0.131)

2.290∗∗∗
(0.130)

2.267∗∗∗
(0.130)

1.867∗∗∗
(0.131)

1.860∗∗
(0.132)

Stock return −0.029∗∗∗
(0.002)

−0.029∗∗∗
(0.002)

−0.029∗∗∗
(0.002)

−0.029∗∗∗
(0.002)

S&P 500 return 0.383∗∗∗
(0.009)

0.387∗∗∗
(0.009)

0.387∗∗∗
(0.009)

0.392∗∗∗
(0.010)

3 month T-bill rate −0.720∗∗∗
(0.200)

−0.715∗∗∗
(0.199)

−0.733∗∗∗
(0.201)

−0.735∗∗∗
(0.200)

Diagnostics
Industry level
Frailty variance 0.287∗∗∗ 0.296∗∗∗ 0.528∗∗∗ 0.568∗∗∗ 0.360∗∗∗ 0.370∗∗∗ 0.564∗∗∗ 0.597∗∗∗

Global
ML −18024 −17977 −17189 −16966 −19356 −19308 −18515 −18291
LR test 792.499 889.347 2516.028 2618.052 808.400 905.489 2533.113 2634.836

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Wald test 683.082 802.152 2865.200 2910.435 687.267 806.229 2869.462 2911.307

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Notes: See Table 3.3 for notes.

3.3.3 Comparison of parameter estimates

In this section, we first compare the results of the estimated parameters for the benchmark
and bias-corrected models. Then, using the estimated parameters, we calculate and com-
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Table 3.5: Bias-corrected models using adjusted weights.Dependent variable: Time to
event

AWAF AWMF
Variables AWAF1 AWAF2 AWAF3 AWAF4 AWMF1 AWMF2 AWMF3 AWMF4
Scale factor 1.323∗∗∗

(0.157)
1.404∗∗∗
(0.160)

1.330∗∗∗
(0.157)

1.410∗∗∗
(0.161)

DDP 2.041∗∗∗
(0.119)

2.025∗∗∗
(0.119)

1.590∗∗∗
(0.121)

1.578∗∗∗
(0.121)

2.048∗∗∗
(0.120)

2.032∗∗∗
(0.120)

1.600∗∗∗
(0.121)

1.588∗∗∗
(0.121)

Stock return −0.032∗∗∗
(0.002)

−0.032∗∗∗
(0.002)

−0.032∗∗∗
(0.002)

−0.032∗∗∗
(0.002)

S&P 500 return 0.379∗∗∗
(0.008)

0.381∗∗∗
(0.008)

0.383∗∗∗
(0.008)

0.384∗∗∗
(0.008)

3 month T-bill rate −0.603∗∗∗
(0.187)

−0.602∗∗∗
(0.186)

−0.616∗∗∗
(0.187)

−0.614∗∗∗
(0.186)

Diagnostics
Industry level
Frailty variance 0.240∗∗∗ 0.246∗∗∗ 0.516∗∗∗ 0.535∗∗∗ 0.328∗∗∗ 0.335∗∗∗ 0.560∗∗∗ 0.577∗∗∗

Global
MR −20314.8 −20286.1 −19249.1 −19218.3 −21641.2 −21612.3 −20567.2 −20536.1
LR test 654.653 816.934 2957.958 3023.010 778.415 838.265 2977.291 3042.222

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Wald test 757.292 726.071 3486.745 3523.869 663.776 735.090 3491.251 3526.754

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Notes: See Table 3.3 for notes.

pare the industrial level failure rates among the two models. The following trends emerge.
First, the 3 month T-bill rate plays a higher significant role in estimating failure rates in the
bias-corrected models than in the benchmarks. Second, the impact of unobserved fac-
tors on hazard rates, which induces failure dependence, is better capture by our models
as higher values of failure dependencies are found for these models. Third, our models
tend to estimate the scale factor more appropriately than the benchmark models because
of higher values of the factor during distressed market periods. In conclusion, while the
classical models are very conservation, which may not be ideal during distressed mar-
ket conditions, the bias-corrected models are more forward looking: adjust failure rates
accordingly during booms and unfavourable market periods.

In Figure 3.1, results concerning the industry level failure rates estimated using both
the benchmark and bias-corrected models are illustrated. In particular, firms in industries
with frailty greater one (see e.g. Fertilizers & Agricultural Chemicals with ID. 10 and
GICS code 15101030, Table B.1) are likely to fail faster, while those firms with frailty
less than one (see e.g. Railroads with ID 44 with GICS code 20304010) will fail slower.
Further, the figure shows that, during distressed market periods, usually characterized by
higher failure rates and firm exits, the benchmark models relatively generate lower failure
rate. In addition, during relatively normal market periods, usually featured by lower failure
rates, the bias-corrected models are able to generate lower values for the failure than the
benchmark models.
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Panel A: Industry Level Frailties for AFM and WAFM1 
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Figure 3.1: Industry level failure rates
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The results in Sections 3.3.1-3.3.3 have some implications. First, the distance to de-
fault probability shows a high explanatory power for the hazard rate, and it may also be
used as early warning system by financial investors who can efficiently rebalance their
portfolios by disposing of firms with a high and/or consistent increase in their distance to
default probabilities, while investing more in those firms with a lower distance to default
probability. Second, the negative and significant effect of 3 month T-bill rate shows how
this covariate is likely to have a dampen effect on failure rates on the US firms. The reg-
ulatory authorities and investors, for instance, can exploit this dampen effect to their ad-
vantage. However, during distressed market periods, which are normally characterised by
more firm exits, the effects of the 3 month T-bill rate can be captured more appropriately,
when firm censoring is explicitly accounted for in the failure rates. Third, the unexpected
positive effect of market return on hazard rates (see also Duffie et al., 2007; Duffie et al.,
2009) may offer investors a general overview of firm performance after market booms.
As such, investors can use important trends during market booms on the US markets to
reassess risk levels of firms in the subsequent periods. Fourth, the significance of the
sector level distress indicator shows that hazard rates of firms are adjusted appropriately
when those firms belong to distressed industries in a given period. In particular, this can
help an investor re-calculate the risk and return of his portfolio containing firms of the
distressed industries.

3.3.4 Out-of-sample extraction of industry level failure rates

Accurate extracts of failure rates and the corresponding failure rate dependence can
be used to rank industries into risky and less risky ones. In this section, we employ a
naive technique (see Atsu and Costantini, 2015) to extract industry level failure rate of the
benchmarks, AF and MF, and the bias-corrected models, WAF and WMF, and compare
the performances of the two for a one year horizon in terms of accuracy. To this end, we
compute the root mean square deviations (RMSD) for each industry as deviations of the
extracts from their expected future values. Higher values of this measure imply higher
accuracy. Indeed, during booms or distressed market periods, industry level failure rates
tend to deviate more from their expected values.7

We proceed with the recursive extraction exercise over the years 2009, 2010, 2011,
2012, and 2013 as follows. To extract one-step-ahead industry level failure rate for 2009,
we choose the sample period 1980- 2009. We then estimate the parameters of the bench-
marks and the bias-corrected models over the 1980-2008 period, and use estimates to

7For details, see Chapter 2.
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extract rates for the beginning of 2009. This year is regarded as the out-of-sample period.
The RMSD is computed as follows for each industry i = 1, ..., 127:

RMSDi =

√∑5
t=1(ŷi,t − E(ũi,t))2

5
, (3.17)

where ŷi,t andE(ũi,t) are the extracted and expected values respectively for t = 2009, ..., 2013,
t = 1 represents the year 2009, t = 2 is the year 2010, and so on. For example, ŷ8,1 de-
notes the extracted failure rate for the Commodity Chemicals industry (ID 8 and GICS
code 15101010) for 2009. As for the extraction exercise, we use the second weighting
schemes (see Section 3.2.2) and the results are presented in Tables 3.6 and 3.7.

First, in Table 3.6, some of the industries have failure rates less than 1 (see e.g. Oil
& Gas Equipment & Services: GICS code 10101020) over the entire extraction horizon,
2009-2013. In this industry, the one-step-ahead predictions of the industry level failure
rates in 2009 for the models AF and WAF are equal to 0.482 and 0.400, respectively. In
2010, these rates increased to 0.741 and 0.687 for the models AF and WAF, respectively,
and over the period 2011-2013, the rates vary between 0.771-0.811 for AF model and
0.660-0.757 for WAF model. As for the prediction of the MF model, over the years 2009-
2013, the extracted values fall within the ranges 0.365-0.723, while those of the WAF
model are bounded between 0.282 and 0.629 (see Table 3.7). The variations in the indus-
try level failure rates are driven by changes in macroeconomic, firm specific and industry
level factors. Specifically, the deterioration (improvement) of these factors may push up
(down) the rates. When the extracted rates are all less than one over the extraction time
horizon, the industries show a low risk profile, a slow failing period is observed, and firms
in these industries are likely to fail slowly in the event of failure clustering. Second, other
industries have failure rates greater than 1 (see e.g. Fertilizers & Agricultural Chemical:
GICS code 15101030), and show a high risk profile, with a fast failing period over the time
horizon. Third, a few industries have failure rates less than 1 in some years and greater
than 1 in some others (see e.g. Construction Materials: GICS code 15102010). In such a
case, industries show a mixed risk profile, and with a mixed failing period.

As for the three different failing periods (slow, fast and mixed), some patterns emerge.
First, during the period of slow failing, the AF and MF models tend to overestimate the
industry level failure rates as compared to the AWAF and AWMF models, respectively. For
example, the extracted values of the Silver industry (GICS code: 15104045) in 2009 are
equal to 0.691 and 0.479 for AF and AWAF models, respectively. In other words, model
AF suggests that firms in the industry are 31% less risky, whereas for model AWAF the
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firms are 52% less risky.8 Similar percentages are also found for the two models AF and
AWAF over the period 2010-2013. On average, the benchmark models produce estimates
of the industry level failure rates larger than those of bias-corrected models by 0.200 over
the period 2009-2013. Second, during the fast failing regime, the AF and MF models
tend to underestimate the failure rates as compared to the AWAF and AWMF models.
For instance, in 2009, firms in the Paper Packaging industry (GICS code: 15103020)
have failure rate equal to 1.395 for the MF model as opposed to 1.507 for the AWMF
model. This implies that firms in the Paper Packaging industry are approximately 40% and
51% more risky in 2009 when applying the two models. Overall, the benchmarks models
produce estimates of the failure rates lower than those by the bias-corrected models.
Lastly, during the mixed risk period, all the models exhibit both the trends in the fast and
slow failing periods (see e.g. the Paper Products industry 15105020).

The results concerning the accuracy of the extraction exercise over the period 2009-
2013 are reported in Table 3.9. On average, the AWAF and AWMF models produce higher
RMSD values than the AF and MF models during the slow failing period. For instance,
in the Oil & Gas Refining & Marketing industry (ID 5 and GICS code 10102030), AF and
AWAF generate values of 0.4830 and 0.584 for the RMSD, respectively, while the RMSD
is 0.624 for the MF model, and 0.736 for the AWMF. The same outcome is observed in
the fast failing period (see e.g. ID 10 and GICS code 15101030) and the mixed failing
period (see ID 15 and GICS code 15103020). All in all, the AWAF and AWMF averagely
generate higher RMSD values than those of AF and MF for all the three periods.

3.4 Conclusion

In this study, we correct for potential bias in the multiplicative and additive frailty models
of Chava et al. (2011) and Atsu and Costantini (2015) using an inverse probability cen-
soring weighted scheme (see Robins 1993; Robins and Finkelstein, 2000; Scharfstein
and Robins, 2002). In this way, the bias-corrected models allow us to explicitly account
for informative firm censoring. We assume that censored firms normally belong to either
good or bad performing firms categories. For instance, two performing firms may benefit
from forming a synergy, or a financially distressed firm may be willing to be taken over
by a healthy firm. In both cases, the target firm is censored, and this may convey useful
information to the market participants, with a potential impact on hazard rates of active
firms.

8These percentages are obtained by subtracting the failure rates from the expected value, which is equal
to 1.
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Table 3.6: Failure rate extracts using AF and AWAF
AF AWAF

ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
1 10101010 0.977 0.910 0.975 1.043 0.986 0.943 0.865 0.931 1.042 0.967
2 10101020 0.482 0.741 0.811 0.771 0.722 0.400 0.687 0.757 0.709 0.660
3 10102010 0.949 0.850 0.797 0.764 0.710 1.117 0.943 0.836 0.776 0.693
4 10102020 1.345 1.365 1.142 1.156 1.192 1.514 1.510 1.221 1.228 1.262
5 10102030 0.448 0.461 0.510 0.442 0.517 0.313 0.341 0.386 0.327 0.416
6 10102040 0.338 0.531 0.748 0.755 0.816 0.264 0.457 0.692 0.694 0.773
7 10102050 0.214 0.293 0.410 0.369 0.371 0.123 0.192 0.290 0.250 0.255
8 15101010 0.922 0.921 1.002 1.137 1.188 1.229 1.174 1.257 1.451 1.498
9 15101020 1.548 1.387 1.252 1.204 1.149 1.877 1.655 1.469 1.390 1.290
10 15101030 2.211 1.843 1.539 1.367 1.420 2.910 2.444 1.965 1.689 1.726
11 15101040 0.769 0.796 0.825 0.828 0.823 0.621 0.651 0.681 0.684 0.682
12 15101050 0.241 0.273 0.393 0.366 0.388 0.198 0.224 0.347 0.310 0.338
13 15102010 1.224 1.106 1.017 0.980 1.059 1.393 1.219 1.086 1.025 1.133
14 15103010 1.379 1.498 1.349 1.304 1.253 1.351 1.531 1.379 1.327 1.253
15 15103020 1.653 1.464 1.500 1.426 1.687 1.972 1.722 1.809 1.701 2.063
16 15104010 1.016 0.973 0.942 0.923 0.897 1.002 0.939 0.872 0.840 0.802
17 15104020 1.334 1.316 1.104 1.095 1.049 1.242 1.250 0.992 1.005 0.957
18 15104030 0.792 0.772 0.832 0.690 0.693 0.792 0.760 0.827 0.639 0.648
19 15104040 0.601 0.634 0.666 0.503 0.506 0.411 0.440 0.457 0.301 0.312
20 15104045 0.691 0.707 0.719 0.703 0.668 0.479 0.502 0.503 0.486 0.460
21 15104050 1.421 1.354 1.172 1.169 1.072 1.508 1.440 1.190 1.185 1.069
22 15105010 1.591 1.447 1.323 1.285 1.247 2.117 1.896 1.713 1.644 1.555
23 15105020 1.275 1.133 1.032 0.988 1.063 1.399 1.205 1.065 0.999 1.105
24 20101010 1.041 0.998 0.909 1.005 0.980 1.102 1.042 0.933 1.058 1.024
25 20102010 2.533 2.215 1.940 1.842 1.726 2.587 2.240 1.962 1.851 1.705
26 20103010 1.115 1.065 1.014 1.036 0.988 1.441 1.332 1.238 1.249 1.165
27 20104010 0.808 0.876 0.943 0.803 0.799 0.759 0.862 0.967 0.790 0.790
28 20104020 1.370 1.239 1.135 1.077 1.018 1.346 1.214 1.105 1.020 0.935
29 20105010 0.772 0.763 0.771 0.769 0.756 0.602 0.592 0.596 0.592 0.581
30 20106010 0.843 0.867 0.900 0.851 0.870 0.961 0.958 0.981 0.906 0.931
31 20106015 0.626 0.658 0.701 0.705 0.697 0.450 0.479 0.517 0.519 0.517
32 20106020 1.097 0.978 0.918 0.870 0.862 1.250 1.091 1.014 0.948 0.925
33 20107010 0.769 0.687 0.652 0.789 0.718 0.897 0.751 0.667 0.849 0.744
34 20201010 2.229 1.970 1.886 1.778 1.799 2.391 2.106 2.072 1.940 1.954
35 20201050 1.444 1.484 1.420 1.353 1.332 1.597 1.637 1.577 1.489 1.455

Notes: For the sake of brevity, we present only the first 35 industries, but interested readers are referred to
Table B.2 in Appendix B.2 for the full table. We present the second type bias correction estimates of frailty
rates. These frailties, with an expected value of 1, are used to discriminate among industries-firms which
ones are likely to fail faster or slower. Firms in industries with frailty greater than one are inclined to fail
faster, while those with frailty less than 1 are likely to fail slowly in the event of failure clustering. We use the
frailties as industry level failure rates.
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Table 3.7: Failure rate extracts using MF and AWMF
MF AWMF

ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
1 10101010 0.846 0.821 0.910 0.980 0.929 0.739 0.717 0.806 0.913 0.855
2 10101020 0.365 0.621 0.723 0.691 0.651 0.282 0.535 0.629 0.596 0.561
3 10102010 0.831 0.769 0.735 0.705 0.650 0.882 0.788 0.724 0.676 0.601
4 10102020 1.105 1.181 1.027 1.049 1.088 1.142 1.212 1.027 1.047 1.088
5 10102030 0.317 0.354 0.419 0.357 0.440 0.205 0.244 0.294 0.250 0.335
6 10102040 0.229 0.417 0.646 0.660 0.727 0.172 0.338 0.559 0.568 0.647
7 10102050 0.112 0.188 0.307 0.270 0.276 0.060 0.117 0.204 0.171 0.176
8 15101010 0.759 0.799 0.912 1.045 1.098 0.931 0.947 1.070 1.247 1.303
9 15101020 1.314 1.247 1.178 1.142 1.095 1.437 1.362 1.284 1.232 1.159

10 15101030 1.782 1.594 1.413 1.275 1.321 2.142 1.937 1.669 1.462 1.506
11 15101040 0.725 0.756 0.789 0.795 0.792 0.532 0.562 0.587 0.596 0.593
12 15101050 0.159 0.192 0.316 0.292 0.318 0.128 0.157 0.269 0.241 0.269
13 15102010 1.064 1.007 0.957 0.927 1.005 1.093 1.019 0.953 0.909 1.012
14 15103010 1.191 1.336 1.259 1.228 1.185 1.067 1.269 1.208 1.177 1.125
15 15103020 1.395 1.308 1.383 1.329 1.538 1.507 1.412 1.552 1.481 1.782
16 15104010 0.940 0.925 0.909 0.892 0.867 0.845 0.827 0.785 0.759 0.722
17 15104020 1.138 1.172 1.026 1.022 0.981 0.966 1.030 0.855 0.875 0.840
18 15104030 0.650 0.669 0.757 0.619 0.627 0.597 0.610 0.702 0.538 0.554
19 15104040 0.509 0.549 0.586 0.383 0.394 0.284 0.310 0.318 0.165 0.174
20 15104045 0.625 0.643 0.655 0.637 0.598 0.361 0.381 0.369 0.355 0.325
21 15104050 1.192 1.193 1.078 1.083 0.998 1.153 1.171 1.019 1.027 0.936
22 15105010 1.358 1.306 1.251 1.224 1.192 1.605 1.546 1.491 1.450 1.395
23 15105020 1.106 1.032 0.972 0.936 1.008 1.099 1.010 0.935 0.887 0.988
24 20101010 0.871 0.877 0.830 0.927 0.907 0.841 0.846 0.795 0.914 0.894
25 20102010 2.047 1.890 1.736 1.666 1.573 1.943 1.797 1.664 1.591 1.486
26 20103010 0.924 0.930 0.926 0.954 0.915 1.092 1.077 1.055 1.078 1.017
27 20104010 0.633 0.741 0.846 0.720 0.724 0.541 0.672 0.806 0.662 0.674
28 20104020 1.214 1.152 1.091 1.040 0.984 1.094 1.049 0.999 0.928 0.852
29 20105010 0.690 0.697 0.714 0.717 0.705 0.481 0.483 0.489 0.490 0.478
30 20106010 0.726 0.776 0.832 0.790 0.812 0.751 0.791 0.847 0.790 0.819
31 20106015 0.545 0.582 0.632 0.641 0.634 0.329 0.355 0.385 0.393 0.389
32 20106020 0.916 0.858 0.837 0.799 0.795 0.952 0.885 0.863 0.818 0.806
33 20107010 0.661 0.604 0.579 0.729 0.658 0.702 0.617 0.564 0.738 0.648
34 20201010 1.798 1.687 1.684 1.608 1.626 1.789 1.689 1.751 1.665 1.693
35 20201050 1.209 1.300 1.297 1.248 1.233 1.219 1.326 1.345 1.288 1.272

Notes: See Table 3.6 for notes.

