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Abstract 

 

WNT lipoglycoproteins (WNTs) modulate a plethora of cellular functions through 

the activation of the family of frizzled receptors (FZDs). Deregulation in 

components of the WNT signalling pathways is often observed in human 

cancers and associated with uncontrolled proliferation and metastasis. Frizzled 

receptor 6 (Fzd6), one of the ten human FZDs, is frequently overexpressed in 

cancer, but its role in tumorigenesis is still unclear. 

In this study we investigated the role Fzd6 in breast cancer. We found that 

expression of Fzd6 predicts distant relapse in patients with localised breast 

cancers, particularly in those bearing the triple negative subtype.  Using a loss 

of function approach, we demonstrated that Fzd6 is important to regulate 

motility and invasion of breast cancer cells in vitro and in vivo. Indeed, Fzd6 

regulates the tropism of breast cancer cells the bone, liver and heart of mice. 

Mechanistically, we found that Fzd6 signalling activates the small GTPase Rho 

and is important in the organisation of the fibronectin matrix. Both Rho and 

fibronectin have been previously implicated in the development of metastasis in 

different systems. 

All together, these results demonstrate that Fzd6 is an important driver of 

metastatic spread and a predictive marker of metastatic relapse in breast 

cancer patients. Fzd6 could therefore be used as a biomarker and target in 

metastatic breast cancer.  
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CHAPTER I 

 

Introduction 

 

1.1 Breast cancer 

 

According to Cancer Research UK 

(http://publications.cancerresearchuk.org/downloads/Product/CS_KF_BREAST.

pdf), breast cancer is the most common malignancy in the United Kingdom and 

the second most common cause of death from cancer in women after lung 

cancer.  In 2012, about 11600 women died of breast cancer. The mortality rate 

per 100000 population was 24 % for females and 0.2 % for males. In women, 

the five-year net survival estimated between 2010 and 2011 was 86.6%, while 

the ten-year net survival was 78.4%. In Europe, an average of 464,000 new 

cases of breast cancer was diagnosed in 2012. Breast cancer affects also men 

but with a much lower rate (1 in 100000). Worldwide, less than 1% of all the 

breast cancer patients are male (Sasco, Lowenfels and Pasker-De Jong, 1993).  

Women from western and developed countries are more likely to develop the 

disease (Ferlay et al., 2010). Life style factors might explain why women of 

developed countries have an increased risk to develop breast cancer. These 

include having less children, giving birth at an older age and avoiding 

breastfeeding, all factors that have been reported to increase the risk of breast 

cancer (Porter, 2008; Parkin and Fernández, 2006; Hortobagyi et al., 2005). 

Breast cancer survival rates strongly depend on the disease stage at the time of 

diagnosis, but the majority of patients are alive after 5 years from the diagnosis. 

When breast cancer is diagnosed at early stages the outcome it is usually 

positive, but survival rates are low in metastatic breast cancer (Baade, Youlden 

and Chambers, 2011; Soerjomataram et al., 2008). For this reason population 

screening and mammography are essential tools for the reduction of breast 

cancer mortality (Elmore et al., 2005; Smith, 2003). 
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1.1.1 Breast cancer symptoms and diagnosis 

 

According to the Merk Manual of Diagnosis and Therapy (Beers, 2006), the 

most common first symptom of breast cancer is a painless lump which is usually 

recognized by the patient. In the early stages the lump might be movable 

underneath the skin. In later stages, the lump adheres to the chest wall or to the 

skin over it. In very advanced stages, swollen bumps or festering sores may 

occur. Sometimes the skin over the lump can look dimpled, with a pattern 

similar to the orange skin, and lumps can become painful. A subtype of breast 

cancer called inflammatory breast cancer is characterized by a warm, red and 

swollen breast, which could occur with or without skin ridges or 

inhomogeneities. There might be nipple inversion or nipple discharge. Often in 

this kind of breast cancer there are no lumps (Beers, 2006). When symptoms of 

breast cancer are detected, the patient is referred to designated breast clinics 

where the diagnosis is made by “triple assessment”. This consists of a 

combination of mammography and ultrasound imaging. If a suspicious mass is 

found, core biopsy and/or fine needle aspiration cytology is performed (National 

Institute for Health and Care Excellence guidelines, https://www.nice.org.uk/). 

Magnetic resonance imaging (MRI) of the breast might also be used for further 

investigations in patients with confirmed breast cancer (Willett, Michell and Lee, 

2010). In invasive breast cancer the axillary lymph nodes are usually the first 

sites of metastatic spread (Giuliano et al., 1994). Therefore, ultrasound imaging 

of the axilla is also carried out in all patients when a malignancy is suspected.  If 

lymph nodes are found to have an altered morphology on ultrasound, a biopsy 

is also taken. Following the triple assessment, a definitive diagnosis is made in 

most patients (Willett, Michell and Lee, 2010). 
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1.1.2 Breast cancer staging and grading 

 

In United Kingdom, breast cancer is diagnosed following the TNM staging 

system (http://www.cancerresearchuk.org/about-cancer/type/breast-

cancer/treatment/tnm-breast-cancer-staging#fit). TNM stands for Tumour, 

Node, Metastasis, and takes into account the size of the tumour (T), the 

presence of cancer cells in the lymph node (N) and the presence of metastasis 

(M). An overview of different breast cancer stages is summarized in table 1.1. 

TNM is the most widely used system to classify the anatomic spread of a 

neoplasia (Sobin and Fleming, 1997). This staging system was developed by 

the American Joint Committee on Cancer (AJCC) and the Union for 

International Cancer Control (UICC). The TNM classification system is a tool for 

clinicians to describe the severity of cancer using standardized criteria 

(https://cancerstaging.org/references-tools/Pages/What-is-Cancer-

Staging.aspx). To complete the diagnosis of breast cancer, biopsies are 

analysed by pathologists to assess tumour grade and tumour subtype. The 

grade of a tumour is evaluated depending on the appearance of cancer cells 

under a microscope, using the “Nottingham grading system”. Tissue 

morphology, mitotic index and cells nuclear shape are evaluated according to 

standardized criteria to give a final score between 1 and 3 (source: NHS, 

http://www.cancerscreening.nhs.uk/breastscreen/publications/nhsbsp58-

poster.pdf). Grade 1 or low-grade is attributed when cancer cells look similar to 

normal cells (i.e. are well differentiated) and usually grow slowly. In this case 

cancer cells are less likely to spread. Grade 2 or moderate-grade is attributed 

when cancer cells look more abnormal and grow slightly faster than grade 1 

cells. Grade 3 or high-grade is attributed when the cancer cells look very 

different from normal cells (are poorly differentiated) and may grow quicker than 

grade 1 or 2 cells (source: 

http://www.macmillan.org.uk/Cancerinformation/Cancertypes/Breast/Symptoms

diagnosSy/Stagingandgrading.aspx). 

Biopsies are also analysed to assess the receptor status, i.e. if cancer cells 

express the oestrogen receptor (ER), progesterone receptor (PR) and Human 

epidermal growth factor receptor 2 (HER2). This is required to predict the 

response to certain therapies: Breast cancers that are oestrogen receptor 

positive are more likely to respond to hormone therapies, and HER2 positive 
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tumours can be treated with monoclonal antibodies (Trastuzumab) (source: 

http://www.cancerresearchuk.org/about-cancer/type/breast-

cancer/diagnosis/further-tests-for-breast-cancer#hormone). 
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Table 1.1: TMN staging of breast cancer (Source: Cancer Research UK) 

T STAGES 

Stage Description 

TX The tumour size cannot be assessed 

T1 The tumour is 2 cm across or less. T1 
tumours are further classified in: 
T1mi – the tumour is 0.1cm across or less 
T1a – the tumour is more than 0.1 cm but not 
more than 0.5 cm 
T1b – the tumour is more than 0.5 cm but not 
more than 1 cm 
T1c – the tumour is more than 1 cm but not 
more than 2 cm 

T2 The tumour is more than 2 centimetres, but 
no more than 5 centimetres across 

T3  The tumour is bigger than 5 centimetres 
across 

T4 T4 tumours are further classified in: 
 
T4a – The tumour has spread into the chest 
wall 
T4b – The tumour has spread into the skin 
and the breast may be swollen 
T4c – The tumour has spread to both the skin 
and the chest wall 
T4d – Inflammatory carcinoma – this is a 
cancer in which the overlying skin is red, 
swollen and painful to the touch 

 
N STAGES 

Stage Description 

NX The lymph nodes cannot be assessed (for 
example, if they were previously removed) 

N0  No cancer cells found in any nearby nodes 

ITCs (Isolated tumour cells) When small clusters of 
cancer cells, less than 0.2 mm across, or a 
single tumour cell, or a cluster of fewer than 
200 cells are found in one area of a lymph 
node. Lymph nodes containing only isolated 
tumour cells are not counted as positive 
lymph nodes 

N1  Cancer cells are in the lymph nodes in the 
armpit but the nodes are not stuck to 
surrounding tissues 

pN1mi  One or more lymph nodes contain 
micrometastases that are larger than 0.2mm 
or contain more than 200 cancer cells, but are 
less than 2mm 

N2  
 

N2 is divided into 2 groups: 
 
N2a – there are cancer cells in the lymph 
nodes in the armpit, which are stuck to each 
other and to other structures 
N2b – there are cancer cells in the lymph 
nodes behind the breast bone (the internal 
mammary nodes), which have either been 
seen on a scan or felt by the doctor. There is 
no evidence of cancer in lymph nodes in the 
armpit 
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Table 1.1 continued 

 

1.1.3 Breast carcinogenesis 

 

The most accredited theory to explain the onset of cancer is based on the clonal 

expansion of a population of cells carrying driver mutations that confer a 

selective growth advantage; certain mutations are observed with a high 

frequency in tumours, therefore are believed to be the initial events in the 

process of tumorigenesis (Stephens et al., 2012). During the clonal expansion 

of cancer cells, more mutations, defined as “passenger mutations”, can be 

acquired, conferring a further growth advantage and/or a metastatic phenotype 

(Greaves and Maley, 2012; Bozic et al., 2010). A plethora of somatic and 

germline mutations in oncogenes and tumour suppressor genes have been 

linked to the onset and development of breast cancer. According to the 

Catalogue of  Somatic Mutations in Cancer (COSMIC) (Forbes et al., 2008), the 

most common somatic mutations occurring in breast cancer are affecting, in 

order of decreasing frequency, the following genes: PIK3CA (encoding the 

phosphatidylinositol-4,5-bisphosphate 3-kinase-catalytic alpha subunit), TP53 

(encoding the protein p53), CDH1 (encoding for E-Cadherin), MLL3 (Gene 

encoding the Histone-lysine N-methyltransferase), GATA3 (encoding for Trans-

acting T-cell-specific transcription factor) and PTEN (encoding for the 

Phosphatase and Tensin homolog protein). These mutations are therefore likely 

drivers responsible for the aetiology of breast cancer (Stephens et al., 2012). 

N3 N3 is further divided in 
N3a – there are cancer cells in lymph nodes 
below the collarbone 
N3b – there are cancer cells in lymph nodes 
in the armpit and behind the breast bone 
N3c – there are cancer cells in lymph nodes 
above the collarbone 

M STAGES 

M0 There is no sign of cancer spread to distant 
organs 

cMo(i+) Means there is no sign of the cancer on 
physical examination, scans or X-rays but 
cancer cells are present in blood, bone 
marrow, or lymph nodes far away from the 
breast cancer as detected by  laboratory tests 

M1  means the cancer has spread to another part 
of the body 
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PI3KCA encodes the p110α catalytic subunit of the class IA phosphatidylinositol 

3-kinases (PI3Ks). PI3Ks catalyses the phosphorylation of a class of inositol-

containing lipids called phosphatidylinositols (PIs), giving rise to several 

signalling molecules involved in the control of a broad range of cell functions 

(Vanhaesebroeck and Waterfield, 1999). Particularly, the phosphatidyl-inositol-

3,4,5-triphosphate (PIP3) can activate the AKT serine/threonine kinase which 

regulates cell proliferation, survival, and motility. The tumour suppressor gene 

PTEN, also often mutated in breast cancer, inhibits the PI3K pathway by 

dephosphorylating PIP3 (Samuels et al., 2005; Sun et al., 1999; Li et al., 1997). 

Deregulation of the PI3K/AKT/PTEN pathway is a common event in cancer and 

considered a frequent driver event in the development of breast tumours (Wood 

et al., 2007; Samuels et al., 2005). 

The tumour suppressor gene p53 is commonly defined as the “guardian of the 

genome” (Lane, 1992). This definition originates from the propriety of p53 to 

control proteins involved in the cell cycle, DNA repair or apoptosis, in case of 

DNA damage; the regulation of these processes by p53 prevents the 

propagation of potentially toxic mutations during cell division and, therefore, 

defines p53 as an essential tumour suppressor gene (Sengupta and Harris, 

2005; Kastan, Canman and Leonard, 1995; Lowe et al., 1993). Not surprisingly, 

mutations of p53 are the most common in human cancers and very frequent in 

breast tumours (Pharoah, Day and Caldas, 1999; Levine, Momand and Finlay, 

1991). 

E-cadherin is part of the cadherins family, a group of transmembrane proteins 

involved in cell-cell junctions (Angst, Marcozzi and Magee, 2001). E-cadherin is 

often downregulated in breast cancer. This is associated with an unfavourable 

prognosis and aggressive phenotypes (Siitonen et al., 1996; Pierceall et al., 

1995; Oka et al., 1993). E-cadherin can suppress cell proliferation by 

dephosphorylating the retinoblastoma protein (Rb), reducing Cyclin D1 and 

elevating p27 levels (St Croix et al., 1998). Moreover, E-cadherin can inhibit 

tumour growth by reducing the transcriptional activity of β-catenin and 

interacting with members of the Hippo pathway (Kim et al., 2011; Stockinger et 

al., 2001). Therefore, mutations of CDH1 can be driver events of breast cancer 

tumorigenesis by enhancing uncontrolled cell proliferation (Berx and Van Roy, 

2001).  
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MML3 encodes the Histone 3-lysine-4 -methyltransferase and is commonly 

mutated in breast cancer, although is function in this tumour is still poorly 

characterized (Stephens et al., 2012). Studies on mice suggest that MML3 

interacts with p53 in the response to DNA damage, and since its removal 

results in urinary tumours, MML3 is a putative tumour suppressor gene (Wang 

et al., 2011; Lee et al., 2009). 

GATA3 (Trans-acting T-cell-specific transcription factor 3) belongs to the family 

of GATA transcription factors and is important to regulate the differentiation of 

luminal cells in the mammary gland (Kouros-Mehr et al., 2006). Array-based 

studies have linked high expression of GATA3 with lower tumour grade and 

reduced proliferation index in breast tumours. Moreover, lower expression of 

GATA3 was associated with poor outcome and lower survival in breast cancer 

patients (Yoon et al., 2010; Mehra et al., 2005; Usary et al., 2004). 

Mechanistically, mutations in GATA3 might result in the failure to maintain a 

differentiated low proliferative phenotype of the luminal cells of the breast, 

promoting tumorigenesis through the epithelial mesenchymal transition (EMT) 

(Yan et al., 2010; Usary et al., 2004).  

In addition to point mutations, gene copy number variations (CNV) are known to 

give a major contribution to the genetic landscape of tumours (Pollack et al., 

2002). Particularly, vast areas of the chromosome 1,8 and 17 are often 

subjected to extensive CNV in breast cancer (fig.1.1) (Forbes et al., 2008; 

Fridlyand et al., 2006; Pollack et al., 2002; Kallioniemi et al., 1994). For 

example, the copy number gain of HER2 was associated with a worse outcome 

and tumour relapse before the introduction of Trastuzumab in the therapy of 

HER2 positive tumours (Slamon et al., 1987). 
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Figure 1.1: Circos image displaying CNV in breast cancer: the height of the bar is 

the total number of samples which had a CNV event in that region, with blue representing loss 

and pink representing gain (Source: COSMIC, (Forbes et al., 2008). 

 

Other genes commonly subjected to CNV in breast cancer are MYC and the 

fibroblast growth factor receptor 1 (FGFR1), both in the chromosome 8 

(Stephens et al., 2012). Amplification of FGFR1 has been associated with poor 

prognosis and resistance to hormone therapy in breast cancer (Turner et al., 

2010). MYC or (c-MYC) is a transcription factor which is thought to regulate 

about 15 % of all the human genes (Gearhart, Pashos and Prasad, 2007). MYC 

regulates cell proliferation and growth, and is often overexpressed in human 

cancers (Dang, 2012). In breast tumours, the amplification of c-MYC strongly 
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reduces the survival end increases the risk of tumour relapse (Sotiriou et al., 

2003; Deming et al., 2000; Berns et al., 1992).  

Several other transcription factors are often found overexpressed in breast 

cancer and could participate to the early stages of the disease. The forkhead 

box proteins (Fox) are a class of transcription factors which are often 

deregulated in human cancers (Myatt and Lam, 2007). FOXM1, a member of 

the Fox family, is frequently overexpressed in numerous malignancies (Koo, 

Muir and Lam, 2012). In the COSMIC database, 15.17 % of the breast cancer 

samples overexpress FOXM1 (Forbes et al. 2014). FOXM1 was shown to 

regulate the expression of the oestrogen receptor α, which plays a major role in 

the proliferation of breast cancer cells (Millour and Lam, 2010). Indeed, RNA 

interference of FOXM1 inhibits cell growth and invasion of breast cancer cell 

lines (Ahmad et al., 2010). 

Another transcription factor which is commonly deregulated in breast cancer is 

the Hypoxia-inducible factor 1 (HIF-1), which controls the expression of genes 

involved in cancer metabolism and tumour vascularization, required for the 

survival and propagation of cancer cells (Semenza, 2003). HIF-1α, a functional 

subunit of HIF-1, is often overexpressed in breast tumours and its upregulation 

is associated with unfavourable prognosis in patients (Dales et al., 2005; 

Schindl et al., 2002; Zhong et al., 1999). 

 Epigenetic modifications, i.e. DNA methylations and histones modifications 

could also contribute to the breast cancer landscape influencing the expression 

of oncogenes and tumour suppressor genes. For example, the 

hypermethytlation of tumour suppressor genes such as BRCA1 or MLH1 is a 

common events in breast cancer which strongly enhances cancer progression 

(Veeck et al. 2010).  

 

 

 

  

  

 



31 
 

1.1.4 Breast cancer aetiology 

 

There are several factors that are known to increase the risk of breast cancer 

and these can be grouped in the following categories: genetic/familial, 

reproductive/hormonal, lifestyle related, and environmental (Salehi et al., 2008). 

Genetic predisposition influences up to 10% of all breast cancers (McPherson, 

Steel and Dixon, 2000). Germline mutations have been involved in breast 

cancer, but two in particular, BRCA1 and BRCA2, have been largely studied 

and considered as the principal cause of familiar breast cancer (Ford et al., 

1998). The functions of BRCA1 and BRCA2 have not been fully elucidated yet, 

but it is clear that they are implicated in the processes of DNA repair and cell 

cycle control. Mutations in these genes can therefore facilitate the onset of 

driver mutations in breast cancer (Venkitaraman, 2002; Moynahan et al., 1999; 

Patel et al., 1998). Taken together, germline mutations of BRCA1 and BRCA2 

encounter for 80–90% of all the familial breast cancer cases (Duncan, Reeves 

and Cooke, 1998). Germline mutations of the tumour suppressor gene p53 are 

less common (Li-Fraumeni syndrome) and can cause early onset of breast 

cancer (Malkin et al. 1990). 

Age is one of the main risk factors. The risk of breast cancer doubles about 

every 10 years until the menopause, when the risk drops dramatically 

(McPherson, Steel and Dixon, 2000).  

The altered homeostasis of ovarian hormones is another factor known to 

increase breast cancer incidence. In normal tissue, oestrogens and 

progesterone are finely regulated to modulate proliferation and differentiation of 

breast cells (Pike et al., 1993). Reproductive factors that enhance oestrogens 

levels (such as early age at menarche, nulliparity and late onset of menopause) 

are known to enhance the risk of breast cancer. Conversely, reproductive 

factors associated with a reduced exposure to oestrogens, such as low number 

of ovulatory cycles, have been shown to be protective against breast cancer 

(Martin and Weber, 2000). Mechanistically, the increase in cell proliferation 

caused by oestrogens also increases the chances that genetic errors occur 

during cell replication; if the mutations occur in tumour suppressor genes or 

oncogenes, this could give rise to breast cancer (Preston-Martin et al., 1990). 
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Progesterone levels might also influence breast cancer occurrence. 

Progesterone is crucial for normal breast tissue regulation, particularly lobular-

alveolar development (Ismail et al., 2003). Its role in breast cancer is still 

controversial, but it is probably associated with the different progesterone 

receptors isoforms subtypes expressed in the tumour tissue and is probably 

exercised indirectly through the regulation of oestrogens levels (Salehi et al., 

2008).  

Lifestyle is another key factor in breast cancer incidence. Obesity has been 

shown to increase two fold the risk of developing the disease. Other habits such 

as alcohol consumption and smoking have been suggested as potential risk 

factors, although other investigators have reported a minimal or null increase of 

the risk (Romieu et al., 2015; Ali et al., 2014; Dossus et al., 2014; McPherson, 

Steel and Dixon, 2000).  

 

1.2 Breast cancer subtypes  

 

Breast tumours can be categorized into different subtypes depending on the 

origin of the cells and molecular features. 90% of all breast cancers derive from 

epithelial cells of the milk ducts, therefore are called ductal carcinomas. Breast 

tumours originating from the milk producing glands (lobules) are called lobular 

carcinomas (figure 1.2). A third rare subtype, breast sarcoma, originates from 

the fatty or connective tissue (Beers 2006). 

If breast cancer cells are confined where the lesion first occurred, the tumour is 

defined as “in situ” carcinoma. Ductal carcinomas in situ accounts for 20 to 30% 

of all breast cancers (Beers 2006). Nearly all women diagnosed at this early 

stage can be cured (Source: American Cancer Society website, 

http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-breast-

cancer-types). Lobular carcinomas in situ accounts for 1 to 2 % of all breast 

cancers (Beers 2006).  

Invasive ductal carcinomas are characterized by the tumour cells capability to 

pass through the walls of the ducts, invading the surrounding tissue. This type 

can generate metastases. It accounts for 65 to 85% of all breast cancers and it 

is the most common subtype (Beers 2006). Invasive lobular carcinomas are 
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more likely to occur in both breasts and they account for 10 to 15% of all breast 

cancers (Beers, 2006).  

In about 20 % of the women diagnosed with early breast cancer, the tumour can 

spread to secondary organs and develop metastases. Currently, there is no 

cure for metastatic breast cancer and therapies are aimed to prolong as much 

as possible the survival of these patients (Stevanovic, Lee and Wilcken, 2006). 

 

 

Figure 1.2: Schematic representation of the mammary gland: The mammary gland 

is constituted of milk secreting cells organized in lobules and ducts that convoy the milk towards 

the nipple. The milk duct is composed of two different cell types: the luminal cells which 

constitute the inner part of the duct and form the duct lumen, and the basal/myoepithelial cells 

which constitute a more external layer of cells. The basal lamina separates the duct from the 

surrounding stroma.  

 

The most aggressive type is inflammatory breast cancer. This is characterized 

by skin erythema, peau d’orange and poor prognosis. Molecular profiling and 

histopathology might vary, but it always implicates invasion of tumour cells into 

the surrounding lymph nodes (Cariati et al., 2005).  
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A very rare form of breast cancer is the Paget’s disease of the nipple. It is 

caused by the infiltration of carcinoma cells with glandular features in the 

epidermal layer of the nipple and areola. It accounts for 1% of all breast cancers 

(Lohsiriwat et al., 2012; Beers, 2006). 

Breast cancer biopsies are required to identify the molecular changes relevant 

for the establishment of appropriate therapeutic protocols. According to the St. 

Gallen International Expert Consensus, breast cancer cases can be categorized 

in 4 intrinsic subtypes: Luminal A, Luminal B, HER2 positive and Basal-like 

(Goldhirsch et al., 2013). Recently, gene expression studies identified a claudin-

low subtype, similar to the basal subtype but distinctive for the overexpression 

of 40 genes involved in the immune response. However, at present there are no 

standardized procedures for the identification of this subtype in the clinical 

practice (Eroles et al., 2012).  

 

1.2.1 Luminal breast cancer 

 

Luminal breast tumour cells have features similar to the epithelial cells 

constituting the milk ducts lumen and express similar proteins. These tumours 

are ER positive and express the transcription factors downstream the 

oestrogens pathway (Rakha and Ellis, 2009; Sims et al., 2007). Moreover, 

luminal tumours express cytokeratins 8 and 18 (Eroles et al., 2012). Luminal 

breast cancer can be further categorized in two subgroups: Luminal A and 

Luminal B. 

Luminal A. This subtype accounts for about 50-60% of all the breast cancers 

and is the most common subtype. Luminal A tumours usually have good 

prognosis, with lower probability of relapse and the highest rate of survival 

(Eroles et al., 2012). The Luminal A subtype can be identified by 

immunohistochemistry: these tumours are positive for the Oestrogen Receptor 

(ER) and Progesterone Receptor (PGR), negative for HER2, and < 14% of the 

cells are positive for the proliferative marker Ki-67 (although this cut point might 

vary between laboratories) (Goldhirsch et al., 2013).  

Luminal B. This subtype accounts for about 10-20 % of all breast cancers. It 

has a worse prognosis, a more aggressive phenotype and a higher histological 
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grade compared to the Luminal A subtype (Eroles et al., 2012; Cheang et al., 

2009). This subtype can be further divided into HER2 positive or HER2 

negative. The Luminal B HER2 positive tumours can have any grade of Ki-67 or 

PGR to be defined as luminal B, whereas Luminal B HER2 negative tumours 

must have in addition high levels of Ki-67 (≥ 20 % of the cells positive for Ki-67) 

or low or absent PGR (Goldhirsch et al., 2013). 

 

1.2.2 HER2 amplified breast cancer 

 

ERBB2 gene encodes the protein HER2 which belongs to the family of the 

epidermal growth factor receptors. These receptors have intrinsic tyrosine 

kinase activity and mediate the response to extracellular cues by regulating 

complex cellular functions such as proliferation, survival and migration 

(Wieduwilt and Moasser, 2008). HER2 function seems to be exerted by the 

dimerization with other receptors of the same family, rather than direct 

activation by specific ligands (Olayioye, 2001). 15-20% of all breast cancers 

show overexpression of HER2. This is correlated with higher tumour size, 

increased invasiveness and high histological grade (Yarden and Sliwkowski, 

2001). HER2 activation enhances the cell proliferation rate and reduces 

apoptosis by activating signalling pathways involving PI3K, AKT, PLC and PKC 

(Roy and Perez, 2009). In the COSMIC repository, about 12% of the breast 

cancer samples present a gene copy number gain of ERBB2 (Forbes et al. 

2014). A direct correlation betweenERBB2 copy number gain and HER2 

overexpression has been observed in breast cancer cell lines (Szollosi et al., 

1995). 

HER2 overexpressing tumours had a poor prognosis before the introduction of 

a monoclonal antibody against HER2 (Trastuzumab), which drastically 

improved the survival rate of patients bearing this breast cancer subtype (Eroles 

et al., 2012). Trastuzumab is the first successful antibody used in breast cancer 

targeted therapy (Roy and Perez, 2009). The mechanism of action is still not 

fully understood, but it has been proposed that the bond of Trastuzumab with 

the juxstamembrane portion of HER2 results in increased receptor endocytosis, 

hampers the receptor dimerization, and activates the immune system (Hudis, 

2007). Moreover, downregulating the signalling cascades downstream HER2 
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(Such as PI3K and MAPK signalling), Trastuzumab can activate the cyclin 

dependent kinase inhibitor p27kip1, leading to cell cycle arrest and apoptosis 

(Nahta and Esteva, 2006). 

 

1.2.3 Basal-like breast cancer 

 

The basal-like group of breast tumours have a genetic expression profile that 

resembles the basal/myoepithelial cells of the mammary gland. These tumours 

are recognisable by the positive immunohistochemical staining of cytokeratins 

5, 14 and 17 (CK5, CK14 and CK17), and the expression of other basal 

markers such as P-cadherin, caveolin1/2 and nestin (Sims et al., 2007).  This 

breast cancer subtype is the most aggressive and the one with the poorest 

prognosis (Liedtke et al., 2008). Basal-like breast cancers account for 10-20 % 

of all breast carcinomas (Eroles et al., 2012).  

 

1.2.4 Triple negative breast cancer 

  

Triple negative breast cancers (TNBC) are defined as breast tumours negative 

for ER, PGR and HER2 in immunohistochemical analysis. The vast majority of 

basal-like tumours (around 80%) are also triple negative (Goldhirsch et al., 

2013). Often the terms basal-like and triple negative are used as synonyms, 

although not all the basal-like tumours are also triple negative and vice versa 

(Eroles et al., 2012; Rakha, Reis-Filho and Ellis, 2008). Indeed, 18 to 40 % of 

the basal tumours do not show a triple negative phenotype (Bertucci et al., 

2008). TNBC is characterized by a bigger tumour mass and a higher 

histological grade compared to the other breast cancer subtypes (Dent et al., 

2007). The incidence of TNBC is higher in black and in Hispanic women 

compared to other ethnic groups (Lara‐Medina et al., 2011; Stead et al., 2009; 

Bauer et al., 2007) and  more common in young women (Dent et al., 2007). An 

increasing waist-to-hip ratio and parity raises the risk of TNBC (Millikan et al., 

2008). 

Several lines of evidence have linked the phenotypical characteristics of 

TNBC/basal-like breast cancers with the ones deriving from germline mutations 
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of the BRCA1 gene (Reis‐Filho and Tutt, 2008). In fact, the vast majority of 

patients carrying a mutation of BRCA1 exhibit a triple negative/basal like 

phenotype (Haffty et al., 2006; Foulkes et al., 2003). 

Triple negative breast cancer patients have a poorer outcome compared to 

patients bearing other subtypes (Dent et al., 2007). Few therapeutic options for 

TNBC are available, since hormone and HER2 targeted therapies are not 

beneficial for these patients (Foulkes, Smith and Reis-Filho, 2010). Although the 

response to chemotherapy is usually good, the recurrence and disease 

progression are more common than in any other breast cancer subtype (Perou, 

2011). Therefore, the development of novel therapeutic approaches is urgently 

needed.  

Another feature of TNBC is that, contrarily to other subtypes, it is more likely to 

metastasize to organs such as the lungs and the brain, and less likely to 

metastasize to the bones (Foulkes, Smith and Reis-Filho, 2010; Dent et al., 

2009). 

 

1.2.5 Claudin low breast cancer 

 

In 2007 a new breast cancer subtype, the claudin low subtype, was identified by 

Herschkowitz and colleagues. This subtype is characterized by low expression 

of genes involved in cell adhesion such as Claudins 3, 4 and 7, Occludin and E-

Cadherin. Claudin-low subtypes also have a low expression of luminal genes 

and high expression of lymphocyte markers (Herschkowitz et al., 2007). Most 

tumours of this subtype are TNBC, although about 20% of them are positive for 

hormones receptors (Prat and Perou, 2011). Another feature of this group is the 

low expression of proliferation genes which are usually high in luminal B, basal 

like and HER2 enriched subtypes (Eroles et al., 2012; Prat and Perou, 2011)  

Interestingly, this subtype expresses a class of genes which are associated with 

cancer stem cells, such as ALDH1A1. Some authors hypothesized that all of the 

previously described breast cancers subtypes derive from cancer stem cells, 

with claudin-low subtype being an early progenitor (Hennessy et al., 2009).    
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1.2.6 Normal like breast cancer 

 

This group is a heterogeneous subset of tumours characterized by having 

similar features to the normal breast tissue. Common aspects of this class are 

the high expression of genes typical of adipose cells and other non-epithelial 

cells, and low expression of luminal genes. Clinical outcome for these tumours 

varies from good to very poor prognosis (Eroles et al., 2012; Rakha, Reis-Filho 

and Ellis, 2008).This class accounts for 5 to 10% of all breast tumours and can 

also be classified as TNBC, as they lack ER, PGR and HER2. Since normal like 

breast cancer cells are negative for CK5, they cannot be considered basal-like. 

This subtype is still poorly studied, and some authors hypothesize it derives 

from artefacts caused by sample contamination with normal tissue before 

microarray analysis (Eroles et al., 2012). 

 

1.3 Breast cancer therapy  

 

Therapy for breast cancer varies depending on the different molecular 

subtypes, but the first act is the surgical resection of the tumour, followed or not 

by radiotherapy (Beers, 2006). When the size of the tumour is large, patients 

receive chemotherapy before surgery (Neoadjuvant chemotherapy) to facilitate 

tumour excision, improve breast conservation and suppress occult systemic 

metastases (Smith et al., 2002). Physical or chemical treatments can be used to 

eliminate cancer cells that have been left after surgery, referred to as adjuvant 

therapy. These treatments include chemotherapy, hormonal therapy, 

monoclonal antibodies, radiation therapy, or a combination of these (Davidson 

and Abeloff, 1994). 

 

1.3.1 Hormone therapy 

 

The hormone therapy includes two classes of drugs, anti-oestrogens and 

progestins. The anti-oestrogens strategy includes the selective oestrogen-
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receptor modulators (SERM), selective oestrogen-receptor downregulators 

(SERD) and the aromatase inhibitors (AI). The therapeutic effect is due to the 

anti-proliferative action of antagonizing the ER pathway (Goodman, 1990). 

When other therapies have failed, progestins are used as second line defence 

in advanced breast cancer. Progestins reduce the levels of systemic oestrogens 

and the expression of ER (Lundgren et al., 1990; Blumenschein, 1983).  

One of the most widely used drugs in the treatment of breast cancer is 

Tamoxifen.  It is used both in early and late stages of the disease, in women of 

all the ages and also as preventive treatment in women carrying BRCA1 or 

BRCA2 mutations. It belongs to the class of SERM and works antagonizing 

oestrogens in the mammary gland (Goodman, 1990).  

Fulvestrant is a member of the SERD family and it is a pure antagonist of the 

oestrogen receptor. It is often used in women with advanced disease when the 

treatment with tamoxifen has failed (Goodman, 1990; Lundgren et al., 1990; 

Blumenschein, 1983). 

Anastrozole, letrozole and exemestane belong to the class of the aromatase 

inhibitors which act reducing the levels of circulating oestrogens. The enzyme 

aromatase converts the androstenedione in the oestrogens oestrone and 

estradiol. This conversion occurs predominantly in the ovaries of pre-

menopausal women and peripherally in post-menopausal women.  For this 

reason these drugs are often used in the treatment of breast tumours in post-

menopausal women, where the side effects affecting the ovarian hormonal 

homeostasis are reduced (Goodman, 1990).  

Megestrol acetate is one of the most used progestin in the therapy of breast 

cancer. Progestins are used in patients with metastatic relapsing breast cancers 

as second choice therapy where treatment with tamoxifen failed (Goodman, 

1990).  

 

1.3.2 Monoclonal antibodies  

 

Trastuzumab and Pertuzumab are humanized monoclonal antibodies used 

alone or in combination for the treatment of HER2 positive breast cancers. 

HER2 activation generates downstream signal that increase the metastatic 
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potential and reduce apoptosis. HER2 overexpression is associated with 

resistance to cytotoxic and hormonal therapy (Baselga et al., 2012; Vogel et al., 

2002). The mechanisms of action of the monoclonal antibodies in killing breast 

cancer cells are still unclear. Different theories have been proposed, such as 

direct toxicity mediated by the antibody itself, toxicity mediated by the 

complement, or induction of cell apoptosis (Beers, 2006; Goodman, 1990). 

Lapatinib is an inhibitor of both the Epidermal Growth factor receptor 1 (EGFR1) 

and HER2, and can be used in the treatment of HER2 positive metastatic breast 

cancer (Source: Cancer Research UK, http://www.cancerresearchuk.org/about-

cancer/type/breast-cancer/treatment/which-treatment-for-breast-

cancer#hormchem). 

 

1.3.3 Chemotherapy 

 

Chemotherapy includes a number of cytotoxic and cytostatic drugs that are 

used to eliminate fast dividing cells. It cannot be used as a single therapy in 

breast cancer, but always together with surgery, radiation therapy or other 

adjuvant therapies (Beers, 2006). Commonly used drugs in breast cancer are 

cyclophosphamide, doxorubicin, epirubicin, 5-fluorouracil, methotrexate, 

mitomycin, mitozantrone, docetaxel, gemcitabine and paclitaxel (source: Cancer 

Research UK). 
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1.4 WNT signalling pathway 

 

The WNT (Wingless‐related integration site protein) pathway consists of a 

group of cell signalling cascades activated by a class of lipoglycoproteins called 

WNTs (Wingless‐related/integration site proteins). In humans, there are 19 

WNTs (WNT1, WNT2, WNT2B, WNT3, WNT3a, WNT4, WNT5a, WNT5b, 

WNT6, WNT7a, WNT7b, WNT8a, WNT8b, WNT9a, WNT9b, WNT10a, 

WNT10b, WNT11 and WNT16). WNTs ligands mediate the signal transduction 

from the extracellular environment to the cell through the activation of 7-

segments transmembrane receptors called frizzled (FZDs). In human, there are 

ten frizzled receptors (FZD1-10) (Schulte, 2010).  

The first WNT gene was discovered by Nusse et al. in 1982, during experiments 

where mice were infected with the mouse mammary tumour virus (MMTV). 