57



Table 3.8: Industry level dependence
AF AWAF

ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
1 10101010 0.287 0.246 0.184 0.159 0.151 0.374 0.360 0.320 0.294 0.289
2 10101020 0.157 0.097 0.079 0.076 0.073 0.293 0.229 0.209 0.207 0.204
3 10102010 0.360 0.293 0.231 0.212 0.194 0.391 0.374 0.355 0.347 0.336
4 10102020 0.037 0.030 0.028 0.026 0.023 0.151 0.138 0.132 0.126 0.118
5 10102030 0.215 0.179 0.149 0.115 0.099 0.333 0.314 0.298 0.261 0.237
6 10102040 0.179 0.115 0.082 0.071 0.061 0.302 0.246 0.211 0.199 0.183
7 10102050 0.349 0.240 0.177 0.157 0.148 0.456 0.381 0.333 0.321 0.313
8 15101010 0.134 0.121 0.102 0.089 0.083 0.256 0.246 0.231 0.215 0.207
9 15101020 0.337 0.294 0.245 0.229 0.215 0.383 0.372 0.359 0.354 0.347

10 15101030 0.248 0.224 0.193 0.178 0.155 0.299 0.293 0.285 0.281 0.264
11 15101040 1.117 0.761 0.508 0.453 0.413 0.792 0.696 0.611 0.587 0.557
12 15101050 0.178 0.152 0.103 0.097 0.088 0.310 0.295 0.247 0.242 0.230
13 15102010 0.309 0.266 0.219 0.205 0.177 0.376 0.363 0.348 0.342 0.313
14 15103010 0.323 0.248 0.213 0.202 0.192 0.404 0.359 0.347 0.342 0.336
15 15103020 0.275 0.246 0.191 0.181 0.147 0.348 0.339 0.308 0.305 0.270
16 15104010 0.781 0.580 0.412 0.370 0.338 0.603 0.558 0.508 0.491 0.470
17 15104020 0.217 0.173 0.149 0.129 0.113 0.331 0.301 0.290 0.269 0.252
18 15104030 0.179 0.157 0.125 0.114 0.102 0.296 0.284 0.261 0.254 0.239
19 15104040 0.875 0.608 0.412 0.298 0.274 0.701 0.618 0.539 0.469 0.448
20 15104045 0.998 0.673 0.442 0.385 0.338 0.731 0.641 0.554 0.526 0.492
21 15104050 0.121 0.105 0.095 0.087 0.083 0.245 0.230 0.224 0.214 0.211
22 15105010 0.454 0.388 0.313 0.292 0.275 0.429 0.417 0.403 0.397 0.389
23 15105020 0.314 0.269 0.221 0.206 0.177 0.385 0.371 0.355 0.348 0.318
24 20101010 0.093 0.082 0.075 0.063 0.059 0.225 0.213 0.206 0.189 0.183
25 20102010 0.076 0.072 0.068 0.066 0.065 0.211 0.205 0.200 0.199 0.197
26 20103010 0.105 0.097 0.088 0.081 0.078 0.227 0.220 0.214 0.206 0.203
27 20104010 0.101 0.082 0.068 0.065 0.060 0.233 0.210 0.193 0.190 0.183
28 20104020 0.603 0.480 0.361 0.324 0.294 0.526 0.498 0.465 0.450 0.432
29 20105010 0.637 0.479 0.349 0.318 0.293 0.602 0.548 0.496 0.480 0.460
30 20106010 0.274 0.204 0.156 0.147 0.128 0.346 0.311 0.282 0.278 0.259
31 20106015 0.907 0.629 0.431 0.386 0.351 0.718 0.632 0.558 0.536 0.509
32 20106020 0.068 0.063 0.056 0.054 0.049 0.193 0.186 0.177 0.175 0.167
33 20107010 0.331 0.267 0.209 0.161 0.149 0.367 0.350 0.332 0.287 0.280
34 20201010 0.143 0.135 0.116 0.112 0.102 0.272 0.266 0.249 0.247 0.235
35 20201050 0.112 0.092 0.081 0.078 0.073 0.237 0.217 0.205 0.204 0.196

Notes: See Table 3.6 for the corresponding rates. For all the industries, see Table B.3 in Appendix B.2.
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Table 3.9: Root mean square deviation (RMSD)
ID. GICS code AF AWAF MF AWMF
1 10101010 0.014 0.033 0.118 0.207
2 10101020 0.278 0.340 0.410 0.495
3 10102010 0.290 0.307 0.269 0.283
4 10102020 0.192 0.262 0.105 0.123
5 10102030 0.483 0.584 0.624 0.736
6 10102040 0.184 0.227 0.500 0.571
7 10102050 0.629 0.745 0.773 0.856
8 15101010 0.188 0.498 0.154 0.182
9 15101020 0.149 0.290 0.210 0.310

10 15101030 0.420 0.726 0.513 0.787
11 15101040 0.177 0.318 0.230 0.427
12 15101050 0.612 0.662 0.748 0.789
13 15102010 0.059 0.133 0.048 0.063
14 15103010 0.253 0.253 0.246 0.183
15 15103020 0.687 1.063 0.399 0.561
16 15104010 0.103 0.198 0.097 0.217
17 15104020 0.049 0.043 0.100 0.113
18 15104030 0.307 0.352 0.339 0.404
19 15104040 0.494 0.688 0.522 0.753
20 15104045 0.332 0.540 0.369 0.642
21 15104050 0.072 0.069 0.132 0.108
22 15105010 0.247 0.555 0.273 0.503
23 15105020 0.063 0.105 0.059 0.074
24 20101010 0.020 0.024 0.122 0.148
25 20102010 0.726 0.705 0.800 0.714
26 20103010 0.012 0.165 0.071 0.069
27 20104010 0.201 0.210 0.276 0.340
28 20104020 0.018 0.065 0.126 0.088
29 20105010 0.244 0.419 0.296 0.516
30 20106010 0.130 0.069 0.216 0.203
31 20106015 0.303 0.483 0.395 0.630
32 20106020 0.138 0.075 0.165 0.145
33 20107010 0.282 0.256 0.358 0.352
34 20201010 0.799 0.954 0.684 0.719
35 20201050 0.332 0.455 0.26 0.293

Notes: These figures are generated using the rates in Tables 3.6 and 3.7. See Table B.4 in Appendix B.3
for all the industries.
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The bias correction is performed in two ways. First, we estimate the potential effects
of informative firm censoring in terms of time-varying weights by using firm specific and
macroeconomic covariates. It is assumed that all the industries have the same reasons
for firm censoring. Second, we adjust the weights for industry level unobserved factors
in addition to the firm specific and macroeconomic factors. This is done as reasons for
censoring of firms may differ across the industries.

In the empirical analysis, we use a panel of 8471 listed firms on the NYSE, NASDAQ,
and NYSE MKT LLC over the period 1980-2013. We compare in-sample and out-of-
sample performances of our bias-corrected models with those of Chava et al. (2011)
and Atsu and Costantini (2015) in order to give insight into the estimation of default rates
during distress market periods. We employ variables such as the time to event, distance
to default probability, one year trailing stock return, one year trailing S&P 500 return, 3
month T-bill rate, and a distress indicator at industry level. The results show that the
distance to default probability and S&P 500 return covariates are positive and highly sig-
nificant, while stock return is negatively statistically significant for both the benchmark and
bias-corrected models, and the 3 month T-bill rate is negative. Further, the hazard rate
adjustment factor, which tends to be higher during distressed markets periods, is more
appropriately measured in our bias-corrected models than in the benchmark ones, and
the effect of industry level unobserved factors on hazard rates is also better accounted for
in our models. Lastly, our bias-corrected models generate smaller standard errors than
the benchmarks, and better cope with potential sharp changes in covariates.

We conclude that, when estimating hazard rates, it is important to explicitly account
for market events through which firms are censored.
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Appendix B

B.1 Industries

Table B.1: Sub-industry codes and names

ID. GICS code Name
1 10101010 Oil & Gas Drilling
2 10101020 Oil & Gas Equipment & Services
3 10102010 Integrated Oil & Gas
4 10102020 Oil & Gas Exploration& Production
5 10102030 Oil & Gas Refining& Marketing
6 10102040 Oil & Gas Storage & Transportation
7 10102050 Coal & Consumable Fuels
8 15101010 Commodity Chemicals
9 15101020 Diversified Chemicals

10 15101030 Fertilizers & Agricultural Chemicals
11 15101040 Industrial Gases
12 15101050 Specialty Chemicals
13 15102010 Construction Materials
14 15103010 Metal & Glass Containers
15 15103020 Paper Packaging
16 15104010 Aluminium
17 15104020 Diversified Metals & Mining
18 15104030 Gold
19 15104040 Precious Metals & Minerals

Continued on next page

61



Table B.1 – Continued from previous page
ID. GICS code Name
20 15104045 Silver
21 15104050 Steel
22 15105010 Forest Products
23 15105020 Paper Products
24 20101010 Aerospace & Defence
25 20102010 Building Products
26 20103010 Construction & Engineering
27 20104010 Electrical Components & Equipment
28 20104020 Heavy Electrical Equipment
29 20105010 Industrial Conglomerates
30 20106010 Construction Machinery & Heavy Trucks
31 20106015 Agricultural & Farm Machinery
32 20106020 Industrial Machinery
33 20107010 Trading Companies & Distributors
34 20201010 Commercial Printing
35 20201050 Environmental & Facilities Services
36 20201060 Office Services & Supplies
37 20201070 Diversified Support Services
38 20201080 Security & Alarm Services
39 20202010 Human Resource & Employment Services
40 20202020 Research & Consulting Services
41 20301010 Air Freight & Logistics
42 20302010 Airlines
43 20303010 Marine
44 20304010 Railroads
45 20304020 Trucking
46 20305010 Airport Services
47 20305020 Highways & Rail tracks
48 20305030 Marine Ports & Services
49 25101010 Auto Parts & Equipment
50 25101020 Tires & Rubber
51 25102010 Automobile Manufacturers
52 25102020 Motorcycle Manufacturers

Continued on next page
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Table B.1 – Continued from previous page
ID. GICS code Name
53 25201010 Consumer Electronics
54 25201020 Home Furnishings
55 25201030 Homebuilding
56 25201040 Household Appliances
57 25201050 Housewares & Specialties
58 25202010 Leisure Products
59 25202020 Photographic Products
60 25203010 Apparel, Accessories & Luxury Goods
61 25203020 Footwear
62 25203030 Textiles
63 25301010 Casinos & Gaming
64 25301020 Hotels, Resorts & Cruise Lines
65 25301030 Leisure Facilities
66 25301040 Restaurants
67 25302010 Education Services
68 25302020 Specialized Consumer Services
69 25401010 Advertising
70 25401020 Broadcasting
71 25401025 Cable & Satellite
72 25401030 Movies & Entertainment
73 25401040 Publishing
74 25501010 Distributors
75 25502010 Catalogue Retail
76 25502020 Internet Retail
77 25503010 Department Stores
78 25503020 General Merchandise Stores
79 25504010 Apparel Retail
80 25504020 Computer & Electronics Retail
81 25504030 Home Improvement Retail
82 25504040 Specialty Stores
83 25504050 Automotive Retail
84 25504060 Home furnishing Retail
85 30101010 Drug Retail

Continued on next page
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Table B.1 – Continued from previous page
ID. GICS code Name
86 30101020 Food Distributors
87 30101030 Food Retail
88 30101040 Hypermarkets & Super Centers
89 30201010 Brewers
90 30201020 Distillers & Vintners
91 30201030 Soft Drinks
92 30202010 Agricultural Products
93 30202030 Packaged Foods & Meats
94 30203010 Tobacco
95 30301010 Household Products
96 30302010 Personal Products
97 35101010 Health Care Equipment
98 35101020 Health Care Supplies
99 35102010 Health Care Distributors
100 35102015 Health Care Services
101 35102020 Health Care Facilities
102 35102030 Managed Health Care
103 35103010 Health Care Technology
104 35201010 Biotechnology
105 35202010 Pharmaceuticals
106 35203010 Life Sciences Tools & Services
107 40402040 Office REITs
108 45101010 Internet Software & Services
109 45102010 IT Consulting & Other Services
110 45102020 Data Processing & Outsourced Services
111 45103010 Application Software
112 45103020 Systems Software
113 45103030 Home Entertainment Software
114 45201020 Communications Equipment
115 45202010 Computer Hardware
116 45202020 Computer Storage & Peripherals
117 45202030 Technology Hardware, Storage & Peripherals
118 45203010 Electronic Equipment & Instruments
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119 45203015 Electronic Components
120 45203020 Electronic Manufacturing Services
121 45203030 Technology Distributors
122 45204010 Office Electronics
123 45301010 Semiconductor Equipment
124 45301020 Semiconductors
125 50101010 Alternative Carriers
126 50101020 Integrated Telecommunication Services
127 50102010 Wireless Telecommunication Services

B.2 Industry level failure rates

Table B.2: Industry level failure rates: AF and AWAF

AF AWAF
ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
1 10101010 0.977 0.910 0.975 1.043 0.986 0.943 0.865 0.931 1.042 0.967
2 10101020 0.482 0.741 0.811 0.771 0.722 0.400 0.687 0.757 0.709 0.660
3 10102010 0.949 0.850 0.797 0.764 0.710 1.117 0.943 0.836 0.776 0.693
4 10102020 1.345 1.365 1.142 1.156 1.192 1.514 1.510 1.221 1.228 1.262
5 10102030 0.448 0.461 0.510 0.442 0.517 0.313 0.341 0.386 0.327 0.416
6 10102040 0.338 0.531 0.748 0.755 0.816 0.264 0.457 0.692 0.694 0.773
7 10102050 0.214 0.293 0.410 0.369 0.371 0.123 0.192 0.290 0.250 0.255
8 15101010 0.922 0.921 1.002 1.137 1.188 1.229 1.174 1.257 1.451 1.498
9 15101020 1.548 1.387 1.252 1.204 1.149 1.877 1.655 1.469 1.390 1.290