They found that the MMTV oncogenic properties derived from the capacity to 

activate a gene, following viral genome integration, that was first called int-1 

(integration 1) (Nusse et al., 1984). It was later discovered that the gene int-1 

was the homologous of the gene Wingless in drosophila melanogaster (Sharma 

and Chopra, 1976). Due to the discovery of new Int-1 related genes and to 

avoid confusion in the nomenclature, the name Int-1 was later changed to WNT-

1, (Wingless‐related integration site protein 1).  

WNT signalling is divided into two different branches, the canonical and the non 

canonical pathways. The WNT canonical pathway is characterised by the 

stabilization and translocation into the nucleus of the protein β-catenin. β-

catenin has a dual function: together with other proteins constitutes the cellular 

adherens junctions (Hartsock and Nelson, 2008) and also promotes the 

transcription of WNT-associated genes in the nucleus (Daniels and Weis, 

2005). The term non-canonical pathway usually refers to a group of signalling 

pathways activated by WNTs which do not lead to the cytoplasmic stabilization 

of soluble β-catenin (Pandur, Maurus and Kühl, 2002). Two of these pathways 

have been well characterised: the planar cell polarity (PCP) and the WNT-

Calcium pathway (Strutt, 2003). 

Although for simplicity the WNT signalling is often dichotomized in two 

branches, the canonical and the noncanonical pathways often overlap and 

cross interact to coordinate complex cellular responses. The two investigators 
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that first discovered the WNT pathway, Renée van Amerongen and Roel Nusse, 

recently proposed an integrated model where the total net balance of canonical 

and non canonical signals ultimately determines the response of the receiving 

cell (van Amerongen and Nusse, 2009). 

The WNT pathway regulates several cellular functions during embryonal 

development and is also required for the homeostasis of adult tissues. WNT 

signalling has been shown to regulate multiple cellular functions, such as 

proliferation, stem cell maintenance, cell motility and polarity, cell differentiation 

and fate, in multiple physiological processes (van Amerongen and Nusse, 

2009). Despite recent advances, many aspects of the WNT pathway are still 

poorly understood (Cadigan and Nusse, 1997). The existence of 19 ligands and 

10 receptors makes the WNT pathway intrinsically complicated. Several 

aspects such as the specificity of ligand-receptor interactions and the signal 

specificity for each frizzled receptor are still poorly characterised (Wodarz and 

Nusse, 1998).  

The WNT pathway is further complicated by the need of co-receptors like the 

low-density lipoprotein receptor related proteins 5 and 6 (LRP5/6). These co-

receptors don’t bind directly to WNT ligands but form a FZD/WNT/LRP5/6 

ternary complex which is required for the activation of the WNT canonical signal 

(Zeng et al., 2008; Mao et al., 2001; Tamai et al., 2000).  

The WNT pathway can be inhibited by several secreted antagonists which act 

either binding the WNT ligands or the FZD/LRP5/6 receptor complex (Kawano 

and Kypta, 2003). Amongst these are some members of the Dickkopf family of 

proteins (Niehrs, 2006). Dkk1 is the most characterised member of the family. It 

inhibits the canonical WNT pathway by inducing the endocytosis of the LRP5/6 

co-receptor following the formation of a complex with LRP5/6 and the family of 

transmembrane proteins Kremen (Niida et al., 2004; Huelsken and Behrens, 

2002).  

Another class of WNT pathway inhibitors act primarily by binding with WNT 

ligands and preventing their interaction with the frizzled receptors. This class 

includes the secreted frizzled related proteins (sFRPs), the WNT inhibitory 

factor 1 (WIF) and Cerberus. 
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1.4.1 Canonical WNT pathway 

 

 

 

Figure 1.3: Schematic representation of the WNT canonical pathway: (A) In the 

absence of WNT ligand the levels of cytoplasmic soluble β-catenin are kept low by a 

heteromeric complex constituted by Axin, CK1, GSK3 and APC (refer to the main text for 

details). This complex phosphorylates β catenin which is then degraded through an 

ubiquitin/proteasome mechanism. (B) When the WNT ligand binds to FZD, dishevelled is 

recruited and phosphorylated; this induces the binding with the co-receptor LRP5/6 and the β-

catenin destruction complex, leading to the increase of stabilized β-catenin in the cytoplasm. β-

catenin can then translocate in the nucleus where it displaces the protein Groucho to bind to the 

transcription factor LEF/TCF. This induces the transcriptions of several WNT-associated genes 

(adapted from Clevers and Nusse, 2012). 

 

In the WNT canonical pathway, in the absence of canonical WNT ligands, β-

catenin cytoplasmic levels are kept low by a β-catenin destruction complex 

(fig.1.3 A). The destruction complex is constituted of Axin, Adenomatous 

Polyposis Coli (APC) and the two protein kinases CK1α/δ and GSK3α/β 

(Clevers and Nusse, 2012). Axin constitute a scaffold for the destruction 

complex binding with β-catenin, GSK3 and APC (Luo and Lin, 2004; Nakamura 

et al., 1998). APC is a large protein that binds both β-catenin and Axin. Its 
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function is required for the activity of the destruction complex, although its 

specific molecular role is still unclear (Clevers and Nusse, 2012). The two 

kinases CK1 and GSK3 phosphorylate β-catenin in multiple residues (Liu et al., 

2002). Phosphorylated β-catenin is a target of the SCF-βTRCP ubiquitin ligase 

complex, which catalyses the addition of ubiquitin residues (Winston et al., 

1999). Ubiquitinated β-catenin is then degraded by the ubiquitin-proteasome 

complex (Aberle et al., 1997). 

In the presence of WNT ligands (fig. 1.3 B), the frizzled receptor changes 

conformation and associates with the co-receptor LRP5/5 (He et al., 2004). 

LRP5/6 is then phosphorylated by GSK3 and CK1, leading to the association of 

Axin and the β-catenin destruction complex to the receptors heteromer (Zeng et 

al., 2008). In these conditions the destruction complex is saturated by 

phosphorylated β-catenin and cannot induce further β-catenin phosphorylation, 

leading to the accumulation of stabilized β-catenin in the cytoplasm (Li et al., 

2012). The scaffold protein Dishevelled also binds to FZD and is 

phosphorylated upon WNT activation; although its specific function remains 

unclear, it is required for the phosphorylation of LRP5/6 (Zeng et al., 2008; Bilic 

et al., 2007; Wallingford and Habas, 2005; Wong et al., 2003). Recent findings 

suggest that dishevelled might have a role in facilitating the interaction between 

LRP5/6 and Axin and in the formation of the FZD/LRP5/6 complex (Clevers and 

Nusse, 2012). 

Stabilized β-catenin is then transported inside the nucleus where it interacts 

with the family of TCF/LEF transcription factors (Fagotto, Glück and Gumbiner, 

1998; Behrens et al., 1996; Molenaar et al., 1996). β-catenin directly displaces 

the transcription inhibitor Groucho, which normally binds to TCF/LEF 

transcription factors; this in turns promotes the TCF/LEF mediated transcription 

of WNT target genes (Daniels and Weis, 2005).  

The β-catenin-dependent activation of TCF/LEF1 leads to the transcription of 

several genes involved in a plethora of functions, including cell proliferation, 

tissue homeostasis, stem cell maintenance and cell differentiation (Clevers, 

2006). The overexpression of WNT target genes such as c-myc and cyclin D1 

were shown to be key factors in the development of colon cancer and other 

tumours (Anastas and Moon, 2012; Bejsovec, 2005; Tetsu and McCormick, 

1999). 
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1.4.2 WNT Planar Cell Polarity 

 

During development cells are organised in tissues through mechanisms that 

require cell polarization. The regulation of cell polarity is also essential during 

physiological processes requiring the directional migration of cells, for example 

during convergent extension movements (i.e. the narrowing and lengthening of 

a group of cells occurring during gastrulation) or wound healing (Caddy et al., 

2010; Roszko, Sawada and Solnica-Krezel, 2009). The acquisition of a specific 

position of a cell in a plane is referred to as planar cell polarity. This process 

has been extensively studied in drosophila and requires WNT signalling (Seifert 

and Mlodzik, 2007). A schematic overview of the PCP pathway is shown in 

figure 1.4. 

Several PCP proteins have been identified in vertebrates through gene 

loss/gain experiments, but their specific molecular functions remain largely 

obscure (Simons and Mlodzik, 2008; van Amerongen and Berns, 2006). The 

principal core components of the PCP signalling cascade in vertebrates are 

FZD (FZD3 and FZD6 have been shown to mediate PCP signalling in mice 

(Stuebner et al., 2010), Dishevelled (Dvl1, Dvl2), Vangl1/2, Celsr 1, Prickle (Pk1 

and Pk2) and Diversin (or Ankrd6) (Seifert and Mlodzik, 2007; Wang and 

Nathans, 2007). Two WNT ligands, WNT5a and WNT11, have been implicated 

in the control of the PCP/WNT pathway, although it is likely that more WNT 

ligands can activate this pathway (Strutt, 2003).  

Vangl2 is a membrane bound protein required for the stereociliary bundle 

orientation in the mouse cochlea and to regulate the convergent extension 

movements during neural tube closure in humans (Lei et al., 2010; 

Montcouquiol et al., 2003). Vangl 1/2 binds to Dishevelled and to Pk1/2 (Jenny 

et al., 2005; Torban et al., 2004).  

Celsr1 is a 7 pass transmembrane protein required for the patterning of sensory 

hair cells and neural tube closure in mice (Curtin et al., 2003). Recently, it was 

found that Celsr1 physically interacts with Vangl2 (Lei et al., 2014).  

Mutations of the Prickle 1/2 genes in humans, mice and zebrafish have been 

associated with seizures (Tao et al., 2011). Studies in drosophila and zebrafish 

suggest that Pk1/2 are cytoplasmic proteins that physically interact with 

dishevelled, Strabismus (Vangl in humans) and Diego (Diversin or Ankrd6 in 
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humans) (Das et al., 2004; Bastock, Strutt 2003; Tree et al., 2002), and 

modulate PCP signalling by competing with Diego for the binding with 

Dishevelled. In drosophila the binding of Diego with Dishevelled facilitates the 

FZD/Dishevelled interaction, while the interaction between Pk and Dishevelled 

exerts the opposite effect (Jenny et al., 2005).  

Ankrd6 has been involved in the PCP-dependent orientation of the inner ear 

sensory organs (Jones et al., 2014). The ankyrin repeat domain of Ankrd6 binds 

to the DEP domain of Dishevelled. This was shown to be required to activate 

the WNT/JNK pathway in HEK293 cells (Jones et al., 2014). In silico studies 

predicted that the ankyrin repeats present in this protein are putative binding 

domains for Prickle1, Prickle2, Vangl1, and Vangl2 (Katoh, 2005). In drosophila 

the homologous of Ankrd6, Diego, is a cytoplasmic protein recruited by 

Dishevelled that facilitates FZD/PCP signal (Jenny et al., 2005). 

Although it is still unclear how the PCP core elements regulate cell polarity, it 

seems that their subcellular localization during PCP signalling is a key factor. In 

drosophila, before the onset of a FZD/PCP signal, the core components are 

localized around the apical-lateral cortex, while following a PCP stimulus, they 

distribute asymmetrically to form functional complexes (Seifert and Mlodzik, 

2007). In other words, the precise localization of PCP core components in the 

cell is a prerequisite for PCP-dependent functions such as convergent 

extension movements and tissue polarity (Strutt, 2003). 
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Figure 1.4: Schematic representation of the WNT/PCP pathway: The WNT/PCP 

pathway is activated by WNT ligands and requires the core components FZD, Vangl 1/2, Prickle 

1/2, Ankrd6, Celsr1 and Dishevelled. Although their molecular functions are not fully 

understood, their presence is required for PCP functions such as the orientation of hairs and 

stereocilia in the ear and during gastrulation. The most characterised effectors of the WNT/PCP 

signalling are the small GTPAses Rho and Rac, which are involved in the regulation of actin 

dynamics (refer to the main text for more details). 

 

Downstream the PCP core components are several effectors which mediate 

different cell behaviours; these include the Rho family of GTPases (Rho, Rac 

and Cdc42) and JNK (Roszko, Sawada and Solnica-Krezel, 2009).  

The Rho family of GTPases belong to the family of Ras-related small GTP 

binding proteins, comprising RhoA, RhoB and RhoC, Rac1 and Rac2, Cdc42, 
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RhoG and TC10 (Boguski and McCormick, 1993). Rho GTPases are in an 

active state when bound to GTP and in an inactive state when bound to GDP 

(Symons, 1996). The WNT/FZD-dependent activation of Rho GTPases is 

mediated by Dishevelled (Schlessinger, Hall and Tolwinski, 2009). Dishevelled 

activates RAC1 by direct binding with the DEP domain (Habas, Dawid and He, 

2003), whereas Rho interacts with Dishevelled through the protein Daam1, 

which forms a complex with Rho and Dishevelled (Habas, Kato and He, 2001). 

Rho and Rac collaborate together in the reorganization of the actin cytoskeleton 

during polarized cell shape changes and cell movement (Schlessinger, Hall and 

Tolwinski, 2009). Rac is involved in the formation of actin ruffles and focal 

adhesions at the leading edge of motile cells. These actin structures, called 

lamellipodia, constitute a molecular motor that push the cell forward during cell 

migration (Machesky and Hall, 1997; Nobes and Hall, 1995). This is achieved 

through the activation of the WAVE and Arp2/3 complexes (Jaffe and Hall, 

2005). Rac can also induce genes transcription through the activation of the c-

Jun N-terminal Kinase (JNK) pathway (Boutros et al., 1998; Minden et al., 

1995). JNK signalling is required for the correct gastrulation in Xenopus, 

suggesting that this pathway is relevant in the morphogenic cell movements 

controlled by WNT/PCP (Yamanaka et al., 2002). However, little is known about 

the molecular mechanisms by which JNK participates to PCP. A possible 

mechanism is through the phosphorylation of a protein that specifically interacts 

with the F-actin capping protein (CapZIP) that is involved in the remodelling of 

actin filaments (Eyers et al., 2005). Moreover, JNK was shown to participate in 

the WNT/PCP by controlling microtubules stability (Ciani and Salinas, 2007). 

JNK can activate the transcription of target genes by phosphorylating c-Jun, 

which together with c-Fos forms the AP-1 transcription factor complex (Chiu et 

al., 1988; Halazonetis et al., 1988); through this pathway, JNK can activate 

genes involved in cell proliferation and survival (Leppa and Bohmann, 1999). It 

is likely that JNK could promote the transcription of genes which are relevant for 

PCP, although this aspect is still poorly investigated (Roszko, Sawada and 

Solnica-Krezel, 2009). 

Rho can control different aspects of the actin cytoskeleton through the 

activation of the downstream effectors mDIA1 and the Rho associated kinase 

(ROCK) (Yamana et al., 2006; Maekawa et al., 1999). Rho has been implicated 

in the formation of actin stress fibres and focal adhesion, and regulates the 
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contractility of the actin cytoskeleton (Chrzanowska-Wodnicka and Burridge, 

1996; Ridley and Hall, 1992). 

Several experiments have demonstrated a requirement for WNT dependent 

Cdc42 activation during convergent extension movements in frog gastrulation, 

but it is not clear if this is activated by dishevelled or other Frizzled-dependent 

pathways (Schlessinger, Hall and Tolwinski, 2009). 

 

1.4.3 WNT Calcium pathway 

 

In some systems WNTs can increment calcium release through the activation of 

the WNT/Calcium pathway. This was demonstrated for the first time in the zebra 

fish model, where WNT5a and WNT11 were shown to increase the intracellular 

level of calcium (Westfall et al., 2003; Slusarski et al., 1997). The WNT/Calcium 

pathway is an important regulator of the embryonic development and also 

regulates physiological functions in adult tissues, such as slow muscle fibres 

formation and intracellular signalling in the retina (Kohn and Moon, 2005).  

Calcium concentration is finely regulated in the cytoplasm, and temporary 

increments of Ca2+ function as important signal mediators in cells (Clapham, 

1995). FZD receptors can activate heterotrimeric G-proteins, which in turn 

activate Phospholipase C (PLC) through the G-protein β/γ dimers (Slusarski et 

al., 1997) (fig. 1.5). PLC catalyses the formation of inositol-1,4,5-

trisphosphonate (IP3) and diacylglycerol (DAG) from the membrane 

phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2);  IP3 binds to 

intracellular receptors that lead to the release of Ca2+ from intracellular stores 

(Kuhl, 2004). Both Ca2+ and DAG activate the Protein Kinase C (PKC) 

(Sheldahl et al., 1999; Liu and Heckman, 1998).  
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Figure 1.5: Schematic representation of the WNT/Calcium pathway: WNT ligands 

activate G-protein signals through the interaction with FZD. FZD receptors interact with the G 

protein subunits β/γ to activate PLC, which in turn catalyses the production of PIP3 and DAG 

from PIP2. The production of PIP3 leads to the release of intracellular Ca2+ and to the 

activation of the Ca2+ dependent proteins CAMK2 and Calcineurin. DAG and Ca2+ also 

activate PKC. PKC, CAMK2 and Calcineurin modulate the cellular response through the 

transcriptional control of target genes and cytoskeletal rearrangements. 

 

Other proteins which are activated by the release of calcium are the calmodulin-

dependent protein kinase II (CAMK2) and/or Calcineurin (Hogan et al., 2003; 

Kuhl et al., 2000). 

WNT-dependent PKC activation was shown to regulate cell-cell adhesion, cell 

movement during gastrulation and tissue separation during embryogenesis 

(Kinoshita et al., 2003; Winklbauer et al., 2001; Pauken and Capco, 1999). PKC 
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can also control cytoskeletal dynamics through the activation of the small 

GTPase Cdc42 during gastrulation (Choi and Han, 2002).  

CAMK2 is essential during embryonic development and is involved in the dorso-

ventral axis formation in the Xenopus embryo (Kuhl et al., 2000). Moreover 

CAMK2 signal was shown to inhibit the WNT canonical pathway through the 

activation of the MAP kinases TAK1 and NLK, which block the transcriptional 

activation of TCF/LEF (Ishitani et al., 2003; Ishitani et al., 1999).  

Calcineurin is a serine/threonine protein phosphatase which regulates the 

activity of several target proteins (Jain et al., 1993), including the Nuclear Factor 

of activated T-cells (NF-AT). When NF-AT is dephosphorylated by calcineurin, it 

enters the nucleus and regulates the expression of target genes. The 

WNT/Calcineurin/NF-AT signalling was shown to be required for the embryo 

dorsoventral axis formation in Xenopus, T-cells differentiation and activation, 

and cardiac valves development in mice (Saneyoshi et al., 2002; Serfling et al., 

2000; Ranger et al., 1998). 

 

1.4.4 WNT signalling in the development and maintenance of 

the mammary gland 

 

Studies in mice have shown that the WNT pathway is essential for the normal 

development of the mammary gland. Canonical WNT signalling is required 

during the early stages of mammary gland development, and mice embryos 

stimulated with WNT3A or the WNT pathway activator lithium chloride (LiCl) 

show increased formation of mammary placodes. Conversely, the expression of 

the secreted WNT inhibitor Dickkopf 1 blocks mammary placode formation (Chu 

et al., 2004). WNT10b and WNT6 display specific spatio-temporal expression 

patterns during mouse mammary gland development (Veltmaat et al., 2004). 

The activation of canonical WNT signalling during mammary gland development 

was demonstrated in transgenic mice that express a TOPGAL Wnt reporter 

gene. This is based on a multimerized TCF binding site that drives the 

expression of LacZ, allowing a colour-base identification of the regions were 

TCF promoter is activated. These experiments showed that the β-catenin-

dependent activation of the transcription factor TCF/LEF1 is required for the 
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formation of the mammary gland in mice (Chu et al., 2004; van Genderen et al., 

1994). 

The non canonical WNT pathway was also shown to be involved in mammary 

gland development. For example WNT5a, a non canonical ligand, is required for 

the correct extension and lateral branching of milk ducts in mice (Roarty and 

Serra, 2007). 

The mammary gland undergoes numerous morphologic changes to adapt to the 

different stages of sexual development. These modifications require a tight 

control in cell proliferation, differentiation and migration. For example, during 

puberty, the rudimentary ductal tree develops in an elaborate epithelial network 

that constitutes the adult mammary gland; further modifications are required 

during pregnancy to adapt the gland for lactation. The plasticity of the mammary 

tissue implies the involvement of mammary stem cells (van Amerongen, 

Bowman and Nusse, 2012). WNT signalling is important for the maintenance of 

mammary stem cells both in the embryo and adult tissue (Zeng and Nusse, 

2010). Van Amerongen and colleagues used a recombinant mice model were 

the expression Axin2 is traceable through a fluorescent reporter system. Axin2 

is a well established target gene of the β-catenin pathway and also marks 

mammary stem cells. In these mice, WNT/β-catenin responsive stem cells 

localize in specific regions of the mammary epithelial network in a time 

dependent manner: Axin2 positive cells mark the prospective luminal cell in the 

embryo, while they become committed exclusively to the basal cell lineage in 

the 2 week-old pups (van Amerongen, Bowman and Nusse, 2012).  

Ovarian hormones are essential to regulate the development of the mammary 

gland. Indeed, ovariectomy causes abnormalities in the development of the 

mammary buds and ducts during embryogenesis. Weber-Hall et al. observed 

that ovariectomy causes the reduction of WNT2, WNT4 and WNT5b mRNAs in 

the mammary gland, suggesting that ovarian hormones could control the 

mammary gland development through the expression of WNTs (Weber‐Hall et 

al., 1994). Indeed, the absence of PGR leads to the failure in the ductal side-

branching of the mammary gland, but this can be rescued by the ectopic 

expression of WNT-1. Moreover, the same authors observed that progesterone 

controls the expression of WNT4 during pregnancy (Brisken et al., 2000). 
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1.4.5 WNT Signalling in cancer 

 

The first observation of the oncogenic effects of WNT signalling was made by 

Nusse and Varmus in 1982, when they found that MMTV infection induces 

mammary tumours in mice through the activation of WNT1 (Nusse et al., 1984). 

Since then, several other mutations in components of the WNT pathway have 

been observed during carcinogenesis (Polakis, 2000). Deregulation in β-catenin 

target genes such as cyclin D1 and c-MYC could lead to uncontrolled 

proliferation in several tissues and, therefore, give rise to tumour formation 

(Shtutman et al., 1999; He et al., 1998). The over activation of the β-catenin 

pathway is often originated by mutations in β-catenin itself, or in onco-supressor 

genes that control its degradation (Polakis, 2000). 

Mutations affecting the amino-terminal region of the β-catenin gene hamper the 

interaction with APC and, therefore, prevent its degradation; this in turn leads to 

the constitutive activation of β-catenin and to oncogenic transformation (Polakis, 

2000; Morin et al., 1997; Rubinfeld et al., 1997). β-catenin mutations occur with 

low frequency (Polakis, 2000), but mutations of the β-catenin destruction 

complex component APC are common in human cancers and considered the 

principal gatekeeper mutations in sporadic and familial colon tumours (Hussain 

and Harris, 1998; Morin et al., 1997). 

Axin1 is another protein of the destruction complex which is essential for the 

degradation of β-catenin (Clevers and Nusse, 2012). Mutations in Axin1 have 

been reported in hepatocarcinoma, particularly those lacking mutations of APC 

or β-catenin (Satoh et al., 2000). Axin downregulation is also associated with 

poor prognosis in lung cancer (Xu et al., 2007; Xu et al., 2006). 

Although the non canonical WNT pathway has been understudied in cancer, 

more scientists are now focusing the attention to the role of β-catenin 

independent signals in tumorigenesis (Wang, 2009). For example, WNT5a, 

generally considered a noncanonical ligand (although it was shown that it can 

stabilize β-catenin depending on the receptor context (Mikels and Nusse, 2006), 

promotes melanoma cells invasion and metastases through the activation of 

PKC (Weeraratna et al., 2002). Moreover, WNT5a was shown to enhance 

motility and invasion of gastric cancer cells (Kurayoshi et al., 2006). FZD10 has 

been implicated in the tumorigenesis of human synovial sarcomas through the 
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activation of the non canonical WNT/RAC1/JNK pathway (Fukukawa et al., 

2009). VANGL1, a member of the PCP core component (fig 1.4), has been 

implicated the polarity and migration of breast cancer cells (Anastas et al., 

2012).  

Recently, a new role for PCP in the communication between stroma and cancer 

cells has emerged. Luga and Wrana showed that cancer-associated fibroblasts 

promote the mobilization of PCP proteins in cancer cells through the secretion 

of exosomes; this in turn promotes the migration and invasion of breast cancer 

cells (Luga and Wrana, 2013; Luga et al., 2012). However, the activation of 

noncanonical WNT signalling has been associated with tumour-suppressive 

effects in leukaemia (Roman-Gomez et al., 2007; Liang et al., 2003). In other 

studies, non-canonical signalling mediated by WNT5a promoted leukaemia, 

probably by deregulation of stem cells maintenance (Sugimura and Li, 2010). 

The WNT/Calcium pathway has also been linked to tumorigenesis, particularly 

in relation to cell motility and invasiveness (Le Floch et al., 2005; Weeraratna et 

al., 2002).  

 

1.4.6 WNT signalling and cancer stem cells 

 

Stem cells can produce differentiated cells and new undifferentiated stem cells 

by asymmetric cell division(Tuch, 2006). There are two subtypes of stem cells: 

embryonic stem cells, which are totipotent and can generate all tissues, and 

adult stem cells, which only differentiate into specific tissues (Bajada et al., 

2008). While embryonic stem cells are essential for embryogenesis, adult stem 

cells provide a source of new differentiated cells in tissues with high cells 

turnover and during tissue repair (Young and Black, 2004). 

Many human cancers contain cells with stem like features, responsible for 

several aspects of cancer malignancy such as drug resistance, tumour 

recurrence, metastasis and tumour heterogeneity (Merlos-Suárez et al., 2011; 

Campbell and Polyak, 2007; Li et al., 2007; Jordan, Guzman and Noble, 2006; 

Dean, Fojo and Bates, 2005). 

WNT signalling is involved in stem cells self-renewal and differentiation. 

Alterations in tightly regulated signals in cancer stem cells are implicated in the 
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malignant proliferation and metastasis of human tumours (Reya and Clevers, 

2005). An emblematic example is the deregulation of β-catenin signalling in 

colon cancer, which leads to the activation of the same genetic programs 

characteristic of the stem/progenitor cells of the colon crypt (Vermeulen et al., 

2010; Reya and Clevers, 2005; Van De Wetering et al., 2002). Similarly, the 

deregulation of WNT signalling is required for the maintenance of leukaemia 

stem cells (Wang et al., 2010; Reya and Clevers, 2005).  

The WNT pathway is thought to contribute to tumorigenesis by stimulating the 

transition between a differentiated epithelial state to an undifferentiated 

mesenchymal phenotype (epithelial-mesenchymal transition, EMT). Cells that 

undergo EMT present stem cells features and are considered the principal 

responsible for the onset of cancer metastasis (Singh and Settleman, 2010; 

Morel et al., 2008; Neth et al., 2007). 

 

1.4.7 WNT signalling in breast cancer 

 

As previously mentioned, the oncogenic effect of the WNT pathway in the 

mammary gland was firstly demonstrated by the seminal work of Nusse and 

Varmus that lead to the discover of WNT-1 as an oncogene in 1982 (Nusse et 

al., 1984). Following studies have demonstrated that MMTV viral insertion can 

cause cancer through the activation of other WNTs, such as WNT3 and 

WNT10b (Howe and Brown, 2004; Smalley and Dale, 2001; Bowcock, 1999). 

The role of canonical WNT signalling in human breast tumorigenesis has been 

confirmed with immunohistochemical studies in patients tissues: Two 

independent studies showed that about 60 % of the clinical samples analysed 

present nuclear/cytoplasmic localization of β-catenin corresponding to an 

activated status (Ryo et al., 2001; Lin et al., 2000). Moreover, in the study of Lin 

et al., it was shown that the activation of β-catenin positively correlated with 

increased Cyclin D1 expression, which is a poor prognostic factor in breast 

cancer (Lin et al., 2000; McIntosh et al., 1995). Collectively, these findings 

suggest a pivotal role of WNT canonical signalling in breast tumorigenesis. 

However, since mutations of β-catenin, APC or Axin are very rare in breast 

cancer, it is likely that the deregulation of the WNT canonical pathway is caused 

by other unknown factors (Howe and Brown, 2004). 
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Several studies have been carried out to understand abnormalities in the 

expression of WNT ligands, and many authors reported mRNA overexpression 

of several WNTs in breast cancer (table 1.2); however, there is still a lack of 

information regarding WNTs proteins expression and its correlation with breast 

tumorigenesis, mainly for the lack of high quality antibodies (Howe and Brown, 

2004). 

 

Table 1.2: Selected studies reporting alteration of WNT signalling proteins in breast 

cancer (Adapted from Howe and Brown, 2004) 

Signalling 

component 

Reported abnormality % cases 

(Numbers) 

Tumor type/sample 

 

SFRP1 

 

Loss or underexpression 

 

80% (85/107) 

 

Carcinomas 

WIF1 

 
Reduced imunostaining 60%  (21/35) Carcinomas 

WNT2 

WNT2 

WNT5a 

WNT5a 

WNT7b 

WNT10b 

WNT13/2b 

WNT14 

 

APC 

 

 

 

 

 

β-Catenin 

Overexpression, RNA 
Overexpression, RNA 

Overexpression, RNA 

Loss of immunostaining 

Overexpression, RNA 

Overexpression, RNA 

Overexpression, RNA 

Overexpression, RNA 

 

Truncation mutation 

Truncation mutation 

Truncation mutations 

Reduced immunostaining 

 

 

Nuclear/cytoplasmic staining 

Nuclear/cytoplasmic staining 

Increased protein 

45% (5/11) 

22% (2/9) 

80%(4/5) 

36%(10/28) 

10% (2/20) 

6% (3/50) 

14%(2/14) 

11%(1/9) 

 

4% (1/24) 

0.5% (1/227) 

6% (3/54) 

41% (11/27) 

 

 

60% (74/123) 

63%(25/40) 

13% (7/54) 

 

Carcinomas 

Primary breast cancer 

Carcinomas 

Carcinomas 

Carcinomas 

Carcinomas 

Carcinomas 

Primary breast cancer 

 

Cell lines 

Carcinomas 

Carcinomas 

Carcinomas 

 

 

Primary breast cancer 

Primary breast cancer 

Carcinomas 

 

Deregulation of WNT signalling in breast cancer could be a consequence of the 

altered expression of secreted WNT inhibitors. Indeed, epigenetic 

downregulation of WNT antagonists such as SFRP1/2 and DKK1 were reported 

to be common in breast cancer (Suzuki et al., 2008; Ugolini et al., 2001). The 

tumour suppressor activity and the prognostic significance of SFRP1 have been 

described by several independent authors (Matsuda et al., 2009; Shulewitz et 

al., 2006; Klopocki et al., 2004). Another secreted WNT inhibitor, Wif1, was 

shown to be hypermethylated and consequently downregulated in a large 

number of tumour samples and breast cancer cell lines (Ai et al., 2006). These 
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findings were confirmed independently by other investigators (Veeck et al., 

2009; Wissmann et al., 2003). Overall, these results suggest that epigenetic 

alterations of WNT antagonists, rather than mutations of β-catenin and APC, 

can explain the over-activation of canonical WNT signalling in breast cancer. 

The role of β-catenin independent WNT pathways in breast cancer is still largely 

unknown. However, recent findings suggest that the noncanonical signalling 

could have a role in regulating the interaction of cancer cells with the tumour 

microenvironment and might be important to regulate the metastatic spread of 

invasive breast cancers (Alderton, 2013). The ground-breaking work from Luga 

et al. demonstrated that fibroblasts can induce the invasion, motility and 

protrusive activity of breast cancer cells through the activation of the PCP 

pathway (Luga and Wrana, 2013; Luga et al., 2012). 

 

1.5 Frizzled receptors 

 

Frizzled receptors (FZDs) are seven-transmembrane-spanning proteins 

considered as a sub-class of the G protein-coupled receptor family. In humans 

there are ten FZDs. The name “frizzled” derives from the irregularly organized 

and curled hairs and bristles on thorax, wings, and feet of the frizzled mutants of 

Drosophila Melanogaster (Schulte, 2010). Human FZDs can be clustered in 4 

groups depending on the protein homology: A first group includes FZD1, 2, 7 

with 75% homology; a second group includes FZD5,8 with 70% of protein 

homology; a third group includes FZD4,9,10 with a 50% homology, and the last 

group consist of FZD3 and 6 with 50% of homology (Fredriksson and Schioth, 

2005).  

FZD receptors contain 7 transmembrane domains, an extracellular N-terminus 

and an intracellular C-terminus (fig. 1.6) (Foord et al., 2005; Vinson, Conover 

and Adler, 1989). The extracellular region of all FZDs feature a conserved 

Cysteine Rich Domain (CRD) which is believed to be the binding site for WNTs 

(Xu and Nusse, 1998) and Soluble Frizzled-related proteins (Rattner et al., 

1997). The seven transmembrane regions are connected by 3 extracellular 

loops and 3 intracellular loops and a c-terminus which varies depending on the 

specific FZD (Schulte, 2010). The intracellular domain is required for the 

interaction with a plethora of proteins, which include, amongst others, 
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heterotrimeric G-proteins (Slusarski, Corces and Moon, 1997) and Dishevelled 

(Wong et al., 2003).  

All Frizzled receptors present a KTxxxW domain in the C terminus which is 

required for the binding with proteins containing the PDZ domain, such as 

Dishevelled (Wong et al., 2003). A second PDZ motif is present in some, but not 

in all FZDs, at the terminal end of the C-terminus (Schulte, 2010).  

FZDs bind to WNT ligands, but the specificity of the ligand/receptor interaction 

is largely obscure. Moreover, there is a certain degree of promiscuity for the 

binding to different WNT ligands (Hsieh et al., 1999). Table 1.3 summarises the 

known FZDs/WNTs combinations.  

Interestingly, studies in Xenopus embryos have shown that that Xfz3, the 

homologous of human FZD3, can dimerize to activate the canonical WNT 

signalling (Carron et al., 2003). This study indicates that receptors dimerization 

could further increase the complexity of the WNT pathway.  
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Figure 1.6: Schematic representation of the class of frizzled receptors : The 

frizzled receptors consist of 7 transmembrane domains, a N- terminus extracellular domain and 

a C-terminus intracellular domain. The extracellular CRD domain interacts with WNT ligands 

and secreted WNT inhibitors. The intracellular domain is a docking site for heteromeric G 

proteins and Dishevelled. FZD receptors also present 1 or 2 intracellular PDZ ligand domains 

for the interaction with PDZ proteins (adapted from Schulte, 2010). 

 

Table 1.3: Reported interactions between FZD receptors and WNT ligands: “x” indicate 

binding interactions demonstrated with immunoprecipitation, while “o” indicate co-localization or 

other methods of receptor/ligand interaction identification (adapted from Dijksterhuis, Petersen 

and Schulte, 2014).   

 WNTs 

 1 2 2b 3 3a 4 5a 5b 6     7a 7b 8a 8b 9a 9b 10
a 

10
b 

11 16 

FZD1 x x  o x  x o  o x         
FZD2  o  o o  x  o o o  o       
FZD3  x x  o  o    x         
FZD4                    
FZD5  o   x  x   x     o  o   
FZD6     x x x o  o        o  
FZD7    x x  o   o          
FZD8               o     
FZD9  x                  
FZD10           x         
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 1.5.1 Frizzled receptors in cancer 

 

Several studies have shown that FZD receptors could promote tumorigenesis 

by controlling proliferation or cancer invasion. For example, FZD1 and 2 were 

found overexpressed in breast cancer compared to normal tissue (Milovanovic 

et al., 2004). Moreover, FZD1 was shown to enhance drug resistance in breast 

cancer and neuroblastoma through the activation of a β-catenin dependent 

signal (Zhang et al., 2012; Flahaut et al., 2009). 

FZD3 is overexpressed in chronic lymphocytic leukaemia and associated with 

increased transendothelial migration, and poorer prognosis in patients (Kaucka 

et al., 2013; Lu et al., 2004). 

FZD4 was reported to be a mediator of EMT in prostate cancer with TMPRSS2-

ERG fusions (Gupta et al., 2010). Moreover a siRNA targeting FZD4 was shown 

to reduce the motility and migration of bladder cancer cells (Ueno et al., 2012). 

Ueno et al. reported that the overexpression of FZD7 in colon cancer cells leads 

to increased activation of the WNT canonical pathway and augmented invasion 

and proliferation of tumour cells (Ueno et al., 2009; Ueno et al., 2008). FZD7 

overexpression and β-catenin stabilization were also suggested as the initiating 

events in hepatocellular carcinomas in mice models (Merle et al., 2005). FZD7 

was found overexpressed in TNBC compared to non TNBC tumours, and 

downregulation of FZD7 in TNBC cell lines resulted in a reduction of cell 

proliferation and invasion in vitro and in vivo (Yang et al., 2011).  

Wang et al. reported that FZD8 is overexpressed in lung cancer compared to 

matched normal tissue. Knock down of FZD8 resulted in reduced proliferation 

and colony number formation of lung cancer cell lines in vitro, and reduced 

tumour growth in mice xenografts (Wang et al., 2012). 

FZD9 was shown to have tumour suppressor activity in non-small cells lung 

cancer by activating JNK and supressing the anchorage-independent growth 

and proliferation of lung cancer cells (Winn et al., 2005). 

FZD10 mRNA was found upregulated in colorectal cancer compared to normal 

matched tissue by Terasaki et al, although the number of colon cancer cases 

analysed were only two (Terasaki et al., 2002). FZD10 was also found 

overexpressed in synovial sarcomas, and the use of a monoclonal antibody 
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against FZD10 was effective in reducing cancer cells growth in vivo and in vitro 

(Fukukawa et al., 2009). 