10 15101030 2.211 1.843 1.539 1.367 1.420 2.910 2.444 1.965 1.689 1.726
11 15101040 0.769 0.796 0.825 0.828 0.823 0.621 0.651 0.681 0.684 0.682
12 15101050 0.241 0.273 0.393 0.366 0.388 0.198 0.224 0.347 0.310 0.338
13 15102010 1.224 1.106 1.017 0.980 1.059 1.393 1.219 1.086 1.025 1.133
14 15103010 1.379 1.498 1.349 1.304 1.253 1.351 1.531 1.379 1.327 1.253
15 15103020 1.653 1.464 1.500 1.426 1.687 1.972 1.722 1.809 1.701 2.063
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ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
16 15104010 1.016 0.973 0.942 0.923 0.897 1.002 0.939 0.872 0.840 0.802
17 15104020 1.334 1.316 1.104 1.095 1.049 1.242 1.250 0.992 1.005 0.957
18 15104030 0.792 0.772 0.832 0.690 0.693 0.792 0.760 0.827 0.639 0.648
19 15104040 0.601 0.634 0.666 0.503 0.506 0.411 0.440 0.457 0.301 0.312
20 15104045 0.691 0.707 0.719 0.703 0.668 0.479 0.502 0.503 0.486 0.460
21 15104050 1.421 1.354 1.172 1.169 1.072 1.508 1.440 1.190 1.185 1.069
22 15105010 1.591 1.447 1.323 1.285 1.247 2.117 1.896 1.713 1.644 1.555
23 15105020 1.275 1.133 1.032 0.988 1.063 1.399 1.205 1.065 0.999 1.105
24 20101010 1.041 0.998 0.909 1.005 0.980 1.102 1.042 0.933 1.058 1.024
25 20102010 2.533 2.215 1.940 1.842 1.726 2.587 2.240 1.962 1.851 1.705
26 20103010 1.115 1.065 1.014 1.036 0.988 1.441 1.332 1.238 1.249 1.165
27 20104010 0.808 0.876 0.943 0.803 0.799 0.759 0.862 0.967 0.790 0.790
28 20104020 1.370 1.239 1.135 1.077 1.018 1.346 1.214 1.105 1.020 0.935
29 20105010 0.772 0.763 0.771 0.769 0.756 0.602 0.592 0.596 0.592 0.581
30 20106010 0.843 0.867 0.900 0.851 0.870 0.961 0.958 0.981 0.906 0.931
31 20106015 0.626 0.658 0.701 0.705 0.697 0.450 0.479 0.517 0.519 0.517
32 20106020 1.097 0.978 0.918 0.870 0.862 1.250 1.091 1.014 0.948 0.925
33 20107010 0.769 0.687 0.652 0.789 0.718 0.897 0.751 0.667 0.849 0.744
34 20201010 2.229 1.970 1.886 1.778 1.799 2.391 2.106 2.072 1.940 1.954
35 20201050 1.444 1.484 1.420 1.353 1.332 1.597 1.637 1.577 1.489 1.455
36 20201060 1.861 1.653 1.470 1.403 1.323 2.156 1.902 1.687 1.599 1.481
37 20201070 0.070 0.108 0.168 0.180 0.237 0.029 0.047 0.079 0.084 0.141
38 20201080 0.723 1.496 1.329 1.282 1.236 0.548 1.892 1.643 1.553 1.450
39 20202010 1.751 1.654 1.476 1.401 1.403 1.961 1.847 1.649 1.554 1.566
40 20202020 2.573 2.353 2.133 2.054 2.001 3.077 2.788 2.523 2.418 2.323
41 20301010 1.294 1.131 1.193 1.139 1.075 1.661 1.395 1.483 1.388 1.273
42 20302010 1.870 1.799 1.733 1.647 1.539 1.676 1.662 1.656 1.565 1.436
43 20303010 1.058 1.107 1.149 1.032 0.901 1.477 1.450 1.479 1.253 1.021
44 20304010 0.541 0.579 0.626 0.634 0.630 0.383 0.414 0.449 0.455 0.455
45 20304020 1.247 1.110 1.011 1.050 1.142 1.110 0.974 0.878 0.942 1.075
46 20305010 0.829 0.841 0.860 0.858 0.842 0.699 0.713 0.732 0.727 0.709
47 20305020 1.496 1.356 1.247 1.222 1.206 2.191 1.898 1.667 1.609 1.545
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ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
48 20305030 0.888 0.890 0.886 0.879 0.866 0.765 0.768 0.737 0.723 0.711
49 25101010 0.985 0.900 0.834 0.800 0.752 1.083 0.963 0.868 0.817 0.751
50 25101020 2.344 1.965 1.668 1.588 1.516 2.888 2.437 2.090 1.966 1.815
51 25102010 0.681 0.684 0.701 0.700 0.689 0.593 0.577 0.578 0.570 0.556
52 25102020 0.907 0.909 0.919 0.914 0.902 0.807 0.811 0.823 0.812 0.794
53 25201010 1.639 1.456 1.311 1.249 1.155 2.046 1.789 1.593 1.488 1.320
54 25201020 1.411 1.256 1.142 1.234 1.165 1.683 1.461 1.299 1.447 1.328
55 25201030 2.079 1.832 1.679 1.611 1.542 2.403 2.029 1.874 1.785 1.688
56 25201040 0.895 0.861 0.843 0.835 0.819 0.883 0.821 0.781 0.763 0.737
57 25201050 2.206 1.864 1.636 1.551 1.620 2.477 2.063 1.821 1.710 1.792
58 25202010 1.425 1.517 1.351 1.391 1.506 1.411 1.541 1.369 1.435 1.572
59 25202020 3.303 2.822 2.354 2.269 2.201 4.301 3.791 3.295 3.232 3.101
60 25203010 1.741 1.513 1.340 1.327 1.344 1.924 1.656 1.459 1.446 1.452
61 25203020 0.429 0.463 0.508 0.731 0.716 0.285 0.309 0.337 0.680 0.657
62 25203030 3.875 3.364 2.852 2.702 2.581 4.127 3.685 3.273 3.114 2.943
63 25301010 1.128 1.002 0.916 0.872 0.889 1.240 1.077 0.961 0.901 0.919
64 25301020 2.025 1.788 1.846 2.003 2.003 2.067 1.820 1.939 2.172 2.163
65 25301030 0.179 0.284 0.363 0.380 0.393 0.086 0.169 0.223 0.233 0.248
66 25301040 1.692 1.619 1.432 1.415 1.365 2.304 2.150 1.887 1.850 1.750
67 25302010 0.623 0.623 0.769 0.843 1.003 0.872 0.777 0.945 1.025 1.227
68 25302020 0.821 0.777 0.765 0.751 1.020 0.911 0.801 0.740 0.709 1.125
69 25401010 0.255 0.308 0.378 0.387 0.395 0.195 0.236 0.294 0.296 0.306
70 25401020 2.078 1.865 1.757 1.726 1.685 2.318 2.064 1.951 1.915 1.848
71 25401025 1.037 1.210 1.123 1.272 1.378 0.956 1.211 1.131 1.351 1.495
72 25401030 1.696 1.763 1.689 1.610 1.509 1.934 2.022 1.945 1.842 1.695
73 25401040 1.082 0.966 0.989 0.946 0.982 1.131 0.981 1.011 0.953 0.992
74 25501010 3.238 2.896 2.606 2.529 2.424 3.529 3.138 2.855 2.771 2.630
75 25502010 1.767 1.529 1.342 1.285 1.223 1.866 1.604 1.400 1.325 1.229
76 25502020 0.857 0.818 0.809 0.762 0.812 0.694 0.669 0.668 0.614 0.706
77 25503010 2.421 2.046 1.781 1.692 1.822 2.630 2.168 1.928 1.824 2.012
78 25503020 1.162 1.144 1.131 1.118 1.097 1.332 1.282 1.254 1.229 1.189
79 25504010 1.058 0.927 0.842 1.000 0.926 1.029 0.886 0.789 0.975 0.889
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ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
80 25504020 1.143 1.061 1.007 0.976 0.940 1.178 1.065 0.989 0.938 0.883
81 25504030 2.163 1.827 1.568 1.497 1.433 2.643 2.203 1.877 1.762 1.630
82 25504040 2.255 1.958 1.812 1.862 2.030 2.342 2.024 1.887 1.953 2.158
83 25504050 0.755 0.725 0.874 0.836 0.781 0.946 0.832 1.004 0.925 0.825
84 25504060 0.829 0.795 0.803 0.970 0.933 0.821 0.733 0.723 0.989 0.927
85 30101010 1.900 1.663 1.457 1.378 1.308 2.681 2.305 1.980 1.819 1.660
86 30101020 0.813 0.803 0.804 0.798 0.922 0.645 0.634 0.632 0.624 0.841
87 30101030 1.044 1.020 0.997 0.982 1.020 1.324 1.248 1.189 1.154 1.185
88 30101040 0.266 0.330 0.416 0.402 0.410 0.149 0.192 0.250 0.237 0.249
89 30201010 0.665 0.688 0.721 0.724 0.714 0.491 0.511 0.538 0.539 0.535
90 30201020 1.341 1.207 1.106 1.061 1.009 1.438 1.270 1.140 1.071 0.991
91 30201030 1.290 1.139 1.040 0.993 0.933 1.344 1.153 1.025 0.958 0.872
92 30202010 2.268 1.916 1.635 1.320 1.235 2.701 2.275 1.938 1.390 1.272
93 30202030 1.012 0.987 0.960 1.009 1.075 1.255 1.191 1.139 1.189 1.252
94 30203010 1.041 0.972 0.931 0.913 0.883 1.182 1.058 0.973 0.938 0.884
95 30301010 1.119 1.017 0.890 0.867 0.833 1.204 1.056 0.866 0.828 0.779
96 30302010 1.144 1.139 1.130 1.172 1.100 1.430 1.388 1.351 1.392 1.279
97 35101010 1.575 1.520 1.391 1.418 1.331 1.857 1.765 1.606 1.636 1.518
98 35101020 1.035 0.950 0.888 0.912 0.840 1.141 1.014 0.930 0.951 0.855
99 35102010 1.884 1.700 1.685 1.769 1.703 2.666 2.386 2.367 2.484 2.359
100 35102015 0.184 0.345 0.537 0.637 0.629 0.142 0.294 0.489 0.597 0.593
101 35102020 1.498 1.533 1.644 1.729 1.805 1.443 1.528 1.712 1.822 1.921
102 35102030 1.248 1.124 1.047 1.019 1.120 1.457 1.289 1.184 1.136 1.264
103 35103010 0.483 0.726 0.912 0.872 0.828 0.376 0.672 0.895 0.841 0.785
104 35201010 0.994 0.946 0.858 0.869 0.860 1.001 0.957 0.878 0.892 0.885
105 35202010 0.839 0.932 0.892 0.908 0.935 0.991 1.069 1.014 1.004 1.027
106 35203010 0.244 0.291 0.399 0.548 0.521 0.174 0.206 0.308 0.507 0.476
107 40402040 0.996 0.996 0.997 0.994 0.994 0.988 0.991 0.992 0.984 0.985
108 45101010 1.009 1.094 1.165 1.092 1.019 0.998 1.079 1.177 1.099 1.032
109 45102010 1.486 1.463 1.648 1.608 1.717 1.620 1.580 1.781 1.732 1.849
110 45102020 0.633 0.687 0.682 0.806 0.808 0.693 0.732 0.707 0.867 0.861
111 45103010 1.266 1.205 1.217 1.247 1.209 1.299 1.229 1.244 1.274 1.233
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ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
112 45103020 1.134 1.246 1.215 1.283 1.319 1.354 1.450 1.409 1.494 1.519
113 45103030 0.808 0.597 0.726 0.700 0.668 0.672 0.457 0.617 0.579 0.543
114 45201020 0.654 0.735 0.862 0.876 0.953 0.584 0.676 0.823 0.839 0.928
115 45202010 2.243 2.053 1.853 1.807 1.960 2.320 2.150 1.991 1.956 2.169
116 45202020 1.721 1.850 1.872 1.962 2.055 2.108 2.258 2.302 2.433 2.560
117 45202030 0.177 0.221 0.273 0.276 0.274 0.086 0.114 0.145 0.146 0.150
118 45203010 0.952 0.989 0.991 1.056 0.987 1.057 1.087 1.079 1.153 1.064
119 45203015 0.410 0.434 0.471 0.654 0.809 0.262 0.277 0.299 0.553 0.777
120 45203020 0.587 0.572 0.644 0.617 0.637 0.514 0.491 0.571 0.537 0.572
121 45203030 0.503 0.633 0.636 0.833 0.800 0.598 0.720 0.674 0.947 0.889
122 45204010 1.217 1.155 1.105 1.098 1.092 1.369 1.273 1.197 1.187 1.170
123 45301010 0.492 0.474 0.469 0.547 0.554 0.462 0.427 0.403 0.502 0.513
124 45301020 0.874 0.830 0.809 0.810 0.842 0.908 0.859 0.841 0.844 0.876
125 50101010 0.231 0.357 0.597 0.663 0.686 0.179 0.286 0.529 0.593 0.630
126 50101020 1.008 1.070 1.116 1.057 1.034 1.117 1.165 1.220 1.143 1.106
127 50102010 2.321 2.248 2.045 1.944 1.912 2.851 2.757 2.549 2.419 2.354

Table B.3: Industry level failure rates: MF and AWMF

MF AWMF
ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
1 10101010 0.846 0.821 0.910 0.980 0.929 0.739 0.717 0.806 0.913 0.855
2 10101020 0.365 0.621 0.723 0.691 0.651 0.282 0.535 0.629 0.596 0.561
3 10102010 0.831 0.769 0.735 0.705 0.650 0.882 0.788 0.724 0.676 0.601
4 10102020 1.105 1.181 1.027 1.049 1.088 1.142 1.212 1.027 1.047 1.088
5 10102030 0.317 0.354 0.419 0.357 0.440 0.205 0.244 0.294 0.250 0.335
6 10102040 0.229 0.417 0.646 0.660 0.727 0.172 0.338 0.559 0.568 0.647
7 10102050 0.112 0.188 0.307 0.270 0.276 0.060 0.117 0.204 0.171 0.176
8 15101010 0.759 0.799 0.912 1.045 1.098 0.931 0.947 1.070 1.247 1.303
9 15101020 1.314 1.247 1.178 1.142 1.095 1.437 1.362 1.284 1.232 1.159

10 15101030 1.782 1.594 1.413 1.275 1.321 2.142 1.937 1.669 1.462 1.506
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ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
11 15101040 0.725 0.756 0.789 0.795 0.792 0.532 0.562 0.587 0.596 0.593
12 15101050 0.159 0.192 0.316 0.292 0.318 0.128 0.157 0.269 0.241 0.269
13 15102010 1.064 1.007 0.957 0.927 1.005 1.093 1.019 0.953 0.909 1.012
14 15103010 1.191 1.336 1.259 1.228 1.185 1.067 1.269 1.208 1.177 1.125
15 15103020 1.395 1.308 1.383 1.329 1.538 1.507 1.412 1.552 1.481 1.782
16 15104010 0.940 0.925 0.909 0.892 0.867 0.845 0.827 0.785 0.759 0.722
17 15104020 1.138 1.172 1.026 1.022 0.981 0.966 1.030 0.855 0.875 0.840
18 15104030 0.650 0.669 0.757 0.619 0.627 0.597 0.610 0.702 0.538 0.554
19 15104040 0.509 0.549 0.586 0.383 0.394 0.284 0.310 0.318 0.165 0.174
20 15104045 0.625 0.643 0.655 0.637 0.598 0.361 0.381 0.369 0.355 0.325
21 15104050 1.192 1.193 1.078 1.083 0.998 1.153 1.171 1.019 1.027 0.936
22 15105010 1.358 1.306 1.251 1.224 1.192 1.605 1.546 1.491 1.450 1.395
23 15105020 1.106 1.032 0.972 0.936 1.008 1.099 1.010 0.935 0.887 0.988
24 20101010 0.871 0.877 0.830 0.927 0.907 0.841 0.846 0.795 0.914 0.894
25 20102010 2.047 1.890 1.736 1.666 1.573 1.943 1.797 1.664 1.591 1.486
26 20103010 0.924 0.930 0.926 0.954 0.915 1.092 1.077 1.055 1.078 1.017
27 20104010 0.633 0.741 0.846 0.720 0.724 0.541 0.672 0.806 0.662 0.674
28 20104020 1.214 1.152 1.091 1.040 0.984 1.094 1.049 0.999 0.928 0.852
29 20105010 0.690 0.697 0.714 0.717 0.705 0.481 0.483 0.489 0.490 0.478
30 20106010 0.726 0.776 0.832 0.790 0.812 0.751 0.791 0.847 0.790 0.819
31 20106015 0.545 0.582 0.632 0.641 0.634 0.329 0.355 0.385 0.393 0.389
32 20106020 0.916 0.858 0.837 0.799 0.795 0.952 0.885 0.863 0.818 0.806
33 20107010 0.661 0.604 0.579 0.729 0.658 0.702 0.617 0.564 0.738 0.648
34 20201010 1.798 1.687 1.684 1.608 1.626 1.789 1.689 1.751 1.665 1.693
35 20201050 1.209 1.300 1.297 1.248 1.233 1.219 1.326 1.345 1.288 1.272
36 20201060 1.540 1.446 1.348 1.300 1.233 1.632 1.539 1.443 1.388 1.302
37 20201070 0.019 0.035 0.069 0.078 0.142 0.006 0.011 0.022 0.025 0.078
38 20201080 0.667 1.363 1.270 1.234 1.194 0.443 1.560 1.456 1.397 1.327
39 20202010 1.450 1.440 1.348 1.293 1.297 1.485 1.490 1.405 1.343 1.367
40 20202020 2.077 2.002 1.898 1.845 1.805 2.295 2.215 2.117 2.056 1.998
41 20301010 1.121 1.028 1.119 1.077 1.019 1.286 1.156 1.285 1.220 1.133
42 20302010 1.548 1.560 1.565 1.504 1.417 1.290 1.357 1.420 1.362 1.267
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ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
43 20303010 0.947 1.016 1.084 0.979 0.850 1.164 1.204 1.284 1.105 0.907
44 20304010 0.441 0.485 0.538 0.552 0.551 0.258 0.284 0.310 0.321 0.320
45 20304020 1.057 0.989 0.936 0.979 1.067 0.859 0.801 0.755 0.821 0.946
46 20305010 0.798 0.812 0.832 0.831 0.815 0.629 0.640 0.653 0.651 0.626
47 20305020 1.348 1.282 1.218 1.199 1.183 1.672 1.587 1.510 1.473 1.438
48 20305030 0.870 0.870 0.864 0.856 0.844 0.713 0.710 0.658 0.645 0.628
49 25101010 0.836 0.799 0.765 0.737 0.692 0.835 0.789 0.743 0.707 0.654
50 25101020 1.834 1.672 1.524 1.469 1.414 2.064 1.904 1.771 1.696 1.604
51 25102010 0.592 0.607 0.632 0.635 0.625 0.467 0.467 0.472 0.469 0.454
52 25102020 0.893 0.894 0.904 0.899 0.887 0.766 0.765 0.772 0.760 0.736
53 25201010 1.383 1.300 1.225 1.177 1.095 1.557 1.459 1.377 1.306 1.175
54 25201020 1.203 1.130 1.071 1.159 1.100 1.295 1.204 1.131 1.267 1.179
55 25201030 1.687 1.577 1.515 1.468 1.415 1.799 1.627 1.588 1.534 1.469
56 25201040 0.795 0.790 0.790 0.787 0.772 0.714 0.696 0.680 0.670 0.649
57 25201050 1.786 1.610 1.490 1.429 1.485 1.855 1.662 1.559 1.486 1.566
58 25202010 1.202 1.332 1.243 1.286 1.387 1.087 1.256 1.177 1.246 1.374
59 25202020 2.356 2.166 1.957 1.904 1.856 2.829 2.675 2.510 2.471 2.410
60 25203010 1.442 1.323 1.226 1.224 1.242 1.459 1.340 1.245 1.249 1.267
61 25203020 0.313 0.349 0.395 0.671 0.658 0.166 0.182 0.200 0.585 0.565
62 25203030 2.779 2.556 2.306 2.213 2.131 2.883 2.745 2.595 2.501 2.405
63 25301010 0.956 0.891 0.843 0.808 0.828 0.953 0.881 0.825 0.782 0.806
64 25301020 1.658 1.549 1.655 1.788 1.791 1.564 1.472 1.644 1.851 1.863
65 25301030 0.075 0.170 0.243 0.262 0.279 0.026 0.091 0.128 0.136 0.148
66 25301040 1.402 1.410 1.304 1.300 1.259 1.738 1.727 1.599 1.588 1.520
67 25302010 0.516 0.531 0.704 0.786 0.947 0.685 0.642 0.823 0.901 1.086
68 25302020 0.742 0.712 0.707 0.695 0.978 0.749 0.683 0.642 0.616 1.016
69 25401010 0.167 0.218 0.289 0.299 0.311 0.126 0.163 0.216 0.221 0.231
70 25401020 1.694 1.605 1.581 1.565 1.535 1.741 1.653 1.648 1.639 1.600
71 25401025 0.924 1.106 1.065 1.203 1.292 0.766 1.015 0.997 1.194 1.325
72 25401030 1.411 1.530 1.528 1.472 1.389 1.469 1.628 1.649 1.584 1.478
73 25401040 0.927 0.865 0.917 0.883 0.920 0.878 0.808 0.873 0.831 0.874
74 25501010 2.559 2.405 2.259 2.208 2.127 2.610 2.470 2.374 2.332 2.241
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75 25502010 1.490 1.374 1.268 1.224 1.171 1.450 1.342 1.244 1.193 1.120
76 25502020 0.753 0.741 0.750 0.703 0.760 0.542 0.547 0.565 0.517 0.612
77 25503010 1.917 1.738 1.602 1.541 1.636 1.949 1.740 1.646 1.581 1.742
78 25503020 0.976 1.013 1.048 1.045 1.032 1.025 1.052 1.086 1.078 1.056
79 25504010 0.895 0.822 0.771 0.927 0.861 0.792 0.723 0.672 0.844 0.776
80 25504020 1.024 0.988 0.964 0.937 0.903 0.957 0.916 0.885 0.846 0.797
81 25504030 1.737 1.586 1.451 1.400 1.350 1.929 1.761 1.625 1.552 1.467
82 25504040 1.836 1.686 1.630 1.683 1.826 1.764 1.627 1.600 1.674 1.862
83 25504050 0.672 0.654 0.823 0.787 0.730 0.766 0.705 0.885 0.822 0.732
84 25504060 0.751 0.732 0.752 0.932 0.896 0.673 0.619 0.625 0.890 0.838
85 30101010 1.577 1.469 1.357 1.298 1.240 1.977 1.834 1.690 1.582 1.472
86 30101020 0.734 0.741 0.752 0.750 0.884 0.522 0.527 0.529 0.526 0.756
87 30101030 0.869 0.894 0.913 0.908 0.947 1.008 1.013 1.018 1.001 1.038
88 30101040 0.137 0.195 0.280 0.270 0.284 0.058 0.084 0.121 0.114 0.123
89 30201010 0.594 0.620 0.657 0.664 0.656 0.376 0.392 0.410 0.417 0.410
90 30201020 1.169 1.107 1.051 1.014 0.966 1.136 1.071 1.010 0.960 0.893
91 30201030 1.130 1.047 0.987 0.947 0.888 1.068 0.976 0.906 0.854 0.779
92 30202010 1.814 1.646 1.493 1.235 1.165 1.991 1.814 1.656 1.219 1.132
93 30202030 0.839 0.863 0.876 0.929 0.993 0.952 0.963 0.970 1.025 1.091
94 30203010 0.933 0.902 0.884 0.871 0.843 0.954 0.904 0.865 0.842 0.796
95 30301010 0.987 0.934 0.833 0.815 0.783 0.960 0.893 0.755 0.728 0.686
96 30302010 0.976 1.016 1.046 1.092 1.029 1.101 1.135 1.161 1.209 1.124
97 35101010 1.297 1.318 1.259 1.295 1.221 1.401 1.418 1.359 1.402 1.316
98 35101020 0.880 0.838 0.814 0.843 0.778 0.880 0.825 0.795 0.823 0.746
99 35102010 1.558 1.485 1.528 1.603 1.551 1.992 1.904 1.986 2.097 2.018
100 35102015 0.113 0.260 0.455 0.555 0.555 0.089 0.215 0.393 0.491 0.496
101 35102020 1.177 1.292 1.464 1.549 1.623 1.047 1.196 1.429 1.538 1.644
102 35102030 1.083 1.024 0.986 0.967 1.063 1.137 1.072 1.036 1.006 1.127
103 35103010 0.381 0.642 0.846 0.813 0.772 0.270 0.549 0.771 0.732 0.686
104 35201010 0.813 0.817 0.774 0.791 0.787 0.751 0.766 0.741 0.762 0.765
105 35202010 0.678 0.798 0.802 0.822 0.853 0.739 0.852 0.854 0.853 0.885
106 35203010 0.138 0.181 0.296 0.466 0.444 0.099 0.123 0.218 0.414 0.390
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MF AWMF

ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
107 40402040 0.995 0.996 0.997 0.993 0.993 0.987 0.989 0.990 0.980 0.981
108 45101010 0.809 0.932 1.046 0.989 0.930 0.740 0.856 0.988 0.934 0.889
109 45102010 1.236 1.277 1.489 1.466 1.564 1.230 1.276 1.509 1.487 1.601
110 45102020 0.509 0.586 0.607 0.733 0.740 0.519 0.584 0.594 0.743 0.746
111 45103010 1.044 1.045 1.101 1.138 1.108 0.981 0.988 1.053 1.091 1.068
112 45103020 0.946 1.090 1.109 1.179 1.216 1.028 1.170 1.197 1.284 1.319
113 45103030 0.725 0.502 0.655 0.631 0.600 0.540 0.344 0.511 0.480 0.446
114 45201020 0.510 0.616 0.767 0.787 0.865 0.422 0.528 0.685 0.708 0.795
115 45202010 1.814 1.750 1.658 1.629 1.741 1.747 1.728 1.693 1.682 1.863
116 45202020 1.412 1.588 1.673 1.757 1.837 1.585 1.801 1.932 2.060 2.184
117 45202030 0.076 0.108 0.150 0.154 0.156 0.027 0.040 0.055 0.056 0.059
118 45203010 0.793 0.865 0.902 0.969 0.909 0.804 0.879 0.917 0.992 0.925
119 45203015 0.292 0.316 0.353 0.584 0.755 0.145 0.155 0.166 0.458 0.681
120 45203020 0.478 0.483 0.570 0.546 0.572 0.385 0.386 0.473 0.448 0.485
121 45203030 0.402 0.549 0.559 0.777 0.746 0.463 0.593 0.571 0.830 0.785
122 45204010 1.127 1.106 1.082 1.078 1.074 1.167 1.149 1.127 1.127 1.120
123 45301010 0.398 0.391 0.389 0.478 0.489 0.348 0.334 0.322 0.420 0.433
124 45301020 0.716 0.717 0.730 0.738 0.772 0.682 0.689 0.710 0.722 0.758
125 50101010 0.132 0.239 0.478 0.549 0.587 0.109 0.193 0.405 0.463 0.508
126 50101020 0.847 0.943 1.023 0.978 0.960 0.853 0.945 1.041 0.988 0.967
127 50102010 1.854 1.892 1.808 1.739 1.719 2.106 2.170 2.123 2.044 2.014

B.3 Industry level dependence

Table B.4: Classical AF and bias-corrected AWAF

AF AWAF
ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
1 10101010 0.287 0.246 0.184 0.159 0.151 0.374 0.360 0.320 0.294 0.289
2 10101020 0.157 0.097 0.079 0.076 0.073 0.293 0.229 0.209 0.207 0.204
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AF AWAF

ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
3 10102010 0.360 0.293 0.231 0.212 0.194 0.391 0.374 0.355 0.347 0.336
4 10102020 0.037 0.030 0.028 0.026 0.023 0.151 0.138 0.132 0.126 0.118
5 10102030 0.215 0.179 0.149 0.115 0.099 0.333 0.314 0.298 0.261 0.237
6 10102040 0.179 0.115 0.082 0.071 0.061 0.302 0.246 0.211 0.199 0.183
7 10102050 0.349 0.240 0.177 0.157 0.148 0.456 0.381 0.333 0.321 0.313
8 15101010 0.134 0.121 0.102 0.089 0.083 0.256 0.246 0.231 0.215 0.207
9 15101020 0.337 0.294 0.245 0.229 0.215 0.383 0.372 0.359 0.354 0.347

10 15101030 0.248 0.224 0.193 0.178 0.155 0.299 0.293 0.285 0.281 0.264
11 15101040 1.117 0.761 0.508 0.453 0.413 0.792 0.696 0.611 0.587 0.557
12 15101050 0.178 0.152 0.103 0.097 0.088 0.310 0.295 0.247 0.242 0.230
13 15102010 0.309 0.266 0.219 0.205 0.177 0.376 0.363 0.348 0.342 0.313
14 15103010 0.323 0.248 0.213 0.202 0.192 0.404 0.359 0.347 0.342 0.336
15 15103020 0.275 0.246 0.191 0.181 0.147 0.348 0.339 0.308 0.305 0.270
16 15104010 0.781 0.580 0.412 0.370 0.338 0.603 0.558 0.508 0.491 0.470
17 15104020 0.217 0.173 0.149 0.129 0.113 0.331 0.301 0.290 0.269 0.252
18 15104030 0.179 0.157 0.125 0.114 0.102 0.296 0.284 0.261 0.254 0.239
19 15104040 0.875 0.608 0.412 0.298 0.274 0.701 0.618 0.539 0.469 0.448
20 15104045 0.998 0.673 0.442 0.385 0.338 0.731 0.641 0.554 0.526 0.492
21 15104050 0.121 0.105 0.095 0.087 0.083 0.245 0.230 0.224 0.214 0.211
22 15105010 0.454 0.388 0.313 0.292 0.275 0.429 0.417 0.403 0.397 0.389
23 15105020 0.314 0.269 0.221 0.206 0.177 0.385 0.371 0.355 0.348 0.318
24 20101010 0.093 0.082 0.075 0.063 0.059 0.225 0.213 0.206 0.189 0.183
25 20102010 0.076 0.072 0.068 0.066 0.065 0.211 0.205 0.200 0.199 0.197
26 20103010 0.105 0.097 0.088 0.081 0.078 0.227 0.220 0.214 0.206 0.203
27 20104010 0.101 0.082 0.068 0.065 0.060 0.233 0.210 0.193 0.190 0.183
28 20104020 0.603 0.480 0.361 0.324 0.294 0.526 0.498 0.465 0.450 0.432
29 20105010 0.637 0.479 0.349 0.318 0.293 0.602 0.548 0.496 0.480 0.460
30 20106010 0.274 0.204 0.156 0.147 0.128 0.346 0.311 0.282 0.278 0.259
31 20106015 0.907 0.629 0.431 0.386 0.351 0.718 0.632 0.558 0.536 0.509
32 20106020 0.068 0.063 0.056 0.054 0.049 0.193 0.186 0.177 0.175 0.167
33 20107010 0.331 0.267 0.209 0.161 0.149 0.367 0.350 0.332 0.287 0.280
34 20201010 0.143 0.135 0.116 0.112 0.102 0.272 0.266 0.249 0.247 0.235
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AF AWAF

ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
35 20201050 0.112 0.092 0.081 0.078 0.073 0.237 0.217 0.205 0.204 0.196
36 20201060 0.139 0.130 0.119 0.115 0.111 0.255 0.249 0.243 0.241 0.239
37 20201070 0.318 0.251 0.195 0.178 0.147 0.471 0.430 0.394 0.381 0.323
38 20201080 1.045 0.555 0.412 0.375 0.346 0.761 0.503 0.476 0.465 0.451
39 20202010 0.125 0.108 0.100 0.097 0.089 0.241 0.227 0.221 0.219 0.209
40 20202020 0.048 0.045 0.043 0.042 0.040 0.167 0.160 0.155 0.153 0.149
41 20301010 0.316 0.269 0.201 0.189 0.178 0.351 0.340 0.305 0.302 0.297
42 20302010 0.175 0.147 0.124 0.120 0.116 0.314 0.288 0.268 0.265 0.262
43 20303010 0.517 0.334 0.234 0.211 0.189 0.424 0.366 0.324 0.317 0.307
44 20304010 0.798 0.563 0.390 0.351 0.321 0.689 0.607 0.536 0.516 0.490
45 20304020 0.162 0.147 0.130 0.115 0.098 0.301 0.292 0.282 0.264 0.238
46 20305010 1.217 0.810 0.531 0.470 0.423 0.826 0.719 0.627 0.600 0.565
47 20305020 1.128 0.806 0.548 0.493 0.455 0.710 0.663 0.608 0.591 0.570
48 20305030 1.324 0.866 0.550 0.483 0.436 0.854 0.740 0.629 0.599 0.565
49 25101010 0.155 0.140 0.123 0.117 0.111 0.273 0.265 0.257 0.254 0.249
50 25101020 0.560 0.472 0.373 0.344 0.320 0.483 0.470 0.451 0.443 0.432
51 25102010 0.587 0.444 0.326 0.297 0.274 0.548 0.505 0.462 0.448 0.431
52 25102020 1.361 0.889 0.574 0.506 0.457 0.873 0.756 0.657 0.627 0.590
53 25201010 0.275 0.245 0.210 0.198 0.185 0.336 0.328 0.319 0.315 0.308
54 25201020 0.262 0.232 0.197 0.170 0.161 0.341 0.331 0.320 0.295 0.291
55 25201030 0.101 0.095 0.089 0.087 0.085 0.226 0.220 0.215 0.213 0.211
56 25201040 0.472 0.379 0.292 0.269 0.252 0.491 0.462 0.431 0.421 0.408
57 25201050 0.209 0.192 0.171 0.164 0.145 0.316 0.309 0.301 0.298 0.279
58 25202010 0.166 0.127 0.116 0.105 0.090 0.290 0.256 0.249 0.237 0.218
59 25202020 0.352 0.329 0.291 0.280 0.271 0.401 0.397 0.392 0.391 0.389
60 25203010 0.092 0.086 0.080 0.074 0.065 0.214 0.208 0.202 0.195 0.184
61 25203020 0.669 0.474 0.331 0.247 0.231 0.643 0.566 0.499 0.391 0.380
62 25203030 0.178 0.172 0.163 0.159 0.156 0.301 0.297 0.293 0.291 0.289
63 25301010 0.159 0.143 0.126 0.120 0.107 0.271 0.263 0.255 0.252 0.238
64 25301020 0.127 0.120 0.097 0.085 0.079 0.255 0.249 0.227 0.210 0.203
65 25301030 0.418 0.284 0.224 0.208 0.197 0.526 0.425 0.396 0.386 0.374
66 25301040 0.077 0.066 0.062 0.058 0.054 0.186 0.174 0.169 0.164 0.160
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AF AWAF

ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
67 25302010 0.569 0.422 0.277 0.225 0.173 0.461 0.432 0.367 0.331 0.285
68 25302020 0.665 0.485 0.347 0.313 0.240 0.538 0.498 0.457 0.443 0.360
69 25401010 0.187 0.162 0.137 0.129 0.124 0.316 0.303 0.290 0.285 0.279
70 25401020 0.065 0.061 0.056 0.052 0.050 0.186 0.180 0.172 0.167 0.163
71 25401025 0.512 0.350 0.281 0.237 0.203 0.470 0.397 0.380 0.345 0.316
72 25401030 0.124 0.101 0.089 0.087 0.084 0.246 0.224 0.212 0.211 0.208
73 25401040 0.206 0.182 0.143 0.136 0.121 0.315 0.305 0.278 0.274 0.258
74 25501010 0.067 0.064 0.061 0.061 0.060 0.199 0.193 0.188 0.187 0.185
75 25502010 0.478 0.400 0.316 0.292 0.271 0.456 0.439 0.418 0.409 0.398
76 25502020 0.468 0.371 0.285 0.255 0.210 0.454 0.428 0.402 0.389 0.344
77 25503010 0.254 0.232 0.206 0.196 0.173 0.349 0.340 0.332 0.328 0.304
78 25503020 0.217 0.197 0.174 0.166 0.160 0.337 0.328 0.319 0.316 0.311
79 25504010 0.157 0.141 0.123 0.096 0.093 0.277 0.269 0.259 0.228 0.225
80 25504020 0.540 0.431 0.330 0.300 0.277 0.501 0.474 0.444 0.432 0.417
81 25504030 0.535 0.449 0.355 0.328 0.306 0.494 0.477 0.455 0.446 0.434
82 25504040 0.075 0.071 0.064 0.057 0.049 0.202 0.196 0.187 0.178 0.163
83 25504050 0.628 0.462 0.299 0.270 0.244 0.491 0.460 0.388 0.379 0.365
84 25504060 0.670 0.494 0.361 0.299 0.276 0.552 0.508 0.469 0.412 0.400
85 30101010 0.365 0.321 0.267 0.248 0.233 0.382 0.374 0.363 0.357 0.350
86 30101020 0.660 0.497 0.361 0.327 0.273 0.606 0.553 0.500 0.484 0.420
87 30101030 0.124 0.114 0.103 0.100 0.091 0.251 0.244 0.237 0.235 0.224
88 30101040 0.506 0.386 0.292 0.255 0.238 0.570 0.516 0.469 0.445 0.427
89 30201010 0.961 0.656 0.443 0.395 0.359 0.736 0.644 0.565 0.542 0.514
90 30201020 0.418 0.349 0.278 0.257 0.238 0.431 0.414 0.394 0.386 0.375
91 30201030 0.410 0.339 0.268 0.246 0.227 0.434 0.414 0.392 0.383 0.371
92 30202010 0.305 0.274 0.234 0.204 0.191 0.365 0.356 0.346 0.332 0.326
93 30202030 0.100 0.087 0.075 0.067 0.057 0.219 0.207 0.196 0.185 0.172
94 30203010 0.512 0.408 0.312 0.286 0.265 0.474 0.450 0.424 0.414 0.401
95 30301010 0.385 0.320 0.246 0.228 0.212 0.426 0.407 0.381 0.373 0.363
96 30302010 0.181 0.148 0.121 0.109 0.105 0.276 0.257 0.240 0.230 0.227
97 35101010 0.036 0.031 0.029 0.026 0.025 0.146 0.135 0.128 0.123 0.120
98 35101020 0.177 0.142 0.125 0.111 0.106 0.282 0.262 0.254 0.241 0.237
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ID. GICS code 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
99 35102010 0.155 0.145 0.123 0.112 0.109 0.253 0.247 0.233 0.224 0.222
100 35102015 0.194 0.112 0.076 0.062 0.060 0.322 0.246 0.205 0.185 0.183
101 35102020 0.083 0.074 0.063 0.057 0.052 0.215 0.201 0.187 0.178 0.169
102 35102030 0.312 0.268 0.223 0.209 0.182 0.358 0.347 0.335 0.331 0.306
103 35103010 0.483 0.274 0.179 0.168 0.158 0.503 0.370 0.305 0.300 0.294
104 35201010 0.047 0.040 0.036 0.032 0.029 0.161 0.149 0.141 0.134 0.127
105 35202010 0.062 0.049 0.045 0.038 0.034 0.180 0.162 0.155 0.145 0.137
106 35203010 0.364 0.285 0.197 0.142 0.133 0.453 0.420 0.356 0.283 0.276
107 40402040 1.547 1.003 0.637 0.561 0.514 0.956 0.828 0.715 0.684 0.649
108 45101010 0.056 0.046 0.039 0.037 0.035 0.169 0.155 0.143 0.140 0.136
109 45102010 0.091 0.076 0.058 0.054 0.046 0.211 0.195 0.173 0.168 0.156
110 45102020 0.147 0.122 0.108 0.087 0.080 0.272 0.253 0.245 0.218 0.209
111 45103010 0.040 0.035 0.030 0.028 0.026 0.153 0.143 0.133 0.127 0.123
112 45103020 0.094 0.075 0.067 0.060 0.054 0.207 0.188 0.179 0.170 0.163
113 45103030 0.658 0.408 0.267 0.242 0.222 0.563 0.488 0.402 0.390 0.376
114 45201020 0.051 0.042 0.034 0.032 0.028 0.172 0.157 0.141 0.137 0.128
115 45202010 0.182 0.172 0.158 0.154 0.140 0.304 0.298 0.292 0.291 0.275
116 45202020 0.087 0.074 0.066 0.062 0.059 0.209 0.193 0.183 0.178 0.173
117 45202030 0.416 0.313 0.229 0.206 0.189 0.526 0.473 0.424 0.407 0.388
118 45203010 0.070 0.058 0.048 0.043 0.042 0.194 0.177 0.164 0.155 0.153
119 45203015 0.648 0.453 0.314 0.232 0.179 0.631 0.553 0.485 0.383 0.319
120 45203020 0.248 0.210 0.157 0.147 0.128 0.344 0.329 0.294 0.289 0.267
121 45203030 0.492 0.321 0.246 0.189 0.178 0.443 0.378 0.358 0.306 0.300
122 45204010 0.914 0.679 0.481 0.438 0.408 0.693 0.640 0.584 0.569 0.549
123 45301010 0.235 0.196 0.158 0.126 0.111 0.334 0.319 0.303 0.265 0.248
124 45301020 0.068 0.060 0.053 0.048 0.042 0.185 0.175 0.166 0.159 0.149
125 50101010 0.230 0.186 0.142 0.128 0.122 0.324 0.299 0.268 0.256 0.250
126 50101020 0.140 0.109 0.088 0.085 0.077 0.253 0.230 0.210 0.208 0.200
127 50102010 0.084 0.076 0.072 0.071 0.066 0.196 0.186 0.182 0.180 0.175
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B.4 Root mean square deviations (RMSD)