 

1.6 Frizzled receptor 6  

 

FZD6 receptor 6 (Fzd6) is the product of the FZD6 gene, located in 

chromosome 8 (8q22.3-q23.1). Fzd6 is a single peptide sequence of 706 

aminoacids and like other FZDs, contains an extracellular CRD and seven 

transmembrane domains. However, in contrast to other FZDs, it does not 

contain a C-terminal PDZ domain-binding motif (McEntyre et al., 2012; 

Tokuhara et al., 1998). 

Golan et al. reported that FZD6 does not transduce a canonical signal, but acts 

as a repressor of the FZD1-dependent activation of β-catenin in HEK293 cells. 

This is mediated by the activation of TAK1/NLK kinases (Golan et al., 2004).  

These findings are in agreement with Sato et al., who showed that FZD6 does 

not mediate the activation of β-catenin (Sato et al., 2010). The same group also 

reported that the CRD of FZD6 does not bind to WNT5a and WNT3a (Sato et 

al., 2010). However, Fröjmark et al. reported that the stabilization of β-catenin, 

induced by WNT3a in primary fibroblasts was abolished in fibroblasts of patients 

affected by nail Dysplasia bearing FZD6 mutations (Fröjmark et al., 2011).  

Moreover, a Fzd6 dependent stabilization of β-catenin after activation with 

WNT3a was observed in human mesenchymal stem cells (Kolben et al., 2012). 

Consistent with a non-canonical role for Fzd6, Lyons et al showed that Fzd6 

strongly binds WNT4 and does not transduce a β-catenin canonical pathway in 

kidney epithelial cells (Lyons et al., 2004). Heinonen et al. suggested that 

WNT4 activates the PCP pathway through Fzd6 in murine hematopoietic 

precursor cells (Heinonen et al., 2011). A recent study of Kilander et al., based 

on fluorescence recovery after photobleaching (FRAP), showed that 

WNT3A,WNT4, WNT-1, WNT5A, WNT9B, WNT10B and WNT16B all cause, to 

a different extent, the membrane shift of Fzd6 conjugated with GFP, suggesting 

a possible interaction of these WNTs with Fzd6 and a broad receptor/ligand 

promiscuity (Kilander, Dahlström and Schulte, 2014).  

A role of FZD6 in PCP is further suggested by the phenotype observed in FZD6 

-/- mice and patients affected by neural tube defects bearing germ line 
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mutations of FZD6 (De Marco et al., 2012; Wang, Guo and Nathans, 2006; 

Guo, Hawkins and Nathans, 2004). FZD6 -/- and FZD3 -/- double mutants (but 

non mice with single knock down) present defects in neural tube closure and in 

the orientation of a subset of auditory and vestibular cells (Wang, Guo and 

Nathans, 2006). This suggests a certain level of redundancy between FZD6 and 

FZD3. FZD6 is also important for the hair patterning in mammals; FZD6 null 

mice are healthy and viable, but show a phenotype with disorganized 

orientation of the hair follicles (Wang, Chang and Nathans, 2010; Guo, Hawkins 

and Nathans, 2004). A role in platelet number regulation has been reported in 

FZD6 double knock down mice, where the number of platelets was increased in 

comparison to control mice (Steele et al., 2009). 

In humans, mutations of FZD6 have been associated with neural tube defects 

and a congenital nails disorder called Autosomal-Recessive Nail Dysplasia (De 

Marco et al., 2012; Fröjmark et al., 2011; Naz et al., 2011). 

 

1.6.1 Frizzled receptor 6 in cancer 

 

Frizzled 6 is overexpressed in breast cancer, hepatocarcinoma, colon cancer, 

prostate cancer, leukaemia and squamous cell carcinoma (Ma et al., 2009; Wu, 

Zierold and Ranheim, 2009; Bengochea et al., 2008; Finak et al., 2008; Smid et 

al., 2008; Vincan and Barker, 2008; Haider et al., 2006; Saramäki et al., 2006). 

However, few studies have investigated the role of FZD6 in tumorigenesis. Wu 

et al. reported that ablation of FZD6 in chronic lymphocytic leukaemia B cells 

results in a delay in tumour progression and reduction of active β-catenin in 

mice (Wu, Zierold and Ranheim, 2009). Our group reported that FZD6 

expression is associated with drug resistance and increased invasiveness in 

neuroblastoma, marking a cancer stem cell subpopulation (Cantilena et al., 

2011). Finally, a FZD6 polymorphism was associated with a greater risk of 

papillary thyroid cancer (Neta et al., 2011). 
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1.7 Aims  

 

On the basis of previous studies that suggested that FZD6 is implicated in 

tumorigenesis, we aimed to elucidate its role breast cancer. We wanted to 

determine whether FZD6 was overexpressed in breast cancer cells compared 

to normal breast tissue and if its expression is correlated with clinical features in 

patients. Next, using a loss of function approach, we wanted to assess the 

potential role of FZD6 in the proliferation and invasion of breast cancer cells and 

the signalling pathway downstream of the Fzd6 receptor.  
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CHAPTER II 

 

Materials and methods 

 

2.1 Reagents 

 

All reagents, if not otherwise stated, were purchased from Fisher Scientific UK.  

 

2.2 Oncomine data mining  

 

In silico expression studies were made using the online software Oncomine 

(https://www.oncomine.org, powered by Life Technologies). Only datasets 

containing normal tissue compared to tumour tissue were considered for the 

analysis (fig. 2.1).  
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Figure 2.1: Search criteria in the Oncomine platform . 
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2.3 Kaplan Meier plotter survival studies 

 

 

Figure 2.2: Search criteria in the Kaplan Meier plotter platform . 

 

FZD6-associated survival studies were obtained using the online tool Kaplan 

Meier plotter (http://kmplot.com/analysis/) (Györffy et al., 2010). The software 

uses microarrays expression data and the matched clinical information of breast 

cancer patients to generate survival curves. The expression data is provided by 

databases such as GEO (Gene Expression Omnibus), EGA (European 

Genome-Phenom Archive), and TCGA (The Cancer Genome Atlas).  

http://kmplot.com/analysis/
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Kaplan Meier curves correlate the survival of a cohort of patients for a certain 

amount of time with parameters such as the expression level of a certain gene 

or a given therapy. In this study three parameters were analysed in correlation 

with FZD6 expression: 

- The overall survival of patients, expressed as the probability of survival 

from the time of diagnosis. 

- The relapse free survival, intended as the probability of survival without 

symptoms after primary treatment. 

- Distant relapse free survival, expressed as the probability of survival 

without the onset of metastasis after primary treatment.  

Curves were generated selecting the best cut-off, i.e. all the percentiles 

between the lower and the upper quartiles were computed, and the best 

performing threshold was used as a cut off (figure 2.2). 

Patients were then stratified in three different breast cancer subgroups: Luminal 

A, Luminal B and Basal, and further stratified in lymph node positive and lymph 

node negative using the appropriate drop-down lists (figure 2.2). All the other 

settings were maintained as default. The affimetrix probe 203987_at was used 

for FZD6. 

 

2.4 COSMIC analysis 

 

The Catalogue of somatic mutations in cancer (COSMIC) is a collection of 

published databases containing gene expression data and the record of somatic 

mutations of a large amount of tumours specimens. The repository is available 

through the web page 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/ and is managed by 

The Sanger Institute in Cambridge. 

The cancer browser was used to filter results of breast cancer samples 

containing expression data for FZD receptors. Copy number variation and gene 

expression were computed and displayed as in figure 2.3. 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
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Figure 2.3: Analysis of the copy number var iation and expression of FZD6 in 

breast cancer samples using the online platform COSMIC. 

2.5 Cell lines 

 

All the cell lines used in this study, except for the cell lines HMEC-184D, HMEC-

184D-HT, HEK 293FT and L-cells were validated and certified by the accredited 

company DDC medical. 

BT474: Derived from a luminal-like metastatic ductal breast carcinoma, isolated 

for the first time by Lasfargues and colleagues from the primary tumour 

(Lasfargues, Coutinho and Redfield, 1978). This cell line is positive for ER, PG 

and HER2 (Neve et al., 2006). The cell line was a kind gift of Professor Robert 

Newbold, Brunel University. 

MDA-MB-231:  This cell line was isolated in 1976 from the metastatic pleural 

effusion of a breast adenocarcinoma (Cailleau et al., 1976). It does not express 

the receptors for oestrogen and progesterone, and it is negative for HER2, 

thereby it is classified as triple negative cell line. This cell line is also basal-like. 

The cell line was a kind gift from Dr Pier Francesco Marra, King’s College 

London. 
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MDA-MB-436: This cell line is derived from the pleural effusion of a triple 

negative ductal metastatic breast carcinoma (Neve et al., 2006). It was isolated 

for the first time by Cailleau and colleagues in 1978 (Cailleau, Olivé and 

Cruciger, 1978). The cell line was a kind gift from Dr Pier Francesco Marra, 

King’s College London. 

HCC1143: Derived from an invasive ductal breast carcinoma, this cell line is a 

basal like, triple negative cell line that was isolated by Gazdar and colleagues in 

1994 (Neve et al., 2006; Gazdar et al., 1998). The cell line was a kind gift from 

Dr Pier Francesco Marra, King’s College London. 

MCF7: This cell line derives from the pleural effusion of a metastatic ductal 

breast carcinoma. It presents luminal characteristics and expresses ER and PR, 

but it is negative for HER2. It was isolated for the first time in the 1973 by Soule 

and colleagues (Soule et al., 1973). The cell line was a kind gift of Professor 

Robert Newbold, Brunel University. 

SKBR3: This cell line was isolated from the pleural effusions originated from a 

breast adenocarcinoma in 1970 (ATCC website, http://www.lgcstandards-

atcc.org/Products/All/HTB-30.aspx#history). The cell line is hormone receptors 

negative, but expresses HER2. SKBR3 cell line was a kind gift of Dr Gianluca 

Sala, G.D’Annunzio University, Italy. 

BT20:  This breast tumour line was established by E.Y. Lasfargues and L. 

Ozzello in 1958. It derives from the primary mass of an invasive ductal 

carcinoma and it is a basal triple negative cell line (Neve et al., 2006; 

Lasfargues and Ozzello, 1958). The cell line was a kind gift of Professor Robert 

Newbold, Brunel University. 

T47D: This breast cancer cell line was isolated by I. Keydar from a pleural 

effusion obtained from a female patient with an infiltrating ductal carcinoma of 

the breast. This cell line is luminal-like and positive for PR and ER (Neve et al., 

2006; Keydar et al., 1979). The cell line was a kind gift of Dr Gianluca Sala, 

G.D’Annunzio University. 

HMEC-184D: The 184D strain of human mammary epithelial cells was originally 

isolated by Professor Martha Stampfer and was obtained via reduction 

mammoplasty of a 21 years old disease-free individual. The primary HMEC-

184D cell line has a finite lifespan of 20-40PD when grown in a stress-free 
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medium formulation of M87A supplemented with 0.5 ng/mL cholera toxic and 

0.1nM oxytocin (Garbe et al., 2009). The cell line was kindly provided by Dr 

Hemad Yasaei and Professor Robert Newbold, Brunel University. 

HMECT-184D-HT: This cell line was a kind a gift from Dr Hemad Yasaei and 

Professor Robert Newbold, and derives from a small population of pre-stasis 

HMEC-184D transfected with the pCi neo-hTERT plasmid using Neon 

electroporation system. Subsequently, the cells were put in selection for 2-3 

weeks in the presence of G418 Geneticin at a concentration of 150µg/mL. A 

small population of cells originating from a single transfected clone emerged 

and was named HMEC-184D-HT. When assayed for post-splice hTERT gene 

expression, it was shown to be 4-5 fold overexpressed compared to an empty 

vector counterpart. These cells proliferated for an extra 100 passages and are 

now deemed immortal. 

HEK 293 FT: These cells are human embryonic kidney cells transformed with 

the SV40 large T antigen under the control of the human cytomegalovirus 

promoter. The SV40 antigen derives from the polyomavirus SV40 and it is 

capable to transform a vast number of cells through the perturbation of the 

Retinoblastoma and p53 proteins. The SV40 large T antigen also promotes the 

episomal replication of transfected plasmids containing the SV40 origin of 

replication (Fanning, 1992). In this study HEK 293 FT cells were used for the 

expression of viral packaging vectors and virus production. HEK 293 FT cells 

were purchased from Life Technologies. 

Control, WNT3a and WNT5a L cells: These cells are mouse fibroblasts that 

have been stably transfected with empty vector or vectors expressing human 

WNT3a, or WNT5a (Willert et al., 2003). Conditioned media produced by these 

cells can be therefore used in signalling experiments involving WNT3a and 

WNT5a. L-cells were a kind gift from Professor J.P. Medema. 

 

2.6 Cell culture 

 

MDA-MB-231, HCC1143, MDA-MD-436 cell lines were grown in RPMI medium 

(Gibco) supplemented with 1mM in sodium pyruvate (Gibco) and 10% foetal 

bovine serum (FBS) (Gibco). HEK 293 FT, MCF7, SKBR3, T47D and L cells 
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were grown in DMEM (Gibco) supplemented with 10% FBS. BT20 and BT474 

were grown in a mixture of 50% DMEM and 50% F12 (Gibco), supplemented 

with 10% FBS. HMEC-184D and HMEC-184D-HT cells were grown in M87A 

medium (Lonza) supplemented with 0.25%FBS, 0.5 ng/ml cholera toxic (Sigma) 

and 0.1nM oxytocin (Bachem). WNT3a L-cells were maintained in constant 

selection with 125 μg/mL of Zeocin (Life Technologies) and WNT5a L-cells with 

400μg/mL G418 (Life Technologies).  All the cell lines were maintained in an 

incubator (Sanyo) at 37°C in a humidified atmosphere with 5% CO2 and 

regularly sub-cultured, using phosphate saline buffer (PBS) (Sigma) for 

washings and trypsin-EDTA (Sigma) to harvest cells. Cells were grown in 

flasks, dishes or multi-well plates (Nunc). Cells manipulations were carried out 

with graduated serological pipettes (Fisher Brand) in a class II sterile cabinet 

(Gelman Sciences). All the cells centrifugations were carried out in a Thermo 

Scientific Haraeus Biofuge Primo at 1200 rpm unless otherwise specified.  

Cell number was estimated pipetting 10 μL in an improved Neubauer 

haemocytometer (Marienfeld) with a depth of 0.1 mm and by averaging the 

number of cells in 4 areas of 1 mm each.    

For long term storage, cells were resuspended in 10% DMSO (Fisher), 40% 

FBS and 50% complete medium, and kept in 2 mL cryovials (Nalgene). To 

ensure a gradual freezing and to avoid the formation of intracellular ice crystals, 

the cryovials were kept overnight in a container containing isopropanol at – 80 

°C and were then stored in liquid nitrogen. To recover cells from liquid nitrogen 

the vials were rapidly immersed in a water bath at 37°C until the cell suspension 

was thawed. Next, cells were resuspended in 20 mL of pre-warmed medium 

and pelleted at 1200 rpm for 5 minutes. The supernatant was discarded and the 

cells were resuspended in fresh medium and plated in flasks or dishes. 

 

2.6.1 Preparation of WNT conditioned media 

 

Supernatants from confluent 10 cm dishes containing mouse fibroblasts L cells 

expressing control plasmid, WNT3a, or WNT5a plasmids, were harvested and 

stored at + 4 °C. For signalling experiments, the conditioned media were used 

diluted 1:10. 



72 
 

 

2.7 Protein extracts preparation 

 

Cells were counted and seeded in equal number for each experimental 

condition. When cells had to be exposed to an exogenous activator, a 24 hours 

starvation was performed beforehand. Cells were then washed with cold PBS 

and lysed by adding ice cold RIPA (Radio Immuno Precipitation Assay buffer, 

150 mM sodium chloride (Fisher), 1.0% Igepal (Sigma),  0.5% sodium 

deoxycholate (Sigma), 0.1% SDS (Fisher), 50 mM Tris pH 8.0 (Fisher), 1nM 

sodium orthovanadate (New England Biolab), HALT protease inhibitor cocktail 

(Thermoscientific ). Cells were scraped with a cell scraper, collected in 

Eppendorf tubes and kept on ice for 30 minutes. Every 5 minutes the lysates 

were vortexed. To separate the cell debris from soluble extracts, the lysates 

were centrifuged at 15.000 rpm at 4C̊ for 15 minutes in a Thermos Scientific 

Haraeus Fresco 21 table-top centrifuge. Next, supernatants were collected in 

fresh tubes and stored at – 80 ° C, or used for proteins analysis. 

For the signalling experiment showed in figure 6.7, cell lysis was performed by 

adding 100μL of 2X Laemli buffer (8% SDS, 20% 2-mercaptoehtanol (Sigma), 

40% glycerol (Fisher), 0.008% bromophenol blue (Fisher), 0.25 M Tris-HCl pH 

6.8)(Laemmli, 1970) and scraping cells with a cell scraper on ice. Cell lysate 

were briefly sonicated and boiled at 100 °C for 5 minutes, then stored at - 20°C 

or used for acrylamide gel electrophoresis. 

 

2.8 Estimation of total proteins concentration with the 

Bradford method 

 

To estimate the concentration of total proteins in RIPA lysates, a microliter of 

the protein extract was resuspended with 200 μL of Bradford reagent (SIGMA). 

In parallel, 1 μL of different BSA standards (0, 2, 5, 6, 8 and 9 μg/μL) was 

resuspended in Bradford reagent with the same ratio to generate a standard 

curve. The samples were assayed after 5 minutes in a plate spectrophotometer 
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(Biorad) at the wavelength of 595 nm. The incognito concentration of the protein 

samples was extrapolated from the standard curve. 
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2.9 Western blot analysis 

 

The lysates were mixed with 4x Laemmli Buffer and water to obtain a 4 fold 

dilution of the laemmli buffer. The samples were then vortexed and boiled at 

100 ̊C for 5 minutes in a heat block, then stored at -20 ̊C or used for SDS-PAGE 

(Sodium Dodecyl Sulphate – Poly Acrylamide Gel Electrophoresis). 

Polyacrylamide gels were made using gel casting cassettes from Biorad. The 

resolving gels were made according to the Table 2.1, varying the acrylamide 

percentage depending on the size of the proteins to be resolved. Stacking gels 

were casted according to the table 2.2 to obtain a concentration of acrylamide 

of 4% v/v.  

 

Table 2.1: SDS-PAGE resolving gel composition for 10 mL 

 

Table 2.2: SDS-PAGE stacking gel composition for 10 mL 

 

Solution Volume 

Water 6 mL 

0.5 M Tris-HCl pH 6.8, 0.4 % SDS 2.5 mL 

30% acrylamide/0.8% 
bisacrylamide 

1.3 mL 

10 % APS  0.1 mL 

TEMED  0.02 mL 

 

 Acrylamide final concentration % v/v  

Solution 8% 9% 10% 12% 

Water 7.25 mL 6.75 mL 6.25 mL 5.25 mL 

1,5 M Tris-HCl 
pH 8.8, 0,4% 

SDS 

3.75 mL 3.75 mL 3.75 mL 3.75 mL 

30% 
acrylamide/0.8% 

bisacrylamide 
(National 

Diagnostic) 

4 mL 4.5 mL 5 mL 6 mL 

10 % APS 
(Sigma) 

0.1 mL 0.1 mL 0.1 mL 0.1 mL 

TEMED (Fisher) 0.02 mL 0.02 mL 0.02 mL 0.02 mL 
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Protein samples were loaded in equal amount into polyacrylamide gels and 

electrophoresed using a Biorad electrophoresis apparatus. A constant voltage 

of 100 V was kept until the protein bands were well resolved. To estimate the 

proteins molecular weight the samples were run in parallel with a protein ladder 

(Thermoscientific). The electrophoresis buffer composition was the following: 25 

mM Tris base, 192mM glycine (Fisher), SDS 0.1% in distilled water (Green and 

Sambrook, 2012). Proteins were then transferred into nitrocellulose membranes 

(Amersham) using a Biorad apparatus and a transfer buffer with the following 

composition: 24 mM Tris base, 192 mM glycine, 20% SDS and 0.0375 % SDS 

in distilled water (Green and Sambrook, 2012). The transfer was performed on 

ice, applying a constant current of 350 mA. The membranes were then blocked 

in 5% non-fat dry milk (Marvel) dissolved in TBS-tween (TBS-t, 50 mM TRIS-

HCl, pH 7.5, 150 mM NaCl, 0.1 % Tween 20 (Fisher).  

The primary antibodies used and the corresponding experimental conditions are 

summarized in table 2.3. All the primary antibodies were incubated overnight, 

except for anti β-Actin, which was incubated for 1 hour at room temperature. To 

remove the excess of primary antibody and reduce the unspecific binding, the 

membranes were washed thrice with TBS-t for 10 minutes. The membranes 

were then incubated for 45 minutes with the appropriate secondary HRP-

conjugated antibody. The secondary antibodies used in this study are listed in 

table 2.4. Membranes were then washed in TBS-t thrice for ten minutes and 

incubated for one minute in ECL (Enhanced chemiluminescence substrate, 

Pierce). The membranes were then placed in an autoradiography cassette and 

overlapped with light sensitive films (GE Healthcare) in the dark. The films were 

developed with a Kodak automatic developer.  

If the nitrocellulose membrane had to be re-probed with a different primary 

antibody, the following stripping protocol was performed: membranes were 

incubated for 20 minutes in stripping buffer (0,6 M Tris-HCl pH 6.8,  0.7 % β-

mercapto-ethanol and 2 %SDS in water) pre-warmed at 50 ° C, then washed 5 

times for 4 minutes each with TBS-t and re-blocked in TBS-t 5 % milk. 
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Table 2.3: List of primary antibodies used in western blot analysis 

 

Antibody Company Origin Buffer  Dilution  

FZD6 (D16E5) Cell Signaling  Rabbit PBS-t 1:1000 

Β-Actin (I-19)  Santa Cruz Goat TBS-t 5% 
milk 

1:1000 

Phospho-
SAPK/JNK 
(Thr183/Tyr185) 

Cell Signaling Rabbit TBS-t 5% 
BSA 

1:1000 

Active  
β-Catenin (8E7) 

Millipore Mouse TBS 5% milk 1:1000 

Phospho-AKT 
(Ser473) 

Cell 
Signalling 

Rabbit PBS-t 1:1000 

AKT Cell Signaling  Rabbit PBS-t 1:1000 

Phospho- 
p44/42 MAPK 
(Erk1/2) 
Thr202/Tyr204 

Cell Signaling  Rabbit PBS-t 1:1000 

p44/42 MAPK 
(Erk1/2) 

Cell Signaling Rabbit PBS-t 1:2000 

Phospho-
PLCγ1 (Tyr783) 

Cell Signaling Rabbit PBS-t 1:1000 

PLCγ1 Cell Signaling Rabbit PBS-t 1:1000 

E-Cadherin Santa Cruz Mouse TBS-t 5% 
milk 

1:500 

Vimentin Sigma Aldrich Mouse TBS-t 5% 
milk 

1:1000 

 

Table 2.4: List of HRP secondary antibodies used in western blot analysis  

 

Antibody Company Origin Buffer Dilution 

Anti-rabbit 
HRP 

GE-
healthcare 

Goat TBS-t 5% 
milk. 

1:10000 

Anti- Mouse 
HRP 

GE-
healthcare 

Sheep TBS-t 5% 
milk. 

1:10000 

Anti-Goat 
HRP 

Santa Cruz Donkey TBS-t 5% 
milk. 

1:10000 

 

2.10 RNA extraction and purification 

 

To extract the total RNA, cells were harvested and resuspended in complete 

medium, then pelleted and washed with PBS. The cell pellet was thoroughly 

resuspended in 1 mL of Trifast reagent (Peqlab) in 1.5 mL Eppendorf tubes and 

kept at room temperature for 5 minutes. Samples were then shaken vigorously 
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after the addition of 0.2 mL of chloroform (Fisher). Next, Samples were 

centrifuged at 12000 g for 5 minutes to allow a neat separation between the 

aqueous phase and the phenol phase. The aqueous phase containing the RNA 

was transferred in a fresh tube. The RNA was precipitated by adding 0.5 mL of 

isopropanol (Fisher) and the sample were vortexed. Following an incubation of 

ten minutes on ice, the samples were centrifuged at 12000 g for 10 minutes at 4 

°C and the isopropanol was discarded. Next, the RNA pellet was washed twice 

with 75 % ethanol, let to air-dry and resuspended in water. 

 

2.11 RNA retrotranscription and cDNA synthesis 

  

Purified RNA was assayed with a Nanodrop spectrophotometer 

(Thermoscientific) to estimate the RNA concentration. To remove the 

contaminant DNA remaining from the previous purification steps, 1 μg of 

purified RNA was treated with DNAase I (Invitrogen) following the manufacturer 

instructions. The RNA was then retrotranscribed using the High Capacity RNA-

cDNA Reverse Transcription Kit (Invitrogen). The retrotranscription reaction was 

carried out in a thermal cycler by incubating the samples for 1 hour at 37 °C and 

stopped by heating at 95 °C for 5 minutes. The c-DNA obtained was used for Q-

RT-PCR (quantitative real time PCR) or stored for further use at – 20 °C. 

 

2.12 Quantitative Real Time PCR (Q-RT-PCR) 

 

The c-DNA deriving from the retrotranscription reaction was diluted 1:50 in 

RNAse/DNAse free water, and 5 μL of this solution were used for real time 

PCR. TAQman mastermix, FAM-conjugated probes (Applied Biosystems), and 

a 7900HT Fast Real-Time PCR System (Applied Biosystems) were used 

following the manufacturer instructions. Each sample was run in triplicate in a 

96 well microtiter plate. The Q-RT-PCR was carried out by pre-incubating the 

samples for 2 minutes at 50 °C and at 95 °C for ten minutes. The samples were 

then subjected to 40 cycles of amplification, constituted of a first step of 

incubation at 95 °C for 15 seconds, followed by a second step of incubation at 

60 °C for one minute.   GAPDH was used as housekeeping reference gene. 
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The probes used in this study were FZD6 (Hs00171574_m1) and GAPDH 

(Hs99999905_m1). The expression data were analysed using the software SDS 

2.3 from Applied Biosystems. Relative quantities were calculated using the 

comparative Ct method (ΔΔCt). 

 

2.13 FZD6 indirect immunostaining and flow cytometry  

 

Cells were harvested with trypsin EDTA, resuspended in complete medium and 

washed in PBS. The cell pellet was then resuspended in 100 μL of blocking 

solution (BSA 2% (Sigma) in PBS) and incubated on ice for 30 minutes. Cells 

were then pelleted and resuspended in 100μL of blocking solution containing 20 

ng/μL of goat anti-FZD6 antibody (R&D systems). Following an incubation of 30 

minutes on ice, cells were washed with 3 mL of blocking buffer and 

resuspended in 100μL of either fluorescein-conjugate donkey anti-goat 

secondary antibody (20ng/μL R&D systems) or anti-goat APC-conjugated 

antibody (20ng/μL, R&D) for 30 minutes on ice and in the dark. Cells were then 

washed with 3 mL of PBS, pelleted and resuspended in 100μL of blocking 

buffer. Samples were then analysed either with the Imagestream imaging 

cytometer or a standard flow cytometer. Mock stainings without the primary 

antibody were carried out in parallel to assess the unspecific binding of the 

secondary antibodies and used as a blank for flow cytometry. All the 

centrifugations were performed at 1200 rpm at 4 °C. 

The samples were then assayed with a BD Facscalibur, an EPICS XL flow 

cytometer (Beckman Coulter), or an Imagestream X (Amnis). Cells 

resuspended in secondary antibody only, but not primary antibody, were used 

to set a gate for FZD6 negative cells. Test samples were run afterwards, and 

only the cells with fluorescence intensity above this gate were considered FZD6 

positive.  The Imagestream combines the functions of a flow cytometer with the 

ones of a fluorescence microscope. Cells running in a liquid flow are 

photographed, allowing the localization of the protein of interest (fig.3.9).   
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2.14 siRNA transfections 

 

Cells were harvested and counted with a haemocytometer. 170000 cells/well 

were plated in a 6 well plate the day before transfection in 2 mL of complete 

medium. Transfections were carried out using 5 µL of Lipofectamine 2000 

(Invitrogen) and 10 µL of a 10µM siRNA solution in water, following the 

transfection reagent manufacturer instructions. The medium was changed 24 

hours after the transfection and cells were used for biological assays 48h after 

transfection. A pool of 4 different siRNA targeting FZD6 and a negative control 

siRNA were purchased from Qiagen. The pool was assessed firstly by real time 

PCR, and the two best performing siRNAs were used for the biological assays.  

The siRNAs target sequences used in this study were: (siRNA1 FZD6) 

CAGGGAGGTGGTTGTCATTCA; (siRNA2 FZD6) 

AAGAGAGATCCAATCAGTGAA. 

 

2.15 Preparation of competent TOP10 F’ Escherichia 

Coli (E.Coli) 

 

TOP10F´ Chemically Competent E. coli were purchased from Life Technology. 

Bacteria were inoculated from the glycerol stock in 3mL of LB medium (Luria 

Broth, 1% NaCl, 1% tryptone (Fisher), 0.5 % yeast extract (Fisher) and 

incubated at 37 °C for two hours, at constant agitation. The culture was then 

centrifuged at 3000 rpm for 3 minutes and the supernatant was discarded. The 

bacteria pellet was resuspended in 100 μL of LB which were streaked in LB-

agar plates (1.5 % Agar in LB). Following a 37 °C overnight incubation, one 

single colony was picked from the plate and inoculated in 50mL of LB medium. 

The culture was incubated overnight at 37 °C at constant agitation. 10 mL of the 

overnight culture were transferred into 200 mL of pre-warmed LB medium. This 

culture was incubated at 37 °C, at constant agitation, until the 600 nm optical 

density was between 0.4 and 0.6. The culture was then pelleted at 5000 rpm at 

4 °C and the supernatant was discarded. The pellet was resuspended in 80mL 

of ice cold 0.1M MgCl2 (Sigma) and incubated for 30 minute on ice. Bacteria 

were centrifuged at 5000g for 5 minutes at 4 °C, and the supernatant was 
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discarded. Next, the bacteria pellet was resuspended in 80 mL of ice cold CaCl2 

(Sigma) and incubated for 30 minutes on ice. Following another centrifugation, 

the supernatant was discarded and the pelleted was resuspended in a mixture 

of 8 mL ice cold 0.1 M CaCl2 with 2.2 mL of glycerol (Fisher). Bacterial stocks 

were aliquoted in pre chilled 1.5 mL Eppendorf tubes and stored at -80 °C. 

 

2.16 Lentiviral shRNA plasmids 

 

The pGIPZ-shRNA lentiviral vector allows the stable expression of a human 

microRNA-30 which was modified to yield an efficient target silencing of the 

gene of interest (Silva et al., 2005). This vector also contains a green 

fluorescent protein (GFP) expression cassette which allows the identification of 

cells transducing the viral construct. The map of the pGIPZ plasmid is shown in 

figure 2.4. This vector allows ampicillin selection in bacteria and puromycin 

selection in mammalian cells.  

Bacterial cultures expressing three different pGIPZ-shRNA constructs used for 

FZD6 silencing were purchased from Life Technology. The antisense shRNA 

sequences were (Sh1 FZD6: ATCTGAATGACAACCACCT; Sh2 FZD6: 

TTAACTTTAGAATTGTGCT; Sh3 FZD6: TAACCTGCACATTTTCTGT). The 

negative control unspecific sequence (Scrambled) was 

ATCTCGCTTGGGCGAGAGTAAG. 
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Figure 2.4: The pGIPZ-shRNA lentiviral vector map. (Extracted from the product 

manual available online at 

http://dharmacon.gelifesciences.com/uploadedFiles/Resources/GIPZ%20Lentiviral%20shRNA%

20Technical%20Manual.pdf). 

 

2.17 Expansion of bacterial cultures and plasmids 

purification 

 

Bacteria expressing pGIPZ-shRNA constructs were inoculated from the glycerol 

stocks into 3mL of selective LB medium (100 μg/mL ampicillin in LB) and 

incubated at 37 °C for two hours, at constant agitation. The bacteria were then 

pelleted and resuspended in 100 μL of selective LB medium which were 

streaked onto LB agar plates containing 100 μg/mL of ampicillin. The plates 

were incubated at 37 °C overnight and a single colony was picked and 
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inoculated in 5 ml of LB selective medium. The culture was incubated overnight 

with vigorous shaking. 3 mL of this culture were then inoculated into 500 mL of 

selective LB medium and incubated at 37 °C overnight with constant agitation. 

Plasmid DNA was purified using a Genopure Plasmid Maxi Kit (Roche) 

according to the manufacturer instructions. 

 

2.18 Transformation of competent TOP 10 F’ 

Escherichia Coli with plasmid DNA 

 

Plasmid propagation was carried out transforming TOP 10 F’ competent E. Coli. 

Approximately 200ng of plasmid DNA were added to a 100μL suspension of 

competent bacteria which were then left on ice for 20 minutes. Next, bacteria 

were heat shocked at 42 ° C for 45 seconds, placed on ice for two minutes and 

resuspended in LB broth. 100 μL of bacterial suspension were then streaked 

into selective agar plates containing ampicillin. The plates were then incubated 

overnight at 37 °C, and a single colony was inoculated in selective LB broth. 

Bacterial colonies were expanded and plasmid purified as described in the 

paragraph 2.18.  

 

2.19 Virus production in HEK 293 FT cells 

 

3x106
 HEK 293 FT cells were plated in 10 cm dishes in 7 mL of complete 

medium. 24 hours later, cells were co-transfected with 3.75 μg of pPAX2 and 

1.75 μg of pMDG2 lentiviral packaging plasmids (a kind gift of Dr Owen 

Williams), and 5 μg of shRNA encoding vector, using lipofectamine 2000 and 

following the manufacturer instructions. The medium was replaced 24 hours 

after the transfection. Supernatants containing the viruses were harvested 48 

hours after the transfection and filtered through a 0.45-mm filter unit (Sartorius). 

The supernatants were immediately used to infect MDA-MB-231 cells. 
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2.20 Lentiviral transduction in MDA-MB-231 cells 

 

2.5 x 105 MDA-MB-231 cells were plated onto 6 well plates in 3 mL of complete 

medium. The following day media were replaced with 2.5 mL of supernatants 

containing the viral particles, in the presence of 8 μg/mL polybrene (Sigma). 

Media were replenished 24 hours after infection. 48 hours following the 

infection, cells were observed with a UV light microscope (NanoEntek) to 

assess the expression of GFP indicating a successful viral transduction (fig. 

2.5). Next, culture media were replaced with complete media containing 1 

μg/mL puromycin to select infected cells. 4 days after the infection, the 

puromycin concentration was increased to 2 μg/mL and kept at this 

concentration for the expansion and growth of cells. After several passages, 

approximately 100% of the cells resulted GFP positive (fig.2.5). 

The FZD6 knock down efficiency in these cells was assessed by real time PCR, 

FACS and western blot analysis following one week of puromycin selection.  

 

Figure 2.5: Viral transduction efficiency in MDA-MB-231 cells. Cells were observed 

at to assess the expression of the viral GFP cassette as indication of the infection efficiency. 

The photographs shown are overlays Bright field/GFP and were taken 48 hours post infection 

and after several passages in culture.  
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2.21 Proliferation assays 

 

To assess the cell viability I used the MTS and XTT assays. MTS (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium) is a compound which in the presence of phenazine methosulfate 

(PMS) and cellular reducing enzymes, produces a red formazan product that 

has an absorbance maximum at 490-500 nm and a colour intensity that is 

proportional to the number of living cells (figure 2.6).  

Similarly, The XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-

5-Carboxanilide) assay is based on the cleavage of the yellow tetrazolium salt 

XTT to form an orange formazan dye by the metabolic enzymes of living cells. 

Hence, these two formazan assays can be used to assess cell viability in vitro. 

Cells transfected with siRNA or stably expressing shRNAs were counted and 

plated in complete medium at a seeding density of 5000 cells/100 μL into 96 

well microtiter plates. 20 μL of CellTiter 96 AQueous One Solution (Promega) 

containing MTS and PMS were added to each well 24 hours or 48 hours later. 

Alternatively, 50μL of XTT reagent (1 μL of electron coupling reagent in 49 μL of 

XTT (Roche), were used. Cells were placed back in the incubator, and the 

absorbance at 490 nm was read 2 hours later using a plate spectrophotometer 

(Biorad). 

 

 

Figure 2.6: Schematic representation showing the principle of the formazan 

assays. 
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2.22 Cell cycle analysis 

 

Propidium Iodide (PI) is a fluorescent intercalating agent that binds 

stoichiometrically to nucleic acids with a ratio of 1 molecule for 4-5 base pairs. 

When bound to DNA, PI fluorescence increases 20 to 30 fold. This feature is 

exploited to estimate the amount of DNA in cells. In proliferating cells the 

amount of DNA changes depending on the phases of the cell cycle: Cells in G2 

phase have two fold the amount of DNA of cells in G0 and G1. The amount of 

DNA during The S phase is in between the amount found during the G0 and the 

G1 phases. Thus, PI is commonly used in flow cytometry to quantify the 

percentage of cells in different phases of the cell cycle (Krishan, 1975). With 

this method it is also possible to identify apoptotic cells by their lower 

florescence emission caused by the loss of DNA fragments during apoptosis 

(Nicoletti et al., 1991). Since PI also binds to RNA, a RNA digestion step must 

be carried out before cell cycle analysis.  