Table B.5: RMSD

ID. GICS code AF WWAF MF AWMF
1 10101010 0.014 0.033 0.118 0.207
2 10101020 0.278 0.340 0.410 0.495
3 10102010 0.290 0.307 0.269 0.283
4 10102020 0.192 0.262 0.105 0.123
5 10102030 0.483 0.584 0.624 0.736
6 10102040 0.184 0.227 0.500 0.571
7 10102050 0.629 0.745 0.773 0.856
8 15101010 0.188 0.498 0.154 0.182
9 15101020 0.149 0.290 0.210 0.310
10 15101030 0.420 0.726 0.513 0.787
11 15101040 0.177 0.318 0.230 0.427
12 15101050 0.612 0.662 0.748 0.789
13 15102010 0.059 0.133 0.048 0.063
14 15103010 0.253 0.253 0.246 0.183
15 15103020 0.687 1.063 0.399 0.561
16 15104010 0.103 0.198 0.097 0.217
17 15104020 0.049 0.043 0.100 0.113
18 15104030 0.307 0.352 0.339 0.404
19 15104040 0.494 0.688 0.522 0.753
20 15104045 0.332 0.540 0.369 0.642
21 15104050 0.072 0.069 0.132 0.108
22 15105010 0.247 0.555 0.273 0.503
23 15105020 0.063 0.105 0.059 0.074
24 20101010 0.020 0.024 0.122 0.148
25 20102010 0.726 0.705 0.800 0.714
26 20103010 0.012 0.165 0.071 0.069
27 20104010 0.201 0.210 0.276 0.340
28 20104020 0.018 0.065 0.126 0.088
29 20105010 0.244 0.419 0.296 0.516
30 20106010 0.130 0.069 0.216 0.203
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Table B.5 – Continued from previous page
ID. GICS code AF WWAF MF AWMF
31 20106015 0.303 0.483 0.395 0.630
32 20106020 0.138 0.075 0.165 0.145
33 20107010 0.282 0.256 0.358 0.352
34 20201010 0.799 0.954 0.684 0.719
35 20201050 0.332 0.455 0.260 0.293
36 20201060 0.323 0.481 0.389 0.475
37 20201070 0.763 0.859 0.932 0.972
38 20201080 0.236 0.450 0.286 0.468
39 20202010 0.403 0.566 0.372 0.422
40 20202020 1.001 1.323 0.931 1.141
41 20301010 0.075 0.273 0.085 0.225
42 20302010 0.539 0.436 0.522 0.344
43 20303010 0.099 0.021 0.081 0.184
44 20304010 0.370 0.545 0.489 0.702
45 20304020 0.142 0.075 0.050 0.176
46 20305010 0.158 0.291 0.183 0.360
47 20305020 0.206 0.545 0.253 0.543
48 20305030 0.134 0.289 0.140 0.331
49 25101010 0.248 0.249 0.239 0.262
50 25101020 0.516 0.815 0.602 0.824
51 25102010 0.311 0.444 0.382 0.534
52 25102020 0.098 0.206 0.105 0.241
53 25201010 0.155 0.320 0.256 0.397
54 25201020 0.165 0.328 0.140 0.223
55 25201030 0.542 0.688 0.541 0.614
56 25201040 0.181 0.263 0.213 0.319
57 25201050 0.620 0.792 0.574 0.638
58 25202010 0.506 0.572 0.297 0.247
59 25202020 1.201 2.101 1.064 1.586
60 25203010 0.344 0.452 0.303 0.322
61 25203020 0.284 0.343 0.545 0.688
62 25203030 1.581 1.943 1.417 1.635
63 25301010 0.111 0.081 0.145 0.163
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64 25301020 1.003 1.163 0.694 0.696
65 25301030 0.607 0.752 0.798 0.895
66 25301040 0.365 0.750 0.340 0.640
67 25302010 0.003 0.227 0.344 0.235
68 25302020 0.020 0.125 0.256 0.296
69 25401010 0.605 0.694 0.745 0.810
70 25401020 0.685 0.848 0.598 0.658
71 25401025 0.378 0.495 0.172 0.199
72 25401030 0.509 0.695 0.470 0.567
73 25401040 0.018 0.008 0.101 0.150
74 25501010 1.424 1.630 1.321 1.411
75 25502010 0.223 0.229 0.326 0.293
76 25502020 0.188 0.294 0.259 0.445
77 25503010 0.822 1.012 0.699 0.742
78 25503020 0.097 0.189 0.035 0.063
79 25504010 0.074 0.111 0.155 0.246
80 25504020 0.060 0.117 0.055 0.132
81 25504030 0.433 0.630 0.524 0.686
82 25504040 1.030 1.158 0.737 0.712
83 25504050 0.219 0.175 0.275 0.227
84 25504060 0.067 0.073 0.205 0.294
85 30101010 0.308 0.660 0.407 0.733
86 30101020 0.078 0.159 0.235 0.438
87 30101030 0.020 0.185 0.097 0.020
88 30101040 0.590 0.751 0.769 0.900
89 30201010 0.286 0.465 0.363 0.599
90 30201020 0.009 0.009 0.094 0.086
91 30201030 0.067 0.128 0.083 0.130
92 30202010 0.235 0.272 0.530 0.654
93 30202030 0.075 0.252 0.114 0.052
94 30203010 0.117 0.116 0.117 0.139
95 30301010 0.167 0.221 0.151 0.222
96 30302010 0.100 0.279 0.050 0.151

Continued on next page

80



Table B.5 – Continued from previous page
ID. GICS code AF WWAF MF AWMF
97 35101010 0.331 0.518 0.280 0.381
98 35101020 0.160 0.145 0.173 0.191
99 35102010 0.703 1.359 0.546 1.001

100 35102015 0.371 0.407 0.637 0.682
101 35102020 0.805 0.921 0.452 0.431
102 35102030 0.120 0.264 0.050 0.091
103 35103010 0.172 0.215 0.353 0.438
104 35201010 0.140 0.115 0.204 0.243
105 35202010 0.065 0.027 0.218 0.171
106 35203010 0.479 0.524 0.708 0.763
107 40402040 0.006 0.015 0.005 0.015
108 45101010 0.019 0.032 0.098 0.145
109 45102010 0.717 0.849 0.426 0.444
110 45102020 0.192 0.139 0.376 0.374
111 45103010 0.209 0.233 0.095 0.057
112 45103020 0.319 0.519 0.143 0.224
113 45103030 0.332 0.457 0.384 0.540
114 45201020 0.047 0.072 0.318 0.396
115 45202010 0.960 1.169 0.721 0.745
116 45202020 1.055 1.560 0.670 0.936
117 45202030 0.726 0.850 0.872 0.953
118 45203010 0.013 0.064 0.126 0.115
119 45203015 0.191 0.223 0.569 0.712
120 45203020 0.363 0.428 0.472 0.566
121 45203030 0.200 0.111 0.417 0.378
122 45204010 0.092 0.170 0.096 0.139
123 45301010 0.446 0.487 0.573 0.630
124 45301020 0.158 0.124 0.266 0.289
125 50101010 0.314 0.370 0.629 0.683
126 50101020 0.034 0.106 0.077 0.074
127 50102010 0.912 1.354 0.805 1.093

81



Chapter 4

Modelling country and group levels
corporate default dependence:
Evidence from the Euro area

4.1 Introduction

Over the last decades, there has been a steady increase in economic integration activities
across the globe, and their importance has been widely recognized among policy-makers
and researchers (see Flam, 1992; Summers, 1999; Crawford et al., 2005; Fiorentino
et al., 2007; El-AGraa, 2011; among others), given the potential economic benefits that
can be derived from trade, capital inflows, multinational cooperation and policy spillovers
(Summers, 1999). However, it has been shown that economic integration may also have
a negative impact on member states (see Tinbergen, 1954; Summers, 1999; Rose, 1999;
Minford et al. 2015; and others). In general, the positive or negative impact may depend
on the economic credentials of the members (see Aitken 1973; Baldwin, 1994; Rose,
1999; Cappelen et al., 2003; Baldwin and Krugman, 2004; Grimwade, 2007; Farole et al.
2011, among others).

The Eurozone offers some advantages to its members, such as (i) free movement of
trade and capital; (ii) reduction transaction costs; (iii) elimination of exchange rate un-
certainty; (iv) enhancement of price transparency; and (v) economic integration (see De
Grauwe, 2010; Bak and Maciejewski, 2015). However, it no longer allows the member
states to respond to asymmetric shocks independently, because of the loss in monetary
sovereignty. The global financial crisis and the banking, sovereign debt and growth crises
have seriously impacted on the economic integration process in the Euro area. Not only
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the PIIGS countries (Portugal, Ireland, Italy, Greece and Spain), but also Belgium and
France were hit by the crises (Metiu, 2012; Arghyrou and Kontonikas, 2012; Ludwig,
2014) although to a lesser extent.1 As a result, banks were more conservative with their
lending activities, and a large reduction in loan supply was observed, with an impact on
investment activities, job creation, and sale growth (Acharya et al., 2015). Since then
business entities within the Euro bloc have struggled to survive, and the hazard rates of
these businesses have been severely affected, due to their exposure to risk factors at
country and group level.

In this chapter, we estimate the failure dependence of 1,422 public listed firms in 11
Eurozone countries over the period 1994Q1-2014Q4. The analysis is conducted at coun-
try level and group level. In particular, we consider the PIIGS and non PIIGS countries.
Our choice of PIIGS countries follows the literature on the Euro crisis and also rely on
a strong linkage between economic conditions and firm performance (see Bhattacharjee
et al., 2009; Bonfim, 2009; Chen, 2010; Tang and Yan, 2010; Jacobson et al., 2013,
among others). The non PIIGS countries are considered for comparison given the differ-
ence in firm and market characteristics. In addition, we consider three extra groups that
are formed by including: only Belgium in the PIIGS (PIIGSB); only France in the PIIGS
(PIIGSF); both Belgium and France (PIIGSBF) (see also Giordano et al., 2013). This al-
lows us to establish to what extent the crises in the Euro area really affected Belgian and
French firms performance along that of those firms in the PIIGS. The choice of consid-
ering these extra groups is mainly due to the impact that the Euro crisis had on Belgium
and France (see previous paragraph).

We use a nested frailty model that accounts for two hierarchical clustering (see e.g.
Sastry, 1997; Duchateau and Janssen, 2008; Wienke, 2011) within a multivariate frame-
work of mixed effects Cox model (see Ripatti and Palmgren, 2000; Therneau and Gramb-
sch, 2000; Martinussen et al., 2002; Therneau et al., 2003, among others). A cluster
level-specific random effect, which is assumed to follow a Gaussian distribution, is con-
sidered for country and group level clustering, and firms in each country are exposed to
country (internal) and group level (external) risk (unobserved) factors. Further, we also
consider non-frailty and non-nested frailty models. The former, which do not account
for unobserved factors, are used as benchmarks, while the latter, which account only for
country level (internal) unobserved factors (firms are not exposed to any potential external
risk factors), are used for comparison with the nested frailty models. As for the specifi-
cation of the models, we select covariates from Shumway (2001), Duffie et al. (2007),

1It has been argued that a contagion effect has propagated from Belgium to France, as a result of the
distressed bank Dexia.
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and Bharath and Shumway (2008): distance to default probability, one-year trailing stock
return, one year trailing market return, firm age, and 3 month T-bill rate.

The empirical analysis offers three main results. First, the distance to default probabil-
ity covariate is positive and statistically significant, while the one trailing year stock return,
one year trailing market return, and ln(age) variables are negatively statistically significant
in all the models. In addition, the 3 month T-bill rate is insignificant in the case of non-
frailty and non-nested frailty models. These results imply that: (i) an increase in distance
to default probability pushes the firms towards a potential failure; (ii) older firms with high
stock returns are less likely to experience failure, as compared to younger firms with lower
stock returns; and (iii) the default rates decrease in the one year trailing market return,
which seems to suggest that previous year’s market performance tends to enhance firms’
performance in the following years. Second, the failure dependence induced by firms’
exposure to both country and group level unobserved factors is significantly larger than
that observed with the non-nested frailty models. This is due to the fact that failure de-
pendence due to firms’ exposure to internal and external risk factors are appropriately
captured with the nested frailty models. Third, models that account for the distance to de-
fault probability covariate tend to outperform their counterparts, since this covariate has a
higher explanatory power in default rate models.

This study offers two contributions to the empirical literature. First, while previous pa-
pers focus on default clustering at either economy-wide or industry level within a country,
we take a further step by looking at default clustering at country level and group level. In
doing so, we are able to appropriately capture firms exposure to both internal and exter-
nal risk factors, which may play an important role in corporate financial decision-making.
Second, this study examines default clustering of public listed firms on 11 stock markets
in the Euro area. To the best of our knowledge, this is the first study to examine default
clustering at country and group levels within the Euro area.

The rest of the chapter is organised as follows. Section 4.2 reviews previous studies
on the dynamics of corporate default risks in the Euro countries. Section 4.3 presents
methodology and data. Empirical findings are presented in Section 4.4. Section 4.5
concludes the chapter.

4.2 Literature review

In this section, we review previous studies on corporate default that consider Euro coun-
tries.
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Altman et al. (1994) compared classical statistical techniques such as linear discrim-
inant analysis or logistic regression-based analysis with neural networks for failure clas-
sification and prediction. They employed 10 financial ratios of over 1000 Italian industrial
firms categorised into healthy, vulnerable and unsound (distressed) groups, over the pe-
riod 1982-1992. The results showed that both techniques produced over a 90% accuracy
rate in terms of the classification of firms into groups and out-sample prediction. The
authors suggested that models that combine both methods are likely to produce better
predictions than those that employ the individual methods.

Using a different data set of Italian firms, Ciampi (2015) examined the nexus between
corporate governance and default variation among 934 small enterprises (SEs) over the
period 2008-2011. The authors found that CEO duality, owner concentration, and at most
a 50% reduction in the number of outsiders on the board of directors have a negative
impact on the failure rate of SEs. Besides, the author compared the predictions of the
default accuracy using a model with financial ratio and corporate governance covariates
and a model that uses only financial ratio covariates. The empirical results showed that
the model which includes corporate governance factors tend to have comparatively higher
accuracy rate.

Wallrafen et al. (1996) explored the performance of bankruptcy estimation and predic-
tion models based on only neural networks (NN) and both neural networks and sequential
genetic algorithms (SGA) on the basis of beta-error-“misclassification of solvent compa-
nies”. The authors employed 73 financial ratios extracted from the financial statements of
6667 German corporations and found that, when NN and SGA are combined, the beta-
errors of the estimation are reduced, as compared to those of the analyses that use only
NN technique. Therefore, the paper concluded that models based on both techniques
tend to produce lower misclassification errors as compared to those that use only neural
networks-based methods.

In a related study, Rudorfer (1995) employed artificial neutral networks (ANN) to detect
company failure using five balance sheet ratios of 59 healthy and 23 insolvent Austrian
companies. Their approach revealed that a company with a high positive value of liabilities
to total assets or quick assets to assets ratio tends to have a higher hazard of default,
while the financially healthy companies are characterised by low liabilities to total assets,
and quick assets to total assets ratios. The author further showed that accuracy of the
estimates by ANN technique are pretty similar to those by the discriminant approach; and
as such, concluded that the ANN approach is a preferred alternative for designing early
warning systems for companies.

Zopounidis and Doumpos (1999) examined the potential of a new non-parametric ap-
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proach called “multicriteria decision aid discrimination” (MCDA, henceforth) for the pre-
dictions of the failure rates among 80 Greek industrial firms. The performance of this
approach is compared to that of discriminant and logistic analysis. The authors showed
that the MCDA technique performs much better than the discriminant analysis, while it
produces similar results to those by the logistic regression. The authors argued that their
approach could be very helpful in making classification decisions (e.g., estimation of cor-
porate default risk, credit administration problems, and portfolio selection).

Kaski et al. (2001) employed a self-organising map (SOM, hereafter) approach to anal-
yse firm behaviour of 1342 active and 158 failed Finnish small medium enterprises(SMEs,
hereafter). The authors used Fisher information matrix to calculate an SOM metric, which
can be used to visually examine the bankruptcy of the SMEs. With the metric, they are
able to visualize the current and future direction of the financial status of an SME; identify
a wide range of the firms’ behaviour. Another study on Finnish firms is by Laitinen (2007).
The author employed a customised Linear discriminant analysis (LDA, hereafter), with the
discriminant score function assumed to be uniformly rather than normally distributed, to
examine correlation and failure classification for a set of 2092 failed and 63,072 active
Finnish firms. The author found that the discriminant score follows neither a normal distri-
bution nor a uniform distribution for a set of firm covariates. However, it is shown that the
uniform distribution seems to approximate more accurately the correlations and produce
higher failure classification accuracy rate than those of the normal distribution.

De Andrés et al. (2005) conducted a comparative analysis to examine the prediction
performance of parametric (LDA or logit) and non-parametric (neural networks and fuzzy
rule-based systems) techniques in discriminating between healthy and unhealthy com-
mercial and industrial Spanish companies. The authors also employed a Monte Carlo
simulation method to investigate sample size effects on the predictive accuracy of both
the parametric and non-parametric methods. The empirical results showed that the neu-
ral networks and fuzzy rule-based system methods tends to produce more accurate esti-
mates as compared to those by the LDA and logit methods.

Dewaelheyns and Van Hulle (2006) used subsidiary level and group level data set of
large non-financial Belgian limited liability firms over the period 1996-2001. The authors
argued that business groups in Europe are central to the respective subsidiaries perfor-
mances, and hence models which treat firms as standalone entities are likely to produce
less accurate results. Drawing on default literature, their model exhibited a higher level of
prediction and classification accuracy. The authors also examined the survival probability
of the subsidiaries when they receive any support from the business group. Their results
show that the survival probability tend to increase when the subsidiaries are into the core
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business activities of the business group.
du Jardin and Séverin (2012) compared the failure prediction performance of con-

ventional approaches such as discriminant analysis, logistic regression, Cox models and
neural networks with those of Kohonen map using a set of French companies with at least
6 years of operation. In particular, the authors examined the estimation and forecasting
stability of the two techniques by extracting the financial performance of the firms over a
given period. du Jardin and Séverin (2012) showed that the Kohonen map-based default
models tend to be relatively more stable over time than those of the conventional tools,
and these models may help financial institutions to minimize the margin of error in their
risk management decisions. A different model to study the default rate of French firms
over the period 2003-2012 is used by du Jardin (2015). The author developed a default
prediction model that explicitly control for how a firm moves towards failure few distance
away from the actual default. For the empirical analysis, the authors also considered dis-
criminant analysis, logistic regression, neural networks, survival analysis, and SOM (the
benchmarks). The results showed that the model developed by du Jardin (2015) tends
to outperforms the benchmarks for the predictions of the default rates up to a 3 year
forecasting horizon.

Using 10599 non-failed and 1582 failed contractors in the Portuguese construction in-
dustry over the period 2008-2010, Horta and Camanho (2013) proposed a novel model for
predicting company default. The novelty of their model is the use of financial and strategic
variables that accurately capture the important specifics of the construction firms, the use
of support vector machine (SVM) approach, and the improvement of the estimates from
SVM by using random oversampling and random undersampling methods. The authors
showed that their approach is very robust for predicting failure within the construction
industry. More specifically, based on the receiver operating characteristic (ROC) curve
measures, the estimates of the SVM are more accurate as compared to those of the lo-
gistic regression. The authors concluded that the SVM approach produces more accurate
default forecasts within the construction industry.

These studies improved on the classical methods of firm default prediction (discrimi-
nant, logit, and probit analyses) in many respects. For instance, Altman et al. (1994) and
Rudorfer (1995) considered a possible non-linear relationship between default and firms
characteristics by using neural networks. However, Wallrafen et al. (1996) augmented
neural networks with sequential genetic algorithm showed an improved classification of
default and non-default firms. De Andrés et al. (2005) further argued that combining neu-
ral network-based approach with fuzzy rule-based technique tends to produce more ac-
curate estimates as compared to the classical methods, while Horta and Camanho (2013)
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argued that support vector machine approach produces more accurate results as com-
pared to those of logistic regression. Using a different approach, Kaski et al. (2001), du
Jardin and Séverin (2012) and du Jardin (2015) used graphical methods (self-organising
maps and Kohonen maps) to determine the future direction of financial status of firms over
a time horizon and their empirical analysis revealed that these methods tend to produce
stable estimates of the parameters over time.

While all the above works explicitly improve on the traditional techniques, none of
them explicitly adjusts for the effects of unobserved factors on active firms, especially
distressed market periods. Furthermore, they do not explicitly assume that firms are
exposed to external risk factors, as countries are treated as standalone economic entities
in the empirical analyses. In addition, most of the techniques and results are purely data-
driven with no relevant theoretical basis. As such, this study fills the gap, and investigates
the effects of country-based and group level risk factors on firms within the Eurozone.

4.3 Methodology and data

In this section, we proceed as follows. First, we briefly present the non-nested frailty
model and the non-frailty model. Second, we present the two level nested frailty model:
one for a country level and the other for a group level. Third, we describe the data used
in the empirical analysis.

4.3.1 Non-nested frailty model

Let Tij and δij respectively be the event time and event indicator (censoring indicator) of
firm i listed in country j among q countries. The indicator δij takes the value 1 if Tij is a
failure time and 0 otherwise. Suppose that the data set of firm i follows a shared frailty
model in the context of an extended Cox Proportional Hazard (PH) model. The hazard
rate of the firm is defined as follows (see Hougaard, 2000; Ripatti and Palmgren, 2000
Therneau et al., 2003; Duchateau and Janssen, 2008; amongst others):

λij(t) = λ0(t)uiexp(Xij(t)β), (4.1)

where λij(t) is the hazard rate of firm i listed in country j with a vector of covariates
Xij(t), which have a vector of parameter estimates β. The frailty term ui, which is shared
amongst firms listed in country j, acts multiplicatively on the hazard rate. The baseline
hazard function λ0(t) is assumed to be unknown, which makes the hazard rate in equation
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(4.1) semi-parametric.
The non-frailty model is derived from equation (1) by setting the frailty term ui = 1:2

λij(t) = λ0(t)exp(Xij(t)β). (4.2)

Following the literature on the penalised partial likelihood (PPL, hereafter) (see e.g.
Ripatti and Palmgren, 2000; Therneau and Grambsch, 2000; Duchateau et al., 2002;
Therneau et al., 2003), we present an alternative formulation of equation (4.1):

λij(t) = λ0(t)exp(Xiβ + Ziw), (4.3)

where wi = log(ui) and Z is a matrix of q indicator variables, with Zij = 1 if firm i is listed
in country j, and 0 otherwise. In model (4.3) each firm is listed in only one country. In
other terms, cross listing of firms is not allowed.

In order to incorporate time varying covariates in the estimation of equation (4.1), we
employ the counting process input style of Andersen and Gill (1982). As a result, the pair
(Tij, δij) for firm i listed in country j is substituted by (Ni(t), Yi(t)), where Yi(t) assumes
value 1 if firm i is still active and 0 otherwise, and Ni(t) is the number of events in the
period (tl, tt+1] for firm i, with tl and tl+1 being the beginning and the ending time of the
interval. We follow McGilchrist and Aisbett (1991) and McGilchrist(1993) in such a way
that the random effect w in equation (4.3) is normally distributed on the log-scale, and the
parameters β and w are estimated by maximizing the PPL:

PPL = PL(β, w; data)− g(w; θ), (4.4)

where PL is defined as the log of the classical Cox partial likelihood conditioned on the
data set:

PL(β, w) =
n∑
i=1

∫ ∞
0

[
Yi(t)(exp(Xiβ+Ziw)−log

(∑
k

Yk(t)(exp(Xkβ+Zkw)
)]
dNi(t), (4.5)

and the penalty term is defined by

g(w; θ) =
1

2θ

q∑
j=1

w2
i , (4.6)

where θ is the variance of the log-frailty or random effect.3 For a given value of the
2For the maximum likelihood derivation of equation (4.2), see Appendix A
3For details on penalised partial likelihood of a shared frailty model, see Ripatti and Palmgren (2000)
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variance estimate θ, we use the expansion and approximation of Ripatti and Palmgren
(2000) to derive a modified likelihood defined as:

lm(β, θ) =− 1

2
log(|D|) + log

(∫
exp
[
PL(β, w)− 1

2
w

′
D−1/2w

]
dw
)

≈ PL(β, w̃)− 1

2
log
(
w̃

′
D−1/2w̃ + log|D|) + log(|H22(β, w̃)

)
, (4.7)

where D = θI is a diagonal matrix and I is an identity matrix of order q×q; q is the number
of countries in the sample, and g(w; θ) = w̃

′
D−1(θ)w̃. The term w̃ = w̃(β, θ) solves the

following equation

n∑
i=1

∫ ∞
0

(Zij − Zj(t))dNi(t)−D−1(θ)w̃ = 0 (4.8)

We maximize the likelihood in equation (4.7) over the parameters using the “coxph”
procedure in the “survival” package in R (see Therneau, 2015).

4.3.2 Nested frailty model

Our sample comprises of s clusters (groups), and in each group there are ni subclusters
(countries). Further, each country contains nij members (firms) (see Duchateau and
Janssen, 2008). In this setting, firms are located within countries, and countries are
nested in groups. The nested frailty model is given by:

λijk(t) =λ0(t)uizijexp(Xijk(t)β)

=λ0(t)exp(Xijk(t)β + wi + vij), (4.9)

where λijk(t) is the hazard rate at time t of firm k = 1, ..., nij in country j = 1, ..., si located
in group i = 1, ..., s. The term λ0(t) is the baseline hazard function at time t and β is a
p−dimensional parameters of the set of covariates, Xijk(t). In addition, wi = logui is the
random effects term for group i, whilst vij = logzij is the random effects term of country j
nested in group i. We define Tijk as the event time of firm k listed in country j located in
group i with a corresponding censoring indicator, δijk. The latter takes value 1 if Tijk is a
failure time and 0 otherwise. The nested model is developed within a multivariate shared
frailty framework (see Section 4.3.1) and equation (4.9) can be re-written as follows (see

and Therneau et al. (2003).
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Ripatti and Palmgren, 2000; Martinussen et al., 2002; Therneau et al., 2003; among
others):

λ(t) = λ0(t)exp(Xβ + Zb), (4.10)

b ∼ G
(
θ,
∑

(θ)
)
,

where X and Z are the time-varying covariate matrices for the fixed and random effects,
respectively, and β and b are the vectors of fixed and random effects coefficients with
dimensions q. The non-negative term λ0 is the baseline hazard function and it is assumed
to be unknown. The coefficients of equation (4.10) are still possible to be estimated
without knowing the shape of λ0. The random effects distribution G is a multivariate
Gaussian distribution with zero mean and variance matrix

∑
, which is a function of a

vector of the parameters θ. Following Therneau and Grambsch (2000) and Therneau et
al. (2003), we define the log penalised partial likelihood function as follows:

PPL(β, b, θ) = l(β, b)− g(b, θ), (4.11)

where the penalty function g(b, θ) = b
′∑−1(θ)b/2. The term l(β, b) is called the partial

likelihood (PL) in a Cox setting (see Therneau, 2015) for any given value of β and b, and
is defined as:

l(β, b) =

nij∑
k=1

∫ ∞
0

[
Yk(t)ηk(t)− log

(∑
j

Yj(t)ηj(t)
)]
dNk(t), (4.12)

where ηk(t) = Xk(t)β+Zk(t)b is the linear score for firm k at time t, Xk(t) and Zk(t) are the
kth rows of the covariate matrices X and Z, respectively. In other words, the above row
matrices are the data set for firm k in country j. The term Yk(t) describes the surviving
firms (or firms still at risk of default) which takes value 1 when firm k is active at time t and
0 otherwise. Equation (4.11) can then be re-written as :4

PPL(β, b, θ) =

nij∑
k=1

∫ ∞
0

[
Yk(t)ηk(t)− log

(∑
j

Yj(t)ηj(t)
)]
dNk(t)−

b
′∑−1(θ)b

2
. (4.13)

The estimates of β and b, β̂ and b̂, are obtained by solving the following the score equa-
tions (see Therneau et al., 2003):

4For detailed treatment, refer to Therneau and Grambsch (2000) and Therneau et al. (2003).
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∂PPL

∂bj
=

n∑
i=1

∫ ∞
0

(Zij − Zj(t))dNi(t)−
∂g(b; θ)

∂bj
, (4.14)

Zj(t) = Zj(β, b, t) =

∑
ZkjYk[Xkβ + Zkb]∑
Yk[Xkβ + Zkb]

. (4.15)

We also obtain the integrated partial likelihood (IPL) by integrating out the random
effects as obtained below (Therneau, 2015):

IPL =
1

(2π)q/2|
∑

(θ)1/2|

∫
PPL(β, θ)exp

(
− b′

(∑)−1
(θ)b/2

)
db, (4.16)

where q is the number of random effects. We estimate the parameters using the “coxme”
package in R by Therneau (2015).

4.3.3 Data

Our data are drawn from DataStream and Worldscope for public listed firms in 11 mem-
ber states of the Eurozone for the period 1994Q1-2014Q4. The sample is comprised of
1,422 firms: 905 active firms, 398 failed firms and 119 acquired or merged firms, and this
translates into 71,680 quarterly firm observations. The countries include Austria, Belgium,
Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, and Spain. The
choice of these countries is based on data availability.5 Table 4.1 presents firms’ status at
country level across the 11 selected members of the Eurozone.

The definition of firm failure may differ across all the member states of the Euro area.
Therefore, for the sake of uniformity, we follow Altman and Narayanan (1997) who defines
the following as failure: (i) filing by a company; (ii) bond default; (iii) bank loan default;
(iv) delisting of a company; (v) government intervention via special financing; and (vi)
liquidation.6 We select failed, and acquired or merged firms from the DataStream “DEAD”
category for each country in conjunction with other sources (e.g. Bloomberg bankruptcy
segment). For instance, the DataStream items “DEADGR”, “DEADBD” and “DEADFR”
are the categories for dead firms in Greece, Germany and France, respectively.

5These countries may have some accounting information disclosure differences, but Worldscope adjusts
the variables for these differences.

6For delisting of a company, we cross check the reasons for delisting at other sources. These reasons
include mergers, acquisitions and some of the reasons already stated.
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Table 4.1: Active, failed and merged or acquired firms within the Eurozone
ID Country Active firms Failed firms Merged/Acquired firms Total
1 Austria 33 41 4 78
2 Belgium 57 29 10 96
3 Finland 39 22 14 75
4 France 200 51 21 272
5 Germany 199 44 10 253
6 Greece 38 47 18 103
7 Netherlands 78 56 10 144
8 Ireland 31 24 2 57
9 Italy 111 32 13 156
10 Portugal 37 27 4 68
11 Spain 82 25 13 120

Total 905 398 119 1422

4.3.3.1 Dependent variable

In duration models, the dependent variable is the time taken for a subject to experience
either a non-failure or failure event. Time to event is usually specified with the correspond-
ing event indicator which takes value 1 for failure event and 0 otherwise. To incorporate
time varying covariates, we use the counting process input style following Andersen and
Gill (1982). For instance, suppose it takes 6 years for a firm to experience an event. For a
failure event, we construct the intervals (0, 1], (1, 2], (2, 3], (3, 4], (4, 5], and (5, 6] for year 1,
2, 3, 4, 5, and 6, respectively. The event indicator is 0 for the years 1, 2, 3, 4, and 5 when
the firms is still active, but takes 1 for the 6th year, when the firm failed. We can therefore
simply reconstruct the intervals as follows: (0, 1; 0], (1, 2; 0], (2, 3; 0], (3, 4; 0], (4, 5; 0], and
(5, 6; 1], where the first and second values are the beginning and the end of the year, and
the last one is the event indicator. For example, (2, 3; 0] indicates the dependent variable
for the third year, where 2 and 3 are the beginning and end of the third year, and the third
value 0 is the event indicator, since the firm is still traded at the end of the third year. For
non-failure event, e.g. where the firm is delisted as a result of merger and acquisition ac-
tivities, we have (0, 1; 0], (1, 2; 0], (2, 3; 0], (3, 4; 0], (4, 5; 0], and (5, 6; 0]. The event indicator
is 0 for all the intervals since the firm is censored as a result of a non-failure event.7

7For details on counting process for Cox regression, refer to Andersen and Gill (1982).

93



4.3.3.2 Independent variables

We employ some widely used covariates in the empirical literature of corporate failure,
given their explanatory power (see Shumway, 2001; Duffie et al., 2007; Duffie et al.,
2009; Duan et al., 2012; Lando et al., 2013; Qi et al., 2014; Azizpour et al., 2015, among
others). First, we use the 3 month T-bill rate, which is a measure of short-term interest
rates. Second, we consider the one year trailing stock return, which is good predictor
of firm failure (see Shumway, 2001), and is constructed by cumulating monthly stock
returns. Third, we use the one year trailing market return, which is a measure the overall
market performance, and is constructed by cumulating monthly market returns. Fourth,
the distance to default probability is used as a probabilistic measure of volatility adjusted
leverage. In constructing this measure, we follow Bharath and Shumway (2008): firms
with higher probabilities are close to default, whilst firms with lower probabilities are far
from default. Lastly, we consider the age of a firm to test whether older firms are less
likely to fail than the younger ones (see Gong et al., 2004; George, 2005; Aldrich and
Ruef, 2006; Wiklund et al., 2010).8

Table 4.2 presents the descriptive statistics for the covariates used for estimating the
parameters of the non-frailty, non-nested frailty, and nested frailty models.