120000 cells were seeded in 6 cm dishes and grown for 72 hours to reach 

about 80% confluency.  Cells were then harvested together with the medium in 

order to retain floating apoptotic cells. The cell suspension was centrifuged at 

1500 rpm for 5 minutes and the supernatant was discarded. The pellet was then 

washed in PBS and resuspended in 200 μL of PBS. Cells were fixed by adding 

70 % ice cold ethanol in constant agitation and then were stored overnight at -

20 °C. Next, fixed cells were centrifuged at 1500 rpm for five minutes and the 

ethanol discarded. The cell pellet was washed twice with PBS, resuspended in 

100μL RNAse (0.1 μg/μL in PBS, Sigma) and incubated at room temperature 

for 5 minutes. Next, 2 μL of PI (50μg/mL in PBS) were added, and samples 

were incubated for 15 minutes at room temperature. Cells were analysed with 

an Imagestream X. All the cell cycle data was analysed using the software 

Ideas (Amnis). 
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2.23 Invasion assay 

 

 

Figure 2.7: Schematic representation of the invasion assay  

 

A rapid in vitro invasion assay to assess the metastatic potential of cancer cells 

was described for the first time in 1987 by Albini et al. (Albini et al., 1987). A 

schematic representation of this assay is shown in figure 2.7. The assay uses 

Boyden chambers consisting of an upper compartment where cells are seeded, 

and a lower compartment which is replenished with medium containing a 

chemoattractant (e.g. EGF or FBS). In the bottom of the upper compartment lies 

a porous membrane that maintains a chemical gradient across the two 

compartments. The upside of the porous membrane is covered with Matrigel, a 

gelatinous protein mixture derived from mouse tumour cells. This matrix is rich 

in laminin, collagen IV and heparan sulphate proteoglycans, therefore is often 

used as a model of basal membrane and stromal tissue in a variety of biological 

assays (Hughes, Postovit and Lajoie, 2010). Malignant cells must invade basal 
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membranes to migrate towards distal organs (Liotta, 1984). In the invasion 

assay the basal membrane is mimicked by a layer of Matrigel. Metastatic cells 

are able to digest the matrigel and to migrate towards the underside of the filter 

attracted by a chemotactic gradient, whereas the cells that did not migrate 

remain in the upper side of the filter. The latter are removed with a cotton bud, 

and the membrane is stained with crystal violet. In this way, the cells that 

invaded the matrigel can be visualised and counted. 

BioCoat Matrigel Invasion Chambers were purchased from BD biosciences. 

Chambers were rehydrated filling both compartments with 0.5 mL of serum free 

medium and placed in the incubator for 2 hours before each experiment.  

Cells were harvested with trypsin/EDTA, washed in PBS, and resuspended in 

serum free medium. The hydration medium was removed from the chambers, 

and 0.750 mL of serum free medium plus a chemoattractant (FBS or EGF) were 

added in the lower compartment, while 20000 cells/well were plated in 0.5 mL of 

medium in the upper compartment. The invasion chambers were then incubated 

at 37 °C in a humidified incubator for 22 hours. The upper compartment was 

then displaced, and the cells from the upside of the filter were removed with a 

cotton bud. Next, the filters were fixed with methanol for two minutes and 

incubated in a solution of crystal violet (0.1% w/v,10% methanol in water) for 20 

minutes. The excess of crystal violet was washed away by submerging the 

filters in distilled water three times. The filters were then let to air-dry and were 

removed from the chambers with a scalpel. Glass coverslips were used to 

mount the filters in glass slides with a drop of microscope oil. The filters were 

divided in 4 quadrants as shown in figure 2.8, and photographs of each 

quadrant were taken with an Axioskop 2 microscope (Zeiss) using a 5 X 

magnification. Cells in each quadrant were counted using the software ImageJ 

(NIH), and for each sample, an average of 3 filters (a total of 12 quadrants) was 

counted.  
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Figure 2.8: Representative photograph showing the porous filter of the 

invasion assay. The filters were fixed in methanol and incubated in a crystal violet solution. 

To facilitate the counting, the filters were divided with a fine tip marker in 4 quadrants, and 

pictures of each quadrant were taken. Cells were then counted using the multi-point tool in 

imageJ.  

 

2.24 Wound healing assay 

 

The wound healing assay is commonly used to study the directional migration of 

cells in vitro. When a confluent layer of adherent cells is scratched with a pipette 

tip, cells at the edge of the wound migrate towards the scratch, mimicking what 

happens during wound healing (Rodriguez, Wu and Guan, 2005). Cell migration 

is also a key step in the development of cancer metastasis, therefore, the 

wound healing assay can be used to assess migration rates of cancer cells in 

vitro.  

Control cells and FZD6 depleted cells were analysed in parallel using bipartite 

chamber for live imaging (Fisher). 3.8 x 105 Cells were seeded into each 

compartment of the bipartite chamber and let to grow for 24 hours in 2 mL of 

complete medium. The medium was then replaced with 2 mL of Leibovitz's L-15 
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medium (Gibco), and the cells were placed back in the incubator for 4 hours. 

Cells were then wounded with a sterile pipette tip and placed in a live imaging 

microscope (Nikon Eclipse Ti). 4 different areas of each wound were 

photographed every 20 minutes for 24 hours.  Cells trajectories were then 

tracked and their length measured over a period of 4 hours with the image 

analysis software NIS-Elements (Nikon). The speed of a minimum of 10 cells 

was scored in 4 areas of each wound analysed.  

 

2.25 Threedimensional cultures data analysis 

 

 

Figure 2.9: Representative photographs describing the assessment of the 

geometrical features of breast cancer acini growing in 3D cultures : The software 

ImageJ was used to draw a perimeter (indicated by a yellow line) around the image of the acini. 

The software computes the geometrical parameters of the shape delineated by this perimeter. 

(A) Representative photograph of a typical irregular acinus characterized by low circularity, 

aspect ratio >> 1 and low roundness (<<1). (B) An example of a regular acinus, characterized 

by circularity, aspect ratio and roundness close to 1.   

 

Image analysis was performed by assessing, using the imageJ software, a 

minimum of 20 images of acini per well in a blinded fashion. The perimeter of 

each acinus was drawn using the free hand tool on the software imageJ as 

shown in figure 2.9. The software computes the geometrical features of the 
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acini delineated by the drown perimeter.  Parameters analysed were roundness 

(defined as 4 × (Area of the acinus):(π × [Major axis of the acinus]2) ); circularity 

(defined as 4π × ([Area of the acinus]/[Perimeter of the acinus]2), aspect ratio 

(defined as (Major Axis)/(Minor Axis) of the acinus). Value of 1.0 of circularity 

indicates a perfect circle. As the value approaches 0.0, it indicates an 

increasingly elongated shape. Data analysis was performed using the Prism 

Software (GraphPad Software, version 5.04, La Jolla, CA, USA). ANOVA 

followed by Bonferroni’s post-hoc test was used to compare the samples. 

 

2.26 Active Rho pull down assay 

 

The Active Rho Pull-Down and Detection Kit (Pierce) was used to assess the 

levels of active Rho A, B and C in cultured breast cancer cells, following the 

manufacturer protocol. Cells were grown in T75 flasks until 60-70 % confluent, 

then were washed twice with PBS and starved overnight in serum free medium. 

Cells were then washed once with cold TBS-t and lysed in 300 μL of the 

lysis/washing buffer (25mM Tris•HCl, pH 7.2, 150mM NaCl, 5mM MgCl2, 1% 

NP-40, 5% glycerol, HALT protease inhibitor cocktail, 1nM sodium 

orthovanadate). 270 μL of total lysate were then pipetted into spin columns that 

were previously loaded with glutathione resin and 400 μg of GST-Rhotekin-

RBD, which binds selectively to the active form of Rho binding GTP. The 

columns were then incubated at 4 ° C with gentle rocking for 1 hour. The resin 

was then washed three times with 400 μL of lysis/washing buffer. The complex 

GST-Rhotekin/Rho-GTP was then precipitated from the resin with 50 μL of 2 X 

Laemmli buffer and boiled at 100 °C for 5 minutes. 30μL of these preparations 

were electrophoresed into 12 % acrylamide gels and analysed by 

immunoblotting as described in the paragraph 2.10. To perform a loading 

control, 30 μL of the original total lysate which were excluded from the pull down 

were mixed with 10 μL of 4X Laemmli buffer, boiled for five minutes at 100 °C 

and resolved in a separate gel. Proteins were then transferred into nitrocellulose 

membranes which were blocked in 3 % BSA in TBS and incubated overnight 

with a rabbit anti-Rho antibody, diluted 1:1000 in TBS-t 3 % BSA. A goat anti-

rabbit IgG (H+L) peroxidase-conjugated antibody and ECL were used to detect 

the Rho band. Densitometric analysis was carried out using the software 

ImageJ. 
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2.27 Fibronectin immunofluorescence 

 

2.5 x 105 Cells were resuspended in 1 mL of complete medium and seeded onto 

10 mm diameter coverslips in 24 wells plates. The cells were let to settle at 37 

°C in a humidified incubator for 24 hours and then were starved overnight 

following two washes in PBS. Next, the coverslips were washed twice with PBS 

and the cells were fixed with PFA (4% in PBS) for ten minutes. The coverslips 

were then washed in PBS thrice and incubated with permeabilization buffer (0,1 

% Triton X in PBS) for 10 minutes. Cells were then washed thrice with PBS and 

incubated in blocking solution (1% BSA in PBS) for 30 minutes. 100 μL of 

mouse anti-Fibronectin clone 10 antibody (BD biosciences), diluted 1:100 in 

blocking solution, were added on top of the coverslips for 1 hour at room 

temperature. The coverslips were then washed three times with PBS and 

incubated in 120 μL of horse anti-mouse texas red conjugated antibody, diluted 

1:100 in blocking solution, for 1 hour at room temperature. After three washes of 

5 minutes each with PBS, cells were incubated in DAPI (4', 6-diamidino-2'-

phenylindole, dihydrochloride, Thermo Scientific) diluted 1:1000 in PBS for 10 

minutes and washed three times with PBS. The coverslips were then mounted 

in microscope glass slides with a drop of FluorSave reagent (Calbiochem) and 

analysed with a Leica DM4000 microscope. For each cell line, pictures of ten 

random fields from 2 separate coverslips were taken using a 20 X magnification 

objective. Images were acquired under non-saturating conditions and using the 

same exposure settings for all the samples. The software Leica Application 

Suite was used to measure the intensity of fluorescence. The background 

fluorescence of an area of the coverslip without cells was subtracted to each 

measure.  

 

2.28 Fibronectin competitive inhibition enzyme-linked 

immunosorbent assay (CI-ELISA) 

 

To assess the levels of soluble fibronectin released in the culture medium of 

breast cancer cells, the QuantiMatrix Human Fibronectin ELISA (Millipore) was 

used according to the manufacturer instructions. 
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2.5 x 105 Cells were resuspended in 1 mL of complete medium and seeded onto 

24 wells plates in triplicate. The cells were let to settle at 37 °C in a humidified 

incubator for 24 hours. The culture medium was then discarded and the cells 

starved in serum free medium following two washes in PBS. The supernatants 

were harvested at 72 hours and the cells lysed directly in the plate by adding 30 

μL of 2x Laemmli buffer. Supernatants and cell lysates were stored at – 20 ° C 

until use. 30μL of cells supernatant were then diluted with 30μL of diluent buffer 

(1% BSA in PBS + 0.01% Thimerosal) and 60μL of Rabbit anti-Human 

Fibronectin, and incubated at room temperature for 30 minutes. 100 μL of this 

solution were pipetted into pre-hydrated fibronectin coated strips and incubated 

at room temperature for 30 minutes. In parallel, fibronectin standards were 

analysed to build a standard curve. The strips were then washed four times with 

200 μL of washing buffer (0.05% Tween-20 and 0.01% Thimerosal in water) 

and incubated with 100 µL of Goat anti-Rabbit IgG-HRP at room temperature 

for 30 minutes. Following 4 washes with 200 µL of wash buffer, 100 µL of 

TMB/E substrate were added to each well containing the strips. When the 

colour of the wells with the highest concentration became bright blue, the 

reaction was stopped by adding 100 µL of Stop Solution (0.5M HCl in water) to 

each well. The absorbance was immediately read at 450 nm with a plate 

spectrophotometer (Biorad), and the concentration of the samples was 

determined by extrapolation from the fibronectin standard curve.  

To ensure that the assayed fibronectin was secreted by a similar amount of 

cells amongst the samples, the cells lysates were immunoblotted for β-actin 

following the procedure described in paragraph 2.10.  

 

2.29 Statistical analysis 

 

All the experiments were carried out in triplicate three times, unless otherwise 

stated. The unpaired two-tailed t-test was used to compare the differences 

amongst the experimental groups, unless otherwise specified. Differences were 

considered significant when the p values obtained were ≤ 0.05. NS indicates 

non significant differences (P > 0.05), * indicates p ≤ 0.05, ** indicates p ≤ 0.01 

and *** indicates p ≤ 0.001. 
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RESULTS  

 

CHAPTER III 

 

Deregulation of FZD6 gene structure and 

expression in breast cancer 

 

3.1 Introduction 

 

To understand the role of FZD6 in breast cancer, we carried out a comparative 

analysis between normal and tumour samples in in silico databases, patients 

tissue arrays and breast cancer cell lines. The recent advances in sequencing 

technologies made available to public consultation a large amount of genomic 

data. Using specific tools, it is possible to compare gene expression of tumour 

specimens with the matched normal tissues. Moreover, it is possible to identify 

the frequency of mutations and to associate the expression of specific genes to 

the clinical condition of patients. In breast cancer, genomics studies allowed to 

identify different molecular signatures that can predict different outcomes and 

different responses to therapies (Bild et al., 2005; Sorlie et al., 2001). 

Databases are important tools to study oncogenes and oncosupressors, and 

also to help clinicians deciding the correct therapeutic strategies. The first step 

in this study was to use bioinformatic tools to investigate whether FZD6 

expression and/or mutations were relevant in breast cancer. The in silico 

findings were integrated with immunohistochemical analysis on a large cohort of 

Italian breast cancer patients. The expression of FZD6 was also assessed in a 

panel of breast cancer cell lines, both at the mRNA and protein level. 
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3.2 In silico analysis of FZD6 expression in microarrays 

datasets 

 

We used the online platform ONCOMINE (www.oncomine.org) to investigate 

whether FZD6 expression was altered in breast cancer compared to normal 

tissue. We found that FZD6 mRNA levels were higher in tumour samples 

compared to normal tissue (Fig. 3.1 A) and in the tumour stroma compared to 

the normal stroma (fig. 3.1 B). In the Ma database (Ma et al., 2009), we found 

that FZD6 expression in ductal breast carcinoma in situ was 1.673 fold higher 

than normal tissue (fig. 3.1 A). In the Finak dataset (Finak et al., 2008), FZD6 

expression was 1.7 fold higher in invasive carcinomas stroma when compared 

to normal breast stroma (fig. 3.1 B). In the cancer genome atlas (TCGA), we 

found a 1.33 fold increase in the FZD6 gene copy number of ductal breast 

carcinomas compared to normal tissue or blood (fig.3.1 D). 
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Figure 3.1: FZD6 expression in breast cancer datasets. The online platform 

ONCOMINE was used to assess FZD6 mRNA levels in normal breast and breast cancer from 

available microarrays datasets. (A) FZD6 Expression in the Ma dataset. 1, normal breast (n= 

14); 2, ductal breast carcinoma in situ (n= 9). Fold change: 1.673, p= 0.018.  (B) FZD6 

Expression in the Finak dataset. 1, normal breast stroma (n= 6); 2, invasive breast carcinoma 

associated stroma (n=53). Fold change: 1.708; p= 2.81E-9.  (C) FZD6 Expression in the Farmer 

dataset. 1, basal-like invasive breast carcinoma (n=16); 2, luminal-like invasive breast 

carcinoma (n=27) fold change: 2.303; p= 4.47E-5.  (D) FZD6 copy number in TCGA dataset. 1, 

Blood (n=702); 2. Normal breast (n=111); 3. Invasive ductal breast carcinoma (n=639). Fold 

change 1.33; p=1.12E-101. • indicates extreme values. 

 

These observations were consistent with the data extracted from the online 

platform COSMIC (Catalogue of Somatic Mutations in Cancer, 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/), where on 900 

breast cancer samples analysed, 172 (19,11%) showed  gene copy number 

gains for FZD6, and 185 out of 989 samples displayed FZD6 overexpression 

(18.71%) (table 3.1). Amongst all the FZD receptors, FZD6 was the most 

frequently amplified and overexpressed in breast cancer (Table 3.1). 

To understand if FZD6 overexpression was linked to specific breast cancer 

subtypes, we performed a comparative analysis using the Farmer dataset 
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(Farmer et al., 2005). We found that FZD6 expression was 2.3 fold higher in 

basal-like breast carcinoma compared to luminal-like carcinoma (fig. 3.1 C).  

 

Table 3.1: Copy Number Variation (CNV) and overexpression of Frizzled (FZD) receptor 1 

to 10 in primary breast cancer samples. Data was mined using the COSMIC repository 

(http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/about).  

FZD Loss/gain (out of 900 samples) Overexpression (out of 989 
samples) 

1 Loss 2 (0.22%) 
Gain 0 

21 (2.12%) 

2 Loss 3  (0.33) 
Gain 0 

47 (4.75) 

3 Loss 40 (4.44%) 
Gain 3 (0.33%) 

59 (5.97%) 

4 Loss 4 (0.44%) 
Gain 14 (1.56%) 

31 (3.13) 

5 Loss 1 (0.11) 
Gain 0 

41 (4.15) 

6 Loss 0 
Gain 172 (19.11%) 

185 (18.71%) 

7 Loss 2 (0.22)  
Gain 0 

40 (4.04%) 

8 Loss 0 
Gain 9 (1%) 

12 (1.21%) 

9 Loss 1 (0.11%) 
Gain 9 (1%) 

27 (2.73%) 

10 Loss 0 
Gain 1 (0.11%) 

40 (4.04%) 

 

 

3.3 In silico survival studies  

 

In order to understand the clinical significance of FZD6 overexpression in 

patients, we used the online tool Kaplan-Mayer Plotter 

(http://kmplot.com/analysis/) that allows the generation of Kaplan-Meier curves 

linking patients gene profiling to their outcome (Györffy et al., 2010). 

High expression of FZD6 was associated with a lower overall survival 

(HR=1.48, C.I. 95% 1.17-1.89, p=0.0013), lower relapse free survival (HR=1.42, 

C.I. 95% 1.26-1.6, p=8.9x10-9) and lower distant relapse free survival (HR=1.48 

C.I. 95% 1.2-1.82, p=0.00022) of the totality of breast cancer patients (fig.3.2). 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/about
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Figure 3.2: Kaplan Meier survival analysis of breast cancer patients with high 

or low expression of FZD6: The online tool Kaplan Meier plotter was used to predict  

overall survival, relapse free survival and distant relapse free survival of breast cancer patients 

with high (red)  or low (black) FZD6 expression. * Indicates statistical significance. Hazard 

ratios, 95% confidence intervals and p values are indicated in the top-right corner of each plot.  

 

We also compared the survival plots of patients with basal like, luminal A and 

luminal B breast cancer. HER2 positive patients were excluded due to the 

insufficient number of cases to carry out the analysis. Patients were further 

divided into those having or not having tumour spread in the lymph nodes at the 

time of diagnosis. We found that FZD6 expression status was not sufficient to 

predict overall survival when patients were divided into subgroups, except for 

basal like, lymph node positive patients, where high FZD6 expression was 

associated with lower overall survival (HR=3.36, C.I. 95% 0.94-11.97, p=0.048 

(fig.3.3). 

High expression of FZD6 was associated with a lower relapse free survival 

independently from the lymph node status when patients were not stratified into 

subgroups (fig. 3.4). When considering only the lymph node negative patients 

instead, a significant association was observed only for the luminal A subgroup. 

In the lymph node positive cohort high FZD6 was associated with a higher 

probability of tumour relapse in all the subgroups, particularly in those patients 

affected by basal breast cancer, where the hazard ratio was 1.9, C.I. 95% 1.09-

3.31, p=0.022 (fig.3.4). 

High FZD6 expression correlated with lower distant relapse free survival when 

all the lymph node negative subgroups were considered together (fig.3.5). A 
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significant association was also observed in basal like patients and luminal A 

patients with lymph node negative status, but not in the luminal B cohort 

(fig.3.5). FZD6 expression was not able to predict distant relapse free survival in 

those patients that were lymph nodes positive at the time of diagnosis, 

independently from the tumour subtype (fig.3.5). The risk of metastatic relapse 

was particularly high in basal like, lymph node negative patients with high FZD6 

(HR=2.35 C.I.95% 1.16-4.75, p=0.014) (fig.3.5). 

 

 

 



99 
 

 

Figure 3.3: Kaplan-Meier survival analysis in different breast cancer subtypes: 

Plots were obtained as described in fig.3.2 and stratifying patients belonging to different breast 

cancer subgroups and with different lymph nodes status. Black lines indicate low FZD6, red 

lines high FZD6. Hazard ratios, 95% confidence intervals and p values are indicated in the top-

right corner of each plot. * indicates statistical significance, N.S. indicates non significant 

differences and ● indicates that the number of patients available was low. 
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Figure 3.4: Kaplan-Meier relapse-free survival analysis: plots were obtained as 

described in figure 3.3. Black lines indicate low FZD6, red lines high FZD6. Hazard ratios, 95% 

confidence intervals and p values are indicated in the top-right corner of each plot. N.S. 

indicates non significant differences whereas * indicates statistical significance. 
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Figure 3.5: Kaplan-Meier distant relapse free survival analysis: plots were 

obtained as described in figure 3.3. Black lines indicate low FZD6, red lines high FZD6. Hazard 

ratios, 95% confidence intervals and p values are indicated in the top-right corner of each plot. 

N.S. indicates non significant differences whereas * indicates statistical significance. 
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3.4 Immunohistochemical analysis of FZD6 expression 

in an Italian cohort of breast cancer patients 

 

The data presented in this section was produced by our collaborators Dr 

Rossano Lattanzio and Professor Mauro Piantelli from the Department of 

Experimental and Clinical Sciences, University G. D’Annunzio, Chieti, Italy, and 

Marcella Mottolese and Letizia Perracchio from the Regina Elena Cancer 

Institute, Rome, Italy. 

FZD6 immunohistochemical staining was carried out on tissues arrays as 

described in material and methods. The study includes 352 primary infiltrating 

breast cancers from N0 and T1/T2 tumours from patients that were presenting 

primary unilateral breast carcinoma. Patient and tumour characteristics are 

summarized in table 3.2. 

20.2% of the specimens showed membrane expression of FZD6, with or without 

concurring cytoplasmic staining (Figure 3.6).  When considering the whole 

patient cohort, expression of Fzd6 was not significantly associated with clinical 

features (Table 3.3). However, Kaplan–Meier analysis indicated that expression 

of Fzd6 was significantly associated with lower distant relapse-free survival 

(DRFS) in the triple negative breast cancer patients subgroup (fig. 3.7). In 

multivariate analysis, membranous Fzd6 expression was an independent 

prognostic indicator for low disease free (DFS) and DRFS survival in triple 

negative cases (table 3.4). Tumour grade was the only independent factor 

influencing DFS and DRFS in the whole patient population (table 3.3).  
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Table 3.2: Patients and tumour Characteristics (n = 352) 

 

Variable Value (%) 

  
Age at diagnosis (years)  
    Median   60.5  
    <50      78 (22.1) 
    50-65   147 (41.8) 
    >65   127 (36.1) 
Menopausal status  
    Pre/perimenopausal     84 (23.9) 
    Postmenopausal   268 (76.1) 
Molecular subtypes  
    Luminal A-like   128 (36.4) 
    Luminal B-like (HER2 negative) 
  

  123 (34.9) 
 Luminal B-like (HER2 positive)    33 ( 9.4) 
 HER2 positive (non-luminal)   21 ( 6.0) 

    Triple negative (ductal)   47 (13.4) 
Tumor size  
    ≤ 2 cm   228 (64.8) 
    > 2 cm   124 (35.2) 
Tumour grade  
    1   58 (16.5) 
    2-3 294 (83.5) 
ER  
    Negative   74 (21.0) 
    Positive 278 (79.0) 
PGR  
    Negative 161 (45.7) 
    Positive 191 (54.3) 
Ki-67  
    Low   237 (67.3) 

    High   115 (32.7) 
HER2     
    Negative  298 (84.7) 
    Positive    54 (15.3) 
Fzd6  
    Negative  281 (79.8) 
    Positive    71 (20.2) 
Patient outcome  
    Without recurrence 266 (75.6) 
    Local recurrence  32  ( 9.1) 
    Distant recurrence   54 (15.3) 
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Figure 3.6: Immunohistochemical analysis of Fzd6 expression in breast 

cancer. (A, C) Images showing Fzd6 expression in two invasive triple negative human breast 

cancers (magnification 40X). (B, D) Enlargement of the images shown in panels A and C. Bars 

indicate 50μm. 

 

Table 3.3: Multivariate analysis of Fzd6 expression in the totality of breast 

tumours 

    Variable HR 95% CI P 
        Disease-free survival    
Tumor size, cm (≤ 2 vs > 2) 1.0      0.7-1.6 0.840 
Tumor grade (2-3 vs 1) 2.5      1.1-5.8 0.038* 
ER (positive vs negative) 1.1      0.6-1.9 0.844 
PGR (negative vs positive) 1.4     0.8-2.3 0.210 
Ki-67 (high vs low) 1.5     0.9-2.4 0.096 
HER2 (positive vs negative) 1.3      0.8-2.2 0.308 
Fzd6 (negative vs positive) 1.3      0.7-2.2 0.417 
    Local Relapse-Free Survival    
Tumour size, cm (> 2 vs ≤ 2) 1.3      0.7-2.6      0.425 
Tumor grade (2-3 vs 1) 1.5      0.5-4.5    0.445 
ER (positive vs negative) 1.6      0.6-4.2      0.349 
PGR (negative vs positive) 1.6      0.8-3.3    0.226 
Ki-67 (high vs low) 1.2     0.6-2.5      0.658 
HER2 (negative vs positive) 1.2      0.4-3.1      0.744 
Fzd6 (negative vs positive)   1.1      0.5-2.5      0.833 
    Distant Relapse-Free Survival    
Tumour size, cm (≤ 2 vs > 2) 1.3      0.7-2.3      0.376 
Tumor grade (2-3 vs 1) 4.8     1.1-20.2      0.032* 
ER (positive vs negative) 1.1      0.5-2.2      0.875 
PGR (negative vs positive) 1.4      0.7-2.6      0.291 
Ki-67 (high vs low) 1.6      0.9-3.0      0.102 
HER2 (positive vs negative) 1.5      0.8-2.8      0.244 
Fzd6 (positive vs negative)    1.4     0.7-2.8      0.384 
    *Statistically significant 
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Table 3.4: Multivariate analysis of Fzd6 expression in triple negative tumours 

 

*Statistically significant 
 

 

 

    
Variable HR 95% CI P 
    
    
Disease-free survival    

Tumor size, cm (> 2 vs ≤ 2) 4.1        0.7-21.5        0.098 

Tumor grade (1 vs 2-3) 1.7        0.3-11.5      0.879 

Fzd6 (positive vs negative) 5.7        1.5-22.9      0.011* 

    
Local Relapse-Free Survival    

Tumour size, cm (>2 vs ≤2) 1.1        0.2-10.6     0.950 

Tumor grade (1 vs 2-3) 1.0        0.1-10.4     0.941 

Fzd6 (negative vs positive)     2.5        0.3-25.0     0.421 

    
Distant Relapse-Free Survival    

Tumour size, cm (> 2 vs ≤ 2) 2.1        0.3-12.6     0.435 

Tumor grade (1 vs 2-3) 1.0        0.1-15.2       0.992 

Fzd6 (positive vs negative)   6.8        1.2-37.4     0.027* 
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Figure 3.7: Survival curves. Kaplan–Meier estimates of disease-free survival (DFS), local 

relapse-free survival (LRFS) and distant relapse-free survival (DRFS) in breast cancer cases (n 

= 352) with high (green solid line) or low (blue dashed line) expression of Fzd6 assessed by 

immunohistochemistry. Statistical significance was assessed using the log-rank test. 
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3.5 Expression of FZD6 in breast cancer cell lines 

 

 

Figure 3.8: Expression of FZD6 in breast cancer cell lines: (A) Reverse 

transcription, Q-PCR analysis of FZD6 mRNA expression in a panel of breast cancer cell lines.  

(B) Western blot analysis showing expression of Fzd6 in different breast cancer cell lines. RNAi 

depleted MDA-MB-231 cells (MDA-MB-231-Sh1) were used as a negative control in comparison 

with the control cell line (MDA-MB-231-Scrambled) to unequivocally identify Fzd6-specific 

bands. (C) Imagestream analysis demonstrating increased percentages of human mammary 

epithelial cells (HMEC) expressing Fzd6 in the cell membrane after immortalization with the 

hTERT enzyme.  Inset shows representative images of cells in bright field (BF) or stained with 

the Fzd6 antibody (green). 
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To complete our analysis we assessed FZD6 expression levels in a panel of 

breast cancer cell lines. Expression levels were compared to those of normal 

human mammary epithelial cells (HMEC-184D). HMEC-184D cells immortalized 

with H-TERT plasmid were also included in the analysis. FZD6 mRNA 

expression was assessed by RT-QPCR (fig.3.8 A), whereas protein levels were 

assessed by western blot analysis and Imagestream analysis (fig.3.8 B and C).  

HMEC-184D-HT transformed cells showed a 5.45 fold increase in the mRNA 

levels and increased Fzd6 protein expression compared to normal HMEC-184D 

(Fig.3.8 A and B). Moreover, HMEC-184D-HT showed a 2.9 fold increase in the 

percentage of cells positive to membranous FZD6 expression compared to the 

normal conterparts (Fig. 3.8 C). Overall, the majority of breast cancer cell lines 

expressed higher levels of FZD6 mRNA compared to HMEC cells. However, the 

same difference was not evident at a total protein level (Fig. 3.8 B). 

Furthermore, basal like cells expressed more Fzd6 than non basal cell lines (fig. 

3.8 B). 

Imagestream analysis in a panel of breast cancer cell lines was carried out to 

assess membrane expression of the FZD6 receptor (fig.3.9). All the cell the cell 

lines, to different extent, showed membrane staining of FZD6, with the only 

exception of MDA-MB-436 cells. 
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Figure 3.9: Expression of Fzd6 on the surface of breast cancer cell lines: (A) 

Cells were labelled with a Fzd6 antibody and subjected to flow cytometry-Imagestream analysis. 

The percentages of positive cells and the geometrical mean fluorescence intensities of the Fzd6 

signal are indicated in the graph plot. (B) Representative photographs of cells from each of the 

cell lines taken during the Imagestream analysis and showing different degrees of Fzd6 staining 

on the cell surface.  

 

3.6 Discussion 

 

The results presented in this chapter demonstrate that the overexpression of 

FZD6 is a common event in breast cancer. It is likely that the up-regulation of 

FZD6 is a consequence of gene amplification, since a high percentage of the 

breast cancer cases in the COSMIC database (19.11%) showed a FZD6 copy 

number gain (table 3.1). A similar percentage of cases (18.71%) also showed 
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high FZD6 expression, suggesting that the two events could be causally linked 

(table 3.1). Given the importance of WNT signalling in cancer, altered 

expression of FZD6 has the potential to have an important role in breast 

tumorigenesis. Indeed, increased activation of the WNT pathway through 

overexpression of frizzled receptors has been reported in many tumours. 

Moreover, overexpression of FZD receptors has been shown to be critical in 

promoting tumour progression, metastasis and drug resistance in breast cancer 

(Zhang et al., 2012; Yang et al., 2011; Ueno et al., 2008; Milovanovic et al., 

2004).  

Our results indicate that FZD6 might have a specific role in breast cancer. This 

is suggested by the comparison between normal mammary epithelial cells 

(HMEC) and their immortal counterpart expressing hTERT (human Telomerase 

Reverse Transcriptase). Indeed, we observed a marked upregulation of FZD6 in 

HMEC in the presence of ectopic expression of hTERT, both at mRNA and 

protein levels (fig. 3.8). The forced expression of hTERT is widely used to 

immortalize primary cells that would otherwise rapidly undergo senescence in 

culture. This is achieved by the synthesis of new telomeres at the end of the 

chromosomes by hTERT. Telomeres are repeated nucleotide sequences that 

protect chromosome ends from degradation. Every time a somatic cell 

undergoes mitosis, telomeres are shortened, reducing the lifespan of the cell. 

This is thought to be a control mechanism that reduces the risk of propagation 

of cells with chromosome instability and mutations (Lee, Choi and Ouellette, 

2004). The activation of telomerases is also a common event in cancer and is 

required by cancer cells to escape senescence and become immortal. 

Immortalization of primary cells with hTERT also promotes the acquisition of 

new mutations, as observed in tumorigenesis. For example, Noble et al. 

showed that ectopic expression of hTERT in human fibroblasts could result in 

deletions of p16 and mutations of p53 (Noble et al., 2004). Mutations in relevant 

check point proteins can lead to genomic instability and the acquisition of 

mutations. We therefore hypothesise that genome instability in breast cancer 

cells might promote FZD6 rearrangements that results in its overexpression.  

To understand the clinical implications of the overexpression of FZD6, we 

carried out survival studies based on gene expression, microarrays and protein 

expression in patients. Up-regulation of FZD6 reduces overall survival, relapse 

free survival and distant relapse free survival, suggesting that FZD6 
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upregulation could be a general risk factor in breast cancer. When patients were 

divided into different cohorts, i.e. in lymph node negative or positive and in 

breast cancer subtypes, FZD6 expression was not informative in terms of 

overall survival (fig. 3.3). Nevertheless, high FZD6 expression was associated 

with a lower relapse free survival, particularly in patients with positive lymph 

nodes (fig.3.4). This suggests that the upregulation of FZD6 could play a role in 

tumour recurrence.  High expression of FZD6 was also associated with high risk 

of metastatic relapse in all the lymph node negative subgroups, but not in lymph 

node positive patients (fig.3.5). A possible explanation for this is that FZD6 

could be important to trigger metastatic spread, but its expression might be 

irrelevant for the survival of patients with late stage disease, i.e. with lymph 

node positive for the presence of cancer cells.  

The basal-like cohort was the one with the higher hazard ratio between high 

and low FZD6 expression for the metastatic relapse survival, suggesting a 

particular importance of FZD6 up-regulation in the metastatic progress for this 

subtype. These observations are consistent with the multivariate analysis 

carried out in a cohort of Italian patients. In these patients, high FZD6 

expression was predictive of low relapse free survival and distant relapse free 

survival specifically in the triple negative breast cancer subgroup. We also 

observed higher expression of FZD6 in basal cell lines when compared to 

HMEC or luminal cell lines. Basal carcinomas are usually associated with a 

poorer prognosis and a more invasive phenotype when compared to luminal 

subtypes (Sorlie et al., 2001). We therefore hypothesize that FZD6 expression 

could be relevant in explaining the phenotypic differences between luminal and 

basal breast cancers. Although triple negative tumours initially show a good 

response to therapy, they tend to relapse at distant sites more frequently than 

other subtypes (Carey et al., 2010; Foulkes, Smith and Reis-Filho, 2010; 

Nguyen et al., 2008). Altogether, our findings suggest that surface expression of 

Fzd6, besides serving as a strong predictive marker of distant relapse, could be 

exploited as a target for therapy of triple negative cancers. The need to predict 

patients outcome in early breast cancer is of primary importance in order to 

select the appropriate therapeutic regimens. For example, in lymph node 

negative patients adjuvant systemic chemotherapy could be unnecessary and 

even harmful for low risks patients, whereas it could be crucial for high risk 

patients (Cianfrocca and Goldstein, 2004). FZD6 expression status could be 
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used to discern high risk lymph-node negative patients from the ones with low 

risk, helping clinicians to design adequate therapies.    

Understanding the role of FZD6 in breast cancer could give new insights in the 

biological mechanisms underlying tumour recurrence and metastasis. This is of 

primary importance, since a vast number of tumours recur, even many years 

after primary treatment (Karrison, Ferguson and Meier, 1999). Different 

explanations have been proposed to explain tumour recurrence, but this 

process is still poorly understood. Recurrence is originated by cancer cells that 

remain in the patient’s body after primary treatment and that cannot be detected 

with conventional diagnostic techniques. These cells undergo a period of 

quiescence, but eventually proliferate to reform the tumour (Aguirre-Ghiso, 

2007). Many investigators argue that tumour repopulation is caused by cancer 

stem cells that survived surgery or adjuvant therapy (Merlos-Suárez et al., 

2011; Donnenberg and Donnenberg, 2005). Stem cells resist chemotherapy 

due to their high expression of membrane transporters that excrete cytotoxic 

drugs (Dean, Fojo and Bates, 2005). Cancer stem cells have also a pivotal role 

in the development of metastases. This is thought to be caused by the aberrant 

activation of pathways that are responsible of cell migration during 

organogenesis (Singh and Settleman, 2010; Karnoub et al., 2007; Li et al., 

2006). In this contest, the role of the WNT pathway is well established (Reya 

and Clevers, 2005).The WNT pathway has been shown to be required for the 

activation of the epithelial to mesenchymal transition (EMT), essential for cancer 

cells to leave the primary tumour site and invade to distant organs (Neth et al., 

2007). Indeed, our group previously reported that FZD6 marks stem-like cells 

and confers drug resistance in neuroblastoma cells (Cantilena et al., 2011). In 

breast cancer, the overexpression of FZD6 could provide a survival advantage 

to cancer stem cells to overcome primary treatment. Patient bearing high FZD6 

would therefore have a higher risk for tumour recurrence and metastatic 

relapse.  
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CHAPTER IV 

 

Depletion of FZD6 expression affects motility, 

invasion and three-dimensional growth, but not 

proliferation of breast cancer cell lines 

 

4.1 Introduction 

 

Several investigators have linked abnormalities in the WNT pathway with 

increased proliferation and invasion of breast cancer cells (Zhang et al., 2012; 

Klemm et al., 2011; Yang et al., 2011; Matsuda et al., 2009; Lindvall et al., 

2007). In the previous chapter I have shown that FZD6 overexpression is 

common in breast cancer and associated with low survival. To understand the 

role of the FZD6 receptor in breast cancer, we used RNA interference to 

downregulate its expression in cell lines. This approach is commonly used to 

understand the function of a gene by observing the phenotypic effects caused 

by its depletion (Hannon, 2002). Transient knock down was obtained using 

siRNAs, whereas stable knock down was achieved through the infection of cells 

with lentiviral vectors targeting FZD6. Non-specific RNA sequences were used 

as controls.  
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4.2 FZD6 knock down validation 

 

Firstly, I transiently transfected two small interfering RNA (siRNA1 FZD6 and 

siRNA2 FZD6) targeting different regions of the FZD6 transcript. A nonspecific 

siRNA sequence was used as a negative control. RT-QPCR analysis 

demonstrated robust knock down in all the cell lines analysed (fig.4.1). 