Table 4.2: Descriptive statistics
Variable Mean Std. Dev Min. 25th P. Median 75th P. Max.
Distance to default prob. 0.122 0.176 0.000 0.002 0.046 0.179 1.000
Stock return (%) 12.195 46.398 -76.015 -15.195 4.340 32.028 200.690
Market return (%) 12.263 29.447 -66.066 -9.064 16.115 29.722 178.882
ln(age) 1.875 0.816 0.000 1.386 2.079 2.565 2.996
3 month T-bill rate (%) 4.418 2.528 1.123 2.598 3.788 5.211 12.144

Notes: The terms 25th P. and 75th P. represent 25th and 75th percentiles, respectively.

The distance to default probability has the minimum and maximum values of 0.000 and
1.000, respectively, with a mean of value 0.122 and a standard deviation of value 0.176.
The stock return falls within the range -76.015% and 200.690%, while the minimum and
maximum values of the market return variable are -66.066% and 178.882%, respectively.
The stock and market returns have approximately a mean value of 12%, but the former
varies more about the mean than the latter. Additionally, the natural of firm age is bounded
by (0.000, 2.996) since the firm age falls within the interval [1, 21]. The 3 month T-bill rate
ranges from 1.123% to 12.144%.

8For the definition of firm age, refer to Chapter 2.
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4.4 Empirical analysis

This section presents the empirical results using using the non-frailty, non-nested frailty,
and nested frailty models. First, we estimate the parameters of the non-frailty and the non-
nested frailty models, respectively. We compare the estimates of the non-frailty model with
those of the non-nested frailty model with the aim of showing the importance of accounting
for frailty factors at the country level, especially during distressed market periods. Second,
we estimate the nested frailty model and compare its performance with that of the non-
nested model to show the importance of frailty factors, not only at country level, but also
at the group (Euro) level. Third, we compute total (country level plus group level) riskiness
of firms in order to measure how firms are affected by country and group level unobserved
factors.

In our analysis (see also Introduction), we consider the PIIGS countries against the
non PIIGS along with three extra groups that are formed by including: only Belgium in
the PIIGS (PIIGSB); only France in the PIIGS (PIIGSF); and both Belgium and France
(PIIGSBF). In other words, we extract the country and group level frailty factors that affect
listed firms for following pair of groups: (i) PIIGS versus non-PIIGS, (ii) PIIGSB versus
non-PIIGSB, (iii) PIIGSF versus non-PIIGSF, and (iv) PIIGSBF versus non-PIIGSBF.

4.4.1 Non-frailty and non-nested frailty models

In the regression analysis, we employ distance to default probability, one year trailing
stock return, one year trailing market return, ln(age), and 3 month T-bill rate as covariates.
The diverse specifications of the non-frailty model, that do not control for potential default
correlations induced by unobserved factors, are reported in Table 4.3. For model 1, the
hazard rate is assumed to be a function of only distance to default probability. The results
in Table 4.3 confirm that this covariate is a good predictor (see Bharath and Shumway,
2008). For models 2 and 4, we test whether other covariates may contribute to predicting
hazard rates.

Model 2 uses the distance to default probability along with stock return, market return,
and log of firm age. Model 4 adds the 3 month T-bill rate to the specification of model 2. All
the covariates are significant with the expected sign in both models, with the exception of
3 month T-bill rate. The significance of these covariates show that the distance to default
probability is a very important predictor, but not sufficient for the prediction of failure rates
(see also Bharath and Shumway, 2008). This implies that, for an appropriate default
model specification, the distance to default probability should be augmented with suitable
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Table 4.3: Non-frailty specifications. Models without random effects
Dependent variable: Time to event

Model 1 Model 2 Model 3 Model 4
Distance to default prob. 1.315∗∗∗ 0.998∗∗∗ 0.997∗∗∗

(0.229) (0.252) (0.253)

Stock return −0.326∗∗ −0.556∗∗∗ −0.336∗∗

(0.145) (0.142) (0.145)

Market return −0.767∗∗ −0.879∗∗∗ −0.861∗∗∗

(0.313) (0.318) (0.317)

ln(age) −0.377∗∗∗ −0.361∗∗∗ −0.372∗∗∗

(0.082) (0.081) (0.082)

3 month T-bill rate 6.616 6.288
(4.379) (4.366)

Log likelihood −2,612.903 −2,595.912 −2,629.264 −2,594.950
LR test 27.915∗∗∗ 61.897∗∗∗ 50.056∗∗∗ 63.821∗∗∗

[0.000] [0.000] [0.000] [0.000]
Wald test 33.060∗∗∗ 66.450∗∗∗ 49.960∗∗∗ 68.770∗∗∗

[0.000] [0.000] [0.000] [0.000]
Score (Logrank) test 33.573∗∗∗ 67.639∗∗∗ 50.397∗∗∗ 70.057∗∗∗

Pseudo-deviance 5225.806 5191.824 5258.528 5189.900
AIC 5227.806 5199.824 5266.528 5199.900
AICC 5227.827 5200.039 5266.743 5200.224
BIC 5228.087 5200.948 5267.652 5201.305
Notes: The efron approximation is used to control for ties in the event times of firms. The standard errors
and p-values are in round and square brackets, respectively. *** and ** denote significance at the 1% and
5% level, respectively. The Wald, LR (log-likelihood ratio), and Score are global test statistics. The tests
compare a model with and without covariates. The pseudo-deviance are used to compare the overall model
fit of nested models, while the Akaike information criterion (AIC), corrected Akaike information criterion
(AICC), and Bayesian information criterion (BIC) measures are used to compare either nested or non-
nested models.
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covariates. Model 3, which we consider to perform a confirmatory test on the distance to
default probability, also shows the insignificance of the 3 month T-bill rate, while the other
covariates are significant.

In order to compare the models in Table 4.3 in terms of goodness of fit, we use both
the pseudo-deviance and information criteria measures. For the former criterion, we have:

Pseudo-deviance =− 2loglikA + 2loglikB, (4.17)

where −2loglikA and 2loglikB are the deviance statistics for generic models A and B,
respectively. The statistic in (4.17) says how model A perform worse than the supposed
best modelB, and it can be used in case of nested models. A nested model, in this regard,
is a model can be obtained from another model (full model) by imposing restriction(s) on
the coefficient(s) of the full model. The statistic follows a chi-square distribution (χ2), with
the degrees of freedom being the difference between the number of parameters in model
A and that in model B.

As for the information criteria, we consider the Akaike information criterion (AIC),
the corrected Akaike information criterion (AICC), and the Bayesian information criterion
(BIC).9 As a rule of thumb, the lower the values of these information criteria, the better the
fit. The information criteria are suitable for both non-nested and nested models.

Since model 2 nests model 1, and model 4 nests model 2, we use the pseudo-
deviance to compare the performance of these models. In case of models 1 and 2 (the lat-
ter nests the former), the pseudo-deviance statistic is equal to 33.982(5225.806−5191.824),
with 3 degrees of freedom. Since the value of the statistic is greater than the critical value,
χ2

0.001(3) = 16.266, the null hypothesis that the coefficients of stock return, market return
and ln(age) are all equal zero can be rejected. This implies an improvement of the fit due
to the inclusion of these covariates, which makes model 2 the best candidate. Similarly,
the values of this statistic for models 1 and 4 is 35.906, which is larger than the critical
value χ2

0.001(4) = 18.467. Therefore, model 4 fits the data better than Model 1. Instead,
a different result is found for models 2 and 4. Here, the values of the pseudo-deviance
statistic, 1.924, is smaller than the critical value, χ2

0.001(1) = 10.828; there is no improvement
in terms of fit if one adds 3 month T-bill rate to model 4. Likewise, for models 3 and 4, the
test statistic is 68.628 with χ2

0.001(1) = 10.828. The significance of this test suggests that
model 4 fits data better than model 3.

When considering non nested models (models 2 and 3), the results related to the
9For details on the information criteria, refer to Section 2.3 in Chapter 2.
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information criteria AIC, AICC, and BIC, show that Model 2 is the best model when
random effects are not taken into account.

Using model 2 (the best model), we further explore the effects of covariates on the
hazard rates (expected time to default) using the transformation 100(eβ − 1), where β is
the coefficient of a given covariate. The coefficient of the distance to default probability
covariate is 0.998 and produces the value 100(e0.998 − 1) = 171.285. This implies that a
unit increase in the distance to default probability variable leads to 171.285% increase in
the instantaneous rate of default, holding other factors constant. Likewise, an increase
in the stock return and the market return decrease the hazard of failure by 27.819% and
53.560%, respectively. Hence, an increase in these covariates causes the expected time
to failure to increase. For a 1-year increase in the age covariate, the rate of default
decreases by 31.408%, leading to an increase in expected time to default. It should be
noted that these results are susceptible to the effects of unobserved risk factors.

In Table 4.4, we report the estimates of the counterparts of the non-frailty models.
Models 5-8 account for the influence of unobserved factors.10 The distance to default
probability covariate is significant in models 5, 6 and 8, and stock return, market return
and ln(age) are all negative and statistically significant in models 6-8. The 3 month T-bill
rate is negative and insignificant in models 7-8.

Evaluating models 5-8 using the information criteria, model 6 turns to be the best
model. When examining the percentage effects of the covariates on the instantaneous
rate of default (using the transformation 100(eβ − 1)) in the presence of unobserved risk
factors, the following emerge. An increase in the distance to default probability variable
causes a decline in the expected time to failure. Similarly, a 1-unit rise in the stock return
and market return covariates leads to 25.770% and 42.822% decline in the instantaneous
rate of failure, respectively, while the rate decreases by 31.887% for 1 additional firm
age. Therefore, the expected time to failure rises with an increase in stock return, market
return, and firm age covariates. These trends are robust to the effects of only country-
based unobserved risk factors.

The above results have some implications for the Eurozone countries. First, the dis-
tance to default probability shows high explanatory power in hazard rate models for the
Euro countries. This reveals that firms that usually exhibits averagely higher distance to
default probability are more prone to experience failure within the Eurozone. Second, a
rise in stock return and market return increases the expected time to default. This out-

10For instance, model 5 is a non-nested frailty model that is derived from model 1 by controlling for the
effects of unobserved factors. Likewise, Model 6 is obtained from Model 2, and so on. Models 5-6 are more
market driven, while models 7 and 8 include a mix of market driven and macroeconomic covariates.
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Table 4.4: Non nested frailty specifications. Models with random effects
Dependent variable: Time to event

Model 5 Model 6 Model 7 Model 8
Distance to default prob. 1.221∗∗∗ 0.929∗∗∗ 0.925∗∗∗

(0.231) (0.255) (0.255)
Stock return -0.298∗∗ -0.490∗∗∗ -0.291∗∗

(0.143) (0.140) (0.144)
Market return -0.559∗∗ -0.482∗ -0.501∗

(0.276) (0.290) (0.290)
ln(age) -0.384∗∗∗ -0.375∗∗∗ -0.386∗∗∗

(0.082) (0.081) (0.082)
3 month T-bill rate -3.814 -3.125

(4.960) (4.968)
LogLik.(Fitted) -2572.592 -2557.045 -2588.069 -2556.648
LogLik.(Integrated) -2586.790 -2571.050 -2602.738 -2570.852
Integrated LR test 80.140∗∗∗ 111.620∗∗∗ 103.110∗∗∗ 112.020∗∗∗

[0.000] [0.000] [0.000] [0.000]
Penalized LR test 108.540∗∗∗ 139.630∗∗∗ 132.450∗∗∗ 140.430∗∗∗

[0.000] [0.000] [0.000] [0.000]
Pseudo-deviance 5173.580 5142.100 5205.476 5141.704
AIC 5175.580 5150.100 5213.476 5151.704
AICC 5175.601 5150.315 5213.691 5152.028
BIC 5175.861 5151.224 5214.600 5153.109
Dependence 0.185 0.179 0.203 0.186

Notes: LogLik.(Fitted) and LogLik.(Integrated) are the fitted and integrated likelihoods due to unobserved
factors, respectively. The terms Integrated LR and Penalized LR denote the unobserved factors-adjusted
integrated and penalized likelihood ratio tests, respectively. For other details, see Table 4.3.
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come seems to suggest that firms listed within the Euro area with a consistent increase in
their returns are less likely to move towards a failure point, and performing markets tend
to enhance the survival rate of such firms, as compared to those of averagely decreasing
stock returns. Third, the significance of age in our models reveals that older firms in Euro
area are less likely to fail than the younger ones. This may be due to the liability of new-
ness (see Stinchcombe, 1965; Baum, 1996; Aldrich and Ruef, 2006; Wiklund et al., 2010,
among others), as older firms may have more business contacts, better understanding of
the dynamics of the business environment and more robust organisational structure. Fur-
ther, older firms generally satisfy various regulatory requirements (see Nelson and Winter,
1982; Baum, 1996; Gong et al., 2004 George, 2005, among others). Finally, the lack of
significance of the 3 month T-bill rate in our models indicate that the monetary authorities
do not play a significant role in influencing the hazard rate of firms in the Eurozone during
the period under investigation.

When comparing models in Tables 4.3 and 4.4, the following emerges. While the
explanatory power of the covariates seem to be similar across non frailty and non nested
frailty specifications, those models that account for potential failure rates correlations (see
Table 4.4) seem to fit the data better than the other ones (see Table 4.3). For this reason,
we use model 6 (the best unobserved factor specifications) as the standard model for the
analysis in Section 4.4.2, where nested frailty models are considered.

4.4.2 Nested frailty models

The results in Section 4.4.1 are obtained under the hypothesis that firms are only ex-
posed to country level (internal) unobserved factors. This implies that the potential group
level (external) risk factors induced by financial and debt crises are completely ignored.
Further, since the crises hit the Euro countries in different ways, the external factors may
play here a relevant role. As such, it is worth investigating how the external factors in-
duced by the crises may have affected the default rates of firms in the four groups of
countries previously mentioned. We do this by assuming that countries in a group share
similar characteristics due to the prevailing macroeconomic and firm-specific factors. In
particular, we assume similar trends in firms’ distance to default probabilities and stock
returns for each group of countries, and run two regressions for each of the four pair of
countries (PIIGS vs. non PIIGS; PIIGSB vs. non PIIGSB; PIIGSF vs. non PIIGSF, and
PIIGSBF vs. non PIIGSBF) (for example DPG and SPG denote the regressions for the
PIIGS countries based on similar trends in firms’ distance to default probability and stock
return, respectively). We use model 6 (see Table 4.4) as our standard model.
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Table 4.5: Nested frailty models: PIIGS and PIIGSBF groups
Dependent variable: Time to event

PIIGS PIIGSBF

DPG SPG DBF SBF
Distance to default prob 1.338∗∗∗ 0.861∗∗∗ 1.238∗∗∗ 0.891∗∗∗

(0.278) (0.259) (0.289) (0.259)
Stock return -0.266∗ -0.311∗∗ -0.242 -0.316∗∗

(0.145) (0.147) (0.148) (0.148)
Market return -0.725∗∗ -0.744∗∗ -0.731∗∗ -0.763∗∗

(0.319) (0.311) (0.338) (0.311)
ln(age) -0.373∗∗∗ -0.356∗∗∗ -0.361∗∗∗ -0.397∗∗∗

(0.084) (0.096) (0.089) (0.096)
LogLik.(Fitted) -1844.363 -2490.691 -1234.067 -2468.146
LogLik.(Integrated) -2561.092 -2592.953 -2586.009 -2592.104
Integrated LR test 131.540∗∗∗ 67.82.060∗∗∗ 81.700∗∗∗ 69.510∗∗∗

[0.000] [0.000] [0.000] [0.000]
Penalized LR test 1564.990∗∗∗ 272.340∗∗∗ 2785.590∗∗∗ 317.430∗∗∗

[0.000] [0.000] [0.000] [0.000]
Psuedo-deviance 5122.184 5185.906 5172.018 5184.208
AIC 5130.184 5193.906 5180.018 5192.208
AICC 5130.399 5194.121 5180.233 5192.423
BIC 5131.308 5195.030 5181.142 5193.332
Dependence 1.919 0.283 4.325 0.348

Notes: The standard errors and p-values are in round and square brackets, respectively. DPG and SPG

indicate the models for PIIGS with similar trends in terms of the distance to default and stock returns
respectively, whereas DBF and SBF are the models for the PIIGSBF.

The empirical results are illustrated in Tables 4.5 and 4.6. In all the models, almost all
the regressors are significant with the expected signs. For example, in the model DPG,
the coefficient of distance to default probability is positive and significant, and those of
the stock return, market return, and ln(age) are negative and significant. While these
results do not differ from those in Table 4.4, measures of dependence have improved
considerably, regardless of the specification of the models.

In Table 4.7, we report results related to the risk scores and the level of riskiness
of firms within countries, and PIIGS and non-PIIGS group of countries. In the event of
failure clustering, the country (group) score shows how firms are likely to fail either faster
or slower. As such, we use value 1 (expected value of frailty) as a threshold value for
gauging riskiness. A risk-score large than 1 implies more riskiness, while a score lower
than 1 is considered less riskiness. Examples of more risky countries are Austria, Finland,
Greece, Ireland, Netherlands and Portugal, while the less risky countries are Belgium,
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Table 4.6: Nested frailty models: PIIGSB and PIIGSF groups
Dependent variable: Time to event

PIIGSB PIIGSF

DB SB DF SF
Distance to default prob 1.331∗∗∗ 0.847∗∗∗ 1.349∗∗∗ 0.876∗∗∗

(0.277) (0.258) (0.277) (0.258)
Stock return -0.272∗ -0.320∗∗ -0.262∗∗∗ -0.317∗∗

(0.145) (0.147) (0.145) (0.149)
Market return -0.712∗∗ -0.732∗∗ -0.757∗∗∗ -0.752∗∗

(0.318) (0.311) (0.321) (0.311)
ln(age) -0.369∗∗∗ -0.356∗∗ -0.378∗∗∗ -0.391∗∗∗

(0.084) (0.096) (0.084) (0.097)
LogLik.(Fitted) -1839.700 -2487.728 -1788.692 -2451.328
LogLik.(Integrated) -2560.389 -2592.065 -2563.549 -2592.324
Integrated LR test 132.940∗∗∗ 69.590 ∗∗∗ 126.620∗∗∗ 69.070∗∗∗

[0.000] [0.000] [0.000] [0.000]
Penalized LR test 1574.320∗∗∗ 278.260∗∗∗ 1676.340∗∗∗ 351.060∗∗∗

[0.000] [0.000] [0.000] [0.000]
Psuedo-Deviance 5120.778 5184.130 5127.098 5184.648
AIC 5128.778 5192.130 5135.098 5192.648
AICC 5128.993 5192.345 5135.313 5192.863
BIC 5129.902 5193.254 5136.222 5193.772
Dependence 1.929 0.288 2.094 0.398

Notes: See Table 4.5 for notes.
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Table 4.7: Scores and riskiness for nested frailty models: PIIGS versus non PIIGS
County level DBF SBF

(1) (2) (3) (4) (5) (6) (7) (8)
Country Country Group Group Total Group Group Total

PIIGS Score Riskiness Score Riskiness Riskiness Score Riskiness Riskiness

Portugal 1.231 0.231 1.092 0.092 0.323 1.134 0.134 0.365
Ireland 1.423 0.423 1.092 0.092 0.515 1.134 0.134 0.557
Italy 0.729 -0.271 1.092 0.092 -0.179 1.134 0.134 -0.137
Greece 1.449 0.449 1.092 0.092 0.541 1.134 0.134 0.583
Spain 0.777 -0.223 1.092 0.092 -0.131 1.134 0.134 -0.089

NON-PIIGS
Austria 1.793 0.793 0.915 -0.085 0.708 0.882 -0.118 0.675
Belgium 0.984 -0.016 0.915 -0.085 -0.101 0.882 -0.118 -0.134
Finland 1.044 0.044 0.915 -0.085 -0.041 0.882 -0.118 -0.074
France 0.583 -0.417 0.915 -0.085 -0.502 0.882 -0.118 -0.535
Germany 0.536 -0.464 0.915 -0.085 -0.549 0.882 -0.118 -0.582
Netherlands 1.209 0.209 0.915 -0.085 0.124 0.882 -0.118 0.091
Notes: Columns 1 and 2 are the country-level scores and riskiness, respectively. Column 2 is obtained by
subtracting value 1, as the expected value of the unobserved factors, from the numbers in column 1. The
terms DPG (columns 3 to 5) and SPG (columns 6 through 8) are the extraction of risk scores where firms
in the PIIGS have similar behaviour of distance to default probability and stock return, respectively. The
values of columns 4 and 7 are obtained by subtracting value 1 from columns 3 and 6. The total riskiness
for DPG and SPG are constructed by adding columns 2 and 4, and columns 2 and 7.
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France, Germany, Italy and Spain. For instance, the risk scores for Portugal and Belgium
are 1.231 and 0.984 respectively, values that are shared by firms in these countries. The
country riskiness for Portugal and Belgium, 0.231 and -0.016 respectively, are obtained
by subtracting the threshold value 1 from their scores. These values imply that firms in
Portugal are about 23% more risky as compared to Belgian firms which are about 2%
less risky.

The results related to group risk scores are reported in columns 3 and 6 of Table 4.7,
and the corresponding values of group riskiness are in columns 4 and 7. Firms in a group
are exposed to the same level of risk. For example, firms in the PIIGS group are at least
9% more risky, while those in the non PIIGS are at least 9% less risky. We perform
the group score extraction to help determine the total riskiness (the sum of country level
riskiness and group-based riskiness), of listed firms in a given country. This tends to offer
information on the effects of unobserved factors on firms listed in a country, which is a
member of the Euro area and also a member of a group created by the Euro crises. For
example, the total riskiness of Belgium is approximately -0.101, whereas Portugal shows
a total riskiness score of at least 0.323. These values imply that Belgian firms are at least
10% less risky, while Portuguese firms are at minimum 30% more risky. When comparing
the risk levels within the PIIGS, Greek firms seem to be the riskiest, followed by Irish
and Portuguese firms, while Spanish and Italian firms are the less risky ones. For the
non-PIIGS countries, German firms are the least risky, while the Austrian are the riskiest.

All these result suggests that firms in the Euro area are exposed to both country level
and group-based unobserved risk factors. In addition, some countries in the non-PIIGS
(PIIGS) group have higher (lower) risk scores and total riskiness. This outcome supports
our argument that to measure risk levels of firms accurately, it is fundamental to consider
both country and group level. This information may play an important role for financial
decision-making process.

In Table 4.8, the results concerning the level of riskiness of firms for the PIISGBF and
non PIIGSBF countries are illustrated. Greece is still the country with the highest risk
level, followed by Ireland and Portugal, while France has the lowest risk level. For the non
PIIGSBF group, Germany is the least risky country, whereas Austria is the riskiest one.

When comparing the results in Table 4.7 and 4.8, the following emerges. First, the
riskiness for the PIIGS countries decreases when Belgium and France, with relatively
lower risk levels, are included in this group . For example, Portugal’s risk level decreases
to about 23% in the PIIGSBF group. However, Belgium and France are now 2% and 23%
less risky, respectively. This implies that Belgium and France are relatively risky in the
PIIGS group than in the non-PIIGS one. Second, the risk levels of non-PIIGSBF group
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Table 4.8: Scores and riskiness for nested frailty models: PIIGSBF versus non-PIIGSBF
County level DBF SBF

(1) (2) (3) (4) (5) (6) (7) (8)
Country Country Group Group Total Group Group Total

PIIGSBF Score Riskiness Score Riskiness Riskiness Score Riskiness Riskiness
Portugal 1.231 0.231 0.999 -0.001 0.230 1.000 0.000 0.231
Ireland 1.423 0.423 0.999 -0.001 0.423 1.000 0.000 0.423
Italy 0.729 -0.271 0.999 -0.001 -0.272 1.000 0.000 -0.271
Greece 1.449 0.449 0.999 -0.001 0.448 1.000 0.000 0.449
Spain 0.777 -0.223 0.999 -0.001 -0.224 1.000 0.000 -0.223
Belgium 0.984 -0.016 0.999 -0.001 -0.017 1.000 0.000 -0.016
France 0.583 -0.417 0.999 -0.001 -0.418 1.000 0.000 -0.417
NON-PIIGSBF
Austria 1.793 0.793 1.001 0.001 0.794 1.000 0.000 0.793
Finland 1.044 0.044 1.001 0.001 0.045 1.000 0.000 0.044
Germany 0.536 -0.464 1.001 0.001 -0.463 1.000 0.000 -0.464
Netherlands 1.209 0.209 1.001 0.001 0.210 1.000 0.000 0.209

Notes: The values of columns 4 and 8 are obtained by subtracting value 1 from columns 3 and 7, corre-
spondingly. The total riskiness for DBF and SBF are constructed by adding columns 2 and 4, and columns
2 and 7.

increased, as a result of the absence of Belgium and France in the group. In particular,
Germany is between 55-58% less risky, and this range decreases to about 46%. The
outcome shows that weak countries in the Euro area tend to benefit, through economic
and financial activities, more as compared to those with stronger economies.

In order to ascertain the impact of individual membership of Belgium and France on
the PIIGS’ group riskiness, we also extract the group score and compute the riskiness for
the PIIGSB and PIIGSF groups. The following results are obtained. The risk score falls
within the range (1.121, 1.153) and (1.000, 1.003) for PIIGSB and PIIGSF, respectively.
Thus, the group riskiness, when Belgium is regarded as a member of the PIIGS, falls
within the range 12.10%-15.30%, while that of France is bounded by -0.3% and 0.3%.
This seems to suggest that Belgium behaved more like the PIIGS countries than France
does, as a result of the crisis.

The above empirical results show that accounting for country level (internal) risk fac-
tors may add some explanatory power to default rate models within the Euro area for
ranking individual countries in terms of riskiness. However, firms are externally exposed
to extra risk induced by the economic and financial activities among the member states
of the Euro area, and neglect the potential impacts of group level (external) risk factors
on firms’ behaviour may likely lead to the underestimation of failure rates and related
dependencies among firms.
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4.5 Conclusion

In this chapter we employ a mixed effects Cox model that accounts for nested unobserved
factors to investigate the hazard rates and dependence structures of public listed firms of
the stock exchanges in 11 Euro countries. We apply non-frailty, non-nested frailty and
nested frailty models, and employ covariates largely used in the empirical literature, such
as distance to default probability, one year trailing stock return, one year trailing market re-
turn, firm age, and 3 month T-bill rate. We compare the estimates of the non-frailty model
with those of the non-nested frailty model in order to show the importance of accounting
for frailty factors at the country level, especially during distressed market periods. Sec-
ond, we estimate the nested frailty model and compare its performance with that of the
non-nested model to show the importance of frailty factors. The analysis is carried out at
country (separate entities within the Euro area) and group level. In particular, four different
groups of countries are considered: PIIGS, PIIGSBF (Belgium and France are included
in the PIIGS group), PIIGSB (Belgium is included in the PIIGS), and PIIGSF (France is
regarded as a PIIGS country). Firms are assumed to be exposed to both country-specific
and group level unobserved factors. The sample is comprised of 1,422 firms: 905 active
firms, 398 failed firms and 119 acquired or merged firms.

The empirical analysis delivers three main results. First, when considering countries
as separate entities, country level unobserved factors play an important role in explaining
failure rates. In addition, a rise in the distance to default probability causes a decrease in
the firms’ expected time to default, stocks of firms tend to be better off when the overall
economic performance improves, and older firms with high stock returns are less likely to
fail. These reveal that, when the effects of unobserved factors for the firms in the Euro
area are properly account for, changes in firms’ characteristics over a given time horizon
are indicative of movements either towards or away from a failure point.

Second, the estimates of the covariates in nested models do not differ from those in
the non nested models. However, nested frailty models are able to accurately capture
correlations induced by both internal and external factors, and therefore are likely to esti-
mate failure rates with smaller margin of error. This implies that the effect of the crises on
firms’ behaviour in the Euro area can be better explained by using nested models.

Third, models that do not feature the distance to default probability covariate tend to
perform poorly as compared to their counterparts. Thus, it is important to account for
changes in firms’ leverage in order to accurately gauge the failure rate of firms in the
Eurozone.
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Chapter 5

Concluding remarks

Probability of default is an extremely important input of risk management. The estimation
and prediction of the probability of default rates has gained much attention among in-
vestors, regulators, and academics over the last three decades. The probability of default
could be used (e.g. Shumway 2001; Duffie et al, 2007, Duan et al., 2012): (i) as an input
under the Basel II accord to determine the minimum capital that banks are required to
hold; (ii) by financial institutions (especially banks) to discriminate good credit applicants
from the bad ones; (iii) by rating agencies to rate firms; and (iv) by academics to test
various hypothesis on corporate default such as the impact of failure rates on loan supply.

In order to estimate probability of default, several studies have used risk models that
are broadly grouped into two categories, namely the structural and reduced-form models.
Structural models consider the changes in a firm’s value (assets) over time, where a firm
is assumed to be hit by a failure event when it value falls considerably below its liabilities,
so that it cannot meet it future obligations (Merton, 1974; Figlewski et al., 2012, page
88); while the reduced form models “treat default as a random event that can strike any
firm at any time” (see Figlewski et al., 2012). More specifically, the role that information
plays in modelling default risk differentiates between the two types of models (Duffie and
Singleton, 1999; Duffie and Lando, 2001; Jarrow and Protter; 2004; Giesecke, 2006,
among others). However, reduced form approaches have received more attention than
the structural ones, since these models are primarily based on the information available
to the market.

Some of the reduced form models used in previous studies assumed that default rate
of a firm is unlike to affect the performance of other firms and, even if there exists correla-
tion among firm failures, this can be captured by covariates in the models (see Shumway,
2001; Kavvathas, 2001; Chava and Jarrow, 2004; Charitou et al., 2004; Hillegeist et al.,
2004; Duffie et al., 2007; and others). However, the assumption of independence is likely
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to be unrealistic during unfavourable market conditions, and Das et al. (2007) argued that
models which assume the hypothesis of independence are likely to produce less accurate
estimates of hazard rates. Consequently, several studies (Duffie et al., 2009; Chava et al.,
2011; Koopman et al., 2011; Koopman et al., 2012; Qi et al., 2014; Atsu and Costantini,
2015; Azizpour et al., 2015, among others) have accounted for the impact of unobserved
factors on default rates by using frailty factors. These factors are defined as “a random
component designed to account for variability due to unobserved individual-level factors
that is otherwise unaccounted for by the other predictors in the model” (Kleinbaum and
Klein, 2012, page 326).

This thesis explores the impact of unobserved industry level factors taking into account
two different market regimes, namely normal and distressed market periods. Also, it
examines the impact of informative firm censoring on the failure rates of active firms,
whilst paying attention to sector levels unobserved factors. Further, the thesis examines
the dynamics of failure rates driven by the exposure of firms to country-based and bloc
level unobserved factors. This study uses non-frailty, multivariate non-nested, and nested
frailty models in a reduced form, and draws on the assumption of dependence of failure
rates, with a particular emphasis on firms’ exposure to unobserved risk factors.

Chapter 2 investigates the sector level failure rates and the related dependencies that
are induced by sector level unobserved factors. The impact of these factors on failure
rates are much higher during distressed market periods. In order to capture this impact
more accurately, an additive lognormal frailty model is proposed. The empirical analy-
sis is carried out using public listed firms across various sectors on the London Stock
Exchange over the period 1985-2012. We use a set of covariates, namely, distance to
default probability (Bharath and Shumway, 2008), stock return, market return, firm age
(Shumway, 2001) and 3 month T-bill rate (Das et al, 2007 and Duffie et al., 2007). The
study also considers two market regimes, namely normal and distressed market periods.

The empirical results show that, as the market conditions become severe, the adjust-
ment factor increases, thus reflecting the riskiness of active firms, and the effect of dis-
tance to default probability averagely reduced. As for the covariates, distance to default
probability and market return are positive and statistically significant, while stock return, 3
month T-bill rate and firm age have a negative and significant impact on hazard rates.

In our analysis, we also compare the performance of the additive lognormal frailty
and multiplicative gamma frailty models of Atsu and Costantini (2015) and Chava et al.
(2011) in terms of: (i) in-and out-samples estimation of sector level failure rates; (ii) overall
goodness-of-fit. The results reveal that, during distressed market periods, the model of
Atsu and Costantini (2015) tends to produce more accurate estimates as compared to
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those by the model of Chava et al. (2011). The overall results related to the goodness-
of-fit measures show that the additive lognormal frailty model fits the data better than
the multiplicative gamma frailty model. These findings may offer relevant information on
failure rates among firms at sector level on the London Stock Exchange, and they may be
used for portfolio decisions and for designing new regulatory requirements or enhancing
existing ones.

Chapter 3 examines the impact of non-default firm exit (informative firm censoring) on
the performance of active firms. In this chapter, we use the inverse probability of cen-
soring weighted scheme (see Robins, 1993; Robins and Finkelstein, 2000; Scharfstein
and Robins, 2002) in order to correct the potential bias in the estimates of the default
rate using the multiplicative gamma frailty model of Chava et al. (2011) and the additive
lognormal frailty model of Atsu and Costantini (2015). While these two models offer some
flexibility to account for unobserved factors and distressed market periods, they do not
account for firm censoring, which is likely to convey relevant information to the market
participants. For the analysis, we consider two types of weighting types, the classical and
the industry level adjusted schemes. First, classical weights are constructed using only
macroeconomic and firm-specific covariates, and it is assumed that the dynamics for firm
censoring is the same across all the industries. Second, for the industry level weighted
type, we combine macroeconomic and firm-specific covariates with industry level unob-
served factors that vary with economic cycles, since firms may leave the market through
mergers and acquisitions, which tend to cluster by industry (see e.g. Andrade et al., 2001;
Harford, 2005). Thus, firm censoring may vary across industries.

In the empirical analysis, quarterly data from three exchanges in the US, namely
NYSE, NASDAQ and NYSE MKT LLC, over the period 1980 - 2013 are used. We employ
distance to default probability, market return, stock return, 3 month T-bill rate and industry
distress indicator. The empirical results show that the distance to default probability has a
higher explanatory power of hazard rates, market return has a positive impact on hazard
rate, and a rise in stock return, and 3 month T-bill rate cause a decrease in hazard rates.
Further, the bias-corrected models produce more accurate estimates of the scale factor
as compared to those of the benchmarks models, and much smaller estimated standard
errors, which suggest a relatively larger efficiency.

Chapter 4 examines the impact of default dependence, induced by both country-
based (internal) and group level(external) unobserved factors, on default rates in the Euro
area over the period 1994Q1-2014Q4. The analysis is conducted at country and group
levels, while previous studies have treated countries as standalone (independent) entities,
and the potential effects of unobserved factors at a group level are discarded. In partic-
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ular, we consider the PIIGS and non PIIGS countries along with three extra groups that
are formed by including: only Belgium in the PIIGS (PIIGSB); only France in the PIIGS
(PIIGSF); both Belgium and France (PIIGSBF) (see also Giordano et al., 2013). This al-
lows us to establish to what extent the crises in the Euro area really affected Belgian and
French firms performance along with that of those firms in the PIIGS.

A mixed effects Cox model, which allows the nesting of unobserved factors hierarchi-
cally, is used to analyse failure dependence. Quarterly data of listed firms in 11 countries
of the Euro area, namely Austria, Belgium, Finland, France, Germany, Greece, Ireland,
Italy, Netherlands, Portugal, and Spain, are used. As for the regression analysis, we use
the following covariates: distance to default probability, one year trailing stock, one year
trailing market return, firm age, and 3 month T-bill rate. The results evidence that: (i) when
considering countries as independent entities, unobserved factors at country level impact
on hazard rate of firms, a rise in the distance to default probability decreases the firms’
expected time to default, whilst market return, stock return, and firm age are negative and
statistically significant, and 3 month T-bill rate plays no significant role in the hazard rate
specification; (ii) when countries are treated as dependent entities, by adjusting for eco-
nomic and financial similarities, the effects of the covariates are similar to those in case
the hypothesis of independence is assumed, but measures of failure dependence have
increased considerably as expected, since unobserved factors at internal and external
levels are appropriately captured in the analysis.
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