 

Figure 4.1:  Quantification of FZD6 knockdown in breast cancer cells. Real-time 

Q-PCR showing knockdown of FZD6 mRNA expression levels in breast cancer cell lines 

transfected with the indicted siRNAs. FZD6 expression was normalized to GAPDH and 

expressed as relative quantities to the control siRNA. Error bars indicate standard deviation, 

asterisks indicate statistical significance (Student t-test, HCC1143, n=3; BT474, n=3; MDA-MB-

231, n=1) 

 

Knock down efficiency was also evaluated at protein level using flow cytometry 

and Imagestream analysis. Indirect immunostaining was performed on living 

cells using a FZD6 antibody and a FITC-conjugated secondary antibody. Cells 

were analysed with an EPICS XL flow cytometer (Beckman Coulter) or an 

Imagestream X Imaging flow cytometer (Amnis). FZD6 membrane staining was 

drastically reduced in the presence of both the siRNAs (Fig. 4.2 and 4.3) in the 

HCC1143 and MDA-MB-231 cell lines.  
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Figure 4.2: FACS analysis of the HCC1143 cell line transfected with siRNAs 

targeting FZD6.  HCC1143 cells were transfected with the indicated siRNAs and subjected to 

FZD6 indirect immunostaining. Cells stained with secondary antibody only were used as a 

blank. FZD6-positive cells are shown in green. 
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Figure 4.3: Knock down efficiency on MDA-MB-231 cells. (A) Imagestream analysis 

showing quantification of FZD6 expression in MDA-MB-231 cells after transfection with siRNAs-

FZD6 or control siRNAs. Cells stained with secondary antibody only were used as a blank.  (B) 

Imagestream analysis showing single cells with surface expression of FZD6 in the presence of 

the indicated siRNAs. 

 

For a stable knock down the cell line MDA-MB-231 was infected with lentiviral 

vectors expressing shRNAs targeting FZD6 (Sh1 and Sh2 FZD6). A nonspecific 

shRNA (Scrambled) was used as a negative control. Infected cells were then 

selected with puromycin and analysed with RT-QPCR, western blot and FACS 

to assess knock down efficiency. Both sh1 and sh2 lentiviral constructs were 
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able to produce an almost complete abrogation of FZD6 protein expression 

(fig.4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



118 
 

 

 

Figure 4.4: Knock down efficiency on MDA-MB-231 cells stably expressing 

control shRNA (Scrambled) or FZD6 shRNAs (Sh1 and Sh2 FZD6) . (A) RT-QPCR 

analysis (B) Western blot analysis (C) FACS analysis of live cells showing membrane staining 

of FZD6. Wild type cells (WT) were also included in the analysis. Knock down assessment was 

carried out regularly throughout this research. Cells resuspended with secondary antibody, but 

not primary antibody, were used as a blank.   
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4.3 FZD6 knock down does not affect cellular 

proliferation 

 

We used the MTS or XTT assays to assess cell metabolism/proliferation. These 

assays exploit the capacity of tetrazolium salts (MTS and XTT) to develop a red 

colour when reduced in a formazan product by living cells. The intensity of the 

colour is proportional to the cell metabolic activity and, indirectly, to cell number 

(Buttke, McCubrey and Owen, 1993). To test the effects of FZD6 knock down in 

cellular proliferation, the different breast cancer cell lines were transfected with 

FZD6 or control siRNAs and then plated in 96 well plates. 24 hours later, MTS 

was added to the cells and the absorbance read after 2 hours. Relative cell 

proliferation/metabolic activity of cells was expressed as optical density relative 

to controls. FZD6 knock down did not perturb metabolism/proliferation of breast 

cancer cells with the exception of the HCC1143 cell line (Fig. 4.5). 

 

 

Figure 4.5: MTS assay of breast cancer cells after FZD6 knock down with 

siRNAs. Cells were transfected with control siRNA or siRNAs targeting FZD6 (siRNA 1 and 

siRNA 2). Metabolic activity is expressed as optical density (O.D.) units normalized to the 

control siRNA. Absorbance was read 24 hours after the cells were plated. Error bars indicate 

standard errors and asterisks indicate statistical significance (student t-test, n=3). N.S. indicates 

non significant differences.  
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Figure 4.6: XTT assay of the MDA-MB-231 cell line expressing FZD6-shRNAs or 

control shRNA. Metabolic activity is expressed as optical density (O.D.) units normalized to 

the scrambled shRNA. Absorbance readings were made 24 hours and 48 hours after cells were 

plated. Three independent experiments were carried out in triplicate, error bars indicate 

standard errors. No significant differences were observed (student t-test, n=3).   

 

Next, I assessed the proliferation of MDA-MB-231 cells stably expressing 

shRNAs targeting FZD6 (sh1-FZD6 and sh2-FZD6) or control shRNA 

(Scrambled). Cells were plated in 96 well plates, and the XTT assay was 

performed after 24 or 48 hours (fig.4.6). No significant differences were 

observed in cell proliferation in the presence of FZD6 downregulation. 

Cell cycle analysis was also carried out on these cells (fig.4.7). The knock down 

of FZD6 did not alter significantly cell cycle profiles nor the Sub G1 DNA content 

of MDA-MB-231 cells.  
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Figure 4.7: Cell cycle analysis on MDA-MB-231 cells in the presence of control 

shRNA or FZD6 shRNAs. (A) Representative experiment showing cell cycle profiles after 

propidium iodide staining and FACS analysis. (B) Plot showing the percentage of cells in 

different phases of the cell cycle. Error bars indicate standard error. The results shown 

represent the average of three independent experiments. No significance differences were 

observed (student t-test, n=3).  
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4.4 FZD6 knock down reduces the invasion and motility 

of breast cancer cells  

 

To assess the invasion of breast cancer cells in vitro, I carried out invasion 

assays based on the capacity of cells to trespass a matrigel membrane. Cells 

were resuspended in serum free medium and seeded in the upper compartment 

of a Boyden chamber. The bottom of this compartment consists in a porous 

membrane covered in matrigel. The lower compartment of the Boyden chamber 

was replenished with medium containing a chemoattractant (FBS or EGF) to 

generate a chemotactic gradient.  

In the presence of FZD6 siRNAs, the invasion capacity of breast cancer cells 

was drastically reduced (fig. 4.8). The cell line MDA-MB-436, that does not 

express membranous FZD6 (fig. 3.9), was used to rule out off-target effects of 

the siRNAs. Transfection of FZD6 siRNAs in MDA-MB-436 cells did not produce 

any effect in cell invasion, confirming siRNA specificity.  
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Figure 4.8: In vitro invasion assays of breast cancer cell lines transfected with 

control siRNA or siRNAs targeting FZD6. Invasive cells are expressed as percentage 

relative to the control siRNA. Medium containing 10% FBS was used as chemoattractant. Error 

bars indicate standard errors and asterisks indicate statistical significance (student’s t-test, n=3). 

N.S. indicates non significant differences.   

 

In agreement with the siRNA experiments, we also observed a marked 

reduction of the FBS-mediated invasion of MDA-MB-231 cells stably expressing 

FZD6 shRNAs (Fig.4.9). Similar results were observed when invasion was 

stimulated with EGF. Cells expressing control shRNA were 2.5 fold more 

invasive in the presence of EGF compared to non stimulated cells. Conversely, 

Sh1-FZD6 cells were not responsive to EGF stimulation (fig. 4.9). 
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Figure 4.9: Invasion assays of the MDA-MB-231 cell line in the presence of 

control ShRNA or shRNAs targeting FZD6: (A) EGF mediated invasion. Cells 

resuspended in serum free media were seeded in a Boyden chamber where the bottom well 

was replenished with serum free medium (Control) or serum free medium with the addition of 

100ng/mL EGF. (B) FBS mediated invasion. Cells were resuspended in serum free media and 

seeded in a Boyden chamber where the bottom well was replenished with medium containing 

10% FBS. Invasion rates are expressed as percentage of the controls. Error bars indicate 

standard error. Asterisks indicate statistical significance (student t-test, n=3).  

 

To assess whether FZD6 was important for cell motility, I carried out wound 

healing assays. This technique is widely used to assess directional motility of 

cells in vitro (Rodriguez, Wu and Guan, 2005). Confluent cells growing in 

monolayer are scratched with a pipette tip and placed in a live imaging system 

microscope. The scratch induces a migratory response that stimulates cells to 

migrate in a polarized fashion towards the wound. MDA-MB-231 cells 

expressing scrambled or sh2 FZD6 shRNAs were analysed simultaneously after 

the wound. Photographs from 4 different areas of the scratch were taken every 

20 minutes over the range of 24 hours. Control cells were able to close the 

wound completely after 14h, whereas the wound was still visible in FZD6 

depleted cells at 14 and 19 hours (Fig. 4.10 A). Cell motility was quantified 

tracking single cells trajectories and quantifying average speed using image 

analysis software. FZD6 knock down reduced cell speed to 16μm/h compared 

to the 22 μm/h of control cells (fig.4.10 B). 
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Figure 4.10: Wound healing assay. MDA-MB-231 cells infected with lentiviruses 

containing control (Scrambled) or Fzd6 shRNA (Sh2) were grown as a monolayer and then 

scratched with a pipette tip. Cells were placed in a live imaging system and filmed for 24 hours. 

(A) Examples of pictures taken at the indicated times showing the closure of the wound in 

control (scrambled) but not in FZD6 downregulated (Sh2 –FZD6) cells. (B) Quantification of 

locomotion of FZD6-expressing versus non-expressing cells. The average speed of 10 cells for 

each wound was calculated. 4 wounds per shRNA type were analysed. Error bars indicate 

standard errors and asterisks statistical significance (student’s t-test, n=4). 
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4.5 FZD6 knock down changes the shape of breast 

cancer acini in a 3D culture system 

 

The data described in this section was produced in collaboration with Sibylle 

Ermler and Elisabete Silva from the Institute for the Environment, Department of 

Life Sciences, Brunel University London. Sibylle Ermler and Elisabete Silva 

carried out the 3D cultures and the immunofluorescence staining, and I 

performed the image analysis on the acini photographs.  

Many features of cells are not reproducible in a bidimensional culture, as they 

require the interaction with a tridimensional matrix (Lee et al., 2007). The 

morphology of organoids growing in a tridimensional environment can be 

indicative of the malignancy of cells. For example, transformed mammary 

epithelial cells maintain the capacity to form organized acini in 3D culture, 

whereas breast cancer cells generate organoids in which the normal tissue 

organization and architecture are lost (Petersen et al., 1992).   

To study the role of FZD6 in the structural organization of breast cancer 

organoids, we cultured MDA-MB-231 cells expressing control or FZD6 shRNAs 

in a 3D matrigel matrix. Notably, in the absence of FZD6 the symmetrical shape 

of breast cancer acini, measured as aspect ratio, circularity and roundness, was 

significantly increased (fig. 4.11). 

The acini were also stained for laminin (data not shown). All the samples did not 

express laminin. Acini were also stained for fibronectin, but the stain did not 

work well enough to make conclusions about expression levels, especially 

because only 2 dimensional pictures were available.  
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Figure 4.11: 3-D cultures of MDA-MB-231 cells. (A) Photographs of organoids formed 

by the different MDA-MB-231 cell lines expressing (scrambled) or non expressing (Sh1 and 

Sh2) FZD6 after 3 weeks in culture (DAPI staining). (B-D) Quantification of the aspect ratio, 

circularity and roundness, of the organoids described in A. The software imageJ was used to 

analyse the geometrical characteristics of the organoids. Error bars indicate standard errors and 

asterisks statistical significance (ANOVA followed by Bonferroni’s post-hoc test on a minimum of 

20 images of acini per well). The data shown is representative of two independent experiments. 

.   
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4.6 Discussion 

 

The results described in this chapter demonstrate that FZD6 receptor is 

important for the motility and invasion of breast cancer cells (fig. 4.8, 4.9 and 

4.10). On the other hand, FZD6 is not involved in cell proliferation (fig. 4.5, 4.6 

and 4.7). The marginal reduction in proliferation of HCC1143 cells, in the 

presence of siRNA1 FZD6, is likely caused by off target effects, since the 

transfection of siRNA2 FZD6 did not perturb proliferation (fig. 4.5). 

Downregulation of FZD6 did not alter the cell cycle, nor induced apoptosis in 

MDA-MB-231 cells. Several investigators reported that the Wnt β-catenin-

dependent pathway regulates cell proliferation. Conversely, the non-canonical 

pathway has been implicated mostly in cell migration (Reya and Clevers, 2005). 

Thus, our findings may suggest a non-canonical function for FZD6. Indeed, the 

knock down of FZD6 strongly supressed the invasion of all the breast cancer 

cell lines tested, with the exception of the MDA-MB-436 cell line which does not 

express membranous FZD6 (fig. 4.8 and 4.9). These results might help to 

explain why patients bearing tumours expressing high level of FZD6 have a 

higher chance to incur into metastatic relapse. Other frizzled receptors were 

previously linked to metastasis. For example, FZD7 and FZD5 play a role in the 

proliferation and invasion of colon, breast, and melanoma cancer cells, 

respectively (Yang et al., 2011; Ueno et al., 2008; Weeraratna et al., 2002). It is 

therefore likely that FZD6 regulates breast cancer metastasis in a similar 

fashion.  

FZD6 might be important to coordinate the polarized motility of breast cancer 

cells, as suggested by the wound healing assay (fig.4.10).  Cell movements are 

necessary for the coordination of many biological functions during 

morphogenesis, tissue healing and immune response (Ananthakrishnan and 

Ehrlicher, 2007). During morphogenesis, the WNT/planar cell polarity plays an 

important role in the regulation of embryonic cells polarized movements. This is 

a well conserved mechanism that was observed in the organogenesis of 

drosophila, caenorhabditis elegans and in vertebrates (Seifert and Mlodzik, 

2007). Aberrant activation of these signals, normally active solely during 

morphogenesis, was also reported in cancer (Wang, 2009). Despite the 

canonical pathway has been an object of more studies, the PCP pathway has 

emerged as an important component of cancer development and progression 
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(Kaucka et al., 2013; Luga and Wrana, 2013). Recently, Luga and colleagues 

showed that FZD6 co-localise with PCP components in breast cancer cell 

protrusions during cell locomotion (Luga et al., 2012). It is thus likely that the 

upregulation of FZD6 in breast cancer cells could lead to increased motility and 

invasion through the activation of the PCP pathway. A further confirmation of 

these assumptions is given by studies on the nervous system. FZD6 is required 

for correct convergent cell extension during neurulation and its abrogation or 

mutation results in neural tube and midbrain morphogenetic defects in mice (De 

Marco et al., 2012; Stuebner et al., 2010; Wang et al., 2006). Thus, we could 

hypothesize that FZD6 mediates the polarized extension movement of breast 

cancer cells during the metastatic process activating similar signalling 

pathways.  

The role of FZD6 in regulating invasion is further suggested by 3D culture 

experiments. Non-transformed breast epithelial cells, growing in a 3D 

extracellular matrix, form normal and structurally organized acini. Malignant 

cells instead, form irregular organoids that lack tissue polarity (Petersen et al., 

1992). The architecture of breast cells in a 3d matrix influences cellular 

behaviour. For example, the disruption of the three dimensional organization 

with the ectopic expression of a dominant RAC mutant (RAC is an important 

member of the PCP signalling), results in increased VEGF secretion and cell 

migration of breast cancer cells (Chen et al., 2009). Highly malignant MDA-MB-

231 cells form “stellate” structures with disorganized nuclei and elongated 

invasive processes (Kenny et al., 2007). The depletion of FZD6 in these cells 

resulted in the formation of more regular acini, similar to the ones formed by 

non-malignant breast cells (fig.4.11). Furthermore, FZD6 depletion caused the 

reduction of elongated invasive protrusion branching from the acini’s central 

bulk. These results suggest that the overexpression of FZD6 in breast cancer 

cells could disrupt tissue architecture and promote invasion.  

All together these findings underline the importance of FZD6 in promoting 

breast cancer cells invasion and motility and its role in the maintenance of 

tissue polarity.   
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CHAPTER V 

 

Assessment of the role of FZD6 in the in vivo 

growth of breast cancer cells 

 

5.1 Introduction 

 

To understand the role of FZD6 in tumour growth and metastatic spread, we 

carried out orthotopic transplantations of MDA-MB-231 cells, with or without 

FZD6 expression, in immunodeficient mice. MDA-MB-231 cells are highly 

tumorigenic when injected into immunodeficient mice and are commonly used 

to model breast cancer metastasis in vivo. Mice used in the study belong to the 

strain NOD-SCID-γ (NSG). These animals bear mutations that result in the 

complete loss of immunity, allowing xenotransplantation of human cells. The 

first is a mutation of the PRKDC gene, commonly known as Prkdcscid, a loss of 

function mutation that results in the disruption of adaptive immunity by 

drastically reducing the number of mature B and T cells (Greiner, Hesselton and 

Shultz, 1998). The second is the Il2rgtm1Wjl mutation, which affects the gene 

encoding the interleukin 2 receptor gamma chain, resulting in the arrest of the 

differentiation of natural killer cells (Willerford et al., 1995).  

The in vivo transplantation and the analysis of tumour tissue sections were 

carried out by our collaborators Dr Manuela Iezzi and Dr Alessia Lamolinara at 

the Aging Research Center, G. D’Annunzio University, Chieti, Italy. 
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5.2 FZD6 depletion does not affect the growth of MDA-

MB-231 primary tumours 

 

 

Figure 5.1: Orthotopic xenotransplantation of MB-MDA-231 cells with or 

without Fzd6 expression in NSG mice. MB-MDA-231 cells infected with a lentivirus 

containing a FZD6 (Sh1) or control shRNA (scrambled) were injected into the fat pad of 

immunocompromised NSG mice. Growth of the primary tumour was measured two times per 

week using callipers. Error bars indicate standard errors. 10 mice per group were used in this 

study. This experiment was carried out by our collaborators Dr Manuela Iezzi and Dr Alessia 

Lamolinara at the Aging Research Centre, G. D’Annunzio University, Chieti, Italy. 

 

Mice were divided in two groups: 10 mice were injected with MDA-MB-231 cells 

infected with the control shRNA. A second cohort of 10 mice was injected with 

FZD6 depleted MDA-MB-231 cells. Despite the growth of FZD6 negative cells 

was slightly delayed in comparison to control cells, at the end of the experiment 

the size of the primary tumour masses was similar in the two groups (fig.5.2).  
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5.3 FZD6 depletion inhibits the invasion of breast 

cancer cells to the bone, liver and the heart of mice 

 

Mice were sacrificed after 96 days from tumour cells injection or when tumour 

size reached the volume of 0.3 cm3. The organs were harvested, fixed and 

embedded in paraffin. Histological sections were stained with haematoxylin 

/eosin and analysed by two pathologists independently.  

The number of mice bearing metastases is plotted in figure 5.3. Tumour 

metastases were detected in lymph nodes, kidneys, pancreas, heart, bones, 

lungs and liver, but not in brain, stomach and intestine (figure 5.4 and 5.5).  

 

Figure 5.2: Metastatic occurrence in NSG mice injected with MDA-MB-231 

cells, with or without FZD6 expression. The graph shows the number of mice with 

breast cancer metastasis in specific organs, as determined after histological analysis. This 

experiment was carried out by our collaborators Dr Manuela Iezzi and Dr Alessia Lamolinara at 

the Aging Research Centre, G. D’Annunzio University, Chieti, Italy. 
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Depletion of FZD6 only marginally changed the frequency of metastasis in the 

lymph nodes, kidneys, pancreas, lungs and liver compared to the FZD6 

proficient counterparts. However, FZD6 negative cells were less prone to 

invade the heart (Scrambled group = 6/10 mice, Sh1 FZD6 group 2/10 mice) 

and bones (Scrambled group 8/10, sh1 group 3/10). 

 

 

Figure 5.3: Representative photographs of MDA-MB-231 tumours in NSG mice: 

Breast cancer tumour cells are easily identifiable, since the lentiviral construct used to infect 

cells also express GFP.  
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Figure 5.4: haematoxylin-eosins staining of representative organ sections 

showing metastatic dissemination of MDA-MB-231 cells. Tissue sections were 

prepared and stained by our collaborators Dr Manuela Iezzi and Dr Alessia 

Lamolinara at the Aging Research Centre, G. D’Annunzio University, Chieti, Italy.  

To quantify microscopic metastases, lungs and livers were cut into thin 

sections. A semiquantitative evaluation based on the number and size of 

metastases was carried out (Table 5.1). 

In the lungs, metastases were similar in number and shape in the two groups, 

whereas in the liver, metastases originated from FZD6 positive cells where 

bigger and more numerous compared with the FZD6 negative counterparts 

(metastatic score scrambled: 27, metastatic score sh1 FZD6: 13).  
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Table 5.1: Metastatic score in lungs and liver of NGS mice injected with MDA-MB-231 

cells with or without FZD6. A semiquantitative evaluation was performed on organs sections, 

attributing to each sample a value from 0 to 4, based on the number and size of metastases; 0 

was assigned to mice without metastases; 1 was attributed to organs with few small 

metastases, 4 to organs with numerous large metastases. Asterisk indicates statistical 

significance, p=0.0265, (student t-test, n=10). This experiment was carried out by our 

collaborators Dr Manuela Iezzi and Dr Alessia Lamolinara at the Aging Research Centre, G. 

D’Annunzio University, Chieti, Italy. 
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5.4 Discussion 

 

The results described in this chapter are in agreement with the in vitro studies, 

further suggesting a role for FZD6 in breast cancer metastasis. FZD6 is largely 

dispensable for breast cancer cell proliferation in vivo, but is important to drive 

the metastatic spread of breast cancer cells to the bone, liver and heart of mice.   

Cancer cells acquire a metastatic phenotype in a complex multistep process 

that involves modification of a number of signalling pathways. The first step in 

this process is the loss of the molecular bonds that keep cells together, such as 

cell adhesion molecules (CAM) and cadherins (Cavallaro and Christofori, 2004; 

Edelman and Crossin, 1991). In order to migrate, metastatic cells need to 

promote dynamic interaction with the extracellular matrix (ECM). In this process, 

the receptors for the integrins play a key role (Desgrosellier and Cheresh, 

2010). Metastatic cells also require the secretion of proteases to open a way 

through the stroma (Koblinski, Ahram and Sloane, 2000) and reach blood or 

lymph vessels. The most common way of dissemination of cancer cells is 

through the blood stream. Metastatic cells are capable to traverse the blood 

vessels in a process called intravasation (Wyckoff et al., 2000). An alternative 

transportation way is through the lymph vessels. The inverse process, the 

extravasation, allows metastatic cells to get from the blood stream to distant 

organs, where eventually, they can initiate new tumour colonies (Chambers, 

Groom and MacDonald, 2002). The capability of malignant cells to form 

metastases largely depends on the characteristics of the microenvironment that 

harbour these cells in the host organ (often referred as metastatic niche), 

according to the “seed and soil” model described for the first time by Paget 

(Paget, 1889). The metastatic niche could also be induced by the primary 

tumour through the secretion of growth factors, which in turn, lead to 

biochemical changes in distal organs. These changes could result in a receptive 

microenvironment defined as a “pre-metastatic niche”, which promotes the 

migration and spread of metastatic cells at these sites (Psaila and Lyden, 

2009).  

 It is a widely held view that cancer stem cells are crucial in the malignant 

progression of tumours (Li et al., 2006). Cancer stem cells are characterized by 

a mesenchymal, motile phenotype, therefore are likely candidates to promote 

cancer metastasis (Mani et al., 2008). Although a lot of progresses have been 
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made to uncover the molecular basis of cancer metastasis, it is still unclear how 

certain tumours have privileged sites of metastatization. For example, breast 

and prostate cancer often metastasise in the bones. This selectivity cannot be 

explained merely by the anatomical disposition of the blood vessels draining the 

primary tumours, but implies the existence of biological processes that promote 

the specific engraftment to these organs (Nicolson, 1988). The WNT pathway 

has a pivotal role in controlling cancer stem cells maintenance and self-renewal, 

through both autocrine and paracrine signals (Reya and Clevers, 2005). It is 

thus possible that tissue specific WNT signals are required for harbouring 

cancer stem cells migrating from a primary tumour to a metastatic site. The 

tissue specific expression of WNT proteins could thus explain the selective 

organotropism of certain tumours.  

The metastatic niche is maintained also through the recruitment of stromal cells 

such as macrophages and fibroblasts that intimately interact with cancer cells 

(Mantovani and Sica, 2010; Kalluri and Zeisberg, 2006; Pollard, 2004). Since 

these cells have a different morphology and secrete different growth factors 

depending on the tissue of origin (Baum and Duffy, 2011), it is likely that they 

also play a role in the organ-specific tropism of cancer cells. The WNT pathway 

is important in the communication between cancer cells and stromal cells. For 

instance, it has been shown that mammary murine fibroblasts secrete WNT-1 to 

promote breast tumorigenesis in mice (Jue et al., 1992). Furthermore, human 

mammary fibroblasts release exosomes that stimulate breast cancer cells to 

produce WNT11 that in turn promotes cell motility through the PCP pathway 

(Luga et al., 2012). Mammary fibroblasts also have a role in promoting a pre-

metastatic niche: Melanchi and colleagues showed that mouse mammary 

cancer cells stimulate fibroblasts to produce periostin, a component of the 

extracellular matrix, in the lungs. Periostin in turn, recruits WNT signals that are 

essential for maintenance of cancer stem cells colonizing to the lungs. Block of 

Periostin prevents lungs metastasis in mice (Malanchi et al., 2012). 

Macrophages might also be important in defining the organ colonization of 

metastatic cells by releasing tissue specific factors (Stout and Suttles, 2004). 

Macrophages are involved in all the limiting steps of cancer metastasis, 

including the generation of the metastatic niche. Their role in tumorigenesis is, 

at least in part, controlled by the secretion of WNT ligands. It is therefore 

possible that macrophages could be important in controlling the WNT signals 
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that are responsible for the homing of metastases in secondary site (Qian and 

Pollard, 2010; Oguma et al., 2008; Pukrop et al., 2006). 

The selective organotropism of cancer metastasis is well documented for the 

bones, since this is the elected site of metastasis for two of the most common 

tumours, prostate and breast cancer (Bubendorf et al., 2000; Coleman and 

Rubens, 1987). The Bone is mainly structured in a hard calcified matrix, 

therefore early events should occur to degrade this matrix (osteolysis) and 

make it receptive to harbour cancer cells. Furthermore, release of growth 

factors trapped within the bone matrix could be important survival signals for the 

colonization of metastatic cells (Yoneda and Hiraga, 2005). The WNT pathway 

is essential for bone development and bone remodelling from early to adult life 

(Macsai, Foster and Xian, 2008). Indeed, DKK1 or sFRP-1 knock-out mice, two 

endogenous WNT inhibitors, have severe bone development deficiency (Hall 

and Keller, 2006). The knock down of LRP5, which is a frizzled co-receptor, 

leads to low bone mass, deformities, and fractures.  Not surprisingly, the WNT 

pathway also mediates molecular events that are important for the metastatic 

spread of certain cancers to the bones. For example, in mice models of prostate 

cancer metastasis, Dickkopf-1 (DKK-1), which antagonizes WNT activity, is 

secreted by prostate cancer cells in early stage to promote osteolysis and 

colonization in the bone. As metastases progress, DKK1 is downregulated and 

this results in abnormal production of bone tissue (osteoblastic metastasis) 

through the inhibition of the WNT pathway (Hall et al., 2005). This would 

suggests that cross talk of cancer cells with the metastatic niche through the 

WNT pathway could be, at least in part, responsible for the organ selectivity of 

pancreatic cells. The WNT inhibitor DKK-1 could be also involved in the 

organotropism of multiple myeloma metastases, where its overexpression has 

been linked to the onset osteolytic lesions (Tian et al., 2003). In breast cancer 

numerous secreted factors are known to enhance tropism of cancer cells to the 

bones, although the mechanisms are still largely unknown. It is a widely held 

view that osteoclasts and osteoblasts, that respectively digest and produce new 

bone tissue, play an important part in the onset of breast cancer bone 

metastases. Indeed, it has been reported that breast cancer cells can alter the 

balance between the activity of osteoblasts and osteoclast, leading to osteolytic 

and, less frequently, osteoblastic lesions (Yoneda and Hiraga, 2005). It has 

been proposed that breast cancer cells mimic in the bones what happens during 

lactation. Normal mammary cells release the parathyroid hormone-related 
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protein (PTHrP) that stimulates osteoclasts, resulting in bone resorption and 

calcium release. This is a physiological process aimed to the enrichment of 

calcium in the milk. Breast cancer cells use the same mechanism to digest the 

bone matrix and create docking sites to colonize these organs (Lu and Kang, 

2007). PTHrP also regulates the epithelial and mesenchymal expression of 

LEF1 and β catenin during breast development, suggesting a cross talk with the 

WNT pathway (Foley et al., 2001). Moreover, it has been shown that PTHrp and 

WNT pathway cross talk to regulate endochondral bone development (Guo et 

al., 2009). As previously mentioned, osteolysis results in the release of 

numerous growth factors from the bone matrix. This in turn stimulates cancer 

cell growth and the release of new bone metastasis factors, creating a vicious 

loop. Amongst these factors are IGFs, TGFβ, PDGF and BMP, which all 

activate pathways that have been shown to interact with the WNT signalling 

(Reis et al., 2012; Kamiya et al., 2008; Nakashima, Katagiri and Tamura, 2005; 

Richard-Parpaillon et al., 2002; Nishita et al., 2000; Coleman and Rubens, 

1987). It is thus likely that the WNT pathway plays an important role in the 

organotropism of breast cancer cells to the bone.  

In our model, the ablation of FZD6 resulted in the reduced engraftment of breast 

cancer cells to the bone, the heart and the liver of immunodeficient mice. 

Although we demonstrated that FZD6 knock down leads to a reduction of 

motility and invasion in vitro, cells with the downregulation of FZD6 are still able 

to metastasise efficiently in lungs and other organs. Preliminary analysis on 

lung tissue sections suggests that Fzd6 expression could have been re-

activated in metastases originating from cells infected with the FZD6 shRNA 

targeting retrovirus, probably due to the absence of selective pressure (data not 

shown). However, since the knock down of FZD6 did not lead to a general 

reduction of metastasis, but resulted in an organ specific reduction, the 

decreased invasion and motility alone are not sufficient to justify this effect. A 

possible explanation could be that the different WNT signalling landscapes 

present in different organs contribute to create a selective metastatic niche. 

Thus, it is possible that the knock down of FZD6 could reduce the interactions 

between cancer cells and their niche in specific organs, reducing the intensity of 

survival signals necessary for a successful colonization.  FZD6 might be also 

relevant in mediating the interaction between cancer cells and macrophages 

and/or fibroblasts in a tissue dependent manner, since these stromal cells are 

able to secrete WNT ligands and to stimulate cancer cell to release WNTs. 
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However, further experiments are necessary to elucidate the role of FZD6 in the 

selective organotropism of breast cancer.  
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CHAPTER VI 

 

Assessment of the signalling pathways regulated 

by FZD6 in breast cancer cells 

 

6.1 Introduction 

 

In the previous chapters I have demonstrated the involvement of FZD6 in the 

modulation of cell invasion and migration in breast cancer. To further these 

findings, we investigated which signalling pathways are activated by FZD6 

using a loss of function approach.  

Deregulation of EGF signalling is observed in the majority of solid cancers, 

contributing to tumorigenesis (Woodburn, 1999). One of the effectors of the 

EGF receptor (EGFR) is PLC-γ1, which mediates downstream signals that 

regulate cell motility and cancer progression (Chen et al., 1994). EGFR also 

mediates the activation of AKT through the PI3K signalling cascade. The AKT 

pathway has a crucial role in survival, proliferation and motility of cancer cells 

(Vivanco and Sawyers, 2002; Kim et al., 2001). Two other important effectors 

downstream EGFR are the Extracellular-signal Regulated kinases 1 and 2 (ERK 

1 and 2) which belong to the family of the MAP kinases. They also have been 

implicated in processes like cell proliferation, differentiation and cell invasion in 

breast cancer (Jorissen et al., 2003; Krueger et al., 2001). Several researches 

have previously reported interactions between EGFR and WNT signalling (Hu 

and Li, 2010). For instance, Schroeder et al. found that EGFR and β-catenin 

form heterodimers in breast tumours growing in mice, demonstrating for the first 

time, a direct interaction between the two pathways (Schroeder et al., 2002). 

Moreover, ectopic expression of WNT5a and WNT-1 activates ERK 1/2 and 

EGFR in mammary cells (Civenni, Holbro and Hynes, 2003). Therefore, we 

investigated whether FZD6 could have a role in mediating the activation of 

EGFR in breast cancer.  

We also assessed the expression of markers of the Epithelial to Mesenchymal 

Transition (EMT). EMT is defined as the process by which epithelial cells 
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acquire a mesenchymal phenotype, i.e. become motile, are able to invade in the 

surrounding tissue, acquire resistance to apoptosis and are able to produce 

extracellular matrix components (Kalluri and Weinberg, 2009). The WNT 

pathway participates in the activation of the EMT program in cancer (Vincan 

and Barker, 2008), suggesting that frizzled receptors could be involved in this 

process. Vimentin belongs to the family of intermediate filaments and 

participates to the organization of the cytoskeleton. This protein is generally not 

expressed in epithelial cells, but it is present primarily in cells of mesenchymal 

origin. For this reason vimentin is also widely considered a marker of EMT in 

cancer. In breast cancer, vimentin expression is associated with an aggressive 

phenotype and poor prognosis and is relevant in the coordination of cell 

invasion (Vuoriluoto et al., 2010). Loss of cell-cell adhesion is a fundamental 

step that confers to cells the capacity to migrate from the native epithelium and 

it is characteristic of cells that underwent EMT. E-Cadherin is one of the 

proteins that are essential to regulate cell-cell adhesion, and its loss is 

frequently observed in invasive breast carcinomas (Lombaerts et al., 2006; 

Cano et al., 2000). Fibronectin is a glycoprotein widely expressed in connective 

tissue, where it forms fibrillar structures which are essential components of the 

extracellular matrix. Fibronectin is implicated in a plethora of cell functions, such 

as cell adhesion, growth, migration, and differentiation (Pearlstein, Gold and 

Garcia-Pardo, 1980). In Breast cancer fibronectin is often found overexpressed 

and it enhances tumorigenesis through various mechanisms, including the 

activation of EMT (Park and Schwarzbauer, 2013).  

In the following chapter I present a series of experiments aiming to elucidate the 

role of FZD6 in the regulation of signalling pathways and molecules described 

above. 
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6.2 FZD6 signalling is not involved in the regulation of 

AKT, PLC-γ and ERK 1/2 

 

Figure 6.1: EGFR receptor pathway analysis on MDA-MB-231 cells expressing 

control shRNA (Scrambled) or FZD6 shRNAs (Sh1 and Sh2). Cells were starved 

overnight and then exposed for the indicated time to serum free medium containing 100ng/mL 

EGF or medium containing 10% FBS. Antibodies against the phosphorylated form of PLC-γ, p-

AKT and p-ERK 1/2 were used to assess the EGFR pathway activation. C indicates untreated 

controls. Total PLC-γ1, total AKT and total ERK 1/2 were used as loading controls. 



144 
 

To assess whether FZD6 mediates a crosstalk between EGFR and WNT 

pathways, we assessed the activation of PLC-γ1, AKT and ERK1/2 in the 

presence of control shRNA (SCR) or FZD6 shRNA (sh1 and sh2) (fig.6.1). 

In control cells, the activation of PLC-γ1 was detectable 20 minutes following 

the exposure to EGF, but became undetectable after 1 hour. Conversely, FBS 

did not activate PLC-γ1.  We observed a mild reduction in the activation of PLC 

after the exposure with EGF in Sh1 cells compared to control cells (Figure 6.1, 

bottom panel). However, we did not observe the same effect in Sh2 cells when 

compared to the control shRNA (fig. 6.1, upper panel).  

EGF induced a marked activation of AKT when administered to cells for 20 

minutes and, to a lesser extent, for 1 hour (fig. 6.1). AKT was also activated in 

the presence of FBS but only after 1 hour of exposure. However, the 

downregulation of FZD6 did not change the activation pattern of AKT (fig.6.1).  

EGF strongly activated ERk1/2 in control cells. FBS also induced the activation 

of ERK 1/2, particularly after one hour. However in cells infected with FZD6 

shRNAs ERK 1/2 activation was unperturbed compared to cells infected with 

Scramble shRNA (fig.6.1). 
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6.3 FZD6 signalling does not regulate the expression of 

the EMT markers vimentin and E-cadherin 

 

Figure 6.2: Western blot analysis of EMT markers in MDA-MB-231 breast 

cancer cells expressing control shRNA (SCR) or FZD6 shRNAs (Sh1 and Sh2). 

Cells were starved overnight and exposed to the indicated ligands for the indicated times (A) 

Expression of E-Cadherin and Vimentin after 1 hour exposure with the indicated WNT ligands or 

FBS, or after 20 minutes exposure to EGF. (B) Expression of Vimentin after 12h exposure to 

the indicated WNTs or to FBS. β-actin was used to control on samples loading.  
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To assess whether FZD6 is involved in the regulation of EMT, we analysed the 

expression of EMT markers in in MDA-MB-231 breast cancer cells. This cell line 

expresses the mesenchymal markers vimentin and fibronectin, but does not 

express E-Cadherin (Blick et al., 2008). Moreover, we studied whether the 

administration of exogenous WNT ligands, FBS or EGF, was able to influence 

the expression of EMT markers. Cells were starved overnight and treated with 

WNT ligands, FBS or EGF for the indicated times (fig. 6.2), then subjected to 

western blot analysis. 

The addition of  WNTs ligands, FBS or EGF did not result in any significant 

changes in the expression of vimentin or E-cadherin, both in cells expressing 

FZD6 and in FZD6 depleted cells (figure 6.2 A and B). 

 

Figure 6.3: EMT markers expression in MDA-MB-231 cells expressing control 

shRNA (SCR) or FZD6 shRNAs (Sh1 and sh2) growing in presence of serum at 

different confluency levels.  Cells were lysed at about 50% and 100% confluency and 

subjected to western blot analysis for the expression of vimentin (A) or E-Cadherin (B). MCF7 

were used as a positive control for E-Cadherin. 
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To assess whether the expression of these markers is dependent on the 

number of cells and/or on cell-cell interactions, the expression of vimentin and 

E-cadherin was analysed in cells growing in complete medium and lysed at low 

confluency (approximately 50%) or at high confluency (approximately 100 %) 

(fig. 6.3). We found that Vimentin and E-Cadherin did not change in different 

conditions.  

 

6.4 FZD6 signalling regulates fibronectin matrix 

deposition, but not the secretion of soluble fibronectin 

 

Fibronectin is a well established marker of EMT and enhances adhesion and 

motility of cancer cells (Park and Schwarzbauer, 2013; Friedl and Alexander, 

2011). Therefore, we assessed fibronectin matrix deposition in MDA-MB-231 

cells in the presence or absence of FZD6, using indirect immunofluorescence. 

The depletion of FZD6 with two shRNA (sh1 and sh2) resulted in a significant 

reduction of the fibronectin immunostaining in MDA-MB-231 cells (fig. 6.4). 

In collaboration with Michele Sallese and Giorgia Fragassi at the Fondazione 

Mario Negri Sud, S.Maria Imbaro, Italy, we also analysed the structure of the 

fibronectin matrix assembly using confocal microscopy (fig.6.5). We found that 

MDA-MB-231cells expressing FZD6 have a more dispersed and homogenous 

distribution of fibronectin, whereas, in cells where FZD6 expression was 

abrogated, fibronectin was distributed more in perinuclear blobs and less 

dispersed in the cytoplasm (figure 6.5 A). Cells showing fibronectin aggregates 

were counted and plotted in figure 6.5 B. The knock down of FZD6 resulted in a 

20% increment of in the formation of perinuclear fibronectin blobs.       
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Figure 6.4: Immunofluorescence analysis of the fibronectin matrix in FZD6 

depleted MDA-MB-231 cell lines. (A) Images showing expression of fibronectin (red 

colour) in the control (scrambled) or FZD6 depleted (Sh1, Sh2) cell lines. Nuclei were stained 

using DAPI (blue colour). (B) Quantification of the experiment shown in A.  The fibronectin 

fluorescence relative to DAPI was quantified using imaging software in at least ten random 

fields per sample.  Error bars indicate standard errors and the asterisk statistical significance 

(student’s t-test, n=10). The data shown is representative of two independent experiments. 

Scale bars indicate a length of 100μm. 
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Figure 6.5: Deposition of fibronectin in dependence to FZD6 expression  

assessed by confocal microscopy. Two phenotypes were noted, dispersed in control 

cells, dots/blobs in the absence of FZD6 expression. (A) Representative photographs showing 

the organization of fibronectin in MDA-MB-231 cells expressing control shRNA or sh1 FZD6. (B) 

Percentage quantification of cells presenting blobs aggregates of fibronectin in the cells 

described in A. Data are expressed as % of total, as means ±SEM of three independent 

experiments, with at least 100 cells quantified per experiment. *** indicates p<0.001 compared 

to control cells (student’s t-test). Scale bars indicate 10μm. This experiment was carried out by 

our collaborators Michele Sallese and Giorgia Fragassi at Fondazione Mario Negri Sud, S.Maria 

Imbaro, Italy. 
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Fibronectin exists also in a soluble form that cells release in the culture media 

(Proctor, 1987). We next assessed the expression of soluble fibronectin in cell 

culture supernatants using an ELISA assay. We found that the secretion of 

fibronectin was unchanged after the knockdown of FZD6 (fig. 6.6).   



 

 

Figure 6.6: ELISA for the detection of soluble fibronectin secreted by MDA-MB-

231 cells expressing control shRNA (Scrambled) or FZD6 shRNAs (sh1 and 

sh2). (A) Soluble fibronectin in the culture media was quantified through indirect ELISA 72 

hours following serum starvation (B). The cells used for the assay described in A were lysed in 

Laemmli buffer and subjected to western blot analysis to confirm a similar number of cells 

amongst the samples. Three wells per cell line were used and are indicated as 1 2 and 3.  The 

data is representative of one experiment carried out in triplicate. 
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6.5 FZD6 mediates a non-canonical signal in breast 

cancer cells 

 

To assess if FZD6 mediates a β-catenin dependent (canonical) signal or β-

catenin independent (non canonical) signal, we performed western blot analysis 

of MDA-MB-231 expressing control or FZD6 shRNA using an antibody 

recognising active β-catenin or anti phospho c-Jun N-terminal kinase (p-JNK) 

following the activation with WNT ligands (Fig.6.7).  

 

 

Figure 6.7: Assessment of the WNT canonical and WNT/JNK non-canonical 

pathways in MDA-MB-231 breast cancer cells in the presence (Scrambled) or 

absence (Sh1) of Fzd6 expression. Phospho-SAP/JNK or active β-catenin antibodies 

were used to monitor the non-canonical or canonical WNT pathways in the presence of the 

indicated WNT conditioned media. Cells were starved overnight and exposed to conditioned 

media produced by L-control cells or L-cells expressing WNT3a or WNT5a (diluted 1:10) for two 

hours and then subjected to western blot analysis. β-actin was used to control on proteins 

loading. Lysates of HEK 293 FT cells exposed to UV light were used as a p-JNK positive 

control. The blot shown is representative of at least three independent experiments. 
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FZD6 knock down did not influence the activation of β-catenin. With these 

experimental settings, we could not detect an activation of p-SAP/JNK.  

We next explored the activation of another non-canonical effector, the small 

GTPase Rho (Fig.6.8). The recombinant protein Rhotekin conjugated with GST 

was used as a bait protein for its capacity to bind selectively the active form 

Rho-GTP, but not the inactive form Rho-GDP. A glutathione resin was used to 

isolate the complex Rhotekin-GST-Rho-GTP. A preliminary experiment was 

carried out on cells activated with different recombinant WNTs, but since no 

differences were observed in comparison with the controls (data not shown), 

cells were analysed only in basal conditions. A substantial decrease of active 

Rho was observed in MDA-MB-231 cells in the presence of two different 

shRNAs, sh1 (52% decrease) and sh2 (32% decrease). 
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Figure 6.8: Pull down assay for the quantification of Rho-GTP in MDA-MB-231 

cells expressing control shRNA (SCR) or shRNAs targeting FZD6 (Sh1 and 

Sh2). (A) Representative western blot analysis for the quantification of active Rho-GTP in 

MDA-MB-231 cells in the presence of the indicated shRNAs. A Pull down assay was carried out 

to isolate the active form of Rho bound to GTP. One tenth of the total lysate was excluded from 

the pull down procedure and subjected to a separate western blot analysis to confirm equal 

loading. Active Rho-GTP or total Rho were detected with an anti-Rho antibody and a HRP 

conjugated secondary antibody. A FZD6 antibody was used to demonstrate the knock down of 

FZD6. (B) Densitometric quantification of active Rho-GTP normalized to total Rho and 

expressed as percentage of the control (Scrambled). The data shown is the average of three 

independent experiments. Asterisks indicate statistical significance (student t-test). 
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6.6 Discussion 

 

Activated β-catenin is usually not detectable in healthy mammary tissue, 

whereas it is in breast tumours (Howe and Brown, 2004). Our results indicate 

that constitutively active canonical WNT signalling is detectable in the MDA-MB-

231 cell line, consistent with what found by other investigators (Bilir, Kucuk and 

Moreno, 2013; Benhaj, Akcali and Ozturk, 2006). The knock down of FZD6 did 

not result in a reduction of the levels of activated β-catenin, suggesting a non-

canonical role of the receptor (fig.6.7).  

In humans there are 10 different frizzled receptors and it is possible that each 

one mediates a specific signalling, although a certain level of redundancy might 

also occur. Furthermore, 19 different WNT ligands have been found in humans, 

but their affinity for specific FZD receptors and the intracellular signals are still 

poorly characterized. WNT ligands could have different effects depending on 

the biological contest; for example it was reported that WNT5a can activate both 

canonical and non canonical pathways, depending on the expression of specific 

frizzled receptors (Mikels and Nusse, 2006). The overexpression of WNT 

ligands could have oncogenic or oncosupressing effects, depending on the 

cancer type. Even within the same tumour, WNTs overexpression can have 

different effects (Anastas and Moon, 2012). It is therefore extremely 

complicated to define the role of WNT signalling outside a very specific context.  

We found that the downregulation of FZD6 results in reduced activation of the 

small GTPase Rho (figure 6.8). Rho is a key regulator of the actin cytoskeleton, 

required for numerous biological processes during development and adult life. 

An important function of Rho is to regulate the cytoskeleton contractility that 

leads to cell movement (Hall, 1998). Moreover, Rho is activated by the 

WNT/FZD signalling to coordinate cell polarity required for the frog gastrulation 

(Habas, Kato and He, 2001). The first evidence of the involvement of Rho in 

tissue polarity derives from studies in drosophila mutants, which exhibit defects 

in the spatial orientation of omatidia in the eyes, defective organization of the 

hairs in the wings and present morphological defects of the embryos (Strutt, 

Weber and Mlodzik, 1997). Interestingly similar phenotypes are observed in 

frizzled and dishevelled mutants, suggesting that frizzled receptor and 

dishevelled could be upstream elements from Rho signal (Strutt, Weber and 

Mlodzik, 1997). FDZ6 KO mice present spatial asymmetry in the organization of 
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hair follicles and brain morphogenic abnormalities (De Marco et al., 2012; 

Stuebner et al., 2010; Wang et al., 2006a) which recall the disorganized 

orientation of drosophila omatidia and hair wings, and the embryonic defects 

observed in drosophila FZD and Rho mutants. These findings further suggest 

that FZD6 mediates a PCP signal through the activation of Rho.  

In breast cancer, the over-activation of Rho in cells overexpressing FZD6 could 

also explain the increased motility and invasion. Rho and other member of the 

small GTPases family have a fundamental role in the cytoskeleton 

rearrangements that occur during cell locomotion (Nobes and Hall, 1999) . Rho 

regulates the actin-myosin interaction that generates the contractile force 

necessary for cell protrusion (Yee Jr, Melton and Tran, 2001) and the 

generation of focal adhesions with the ECM (Chrzanowska-Wodnicka and 

Burridge, 1996). Given the role of Rho GTPase in cell motility, it is reasonable 

to think of a role in cancer invasion and metastasis. Indeed, several studies 

linked the activation of Rho in all the stages of metastasis. For example, Itoh 

and colleagues demonstrated that the expression of an active dominant mutant 

of ROCK, a downstream effector of the Rho GTPase, confers a greater invasive 

activity to hepatoma cells in vivo, whereas the expression of a dominant 

negative ROCK mutant exerted the opposite effect (Itoh et al., 1999). Studies 

on leukocytes transendothelial migration have shown that RhoA is required for 

monocytes tail retraction and efficient diapedesis, suggesting a possible role of 

Rho in cancer cells extravasation (Worthylake et al., 2001). Rho is critical also 

during tumour angiogenesis. Indeed, conditional activation of ROCK in colon 

cancer cells results in more invasive and vascularized tumours, (Croft et al., 

2004; van Nieuw Amerongen et al., 2003).  

RhoA, RhoB and RhoC are often overexpressed in breast cancer (Jiang et al., 

2003; Fritz et al., 2002; van Golen et al., 2000). Experiments in MDA-MB-231 

cell line, also used in our study, revealed that knock down of RhoA and RhoC 

reduces cell proliferation, invasion and angiogenesis in vitro and in vivo (Pillé et 

al., 2005). Liu and colleagues showed that ROCK is overexpressed in 

metastatic breast cancer cell lines and tumours compared with the non 

metastatic matched tissues, and that the ectopic expression of ROCK induces 

the onset of bone and liver metastasis in mice injected with the otherwise not 

invasive MCF7 cell line (Liu et al., 2009). Interestingly, in our experiments we 

show that the knock down of FZD6 reduces breast cancer metastasis in bones 
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and liver, the same sites of metastasis of MCF7 cells expressing conditional 

ROCK. This further suggests that FZD6-mediated activation of Rho has a role in 

the tropism of breast cells.  

TGF-β-mediated loss of E-Cadherin and expression of N-Cadherin are 

abolished by the ectopic expression of a dominant negative form of RhoA in 

mammary epithelial cells, indicating a role of RhoA in the EMT and therefore in 

tumorigenesis (Bhowmick et al., 2001). In addition, Rho could also have a 

pivotal role in breast cancer angiogenesis. Indeed, the overexpression of RhoC 

in HMEC was reported to increase the expression of VEGF and other 

angiogenetic factors (van Golen et al., 2000). Inactivation of Rho signalling 

through the antagonism of FZD6 could therefore hinder several steps of the 

metastatic process.  

The MDA-MB-231 cell line presents typical characteristics of EMT transition, i.e. 

expresses fibronectin and vimentin and does not express E-cadherin (Blick et 

al., 2008; Olmeda et al., 2007). Knock down of FZD6 did not change the 

expression of Vimentin nor restored the expression of E-cadherin in MDA-MB-

231 cells, both in basal conditions and in cells stimulated with WNT3a, WNT4, 

WNT11, WNT5a, FBS or EGF, suggesting that FZD6 signalling does not 

interact with these proteins. However, we observed reduced deposition and an 

alteration of the distribution patterns of fibronectin in FZD6 depleted cells 

compared to the controls (fig. 6.4 and 6.5). Soluble fibronectin instead, was not 

regulated by FZD6 (fig. 6.6). 

Fibronectin is a large glycoprotein that participates in numerous functions that 

require dynamic interactions of the cells with the extracellular environment, such 

as cell adhesion, growth, migration, and processes like wound healing and 

embryonic development. Fibronectin exists in humans in at least 27 different 

splicing variants that can be divided in two groups: soluble fibronectins and 

insoluble fibronectins. Fibronectins monomers contain 6 domains that allow the 

binding with other components of the extracellular matrix, such as fibrin, heparin 

sulphate, collagen, proteoglycans and other fibronectin molecules. Fibronectin 

also interacts with a class of membrane receptors called integrins. Cells secrete 

fibronectin in form of soluble dimers held together by disulphide bonds. With 

mechanisms that are not yet fully understood, cells can promote the formation 

of an insoluble network of fibrillar fibronectin, most probably through the 
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activation of the integrins receptors (Mosher, 2012; Plopper, 2012; Pankov and 

Yamada, 2002).  

Increased expression of fibronectin has been observed in breast cancer and 

associated with poor prognosis (Helleman et al., 2008; Ioachim et al., 2002), 

suggesting a potential role of fibronectin in breast cancer tumorigenesis. 

Fibronectin could promote tumorigenesis in different ways. The primary 

mechanism could be by providing to malignant cells adhesion to the ECM to 

generate mechanical forces (Ruoslahti, 1984). Stimulation of cells with 

fibronectin has been shown to increase cell spreading and motility in a variety of 

systems (McCarthy, Hagen and Furcht, 1986; Schor, Schor and Bazill, 1981). In 

the MDA-MB-231 breast cancer cell line the interaction with fibronectin coated 

plates enhances cell spreading end lamellar protrusions, with recruitment of 

myosin IIA and IIB to the marginal lamellar zone, indicating the activation of a 

motile phenotype (Betapudi, Licate and Egelhoff, 2006). Fibronectin promotes 

cell motility both in its soluble form (chemotaxis) and when is bound to the ECM 

in insoluble form (haptotaxis) (Klominek, Robert and Sundqvist, 1993; 

Aznavoorian et al., 1990). Although the culture of cells in a fibronectin substrate 

often results in enhanced motility, excessive adhesion to a fibronectin substrate 

might lead to the opposite effect. For example, the fibronectin matrix has been 

shown to inhibit dispersal and invasion of glioblastoma cells in vitro (Jia et al., 

2012; Sabari et al., 2011). Cell motility is a complex multistep process in which 

adhesion and detachment with the ECM have to be dynamically modulated. 

Different classes of integrins participate to this process and their cell-specific 

differential expression could explain the variable interaction of cancer cells with 

fibronectin (Akiyama, Olden and Yamada, 1995). The role of fibronectin in cell 

invasion was demonstrated in vivo using synthetic peptides that inhibit the 

interaction between fibronectin and integrins. Melanoma and glioblastoma cells, 

exposed to these peptides, penetrate much less trough human amniotic 

basement membranes when compared to cells exposed to control peptides 

(Gehlsen et al., 1988). Moreover, co-injection of B16-F10 murine melanoma 

cells with the pentapeptide containing the motive Gly-Arg-Gly-Asp-Ser, which 

competitively inhibits the binding of cells to fibronectin, prevents lung metastasis 

and greatly increases survival in mice (Humphries, Yamada and Olden, 1988). 

One possible mechanism through which fibronectin could promote cancer 

metastasis is by increasing the expression of matrix metalloproteinases which 

are required by cancer cells to invade through tissues. It has been shown that 
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exogenous addiction of fibronectin to cultures of breast cancer cells enhances 

the expression of metalloproteinases such as MMP-2 and MMP-9 through the 

activation of α5β1 integrin signalling (Das et al., 2008). MMP-9 expression was 

also induced in the culture of human breast cancer cell line MDA-MB-231 

growing on fibronectin-coated surface (Maity et al., 2011). Consistently with 

these findings, Saad and colleagues demonstrated that the membrane-bound 

fibronectin on MDA-MB-231 cells is required to stimulate the release of MMP-2 

by bone marrow fibroblasts (Saad et al., 2002). The fibronectin matrix could 

also be important for the arrest of circulating cancer cells to the endothelium of 

secondary organs, a necessary step before extravasation. This was 

demonstrated with blood-borne rat breast cancer cells, which require a 

membrane coating of fibronectin to metastasize to the lungs and was 

independently observed by different investigators (Huang et al., 2008; Felding-

Habermann, 2003; Cheng et al., 1998).  

Another possible mechanisms through which fibronectin could enhance 

tumorigenesis is by activating the EMT. Exposure of the non transformed 

mammary epithelial cell line MCF10A to fibronectin induces an EMT phenotype 

characterized by the increased mRNA expression levels of vimentin, N-

cadherin, Snail and MMP2. Exogenous fibronectin also upregulates its own 

expression in these cells and induces a migratory behaviour (Park and 

Schwarzbauer, 2013). When MCF10 cells are grown in a 3D culture system, 

addition of fibronectin results in the development of abnormal acini 

characterized by larger dimension and in a 50% reduction in the number of 

hollow acini when compared to the control cultures (Williams et al., 2008). Vice 

versa, inhibition of fibronectin with antibodies in the malignant breast cancer cell 

line T4-2 prevents the formation of irregular grape-like acini and results in the 

formation of normal spherical acini similar to the ones formed by the non 

transformed cell line MCF10 (Sandal et al., 2007). Interestingly, we observed a 

similar phenotype in MDA-MB-231 cells in which FZD6 was depleted (fig. 4.11), 

further suggesting a link between FZD6 and fibronectin matrix organization in 

breast cancer. Taken together, these findings suggest that fibronectin plays a 

pivotal role in breast cancer tumorigenesis through multiple mechanisms.  

A question still to be addressed is how FZD6 could modulate the assembly of 

the fibronectin matrix surrounding breast cancer cells. The knock down of FZD6 

did not perturb the amount of secreted fibronectin in breast cancer cells 
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supernatants (figure 6.6), whereas we observed a reduction of the insoluble 

fibronectin matrix formation and a perturbation of the distribution patterns. The 

perinuclear fibronectin blobs observed in FZD6 depleted cells might be deposits 

of soluble fibronectin that fail to be incorporated in the extracellular matrix. This 

suggests that FZD6 is implicated in the organization of the insoluble fibronectin 

matrix assembly but not in its expression and secretion. This would also be in 

agreement with a role of FZD6 in the PCP pathway. Indeed, the planar cell 

polarity pathway is required for the polarized surface assembly of the fibronectin 

matrix which is essential for the convergent extension movement during frog 

gastrulation. Perturbation of the expression of PCP components such as xfzd7 

(analogue of the human FZD7 receptor in Xenopus) or WNT11 leads to 

disruption of the fibronectin matrix assembly and consequent defects in the frog 

morphogenesis (Williams et al., 2008; Goto et al., 2005). Interestingly, ectopic 

expression of a constitutively active form or Rho in the embryos expressing a 

dominant negative form of WNT11, rescues the fibronectin matrix assembly. 

This suggests that the WNT pathway controls the fibronectin matrix through the 

activation of Rho (Dzamba et al., 2009). This is consistent with our observation 

in breast cancer, where the interference of the PCP pathway, through the knock 

down of FZD6, led to the reduction of Rho signalling and in a defective 

fibronectin matrix assembly. Fibronectin itself could regulate WNT non 

canonical signalling through the co-receptor Syndecan-4, indicating the 

existence of a positive feedback between fibronectin and the WNT pathway. 

Indeed, Syndecan-4 was shown to interact directly with xFzd7 and dishevelled 

to activate the PCP pathway in Xenopus Laevis, and the perturbation of 

Syndecan4 expression led to impairment of the convergent extension 

movement during Xenopus morphogenesis (Muñoz et al., 2006). 

The Fibronectin matrix assembly is a complex multistep process which is 

initiated by the interaction of soluble fibronectin with the α5β1 integrin receptor 

(Fogerty et al., 1990). Initially, integrins receptors contribute to organize 

fibronectin in short fibrils on the cellular surface (Mao and Schwarzbauer, 2005). 

Consequentially, integrins interact with the actin cytoskeleton to promote 

myosin mediated contractility. This in turn causes the integrin receptor to stretch 

the fibronectin fibres, exposing new binding sites for the interaction with other 

fibronectin molecules, resulting in the development of an insoluble matrix 

(Plopper, 2012; Wu et al., 1995; Hynes, 1990). In this process, Rho is 

necessary to couple the activation of the integrin receptor with the contraction of 
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the actin cytoskeleton (Huveneers and Danen, 2009). Indeed, interference of 

Rho activation prevents the fibronectin matrix assembly in mouse embryonic 

fibroblasts (Zhong et al., 1998).  

Given the role of Rho and fibronectin in cancer, we propose that overexpression 

of FZD6, through the activation of Rho, could lead to several process that 

enhance the malignant proprieties of breast cancer cells. The activation of Rho 

could directly increase cell motility, angiogenesis and promote the cytoskeletal 

retraction during intravasation/extravasation of breast cancer cells. Rho over 

activation could also lead to an increased production of fibronectin matrix, which 

in turn can promote haptotaxis, provide an adhesion substrate for breast cancer 

cells in the endothelium of host organs and induce the secretion of 

metalloproteinases. As previously mentioned, an analogy can be made between 

the directional migration of cells during development and the migratory process 

occurring during cancer metastasis. The non canonical PCP pathway and 

fibronectin matrix assembly are essential in both cases, and FZD6 could be a 

key regulatory element in these processes. 
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CHAPTER VII 

 

FZD6 and fibronectin in the regulation of the 

actin cytoskeleton  

 

7.1 Introduction 

 

Cell migration can be considered as a cycle of molecular events (Ridley et al., 

2003). Initially, cells respond to migratory stimuli by extending polarized 

protrusions towards their direction. These protrusions consist of actin-rich 

regions organized in actin ruffles and meshes called lamellipodia, and of 

filamentous actin-rich structures protruding radially called filipodia (Etienne‐

Manneville, 2004). The leading edge protrusions engage interactions with ECM 

elements such as fibronectin, providing both anchorage and intracellular signals 

through the interaction with the membrane receptors integrins (Friedl et al., 

1997). Tension inside the cell is provided by the strain of actin fibres through 

focal adhesions, which are macromolecular complexes that mediate the chemo-

mechanical interactions between the cell and the ECM (Pellegrin and Mellor, 

2007; Wozniak et al., 2004). The protrusive force is generated by the interaction 

between myosin II and actin fibres, resulting in the actomyosin contraction 

(Ridley et al., 2003). Cell contraction has to be accompanied by the gradual loss 

of adhesion at the rear of the cell, allowing the cell trail to slide forward (Friedl 

and Alexander, 2011). Actin rearrangements are therefore essential throughout 

all the steps of cell migration. Since we observed drastic differences in the 

migratory behaviour of breast cancer cells following the depletion of FZD6, we 

investigated whether this effect was mediated by actin rearrangements. 
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7.2 Downregulation of FZD6 results in actin 

cytoskeleton rearrangements in MDA-MB-231 cells 

 

To investigate whether FZD6 could influence the assembly of F-actin stress 

fibres, we analysed MDA-MB-231 cell expressing control vector or FZD6 

shRNA after staining with fluorescent phalloidin. We observed a striking 

rearrangement of F-actin in the absence of FZD6: actin fibres were much 

thicker compared to the ones observed in control cells (figure 7.1). Cells 

presenting thick actin fibres where scored as shown in figure 7.1 B. The 

downregulation of FZD6 resulted in a ~40% increase in the number of cells with 

thick actin fibres. 

Since we observed reduced fibronectin matrix assembly after the removal of 

FZD6 in MDA-MB-231 cells (figure 6.4), we wondered if exogenous addition of 

fibronectin could rescue the actin phenotype. We therefore analysed the 

structure of actin stress fibres after exposing FZD6 depleted cells to plasma 

fibronectin for 24 hours or 48 hours (figure 7.2). In the presence of exogenous 

fibronectin we observed a time dependent reduction of the number of cells 

presenting thick actin stress fibres. At 24 hours and at 48 hours the number of 

cells with thick actin fibres were respectively ~ 20% and ~ 40% less compared 

to control. After 48 hours exposure to exogenous fibronectin, FZD6 depleted 

cells presented an actin cytoskeleton indistinguishable from that observed in 

MDA-MB-231 control cells (fig.7.2).  
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Figure 7.1: The actin cytoskeleton is rearranged in the absence of Fzd6. (A) 

Assembly of F-actin fibres in control (scrambled) or FZD6 depleted MDA-MB-231cells (sh1 

FZD6) was detected by confocal microscopy using phalloidin staining. Two predominant 

phenotypes were observed: in the absence of FZD6 F-actin was organized in thick fibres, 

running throughout the cell. In contrast, in control cells F-actin fibres were thinner and 

concentrated in discrete areas in the proximity of the plasma membrane. Right bottom corners 

show in closer detail the actin patterns. Cells showing a “thick phenotype” were quantified and 

expressed as percentage of the total as means ±SEM of three independent experiments, with at 

least 100 cells quantified per experiment. ** indicates p<0.001 compared to control cells 

(student’s t-test). Scale bars indicate 10μm. This experiment was carried out by our 

collaborators Michele Sallese and Giorgia Fragassi at Fondazione Mario Negri Sud, S.Maria 

Imbaro, Italy. 
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7.3 Exogenous fibronectin rescues the actin phenotype 

and invasive potential of MDA-MB231 cells lacking 

FZD6 

 

 

 

 

 

Figure 7.2: Exogenous addition of Fibronectin induces depolymerisation of 

actin stress fibres in FZD6 depleted cells.  (A) Actin stress fibres were detected by 

confocal microscopy using phalloidin staining in MDA-MB-231 Sh1-FZD6 cells after the 

exposure for the indicated times to 20μg/mL fibronectin of human plasma origin. (B)  

Quantification of cells showing thick actin stress fibres, referred to the experiment described in 

A. Data is expressed as percentage of the total as means ±SEM of three independent 

experiments, with at least 100 cells quantified per experiment. * indicates p<0.05 compared to 

control cells (Student’s t-test). Scale bars indicate 10μm. This experiment was carried out by our 

collaborators Michele Sallese and Giorgia Fragassi at Fondazione Mario Negri Sud, S.Maria 

Imbaro, Italy. 
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Figure 7.3: Invasion assay on MDA-MB-231 cells expressing control shRNA 

(scrambled) or FZD6 shRNA (sh1) in the presence or absence of exogenous 

fibronectin. Cells were resuspended in serum free medium alone or containing 20μg/mL of 

human plasma fibronectin and seeded in invasion chambers. The bottom compartments of the 

invasion chambers were replenished with Serum free medium containing 100ng/mL of EGF to 

provide a chemotactic gradient. The number of invasive cells is expressed as a percentage 

relative to control cells not exposed to fibronectin. Data is shown as means of three 

independent experiments. Error bars indicate standard error. * indicates p<0.05 (student t-test). 

N.S. indicates a non significant difference.     

 

To assess whether the exposure to exogenous fibronectin had any effect on cell 

invasion, we carried out cell invasion assays using EGF as chemoattractant in 

serum free conditions. Briefly, cells expressing control shRNA or FZD6 sh1 

RNA were resuspended in serum free medium alone or containing 20μg/mL of 

fibronectin and were seeded in invasion chambers. We found that exogenous 

fibronectin did not cause any significant perturbation of the invasion of cells 

expressing scrambled shRNA. Conversely, exogenous fibronectin partially 

restored the invasive phenotype of FZD6 depleted cells, resulting in a two fold 

increase of cell invasion when compared to cells that were not stimulated with 

fibronectin (figure 7.3). 
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7.4 Discussion   

 

Actin reorganization is involved in the migration of cancer cells. In physiological 

conditions, actin is organized in helical filaments that can be modified with the 

addition or removal of subunits. The elongation, shortening, or thickening of 

these filaments, result in modifications of their mechanical proprieties. Cells 

modulate actin polymerization in a variety of conditions, including cell migration 

(Cooper, 1991). For example, actin polymerization is required at the leading 

edge of migrating cells to constitute lamellipodia and filipodia and to form 

contractile stress fibres throughout the cell. Like in a treadmill, actin monomers 

are disassembled from the rear of the fibre to become again available at the 

front for de novo polymerization, pushing the cell membrane forward (Pollard 

and Borisy, 2003). Moreover, the interaction of myosin II with actin filaments 

provides the contractility and the transmission of tension to the sites of adhesion 

(Ridley et al., 2003). A plethora of proteins modulate actin dynamics during cells 

migration, through direct or indirect mechanisms. These proteins are required 

for the control of the spatial-temporal polymerisation/depolymerisation of actin 

filaments or contractility. The Rho family of GTPases are pivotal in various 

aspects of actin dynamics. In Particular, Rac has been shown to be involved in 

the actin polymerization at the leading edge lamellipodia, where Rho is required 

for the formation of stress fibres and focal adhesions (Nobes and Hall, 1995; 

Ridley and Hall, 1992). This was demonstrated through the Injection of 

constitutive active forms of Rho or ROCK that resulted in the formation of actin 

stress fibres in cell lines (Amano et al., 1997; Ridley and Hall, 1992; Paterson et 

al., 1990). As previously mentioned, WNT/PCP signalling regulates Rho activity 

and thereby actin dynamics (Kim and Davidson, 2011; Habas, Dawid and He, 

2003; Habas, Kato and He, 2001). Our own experiments demonstrated that 

FZD6 is upstream of Rho activity. The depletion of FZD6 resulted in the 

reduced activation of Rho, however, this did not result in a reduction of actin 

stress fibres, but rather in the thickening and rearrangement of fibres. The 

antibody used recognises RhoA, RhoB and RhoC, therefore it was not possible 

to assess whether FZD6 activates specific isoforms. Interestingly, it was 

previously observed that the selective knock down of RhoA or RhoC results in 

different rearrangement of actin in MDA-MB-231 cells (Vega et al., 2011), 

suggesting different roles and functions of the two isoforms. We could therefore 

hypothesise that FZD6 controls selectively the activation of one of the Rho 
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isoforms, and that the inhibition of one isoform, rather than a pan-inhibition of 

Rho, results in the thickening of actin stress fibres. 

Two proteins downstream of Rho have been implicated in the reorganization of 

actin fibres: The Diaphanous related formin protein (mDIA) and ROCK 

(Narumiya, Tanji and Ishizaki, 2009). The work of Watanabe and colleagues 

has elegantly explained how the balance between these two Rho effectors 

controls the structure and thickness of actin stress fibres. They demonstrated 

that the relative expression of constitutively active forms of mDIA1 and ROCK 

results in different organization and thickness of actin stress fibres (Watanabe 

et al., 1999). Moreover, there are several studies suggesting that mDIA1 and 

ROCK pathways crosstalk to modulate actin dynamics. For example, ROCK 

can inhibit the mDIA1 dependent activation of RAC to inhibit the polymerization 

of actin ruffles (Tsuji et al., 2002). Unbalanced ratio between mDIA1 and ROCK 

could therefore be the cause of the striking modifications we observed in the 

actin cytoskeleton in cells lacking FZD6.  It would be interesting to investigate 

whether FZD6 dependent activation of Rho leads to specific activation of one of 

these Rho effectors. 

FZD6-dependent actin dynamics are likely to influence cell migration. Although 

this would require further investigations, we can think of a number of 

mechanisms by which actin rearrangements could impair cell invasion in FZD6 

depleted cells. A first possibility is that, although actin stress fibres are thicker 

following the depletion of FZD6, they could be less contractile. Indeed, during 

cell migration, actin polymerization alone is not sufficient to create the 

mechanical force that leads the cell forward. Actin polymerization has to be 

accompanied by the interaction of actin with myosin to generate the tension 

force indispensable for cell migration. The phosphorylation of the regulatory 

light chain of myosin (MLC) is necessary for actomyosin contractility (Ridley et 

al., 2003). Rho is essential to regulate actomyosin contractility, both directly and 

through the activation of ROCK. ROCK has a dual function: it can promote cell 

contraction by phosphorylating MLC or by inhibiting the MLC phosphatase. 

Rho-GTP can also bind directly to the MLC phosphatase preventing its function 

(Kimura et al., 1996). We observed that depletion of FZD6 results in the 

inhibition of Rho signalling and reduced cell migration. This might lead to a 

reduction of stress fibres contraction caused by the inhibition or ROCK activity 

and the increased activation of MLC phosphatase.  
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Another explanation for the increased actin polymerisation and reduced 

migration in the absence of FZD6 could be an excessive adhesion of cells to the 

extracellular matrix. Although the adhesion of cells at the leading edge is 

required for migration, the disassembly of focal adhesion at the rear of the cell 

is equally important (Ridley et al., 2003). It has been demonstrated that the 

actomyosin contractions are capable to physically break the bound between 

integrins and the actin cytoskeleton, leaving the integrins behind while the cell 

moves forward (Lauffenburger and Horwitz, 1996).This process is mediated by 

the contraction of actomyosin. Since the removal of FZD6 in breast cancer cells 

resulted in thicker actin stress fibres, we could speculate that the latter are 

strained between larger focal adhesions that engage stronger interaction with 

the ECM, hampering the detachment at the rear of the moving cell. It would be 

interesting to confirm this hypothesis assessing the phosphorylation of MLC or 

the structure of focal adhesions in FZD6 depleted cells. 

Since we observed a marked reduction in fibronectin matrix deposition following 

the knock down of FZD6, we wondered whether exogenous delivery of 

fibronectin was able to rescue the invasion and the actin phenotype of FZD6 

depleted cells. The addition of fibronectin to FZD6 depleted cells resulted in a 

twofold increase in cell invasion (figure 7.3). As previously discussed, the 

fibronectin matrix could promote cell invasion in several ways, such as 

promoting haptotactic migration, EMT, or increasing the expression of MPP2.  

We wondered whether exogenous fibronectin could also modulate the 

rearrangements of the actin cytoskeleton in MDA-MB-231 cells. It was 

previously reported that the inhibition of fibronectin matrix assembly results in 

the formation of thick actin stress fibres in rat smooth muscle cells (Shi et al., 

2014). This is similar to what we observed in breast cancer cells lacking FZD6, 

where the reduction of the fibronectin matrix is accompanied by the formation of 

thick actin stress fibres. Altogether these results suggest that the fibronectin 

matrix could modulate the organization of the actin cytoskeleton. When FZD6 

depleted cells are exposed to exogenous fibronectin, actin stress fibres become 

thinner and more similar to the ones observed in control cells (fig. 7.2 and 7.1); 

This highlights the presence of a signalling mechanism that couples the 

fibronectin matrix to the cytoskeleton. Several lines of evidence demonstrated a 

link between the extracellular matrix and the Rho family of GTPases, mainly 

through the communications via integrins and heparan sulphate proteoglycans 
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(Schwartz and Shattil, 2000; Ren, Kiosses and Schwartz, 1999). For instance, 

plating A549 human lung adenocarcinoma cells onto fibronectin coated dishes, 

activates Rho in a time dependent manner. Moreover, the interaction between 

α5β1 integrins and fibronectin stimulates RhoA activation in fibroblasts (Danen 

et al., 2002; Gu et al., 2001). Therefore, we could hypothesize that the addition 

of exogenous fibronectin to FZD6 depleted MDA-MB-231 cells could partially 

restore Rho signalling through integrin activation. This in turn could lead to a 

recovery of the actin dynamics and cell invasion. Thus, the Rho GTPase could 

be the link between WNT signalling, the extracellular matrix and the actin 

cytoskeleton. The FZD6-Actin-Fibronectin axis could therefore be pivotal in the 

regulation of breast cancer invasion and metastasis.  
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CHAPTER VIII 

 

Conclusions 

 

8.1 Overview of the findings and potential clinical 

implications  

 

Metastasis is the main cause of death in cancer patients. Thus, it is of 

paramount importance to understand the molecular basis underlying this 

process, in order to develop new therapeutic strategies. Predicting the outcome 

of a tumour at an early stage is a major challenge, but it would be a major 

advance since would allow the design of patient-specific therapies. For this 

reason, a lot of effort has been put to find novel biomarkers that predicted the 

aggressiveness of cancer (Ludwig and Weinstein, 2005).  

It is now established that many cancers contain a subpopulation of cells with 

characteristics of stem cells. These present the activation of pathways normally 

active during organogenesis, that in the context of cancer, confer a metastatic 

phenotype (Jordan, Guzman and Noble, 2006). The WNT pathway is essential 

to orchestrate different aspects of organogenesis, and signalling molecules 

belonging to this pathway are often altered in cancer. For this reason, elements 

of the WNT pathway could be used in cancer diagnosis and intervention (Barker 

and Clevers, 2006).  

Overall, our findings suggest that: 

- FZD6 is amplified and overexpressed in 19% of breast cancers 

- FZD6 expression in TNBC is associated with an increased risk of relapse 

- FZD6 expression is required for the metastatic growth of human breast cancer 

cells in vitro and in vivo 

- FZD6 regulates non-canonical WNT signalling and assembly of the fibronectin 

matrix and actin cytoskeleton 

  



172 
 

WNT signalling is essential for the normal development of the mammary gland. 

Studies in transgenic mice which bare a β-catenin/TCF-responsive β-

galactosidase reporter system revealed that the WNT pathway is active in early 

embryogenesis (Chu et al., 2004; van Genderen et al., 1994). WNT signalling is 

detectable in the epithelial cells of mammary placodes and developed 

mammary buds, but it is reduced during milk ducts outgrowth (Chu et al., 2004). 

During mammary development, stem cells renewal and differentiation are 

strictly controlled; WNT signalling is pivotal in this regard (Zeng and Nusse, 

2010). Zeng and colleagues demonstrated that breast stem cells can expand 

clonally remaining undifferentiated when exposed to the canonical ligand 

WNT3a (Zeng and Nusse, 2010). It is still unclear how non-canonical pathways 

participate in breast development, but there is some evidence suggesting that 

non canonical could be as important as the canonical signalling. For instance, 

WNT5a, a non canonical ligand, inhibits the extension and branching of 

mammary ducts during mammary development (Roarty and Serra, 2007). The 

PCP pathway is essential for the orientation and migration of cells during 

convergence extension movements required for vertebrates gastrulation 

(Roszko, Sawada and Solnica-Krezel, 2009) . It is likely that the polarization of 

epithelial cells during mammary gland development requires PCP signalling. It 

is tempting to speculate that the expression of FZD6 in breast cancer cells 

could activate a cell signalling normally active during breast development. Cells 

overexpressing FZD6 could therefore mimic the highly motile mesenchymal 

cells responsible for breast development, acquiring enhanced capacity to 

travers basal membranes and invade surrounding tissues, enhanced 

chemotaxis, and loss of cell polarity and cell-cell interactions. 

Abrogation of FZD6 expression in the breast cancer cell line MDA-MB-231 

resulted in the formation of more symmetrical and organized acini, similar to the 

ones formed by non transformed mammary cells (fig. 4.11). Moreover, our 

experiments in mice suggest that FZD6 is not involved in tumour growth, but 

mediates the organotropism of breast cancer cells, consistent with the 

hypothesis that FZD6 mediates PCP signalling. 

Why does the knock down of FZD6 reduce the metastasis only in bones, liver 

and heart, but not in other organs? Different factors could influence the 

metastatic niche, such as the ECM, fibroblasts, and macrophages. Our results 

suggest that fibronectin matrix assembly could have a role in the organotropism 
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of FZD6 expressing cells. Indeed, fibronectin clustering was previously reported 

to be pivotal in directing the metastatic colonization of cancer cells: an elegant 

work by Kaplan and colleagues showed that conditioned media, deriving from 

distinct tumour types with peculiar patterns of metastatic spread, can modify the 

fibronectin matrix clustering redirecting the privileged metastatic site (Kaplan et 

al., 2005). It is therefore possible that FZD6 could support increased fibronectin 

matrix assembly enhancing the adhesion of cancer cells to the endothelium of 

specific organs. The aberrant increase of the fibronectin matrix could also 

enhance the ectopic survival of breast cancer stem cells in secondary sites as 

the bones and the liver. Indeed, it was previously reported that binding to 

fibronectin could provide survival signals to stem-cells and fibroblasts (Tate et 

al., 2002; Almeida et al., 2000; Dao et al., 1998).  

The use of therapeutic antibodies targeting FZD6 might be a valuable tool to 

reduce or prevent bone and liver metastasis. Breast cancer metastases to the 

heart are very rare (Reynen, Kockeritz and Strasser, 2004). Conversely, bones 

are the most common site of distant metastasis in breast cancer patients. Pain, 

hypercalcaemia and pathological fractures are common symptoms that largely 

compromise the quality of life (Coleman and Rubens, 1987). Patients bearing 

breast cancer metastases in the liver have a very poor prognosis, with a median 

survival that is less than 6 months from diagnosis (Selzner et al., 2000). 

Therefore, reduction of metastases in the bones and liver could greatly improve 

the survival and the quality of life of breast cancer patients.  

What signalling molecules are activated downstream of FZD6? We found that 

FZD6 regulates the downstream activation of the small GTPase Rho affecting 

the actin cytoskeleton dynamics. These findings are consistent with a role of 

FZD6 in the PCP pathway. Other investigators have previously linked FZD6 to 

the PCP (De Marco et al., 2012; Cantilena et al., 2011; Stuebner et al., 2010; 

Wang, Chang and Nathans, 2010; Wang, Guo and Nathans, 2006; Guo, 

Hawkins and Nathans, 2004). The PCP pathway controls the extensive 

movements required for the gastrulation and neurulation of vertebrates. These 

developmental processes are guided by coordinated modulation of cell 

migration and polarized matrix deposition. Rho and the actin cytoskeleton are 

required for the migration of germ cell layers during these processes (Roszko, 

Sawada and Solnica-Krezel, 2009; Goto et al., 2005; Habas, Dawid and He, 

2003; Habas, Kato and He, 2001). We propose that the aberrant activation of 
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FZD6 could facilitate breast cancer cell migration through the activation of the 

PCP pathway (fig.8.1).  

 

 

 

Figure 8.1: Schematic representation of the proposed molecular pathways 

activated by FZD6 in breast cancer. The binding of WNT ligands to Fzd6 leads to the 

activation of Rho. Rho in turns, promotes the rearrangement and contractility of actin stress 

fibres and other actin structures that regulate directional motility, cell polarity and invasion. The 

interaction between actin and integrins also regulates the deposition of fibronectin matrix. A 

positive feedback between matrix deposition and Rho activation might also exist through the 

activation of integrins. Fibronectin matrix assembly contributes synergistically with actin 

rearrangements to promote cell motility and invasion. 

 

This could cause increased metastasis, higher risk of relapse and overall lower 

survival in patients, particularly those bearing the triple negative subtype.  

The regulation of Rho by FZD6 could induce the activation of EMT, increased 

migration, angiogenesis and enhanced transendothelial migration by regulating 

actin dynamics (Croft et al., 2004; van Nieuw Amerongen et al., 2003; 

Bhowmick et al., 2001; Worthylake et al., 2001; Itoh et al., 1999). Rho can also 

facilitate the polarized deposition of the fibronectin matrix assembly (Dzamba et 

al., 2009; Zhong et al., 1998). The fibronectin matrix surrounding cancer cells 

could contribute to the metastatic process in different ways, as reported by 
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several research groups (Park and Schwarzbauer, 2013; Das et al., 2008; 

Huang et al., 2008; Felding-Habermann, 2003; Ruoslahti, 1999; Friedl et al., 

1997; Klominek, Robert and Sundqvist, 1993; Aznavoorian et al., 1990; 

Gehlsen et al., 1988; Humphries, Yamada and Olden, 1988; Ruoslahti, 1984). 

For example, fibronectin provides an adhesion substrate that enhances cell 

adhesion to the endothelium of metastatic sites and promotes haptotactic 

motility (Huang et al., 2008; Klominek et al., 1993). Moreover, fibronectin could 

activate integrins and syndecan receptors to transduce intracellular signals that 

promote EMT and provide a positive feedback through the activation of Rho 

(Park and Schwarzbauer, 2014; Felding-Habermann, 2003). The coating of 

breast cancer cells with a fibronectin matrix stimulates fibroblasts to secrete 

metalloproteinases, which in turn enhance ECM degradation to promote 

invasion and colonization to metastatic sites (Maity et al., 2011; Saad et al., 

2002). Inhibitors of the α5β1 receptor, also known as the fibronectin receptor 

(Schaffner, Ray and Dontenwill, 2013), are currently tested in multiple clinical 

trials (Lahlou and Muller, 2011). For example, ATN-161, an inhibitor peptide that 

mimic the fibronectin molecular structure, was shown to have beneficial effects 

in a phase 1 clinical trial carried out in patients with various solid tumours 

(Cianfrocca et al., 2006). The same peptide was shown to be extremely efficient 

in inhibiting tumour growth and metastasis in mice injected with MDA-MB-231 

breast cancer cells (Khalili et al., 2006). These findings suggest that interfering 

with the fibronectin/integrin signalling could be a promising therapeutic strategy 

in breast cancer.   

The direct targeting of Rho could also be exploited as a potential therapeutic 

approach, since Rho GTPases are involved in many aspects of carcinogenesis 

(Sahai and Marshall, 2002). Recently, rhosin, a novel inhibitor of the RhoA 

subfamily of GTPase, was shown to inhibit the proliferation and invasion of 

breast cancer cells. Interestingly, rhosin was also able to reduce the formation 

of mammospheres, suggesting a possible implication of Rho in breast cancer 

stem cells homeostasis (Shang et al., 2012). Chen and collaborators tested a 

class of inhibitors of the enzymes farnesyltransferase and 

geranylgeranyltransferase, which are required for the farnesylation and 

geranylgeranylation of the C-terminal CAAX motif of the Rho family GTPases, 

respectively. These post-transcriptional modifications modulate the correct 

cellular localization and therefore the correct functions of Rho GTPases. The 

inhibitors caused the reduction of the 2D and 3D invasion of MDA-MB-231 
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breast cancer cells (Chen et al., 2014). Inhibition of the Rho associated kinase 

ROCK was shown to arrest the invasion of breast cancer cells in vivo and in 

vitro (Liu et al., 2009). An inhibitor of ROCK, K-115, was successfully tested in a 

phase II clinical trial for open-angle glaucoma, so its introduction in the clinic for 

breast cancer might be facilitated (Tanihara et al., 2013). It would be interesting 

to assess whether this molecule or related compounds could find applications in 

breast cancer, particularly in those subtypes still lacking efficient therapies. 

 

8.2 Future perspectives and limitations 

 

Following this study, we need to extend our findings to validate FZD6 as a novel 

oncogene and candidate target for cancer therapy. A key step would be to test 

naked or toxin-conjugated antibodies in mice models of breast cancer. The 

lentiviral transduction of shRNA targeting FZD6 in MDA-MB-231 cells does not 

cause cell death; therefore, cells might still be capable to metastasise. 

Conversely, cytotoxic antibodies would kill FZD6 positive cells, and this might 

result in a stronger reduction of the metastatic spread in mice. The in vivo 

validation of our findings should be repeated using FZD6 knock-out cell lines to 

avoid re-expression of the protein and in vivo selection of FZD6 positive 

populations. This could be achieved by deleting the FZD6 locus in breast 

cancer cells trough the CRISPR-CAS9 technology, a powerful tool commonly 

used for genome editing. 

Another limitation of our study is the limited number of triple negative breast 

cancer patients that were considered in the Kaplan Meier and multivariate 

analyses. In order to validate FZD6 as a marker of metastatic relapse in TNBC 

patients, we need to compare our data with other independent patients 

datasets. 

Another question to be addressed is whether FZD6 is a marker of cancer stem 

cell in breast cancer. Our group previously reported that this is the case in 

neuroblastoma (Cantilena et al., 2011). It is tempting to speculate that this might 

also happen in breast cancer. It is a widely held view that cancer stem cells 

might contribute to cancer metastasis, drug resistance and tumour recurrence 

(Visvader and Lindeman, 2008). If the expression of FZD6 is mainly restricted to 
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subpopulations of breast cancer stem cells, cytotoxic antibodies would be useful 

in deleting this aggressive cancer cell subtype. 

Another aspect that was not addressed in this study is the contribution of FZD6 

to angiogenesis, one of the hallmarks of cancer (Hanahan and Weinberg, 

2011). Rho is involved in multiple aspects of this process (Bryan and d’Amore, 

2007). Since FZD6 regulates Rho activity, it is reasonable to think it could be 

relevant in breast cancer angiogenesis. 

Several aspects of FZD6 signalling still remain unclear, such as which signalling 

proteins link FZD6 to the actin cytoskeleton or the fibronectin matrix assembly. 

Moreover, it remains to be determined if FZD6 interacts specifically with one of 

the Rho isoforms, RhoA, RhoB and RhoC. In this thesis, I reported that the 

knock down of FZD6 results in the thickening of actin stress fibres and their 

structural rearrangement (fig. 7.1). However, it is not known what molecules 

downstream of Rho are implicated in this process. In this respect, it would be 

interesting to assess the activation of Rho effectors such as ROCK 1/2 and 

mDIA in the absence of FZD6 expression.  

FZD6 could promote cell migration through Rho-mediated contraction of actin 

stress fibres. This could be verified by assessing the phosphorylation status of 

MLC in the absence or presence of FZD6 expression. 

In this study FZD6 signalling has been investigated predominantly in one cell 

line, MDA-MB-231. We should confirm our signalling data using more breast 

cancer cell lines and using not only loss of function approaches but also 

overexpression experiments.  

Finally, we have not investigated whether a specific WNT ligand mediates the 

pro-tumorigenic effects of FZD6 in breast cancer. Recent data gathered by 

FRAP membrane mobility analysis suggests that multiple ligands including 

WNT1, -2, 3A, -4, -5A, -7A, -9B and -10B modulate FZD6 surface mobility and 

are likely to activate or repress the receptor (Kilander, Dahlström and Schulte, 

2014). This suggests the existence of a complex network of ligands and 

pathways linked to FZD6.  

 

 

   



178 
 

Appendix 

 

Methods used by research collaborators 

 

A.1 Patients characteristics and immunohistochemistry  

 

The following methods were used by Rossano Lattanzio and Mauro Piantelli 

from G. D’Annunzio University, Chieti, Italy.  

The study included 352 primary infiltrating breast cancers from N0 and T1/T2 

tumours diagnosed between 1985 and 2003 at the Regina Elena National 

Cancer Institute, Rome, Italy, and presenting primary unilateral breast 

carcinomas. The study was reviewed and approved by the ethics committee of 

the ‘‘Regina Elena’’ National Cancer Institute and written informed consent was 

obtained from all patients. All patients received radiation therapy. One hundred 

and thirty-eight patients received hormonal therapy and 140 patients were 

treated with adjuvant chemotherapy (followed or not by hormonal therapy). 

Patients with HER2-positive tumours did not receive trastuzumab, as it was not 

used in breast tumour therapy in the study period. Follow-up data were obtained 

from institutional records or from referring physicians. The median follow-up 

was of 80 months (range 6-298 months). During follow-up, 32 patients (9.1%) 

developed a local recurrence and distant metastases were observed in 54 

cases (15.3%). 

Tissue microarrays (TMA) were constructed by extracting 2-mm diameter cores 

of histologically confirmed invasive breast carcinoma paraffin-embedded tissue. 

The cores were then embedded into gridded paraffin blocks, using a precision 

instrument (MTA, Beecher Instruments). After antigen retrieval (microwave 

treatment at 750 W for 10 min in 10 mM sodium citrate buffer, pH 6.0), five-

micrometres sections were incubated overnight at 4°C with the anti-Fzd6 

antibody (Novus Biological, Littleton, CO) at  1:100 dilution. The anti-rabbit 

EnVision kit (K4003, Dako, Glostrup, Denmark) was used for signal 

amplification. In control sections the specific primary antibody was replaced with 
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non-immune serum. The percentage of tumour cells with positive membrane 

staining for FZD6 ranged from 6 to 85%, with a mean ± SE of 23.8% ± 2.2. The 

following antibodies were used for the identification of tumour subtypes:  anti-

ER-α MoAb 6F11 (Novocastra, Leica Biosystems, Newcastle, UK), the anti-

PGR MoAb 1A6 (Novocastra), the anti-Ki-67 MoAb MIB-1 (Dako) and the anti-

HER2 (Herceptest, Dako). Immunohistochemical analysis was done by two 

pathologists (MP, RL) by consensus without knowledge of the 

clinicophatological information. 

Ki-67 expression was dichotomized according to the St Gallen criteria: Ki-67 

was considered high when the percentage of cells expressing the marker was ≥ 

20% (Goldhirsch et al., 2013). HER2 membranous staining was assessed with 

Herceptest (Dako) and classified as positive if the intensity was scored 3+ (30% 

of cells showing complete membrane staining), or, if scored 2+ (between 10% 

and 30% of positive cells), was considered positive in the presence of an 

amplification of the HER-2 gene as assessed by fluorescent in situ 

hybridization. Tumours were classified positive for PR or ER if ≥10% of cells 

were positive to the staining. Tumour size and tumour grade were dichotomized 

according to the Saint Gallen criteria for the definition of risk categories (T ≤ 

2cm vs. T > 2 cm; grade 1 vs. grade 2-3).  The relation between Fzd6 

expression and the clinicophatological parameters were assessed by Pearson’s 

χ2 or Fisher’s exact test, as appropriate. Fzd6 expression was studied in 

different breast cancer molecular subtypes: Luminal A-like (n = 128), Luminal B-

like, HER2 negative (n = 123), Luminal B-like, HER2 positive (n = 33), HER2 

positive, non-luminal (n = 21) and Triple negative breast cancers (TNBC, n = 

47). DFS was defined as the time from surgery to the first of the following 

events: tumour recurrence at local site or at distant sites. LRFS and DRFS were 

defined as the times from surgery to the occurrence of relapse at local and 

distant sites, respectively. Kaplan–Meier plots were used to illustrate the 

survival in specified cohorts and the log-rank test to test for equality of survival 

curves. The association of Fzd6 expression with outcome, adjusted for other 

prognostic factors, was tested by multivariate analysis (Cox’s proportional 

hazards model). The following covariates were included in the multivariate DFS 

models: tumour size and grade, ER, PGR, Ki-67, HER2 and FZD6 status. 

Appropriateness of the proportional hazard assumption was assessed by 

plotting the log cumulative hazard functions over time and checking for 
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parallelism. SPSS Version 15.0 (SPSS, Chicago, IL) was used throughout and 

P<0.05 was considered statistically significant. 

 

A.2 Threedimensional cultures  

 

The methods described in this section were performed by Sibylle Ermler and 

Elisabete Silva from the Institute for the Environment, Department of Life 

Sciences, Brunel University London. 

Wells in an eight-chamber slide (Millipore) were coated with 60 µl/well of growth 

factor reduced (GFR) matrigel and allowed to settle for 15 minutes. Cells were 

resuspended in complete medium containing 2% GFR matrigel (assay medium) 

and seeded in duplicate wells. Cells were incubated for 20 days and the 

medium replaced every 3–4 days with fresh assay medium. At the end of the 

incubation, the assay medium was discarded and the acini were fixed with 2% 

PFA (in PBS, pH 7.4) for 20 min at room temperature. Next, cells were 

permeabilized with 0.5% Triton-X in PBS for 10 min at 4° C and washed thrice 

with 100 mM glycine in PBS at room temperature. Acini were then blocked with 

immunofluorescence blocking buffer (IF buffer; 130 mM NaCl, 7.7 mM NaN3, 

0.1% BSA, 0.2% Triton X-100, 0.05% Tween-20) containing 10% of goat serum 

for 1.5 hours at room temperature. A secondary blocking step was performed 

incubating cells with Immunofluorescence blocking buffer containing 10% goat 

serum and 20 mg/ml of goat anti-mouse F(ab’)2 fragment for 30 minutes. 

Primary antibodies were diluted 1:200 in the secondary blocking solution, 

incubated overnight at 4° C and rinsed thrice with IF buffer. The primary 

antibodies used were: Mouse anti-laminin V (ABcam; 1:200 in IF buffer) or anti-

fibronectin (BD; 1:200 in IF buffer). Incubation with secondary antibody (Alexa 

Fluor 555 goat anti-mouse, Molecular Probes, Invitrogen) was in IF buffer 

containing 10% goat serum for 50 minutes (Dilution of 1:200), followed by three 

washes at room temperature. Cell nuclei were counterstained with a 300 nM 

solution of DAPI in PBS for 5 minutes and mounted with Vectashield HardSet 

mounting medium (Vector Laboratories, Peterborough, UK). Photographs of the 

acini were taken with an Olympus BX41 fluorescence microscope with IMSTAR 

Pathfinder™ software. 
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A.3 Orthotopic transplantations in immunodeficient 

mice 

 

The in vivo transplantation and the analysis of tumour tissue sections were 

carried out by our collaborators Dr Manuela Iezzi and Dr Alessia Lamolinara at 

the Aging Research Centre, G. D’Annunzio University, Chieti, Italy. 

NOD scid gamma (NSG) mice were purchased from the Jackson Laboratory 

and bred in the animal facility of the Aging Research Centre, G. D’Annunzio 

University, Chieti. Animal care and experimental procedures were approved by 

the Ethics Committee for Animal Experimentation of the institute, according to 

the Italian law. Eight weeks old female mice (10 mice per group) were injected 

unilaterally with 3.5×106 cells into the fourth mammary fat pad. Tumour growth 

was monitored biweekly using callipers up to 96 days or when tumours reached 

0.3 cm3 of volume. Tumour volume was calculated as 0.5 X d12 X d2, where d1 

and d2 are the smaller and larger diameters, respectively. Primary tumours and 

organs were fixed in 10% neutral buffered formalin, paraffin embedded, 

sectioned and stained with haematoxylin and eosin. Slides were independently 

evaluated by two pathologists. To quantify microscopic metastases, lungs and 

livers were cut transversally into 2.0 mm thick parallel slabs starting from a 

random position, resulting in 5-8 slabs for lungs and 8-10 slabs for livers. A 

semiquantitative evaluation was performed attributing to each sample a value 

from 0 to 4, based on the number and size of metastases; 0 was attributed to 

organs with no detectable metastases; 4 to organs with numerous large 

metastases. Fisher’s exact test was utilised to compare differences in 

metastatic spread. 
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A.4 Confocal microscopy 

 

Confocal microscopy experiments were carried out by Michele Sallese and 

Giorgia Fragassi at Fondazione Mario Negri Sud, S.Maria Imbaro, Italy. 

70000 cells were plated in 1 mL of complete medium in coverslips placed into 

24 well plates. Cells were then washed with PBS and fixed with 4% PFA in PBS 

for 15 minutes. Cells were then washed 4 times with PBS and incubated in 

blocking solution (0.1 % saponin, 0.5 % BSA, 50 mM NH4Cl pH 7.4, 0.02 % 

NaN3) for 1 hour. 

Cells were then incubated either with Phalloidin Alexafluor546-conjugated 

(Invitrogen) diluted 1:400 in blocking buffer for 30 minutes or with mouse anti-

Fibronectin (BD) diluted 1:100 in blocking buffer for 2 hours. In the case of the 

Fibronectin staining, cells were then washed 4 times with PBS and stained with 

anti-mouse texas red (Invitrogen) diluted 1:400 in blocking buffer for 1 hour. The 

following steps were analogous for the phalloidin and fibronectin staining: Cells 

were washed in PBS and stained with DRAQ5 (Cell Signaling) diluted 1:1000 in 

PBS for 15 minutes. The coverslips were then washed 4 times with PBS and 

mounted with Mowiol (Sigma) into microscope glass slides. 

Confocal images were acquired using a Zeiss LSM510 inverted confocal 

microscope system (Carl Zeiss, Gottingen, Germany). Cells were analysed 

using a 63x oil-immersion objective, maintaining the pinhole of the objective at 1 

Airy unit. Images were acquired under non-saturating conditions and using the 

same settings for all samples.  

  



183 
 

Bibliography 

 

Aberle, H., Bauer, A., Stappert, J., Kispert, A. and Kemler, R. (1997) 'Beta-Catenin is a Target 
for the Ubiquitin-Proteasome Pathway', The EMBO journal, 16(13), pp. 3797-3804.  

Aguirre-Ghiso, J.A. (2007) 'Models, mechanisms and clinical evidence for cancer dormancy', 
Nature Reviews Cancer, 7(11), pp. 834-846.  

Ahmad, A., Wang, Z., Kong, D., Ali, S., Li, Y., Banerjee, S., Ali, R. and Sarkar, F.H. (2010) 
'FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast 
cancer cells through the modulation of extra-cellular matrix degrading factors', Breast 
cancer research and treatment, 122(2), pp. 337-346. 

Ahmad, O.B., Boschi-Pinto, C., Lopez, A.D., Murray, C.J., Lozano, R. and Inoue, M. (2001) Age 
standardization of rates: a new WHO standard. World Health Organization Geneva.  

Ai, L., Tao, Q., Zhong, S., Fields, C.R., Kim, W.J., Lee, M.W., Cui, Y., Brown, K.D. and 
Robertson, K.D. (2006) 'Inactivation of Wnt inhibitory factor-1 (WIF1) expression by 
epigenetic silencing is a common event in breast cancer', Carcinogenesis, 27(7), pp. 1341-
1348.  

Akiyama, S.K., Olden, K. and Yamada, K.M. (1995) 'Fibronectin and integrins in invasion and 
metastasis', Cancer and metastasis reviews, 14(3), pp. 173-189.  

Albini, A., Iwamoto, Y., Kleinman, H.K., Martin, G.R., Aaronson, S.A., Kozlowski, J.M. and 
McEwan, R.N. (1987) 'A rapid in vitro assay for quantitating the invasive potential of tumor 
cells', Cancer research, 47(12), pp. 3239-3245.  

Alderton, G.K. (2013) 'Metastasis: Polarizing metastasis', Nature Reviews Cancer, 13(2), pp. 
75-75.  

Ali, A.M., Schmidt, M.K., Bolla, M.K., Wang, Q., Gago-Dominguez, M., Castelao, J.E., 
Carracedo, A., Garzon, V.M., Bojesen, S.E., Nordestgaard, B.G., Flyger, H., Chang-
Claude, J., Vrieling, A., Rudolph, A., Seibold, P., Nevanlinna, H., Muranen, T.A., Aaltonen, 
K., Blomqvist, C., Matsuo, K., Ito, H., Iwata, H., Horio, A., John, E.M., Sherman, M., 
Lissowska, J., Figueroa, J., Garcia-Closas, M., Anton-Culver, H., Shah, M., Hopper, J.L., 
Trichopoulou, A., Bueno-de-Mesquita, B., Krogh, V., Weiderpass, E., Andersson, A., 
Clavel-Chapelon, F., Dossus, L., Fagherazzi, G., Peeters, P.H., Olsen, A., Wishart, G.C., 
Easton, D.F., Borgquist, S., Overvad, K., Barricarte, A., Gonzalez, C.A., Sanchez, M.J., 
Amiano, P., Riboli, E., Key, T. and Pharoah, P.D. (2014) 'Alcohol consumption and survival 
after a breast cancer diagnosis: a literature-based meta-analysis and collaborative analysis 
of data for 29,239 cases', Cancer epidemiology, biomarkers & prevention : a publication of 
the American Association for Cancer Research, cosponsored by the American Society of 
Preventive Oncology, 23(6), pp. 934-945.  

Almeida, E.A., Ilic, D., Han, Q., Hauck, C.R., Jin, F., Kawakatsu, H., Schlaepfer, D.D. and 
Damsky, C.H. (2000) 'Matrix survival signaling: from fibronectin via focal adhesion kinase 
to c-Jun NH(2)-terminal kinase', The Journal of cell biology, 149(3), pp. 741-754.  

Amano, M., Chihara, K., Kimura, K., Fukata, Y., Nakamura, N., Matsuura, Y. and Kaibuchi, K. 
(1997) 'Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase', 
Science (New York, N.Y.), 275(5304), pp. 1308-1311.  

Ananthakrishnan, R. and Ehrlicher, A. (2007) 'The forces behind cell movement', International 
journal of biological sciences, 3(5), pp. 303-317.  

Anastas, J.N. and Moon, R.T. (2012) 'WNT signalling pathways as therapeutic targets in 
cancer', Nature Reviews Cancer, 13(1), pp. 11-26.  



184 
 

Anastas, J., Biechele, T., Robitaille, M., Muster, J., Allison, K., Angers, S. and Moon, R. (2012) 
'A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, 
and is associated with breast cancer progression', Oncogene, 31(32), pp. 3696-3708.  

Angst, B.D., Marcozzi, C. and Magee, A.I. (2001) 'The cadherin superfamily: diversity in form 
and function', Journal of cell science, 114(Pt 4), pp. 629-641.  

Aznavoorian, S., Stracke, M.L., Krutzsch, H., Schiffmann, E. and Liotta, L.A. (1990) 'Signal 
transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells', The 
Journal of cell biology, 110(4), pp. 1427-1438.  

Baade, P.D., Youlden, D.R. and Chambers, S.K. (2011) 'When do I know I am cured? Using 
conditional estimates to provide better information about cancer survival prospects', 
Medical Journal of Australia, 194(2), pp. 73.  

Bajada, S., Mazakova, I., Richardson, J.B. and Ashammakhi, N. (2008) 'Updates on stem cells 
and their applications in regenerative medicine', Journal of tissue engineering and 
regenerative medicine, 2(4), pp. 169-183.  

Barker, N. and Clevers, H. (2006) 'Mining the Wnt pathway for cancer therapeutics', Nature 
Reviews Drug Discovery, 5(12), pp. 997-1014.  

Baselga, J., Cortés, J., Kim, S., Im, S., Hegg, R., Im, Y., Roman, L., Pedrini, J.L., Pienkowski, T. 
and Knott, A. (2012) 'Pertuzumab plus trastuzumab plus docetaxel for metastatic breast 
cancer', New England Journal of Medicine, 366(2), pp. 109-119.  

Bastock, R., Strutt, H. and Strutt, D. (2003) 'Strabismus is asymmetrically localised and binds to 
Prickle and Dishevelled during Drosophila planar polarity patterning', Development 
(Cambridge, England), 130(13), pp. 3007-3014.  

Bauer, K.R., Brown, M., Cress, R.D., Parise, C.A. and Caggiano, V. (2007) 'Descriptive analysis 

of estrogen receptor (ER)‐negative, progesterone receptor (PR)‐negative, and HER2‐
negative invasive breast cancer, the so‐called triple‐negative phenotype', Cancer, 109(9), 
pp. 1721-1728.  

Baum, J. and Duffy, H.S. (2011) 'Fibroblasts and myofibroblasts: what are we talking about?', 
Journal of cardiovascular pharmacology, 57(4), pp. 376-379.  

Beers, M. (2006) 'Merk Manual Diagnosis and Theraphy'  

Behrens, J., von Kries, J.P., Kühl, M., Bruhn, L., Wedlich, D., Grosschedl, R. and Birchmeier, W. 
(1996) 'Functional interaction of β-catenin with the transcription factor LEF-1', .  

Bejsovec, A. (2005) 'Wnt pathway activation: new relations and locations', Cell, 120(1), pp. 11-
14.  

Bengochea, A., De Souza, M., Lefrancois, L., Le Roux, E., Galy, O., Chemin, I., Kim, M., 
Wands, J., Trepo, C. and Hainaut, P. (2008) 'Common dysregulation of Wnt/Frizzled 
receptor elements in human hepatocellular carcinoma', British journal of cancer, 99(1), pp. 
143-150.  

Benhaj, K., Akcali, K.C. and Ozturk, M. (2006) 'Redundant expression of canonical Wnt ligands 
in human breast cancer cell lines', Oncology reports, 15(3), pp. 701-708.  

Berns, E.M., Klijn, J.G., van Putten, W.L., van Staveren, I.L., Portengen, H. and Foekens, J.A. 
(1992) 'c-myc amplification is a better prognostic factor than HER2/neu amplification in 
primary breast cancer', Cancer research, 52(5), pp. 1107-1113.  

Bertucci, F., Finetti, P., Cervera, N., Esterni, B., Hermitte, F., Viens, P. and Birnbaum, D. (2008) 
'How basal are triple‐negative breast cancers?', International journal of Cancer, 123(1), pp. 
236-240.  



185 
 

Berx, G. and Van Roy, F. (2001) 'The E-cadherin/catenin complex: an important gatekeeper in 
breast cancer tumorigenesis and malignant progression', Breast Cancer Research, 3(5), 
pp. 289-293.  

Betapudi, V., Licate, L.S. and Egelhoff, T.T. (2006) 'Distinct roles of nonmuscle myosin II 
isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration', 
Cancer research, 66(9), pp. 4725-4733.  

Bhowmick, N.A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C.A., Engel, M.E., Arteaga, C.L. 
and Moses, H.L. (2001) 'Transforming growth factor-beta1 mediates epithelial to 
mesenchymal transdifferentiation through a RhoA-dependent mechanism', Molecular 
biology of the cell, 12(1), pp. 27-36.  

Bild, A.H., Yao, G., Chang, J.T., Wang, Q., Potti, A., Chasse, D., Joshi, M., Harpole, D., 
Lancaster, J.M. and Berchuck, A. (2005) 'Oncogenic pathway signatures in human cancers 
as a guide to targeted therapies', Nature, 439(7074), pp. 353-357.  

Bilic, J., Huang, Y.L., Davidson, G., Zimmermann, T., Cruciat, C.M., Bienz, M. and Niehrs, C. 
(2007) 'Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 
phosphorylation', Science (New York, N.Y.), 316(5831), pp. 1619-1622.  

Bilir, B., Kucuk, O. and Moreno, C.S. (2013) 'Wnt signaling blockage inhibits cell proliferation 
and migration, and induces apoptosis in triple-negative breast cancer cells', Journal of 
translational medicine, 11, pp. 280-5876-11-280.  

Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M., Neve, R. and Thompson, E. (2008) 
'Epithelial mesenchymal transition traits in human breast cancer cell lines', Clinical & 
experimental metastasis, 25(6), pp. 629-642.  

Blumenschein, G.R. (1983) 'The role of progestins in the treatment of breast cancer', Seminars 
in oncology, 10(4 Suppl 4), pp. 7-10.  

Boguski, M.S. and McCormick, F. (1993) 'Proteins regulating Ras and its relatives', Nature, 
366(6456), pp. 643-654.  

Boutros, M., Paricio, N., Strutt, D.I. and Mlodzik, M. (1998) 'Dishevelled activates JNK and 
discriminates between JNK pathways in planar polarity and wingless signaling', Cell, 94(1), 
pp. 109-118.  

Bowcock, A.M. (1999) Breast cancer: molecular genetics, pathogenesis, and therapeutics. 
Humana Press.  

Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K.W., 
Vogelstein, B. and Nowak, M.A. (2010) 'Accumulation of driver and passenger mutations 
during tumor progression', Proceedings of the National Academy of Sciences of the United 
States of America, 107(43), pp. 18545-18550.  

Brisken, C., Heineman, A., Chavarria, T., Elenbaas, B., Tan, J., Dey, S.K., McMahon, J.A., 
McMahon, A.P. and Weinberg, R.A. (2000) 'Essential function of Wnt-4 in mammary gland 
development downstream of progesterone signaling', Genes & development, 14(6), pp. 
650-654.  

Bryan, B. and d’Amore, P. (2007) 'What tangled webs they weave: Rho-GTPase control of 
angiogenesis', Cellular and Molecular Life Sciences, 64(16), pp. 2053-2065.  

Bubendorf, L., Schöpfer, A., Wagner, U., Sauter, G., Moch, H., Willi, N., Gasser, T.C. and 
Mihatsch, M.J. (2000) 'Metastatic patterns of prostate cancer: an autopsy study of 1,589 
patients', Human pathology, 31(5), pp. 578-583.  

Buttke, T.M., McCubrey, J.A. and Owen, T.C. (1993) 'Use of an aqueous soluble 
tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent 
cell lines', Journal of immunological methods, 157(1), pp. 233-240.  



186 
 

Caddy, J., Wilanowski, T., Darido, C., Dworkin, S., Ting, S.B., Zhao, Q., Rank, G., Auden, A., 
Srivastava, S. and Papenfuss, T.A. (2010) 'Epidermal wound repair is regulated by the 
planar cell polarity signaling pathway', Developmental cell, 19(1), pp. 138-147.  

Cadigan, K.M. and Nusse, R. (1997) 'Wnt signaling: a common theme in animal development', 
Genes & development, 11(24), pp. 3286-3305.  

Cailleau, R., Cruciger, Q., Hokanson, K., Olive, M. and Blumenschein, G. (1976) 'Morphological, 
biochemical and chromosomal characterization of breast tumor lines from pleural 
effusions', IN VITRO-JOURNAL OF THE TISSUE CULTURE ASSOCIATION. SOC IN 
VITRO BIOLOGY 9315 LARGO DR WEST, STE 25, LARGO, MD 20774, 331-331.  

Cailleau, R., Olivé, M. and Cruciger, Q.V. (1978) 'Long-term human breast carcinoma cell lines 
of metastatic origin: preliminary characterization', In vitro, 14(11), pp. 911-915.  

Campbell, L.L. and Polyak, K. (2007) 'Breast tumor heterogeneity: cancer stem cells or clonal 
evolution?', Cell Cycle, 6(19), pp. 2332-2338.  

Cano, A., Pérez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, 
F. and Nieto, M.A. (2000) 'The transcription factor snail controls epithelial–mesenchymal 
transitions by repressing E-cadherin expression', Nature cell biology, 2(2), pp. 76-83.  

Cantilena, S., Pastorino, F., Pezzolo, A., Chayka, O., Pistoia, V., Ponzoni, M. and Sala, A. 
(2011) 'Frizzled receptor 6 marks rare, highly tumourigenic stem-like cells in mouse and 
human neuroblastomas', Oncotarget, 2(12), pp. 976-983.  

Carey, L., Winer, E., Viale, G., Cameron, D. and Gianni, L. (2010) 'Triple-negative breast 
cancer: disease entity or title of convenience?', Nature reviews Clinical oncology, 7(12), pp. 
683-692.  

Cariati, M., Bennett-Britton, T., Pinder, S. and Purushotham, A. (2005) '“Inflammatory” breast 
cancer', Surgical oncology, 14(3), pp. 133-143. 

Carron, C., Pascal, A., Djiane, A., Boucaut, J.C., Shi, D.L. and Umbhauer, M. (2003) 'Frizzled 
receptor dimerization is sufficient to activate the Wnt/beta-catenin pathway', Journal of cell 
science, 116(Pt 12), pp. 2541-2550.  

Cavallaro, U. and Christofori, G. (2004) 'Cell adhesion and signalling by cadherins and Ig-CAMs 
in cancer', Nature Reviews Cancer, 4(2), pp. 118-132.  

Chambers, A.F., Groom, A.C. and MacDonald, I.C. (2002) 'Metastasis: dissemination and 
growth of cancer cells in metastatic sites', Nature Reviews Cancer, 2(8), pp. 563-572.  

Cheang, M.C., Chia, S.K., Voduc, D., Gao, D., Leung, S., Snider, J., Watson, M., Davies, S., 
Bernard, P.S. and Parker, J.S. (2009) 'Ki67 index, HER2 status, and prognosis of patients 
with luminal B breast cancer', Journal of the National Cancer Institute, 101(10), pp. 736-
750.  

Chen, M., Knifley, T., Subramanian, T., Spielmann, H.P. and O’Connor, K.L. (2014) 'Use of 
Synthetic Isoprenoids to Target Protein Prenylation and Rho GTPases in Breast Cancer 
Invasion', PloS one, 9(2), pp. e89892.  

Chen, A., Cuevas, I., Kenny, P.A., Miyake, H., Mace, K., Ghajar, C., Boudreau, A., Bissell, M.J. 
and Boudreau, N. (2009) 'Endothelial cell migration and vascular endothelial growth factor 
expression are the result of loss of breast tissue polarity', Cancer research, 69(16), pp. 
6721-6729.  

Chen, P., Xie, H., Sekar, M.C., Gupta, K. and Wells, A. (1994) 'Epidermal growth factor 
receptor-mediated cell motility: phospholipase C activity is required, but mitogen-activated 
protein kinase activity is not sufficient for induced cell movement', The Journal of cell 
biology, 127(3), pp. 847-857.  



187 
 

Cheng, H.C., Abdel-Ghany, M., Elble, R.C. and Pauli, B.U. (1998) 'Lung endothelial dipeptidyl 
peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell 
surface-associated fibronectin', The Journal of biological chemistry, 273(37), pp. 24207-
24215.  

Chiu, R., Boyle, W.J., Meek, J., Smeal, T., Hunter, T. and Karin, M. (1988) 'The c-Fos protein 
interacts with c-JunAP-1 to stimulate transcription of AP-1 responsive genes', Cell, 54(4), 
pp. 541-552.  

Choi, S. and Han, J. (2002) 'Xenopus Cdc42 regulates convergent extension movements during 
gastrulation through Wnt/Ca 2 signaling pathway', Developmental biology, 244(2), pp. 342-
357. 

Chrzanowska-Wodnicka, M. and Burridge, K. (1996) 'Rho-stimulated contractility drives the 
formation of stress fibers and focal adhesions', The Journal of cell biology, 133(6), pp. 
1403-1415.  

Chu, E.Y., Hens, J., Andl, T., Kairo, A., Yamaguchi, T.P., Brisken, C., Glick, A., Wysolmerski, 
J.J. and Millar, S.E. (2004) 'Canonical WNT signaling promotes mammary placode 
development and is essential for initiation of mammary gland morphogenesis', 
Development (Cambridge, England), 131(19), pp. 4819-4829.  

Cianfrocca, M., Kimmel, K., Gallo, J., Cardoso, T., Brown, M., Hudes, G., Lewis, N., Weiner, L., 
Lam, G. and Brown, S. (2006) 'Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-
PHSCN-NH2), a beta integrin antagonist, in patients with solid tumours', British journal of 
cancer, 94(11), pp. 1621-1626.  

Cianfrocca, M. and Goldstein, L.J. (2004) 'Prognostic and predictive factors in early-stage 
breast cancer', The oncologist, 9(6), pp. 606-616.  

Ciani, L. and Salinas, P.C. (2007) 'c-Jun N-terminal kinase (JNK) cooperates with Gsk3beta to 
regulate Dishevelled-mediated microtubule stability', BMC cell biology, 8, pp. 27.  

Civenni, G., Holbro, T. and Hynes, N.E. (2003) 'Wnt1 and Wnt5a induce cyclin D1 expression 
through ErbB1 transactivation in HC11 mammary epithelial cells', EMBO reports, 4(2), pp. 
166-171.  

Clapham, D.E. (1995) 'Calcium signaling', Cell, 80(2), pp. 259-268. 

Clevers, H. (2006) 'Wnt/β-catenin signaling in development and disease', Cell, 127(3), pp. 469-
480.  

Clevers, H. and Nusse, R. (2012) 'Wnt/β-catenin signaling and disease', Cell, 149(6), pp. 1192-
1205.  

Coleman, R.E. and Rubens, R.D. (1987) 'The clinical course of bone metastases from breast 
cancer', British journal of cancer, 55(1), pp. 61-66.  

Cooper, J.A. (1991) 'The role of actin polymerization in cell motility', Annual Review of 
Physiology, 53(1), pp. 585-605.  

Croft, D.R., Sahai, E., Mavria, G., Li, S., Tsai, J., Lee, W.M., Marshall, C.J. and Olson, M.F. 
(2004) 'Conditional ROCK activation in vivo induces tumor cell dissemination and 
angiogenesis', Cancer research, 64(24), pp. 8994-9001.  

Curtin, J.A., Quint, E., Tsipouri, V., Arkell, R.M., Cattanach, B., Copp, A.J., Henderson, D.J., 
Spurr, N., Stanier, P. and Fisher, E.M. (2003) 'Mutation of Celsr1 disrupts planar polarity of 
inner ear hair cells and causes severe neural tube defects in the mouse', Current Biology, 
13(13), pp. 1129-1133.  

Dales, J., Garcia, S., Meunier‐Carpentier, S., Andrac‐Meyer, L., Haddad, O., Lavaut, M., Allasia, 
C., Bonnier, P. and Charpin, C. (2005) 'Overexpression of hypoxia‐inducible factor HIF‐1α 



188 
 

predicts early relapse in breast cancer: Retrospective study in a series of 745 patients', 
International journal of cancer, 116(5), pp. 734-739. 

Danen, E.H., Sonneveld, P., Brakebusch, C., Fassler, R. and Sonnenberg, A. (2002) 'The 
fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-
GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis', The 
Journal of cell biology, 159(6), pp. 1071-1086.  

Dang, C.V. (2012) 'MYC on the path to cancer', Cell, 149(1), pp. 22-35.  

Daniels, D.L. and Weis, W.I. (2005) 'β-catenin directly displaces Groucho/TLE repressors from 
Tcf/Lef in Wnt-mediated transcription activation', Nature structural & molecular biology, 
12(4), pp. 364-371.  

Dao, M.A., Hashino, K., Kato, I. and Nolta, J.A. (1998) 'Adhesion to fibronectin maintains 
regenerative capacity during ex vivo culture and transduction of human hematopoietic 
stem and progenitor cells', Blood, 92(12), pp. 4612-4621.  

Das, S., Banerji, A., Frei, E. and Chatterjee, A. (2008) 'Rapid expression and activation of MMP-
2 and MMP-9 upon exposure of human breast cancer cells (MCF-7) to fibronectin in serum 
free medium', Life Sciences, 82(9), pp. 467-476.  

Das, G., Jenny, A., Klein, T.J., Eaton, S. and Mlodzik, M. (2004) 'Diego interacts with Prickle 
and Strabismus/Van Gogh to localize planar cell polarity complexes', Development 
(Cambridge, England), 131(18), pp. 4467-4476.  

Davidson, N.E. and Abeloff, M.D. (1994) 'Adjuvant therapy of breast cancer', World journal of 
surgery, 18(1), pp. 112-116.  

De Marco, P., Merello, E., Rossi, A., Piatelli, G., Cama, A., Kibar, Z. and Capra, V. (2012) 'FZD6 
is a novel gene for human neural tube defects', Human mutation, 33(2), pp. 384-390.  

Dean, M., Fojo, T. and Bates, S. (2005) 'Tumour stem cells and drug resistance', Nature 
Reviews Cancer, 5(4), pp. 275-284.  

Deming, S.L., Nass, S.J., Dickson, R.B. and Trock, B.J. (2000) 'C-myc amplification in breast 
cancer: a meta-analysis of its occurrence and prognostic relevance', British journal of 
cancer, 83(12), pp. 1688-1695.  

Dent, R., Hanna, W.M., Trudeau, M., Rawlinson, E., Sun, P. and Narod, S.A. (2009) 'Pattern of 
metastatic spread in triple-negative breast cancer', Breast cancer research and treatment, 
115(2), pp. 423-428.  

Dent, R., Trudeau, M., Pritchard, K.I., Hanna, W.M., Kahn, H.K., Sawka, C.A., Lickley, L.A., 
Rawlinson, E., Sun, P. and Narod, S.A. (2007) 'Triple-negative breast cancer: clinical 
features and patterns of recurrence', Clinical cancer research : an official journal of the 
American Association for Cancer Research, 13(15 Pt 1), pp. 4429-4434.  

Desgrosellier, J.S. and Cheresh, D.A. (2010) 'Integrins in cancer: biological implications and 
therapeutic opportunities', Nature Reviews Cancer, 10(1), pp. 9-22.  

Dijksterhuis, J., Petersen, J. and Schulte, G. (2014) 'WNT/Frizzled signalling: receptor–ligand 

selectivity with focus on FZD‐G protein signalling and its physiological relevance: IUPHAR 
Review 3', British journal of pharmacology, 171(5), pp. 1195-1209.  

Donnenberg, V.S. and Donnenberg, A.D. (2005) 'Multiple drug resistance in cancer revisited: 
the cancer stem cell hypothesis', The Journal of Clinical Pharmacology, 45(8), pp. 872-
877.  

Dossus, L., Boutron‐Ruault, M., Kaaks, R., Gram, I.T., Vilier, A., Fervers, B., Manjer, J., 
Tjonneland, A., Olsen, A. and Overvad, K. (2014) 'Active and passive cigarette smoking 



189 
 

and breast cancer risk: Results from the EPIC cohort', International Journal of Cancer, 
134(8), pp. 1871-1888.  

Duncan, J.A., Reeves, J.R. and Cooke, T.G. (1998) 'BRCA1 and BRCA2 proteins: roles in 
health and disease', Molecular pathology : MP, 51(5), pp. 237-247.  

Dzamba, B.J., Jakab, K.R., Marsden, M., Schwartz, M.A. and DeSimone, D.W. (2009) 'Cadherin 
adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix 
organization', Developmental cell, 16(3), pp. 421-432.  

Edelman, G.M. and Crossin, K.L. (1991) 'Cell adhesion molecules: implications for a molecular 
histology', Annual Review of Biochemistry, 60(1), pp. 155-190.  

Elmore, J.G., Armstrong, K., Lehman, C.D. and Fletcher, S.W. (2005) 'Screening for breast 
cancer', JAMA: the journal of the American Medical Association, 293(10), pp. 1245-1256.  

Eroles, P., Bosch, A., Alejandro Perez-Fidalgo, J. and Lluch, A. (2012) 'Molecular biology in 
breast cancer: intrinsic subtypes and signaling pathways', Cancer treatment reviews, 38(6), 
pp. 698-707.  

Etienne‐Manneville, S. (2004) 'Actin and microtubules in cell motility: which one is in control?', 
Traffic, 5(7), pp. 470-477.  

Eyers, C.x., McNeill, H., Knebel, A., Morrice, N., Arthur, S.x.x., Cuenda, A. and Cohen, P. 
(2005) 'The phosphorylation of CapZ-interacting protein (CapZIP) by stress-activated 
protein kinases triggers its dissociation from CapZ', Biochem.J, 389, pp. 127-135.  

Fagotto, F., Glück, U. and Gumbiner, B.M. (1998) 'Nuclear localization signal-independent and 
importin/karyopherin-independent nuclear import of β-catenin', Current Biology, 8(4), pp. 
181-190.  

Fanning, E. (1992) 'Simian virus 40 large T antigen: the puzzle, the pieces, and the emerging 
picture', Journal of virology, 66(3), pp. 1289-1293.  

Farmer, P., Bonnefoi, H., Becette, V., Tubiana-Hulin, M., Fumoleau, P., Larsimont, D., 
MacGrogan, G., Bergh, J., Cameron, D. and Goldstein, D. (2005) 'Identification of 
molecular apocrine breast tumours by microarray analysis', Breast Cancer Research, 
7(Suppl 2), pp. P2. 11.  

Faulstich, H., Zobeley, S., Rinnerthaler, G. and Small, J. (1988) 'Fluorescent phallotoxins as 
probes for filamentous actin', Journal of Muscle Research & Cell Motility, 9(5), pp. 370-383.  

Felding-Habermann, B. (2003) 'Integrin adhesion receptors in tumor metastasis', Clinical & 
experimental metastasis, 20(3), pp. 203-213.  

Ferlay, J., Shin, H., Bray, F., Forman, D., Mathers, C. and Parkin, D.M. (2010) 'Estimates of 
worldwide burden of cancer in 2008: GLOBOCAN 2008', International journal of cancer, 
127(12), pp. 2893-2917.  

Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., Chen, H., 
Omeroglu, G., Meterissian, S. and Omeroglu, A. (2008) 'Stromal gene expression predicts 
clinical outcome in breast cancer', Nature medicine, 14(5), pp. 518-527.  

Flahaut, M., Meier, R., Coulon, A., Nardou, K., Niggli, F., Martinet, D., Beckmann, J., Joseph, J., 
Mühlethaler-Mottet, A. and Gross, N. (2009) 'The Wnt receptor FZD1 mediates 
chemoresistance in neuroblastoma through activation of the Wnt/β-catenin pathway', 
Oncogene, 28(23), pp. 2245-2256.  

Fogerty, F.J., Akiyama, S.K., Yamada, K.M. and Mosher, D.F. (1990) 'Inhibition of binding of 
fibronectin to matrix assembly sites by anti-integrin (alpha 5 beta 1) antibodies', The 
Journal of cell biology, 111(2), pp. 699-708.  



190 
 

Foley, J., Dann, P., Hong, J., Cosgrove, J., Dreyer, B., Rimm, D., Dunbar, M., Philbrick, W. and 
Wysolmerski, J. (2001) 'Parathyroid hormone-related protein maintains mammary epithelial 
fate and triggers nipple skin differentiation during embryonic breast development', 
Development (Cambridge, England), 128(4), pp. 513-525.  

Foord, S.M., Bonner, T.I., Neubig, R.R., Rosser, E.M., Pin, J.P., Davenport, A.P., Spedding, M. 
and Harmar, A.J. (2005) 'International Union of Pharmacology. XLVI. G protein-coupled 
receptor list', Pharmacological reviews, 57(2), pp. 279-288.  

Forbes, S., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., Menzies, A., Teague, 
J., Futreal, P. and Stratton, M. (2008) 'The catalogue of somatic mutations in cancer 
(COSMIC)', Current protocols in human genetics, , pp. 10.11. 1-10.11. 26.  

Ford, D., Easton, D., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D., Weber, B., 
Lenoir, G. and Chang-Claude, J. (1998) 'Genetic heterogeneity and penetrance analysis of 
the BRCA1 and BRCA2 genes in breast cancer families', The American Journal of Human 
Genetics, 62(3), pp. 676-689.  

Foulkes, W.D., Smith, I.E. and Reis-Filho, J.S. (2010) 'Triple-negative breast cancer', New 
England journal of medicine, 363(20), pp. 1938-1948.  

Foulkes, W.D., Stefansson, I.M., Chappuis, P.O., Begin, L.R., Goffin, J.R., Wong, N., Trudel, M. 
and Akslen, L.A. (2003) 'Germline BRCA1 mutations and a basal epithelial phenotype in 
breast cancer', Journal of the National Cancer Institute, 95(19), pp. 1482-1485.  

Fredriksson, R. and Schioth, H.B. (2005) 'The repertoire of G-protein-coupled receptors in fully 
sequenced genomes', Molecular pharmacology, 67(5), pp. 1414-1425.  

Fridlyand, J., Snijders, A.M., Ylstra, B., Li, H., Olshen, A., Segraves, R., Dairkee, S., Tokuyasu, 
T., Ljung, B.M., Jain, A.N., McLennan, J., Ziegler, J., Chin, K., Devries, S., Feiler, H., Gray, 
J.W., Waldman, F., Pinkel, D. and Albertson, D.G. (2006) 'Breast tumor copy number 
aberration phenotypes and genomic instability', BMC cancer, 6, pp. 96.  

Friedl, P. and Alexander, S. (2011) 'Cancer invasion and the microenvironment: plasticity and 
reciprocity', Cell, 147(5), pp. 992-1009.  

Friedl, P., Maaser, K., Klein, C.E., Niggemann, B., Krohne, G. and Zanker, K.S. (1997) 
'Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices 
results in local matrix reorganization and shedding of alpha2 and beta1 integrins and 
CD44', Cancer research, 57(10), pp. 2061-2070.  

Fritz, G., Brachetti, C., Bahlmann, F., Schmidt, M. and Kaina, B. (2002) 'Rho GTPases in 
human breast tumours: expression and mutation analyses and correlation with clinical 
parameters', British journal of cancer, 87(6), pp. 635-644.  

Fröjmark, A., Schuster, J., Sobol, M., Entesarian, M., Kilander, M.C., Gabrikova, D., Nawaz, S., 
Baig, S., Schulte, G., Klar, J. and Dahl, N. (2011) 'Mutations in Frizzled 6 Cause Isolated 
Autosomal-Recessive Nail Dysplasia', The American Journal of Human Genetics, 88(6), 
pp. 852-860.  

Fukukawa, C., Nagayama, S., Tsunoda, T., Toguchida, J., Nakamura, Y. and Katagiri, T. (2009) 
'Activation of the non-canonical Dvl–Rac1–JNK pathway by Frizzled homologue 10 in 
human synovial sarcoma', Oncogene, 28(8), pp. 1110-1120.  

Garbe, J.C., Bhattacharya, S., Merchant, B., Bassett, E., Swisshelm, K., Feiler, H.S., Wyrobek, 
A.J. and Stampfer, M.R. (2009) 'Molecular distinctions between stasis and telomere 
attrition senescence barriers shown by long-term culture of normal human mammary 
epithelial cells', Cancer research, 69(19), pp. 7557-7568.  

Gazdar, A.F., Kurvari, V., Virmani, A., Gollahon, L., Sakaguchi, M., Westerfield, M., Kodagoda, 
D., Stasny, V., Cunningham, H.T. and Wistuba, I.I. (1998) 'Characterization of paired tumor 



191 
 

and non-tumor cell lines established from patients with breast cancer', International journal 
of cancer, 78, pp. 766-774.  

Gearhart, J., Pashos, E.E. and Prasad, M.K. (2007) 'Pluripotency redux—advances in stem-cell 
research', New England Journal of Medicine, 357(15), pp. 1469-1472.  

Gehlsen, K.R., Argraves, W.S., Pierschbacher, M.D. and Ruoslahti, E. (1988) 'Inhibition of in 
vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides', The Journal of cell 
biology, 106(3), pp. 925-930.  

Giuliano, A.E., Kirgan, D.M., Guenther, J.M. and Morton, D.L. (1994) 'Lymphatic mapping and 
sentinel lymphadenectomy for breast cancer', Annals of Surgery, 220(3), pp. 391-8; 
discussion 398-401.  

Golan, T., Yaniv, A., Bafico, A., Liu, G. and Gazit, A. (2004) 'The human Frizzled 6 (HFz6) acts 
as a negative regulator of the canonical Wnt· β-catenin signaling cascade', Journal of 
Biological Chemistry, 279(15), pp. 14879-14888.  

Goldhirsch, A., Winer, E.P., Coates, A.S., Gelber, R.D., Piccart-Gebhart, M., Thurlimann, B., 
Senn, H.J. and Panel members (2013) 'Personalizing the treatment of women with early 
breast cancer: highlights of the St Gallen International Expert Consensus on the Primary 
Therapy of Early Breast Cancer 2013', Annals of Oncology : Official Journal of the 
European Society for Medical Oncology / ESMO, 24(9), pp. 2206-2223.  

Goodman, L.S. (1990) Goodman and Gilman's the pharmacological basis of therapeutics. 
Pergamon Press New York.  

Goto, T., Davidson, L., Asashima, M. and Keller, R. (2005) 'Planar cell polarity genes regulate 
polarized extracellular matrix deposition during frog gastrulation', Current biology, 15(8), 
pp. 787-793.  

Greaves, M. and Maley, C.C. (2012) 'Clonal evolution in cancer', Nature, 481(7381), pp. 306-
313.  

Green, M.R. and Sambrook, J. (2012) 'Molecular cloning: a laboratory manual', .  

Greiner, D.L., Hesselton, R.A. and Shultz, L.D. (1998) 'SCID mouse models of human stem cell 
engraftment', Stem cells, 16(3), pp. 166-177.  

Gu, J., Sumida, Y., Sanzen, N. and Sekiguchi, K. (2001) 'Laminin-10/11 and fibronectin 
differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)-CrkII-
DOCK180 pathway', The Journal of biological chemistry, 276(29), pp. 27090-27097.  

Guo, N., Hawkins, C. and Nathans, J. (2004) 'Frizzled6 controls hair patterning in mice', 
Proceedings of the National Academy of Sciences of the United States of America, 
101(25), pp. 9277-9281.  

Guo, X., Mak, K.K., Taketo, M.M. and Yang, Y. (2009) 'The Wnt/β-catenin pathway interacts 
differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation', 
PLoS One, 4(6), pp. e6067.  

Gupta, S., Iljin, K., Sara, H., Mpindi, J.P., Mirtti, T., Vainio, P., Rantala, J., Alanen, K., Nees, M. 
and Kallioniemi, O. (2010) 'FZD4 as a mediator of ERG oncogene-induced WNT signaling 
and epithelial-to-mesenchymal transition in human prostate cancer cells', Cancer research, 
70(17), pp. 6735-6745.  

Györffy, B., Lanczky, A., Eklund, A.C., Denkert, C., Budczies, J., Li, Q. and Szallasi, Z. (2010) 
'An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast 
cancer prognosis using microarray data of 1,809 patients', Breast cancer research and 
treatment, 123(3), pp. 725-731.  



192 
 

Habas, R., Kato, Y. and He, X. (2001) 'Wnt/Frizzled activation of Rho regulates vertebrate 
gastrulation and requires a novel Formin homology protein Daam1', Cell, 107(7), pp. 843-
854.  

Habas, R., Dawid, I.B. and He, X. (2003) 'Coactivation of Rac and Rho by Wnt/Frizzled 
signaling is required for vertebrate gastrulation', Genes & development, 17(2), pp. 295-
309.  

Haffty, B.G., Yang, Q., Reiss, M., Kearney, T., Higgins, S.A., Weidhaas, J., Harris, L., Hait, W. 
and Toppmeyer, D. (2006) 'Locoregional relapse and distant metastasis in conservatively 
managed triple negative early-stage breast cancer', Journal of clinical oncology : official 
journal of the American Society of Clinical Oncology, 24(36), pp. 5652-5657.  

Haider, A.S., Peters, S.B., Kaporis, H., Cardinale, I., Fei, J., Ott, J., Blumenberg, M., Bowcock, 
A.M., Krueger, J.G. and Carucci, J.A. (2006) 'Genomic analysis defines a cancer-specific 
gene expression signature for human squamous cell carcinoma and distinguishes 
malignant hyperproliferation from benign hyperplasia', Journal of investigative dermatology, 
126(4), pp. 869-881.  

Halazonetis, T.D., Georgopoulos, K., Greenberg, M.E. and Leder, P. (1988) 'c-Jun dimerizes 
with itself and with c-Fos, forming complexes of different DNA binding affinities', Cell, 
55(5), pp. 917-924.  

Hall, C.L. and Keller, E.T. (2006) 'The role of Wnts in bone metastases', Cancer and metastasis 
reviews, 25(4), pp. 551-558.  

Hall, A. (1998) 'Rho GTPases and the actin cytoskeleton', Science (New York, N.Y.), 279(5350), 
pp. 509-514.  

Hall, C.L., Bafico, A., Dai, J., Aaronson, S.A. and Keller, E.T. (2005) 'Prostate cancer cells 
promote osteoblastic bone metastases through Wnts', Cancer research, 65(17), pp. 7554-
7560.  

Hanahan, D. and Weinberg, R.A. (2011) 'Hallmarks of cancer: the next generation', Cell, 144(5), 
pp. 646-674.  

Hannon, G.J. (2002) 'RNA interference', Nature, 418(6894), pp. 244-251.  

Hartsock, A. and Nelson, W.J. (2008) 'Adherens and tight junctions: structure, function and 
connections to the actin cytoskeleton', Biochimica et Biophysica Acta (BBA)-
Biomembranes, 1778(3), pp. 660-669. 

He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., 
Vogelstein, B. and Kinzler, K.W. (1998) 'Identification of c-MYC as a target of the APC 
pathway', Science (New York, N.Y.), 281(5382), pp. 1509-1512.  

He, X., Semenov, M., Tamai, K. and Zeng, X. (2004) 'LDL receptor-related proteins 5 and 6 in 
Wnt/beta-catenin signaling: arrows point the way', Development (Cambridge, England), 
131(8), pp. 1663-1677.  

Heinonen, K.M., Vanegas, J.R., Lew, D., Krosl, J. and Perreault, C. (2011) 'Wnt4 enhances 
murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway', 
PloS one, 6(4), pp. e19279.  

Helleman, J., Jansen, M.P., Ruigrok-Ritstier, K., van Staveren, I.L., Look, M.P., Meijer-van 
Gelder, M.E., Sieuwerts, A.M., Klijn, J.G., Sleijfer, S., Foekens, J.A. and Berns, E.M. 
(2008) 'Association of an extracellular matrix gene cluster with breast cancer prognosis 
and endocrine therapy response', Clinical cancer research : an official journal of the 
American Association for Cancer Research, 14(17), pp. 5555-5564.  

Hennessy, B.T., Gonzalez-Angulo, A., Stemke-Hale, K., Gilcrease, M.Z., Krishnamurthy, S., 
Lee, J., Fridlyand, J., Sahin, A., Agarwal, R. and Joy, C. (2009) 'Characterization of a 



193 
 

naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition 
and stem cell characteristics', Cancer research, 69(10), pp. 4116-4124. 

Herschkowitz, J.I., Simin, K., Weigman, V.J., Mikaelian, I., Usary, J., Hu, Z., Rasmussen, K.E., 
Jones, L.P., Assefnia, S., Chandrasekharan, S., Backlund, M.G., Yin, Y., Khramtsov, A.I., 
Bastein, R., Quackenbush, J., Glazer, R.I., Brown, P.H., Green, J.E., Kopelovich, L., Furth, 
P.A., Palazzo, J.P., Olopade, O.I., Bernard, P.S., Churchill, G.A., Van Dyke, T. and Perou, 
C.M. (2007) 'Identification of conserved gene expression features between murine 
mammary carcinoma models and human breast tumors', Genome biology, 8(5), pp. R76.  

Hogan, P.G., Chen, L., Nardone, J. and Rao, A. (2003) 'Transcriptional regulation by calcium, 
calcineurin, and NFAT', Genes & development, 17(18), pp. 2205-2232.   

Hortobagyi, G.N., de la Garza Salazar, Jaime, Pritchard, K., Amadori, D., Haidinger, R., Hudis, 
C.A., Khaled, H., Liu, M., Martin, M. and Namer, M. (2005) 'The global breast cancer 
burden: variations in epidemiology and survival', Clinical breast cancer, 6(5), pp. 391-401.  

Howe, L.R. and Brown, A.M. (2004) 'Wnt signaling and breast cancer', Cancer Biology and 
Therapy, 3(1), pp. 36-41.  

Hsieh, J.C., Rattner, A., Smallwood, P.M. and Nathans, J. (1999) 'Biochemical characterization 
of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein', 
Proceedings of the National Academy of Sciences of the United States of America, 96(7), 
pp. 3546-3551.  

Hu, T. and Li, C. (2010) 'Convergence between Wnt-b-catenin and EGFR signaling in cancer', 
Mol Cancer, 9, pp. 236.  

Huang, L., Cheng, H., Isom, R., Chen, C., Levine, R.A. and Pauli, B.U. (2008) 'Protein Kinase 
Cϵ Mediates Polymeric Fibronectin Assembly on the Surface of Blood-borne Rat Breast 
Cancer Cells to Promote Pulmonary Metastasis', Journal of Biological Chemistry, 283(12), 
pp. 7616-7627.  

Hudis, C.A. (2007) 'Trastuzumab—mechanism of action and use in clinical practice', New 
England Journal of Medicine, 357(1), pp. 39-51. 

Huelsken, J. and Behrens, J. (2002) 'The Wnt signalling pathway', Journal of cell science, 
115(Pt 21), pp. 3977-3978.  

Hughes, C.S., Postovit, L.M. and Lajoie, G.A. (2010) 'Matrigel: a complex protein mixture 
required for optimal growth of cell culture', Proteomics, 10(9), pp. 1886-1890.  

Humphries, M.J., Yamada, K.M. and Olden, K. (1988) 'Investigation of the biological effects of 
anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16-F10 
murine melanoma cells', The Journal of clinical investigation, 81(3), pp. 782-790.  

Hussain, S.P. and Harris, C.C. (1998) 'Molecular epidemiology of human cancer: contribution of 
mutation spectra studies of tumor suppressor genes', Cancer Res, 58(18).  

Huveneers, S. and Danen, E.H. (2009) 'Adhesion signaling - crosstalk between integrins, Src 
and Rho', Journal of cell science, 122(Pt 8), pp. 1059-1069.  

Hynes, R.O. (1990) 'Fibronectins', .  

Ioachim, E., Charchanti, A., Briasoulis, E., Karavasilis, V., Tsanou, H., Arvanitis, D., Agnantis, 
N. and Pavlidis, N. (2002) 'Immunohistochemical expression of extracellular matrix 
components tenascin, fibronectin, collagen type IV and laminin in breast cancer: their 
prognostic value and role in tumour invasion and progression', European journal of cancer, 
38(18), pp. 2362-2370.  

Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., Nishita, M., Meneghini, M., Barker, N., Waterman, M., 
Bowerman, B., Clevers, H. and Shibuya, H. (1999) 'The TAK1–NLK–MAPK-related 



194 
 

pathway antagonizes signalling between β-catenin and transcription factor TCF', Nature, 
399(6738), pp. 798-802.  

Ishitani, T., Kishida, S., Hyodo-Miura, J., Ueno, N., Yasuda, J., Waterman, M., Shibuya, H., 
Moon, R.T., Ninomiya-Tsuji, J. and Matsumoto, K. (2003) 'The TAK1-NLK mitogen-
activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize 
Wnt/beta-catenin signaling', Molecular and cellular biology, 23(1), pp. 131-139. 

Ismail, P.M., Amato, P., Soyal, S.M., DeMayo, F.J., Conneely, O.M., O’Malley, B.W. and Lydon, 
J.P. (2003) 'Progesterone involvement in breast development and tumorigenesis—as 
revealed by progesterone receptor “knockout” and “knockin” mouse models', Steroids, 
68(10), pp. 779-787.  

Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T. and Narumiya, S. (1999) 'An essential 
part for Rho–associated kinase in the transcellular invasion of tumor cells', Nature 
medicine, 5(2), pp. 221-225.  

Jain, J., McCafffrey, P.G., Miner, Z., Kerppola, T.K., Lambert, J.N., Verdine, G.L., Curran, T. 
and Rao, A. (1993) 'The T-cell transcription factor NFATp is a substrate for calcineurin and 
interacts with Fos and Jun', .   

Jaffe, A.B. and Hall, A. (2005) 'Rho GTPases: biochemistry and biology', Annu.Rev.Cell 
Dev.Biol., 21, pp. 247-269.  

Jenny, A., Reynolds-Kenneally, J., Das, G., Burnett, M. and Mlodzik, M. (2005) 'Diego and 
Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled 
binding', Nature cell biology, 7(7), pp. 691-697.   

Jia, D., Entersz, I., Butler, C. and Foty, R.A. (2012) 'Fibronectin matrix-mediated cohesion 
suppresses invasion of prostate cancer cells', BMC cancer, 12, pp. 94-2407-12-94.  

Jiang, W.G., Watkins, G., Lane, J., Cunnick, G.H., Douglas-Jones, A., Mokbel, K. and Mansel, 
R.E. (2003) 'Prognostic value of rho GTPases and rho guanine nucleotide dissociation 
inhibitors in human breast cancers', Clinical cancer research : an official journal of the 
American Association for Cancer Research, 9(17), pp. 6432-6440.  

Jones, C., Qian, D., Kim, S.M., Li, S., Ren, D., Knapp, L., Sprinzak, D., Avraham, K.B., 
Matsuzaki, F. and Chi, F. (2014) 'Ankrd6 is a mammalian functional homolog of Drosophila 
planar cell polarity gene diego and regulates coordinated cellular orientation in the mouse 
inner ear', Developmental biology, 395(1), pp. 62-72.  

Jordan, C.T., Guzman, M.L. and Noble, M. (2006) 'Cancer stem cells', New England Journal of 
Medicine, 355(12), pp. 1253-1261.  

Jorissen, R.N., Walker, F., Pouliot, N., Garrett, T.P., Ward, C.W. and Burgess, A.W. (2003) 
'Epidermal growth factor receptor: mechanisms of activation and signalling', Experimental 
cell research, 284(1), pp. 31-53.  

Jue, S.F., Bradley, R.S., Rudnicki, J.A., Varmus, H.E. and Brown, A.M. (1992) 'The mouse Wnt-
1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells', 
Molecular and cellular biology, 12(1), pp. 321-328.  

Kadowaki, T., Wilder, E., Klingensmith, J., Zachary, K. and Perrimon, N. (1996) 'The segment 
polarity gene porcupine encodes a putative multitransmembrane protein involved in 
Wingless processing', Genes & development, 10(24), pp. 3116-3128.  

Kallioniemi, A., Kallioniemi, O.P., Piper, J., Tanner, M., Stokke, T., Chen, L., Smith, H.S., Pinkel, 
D., Gray, J.W. and Waldman, F.M. (1994) 'Detection and mapping of amplified DNA 
sequences in breast cancer by comparative genomic hybridization', Proceedings of the 
National Academy of Sciences of the United States of America, 91(6), pp. 2156-2160.  



195 
 

Kalluri, R. and Zeisberg, M. (2006) 'Fibroblasts in cancer', Nature Reviews Cancer, 6(5), pp. 
392-401.  

Kalluri, R. and Weinberg, R.A. (2009) 'The basics of epithelial-mesenchymal transition', The 
Journal of clinical investigation, 119(6), pp. 1420-1428.  

Kamiya, N., Ye, L., Kobayashi, T., Mochida, Y., Yamauchi, M., Kronenberg, H.M., Feng, J.Q. 
and Mishina, Y. (2008) 'BMP signaling negatively regulates bone mass through sclerostin 
by inhibiting the canonical Wnt pathway', Development (Cambridge, England), 135(22), pp. 
3801-3811.  

Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., MacDonald, 
D.D., Jin, D.K., Shido, K. and Kerns, S.A. (2005) 'VEGFR1-positive haematopoietic bone 
marrow progenitors initiate the pre-metastatic niche', Nature, 438(7069), pp. 820-827.  

Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., Richardson, A.L., 
Polyak, K., Tubo, R. and Weinberg, R.A. (2007) 'Mesenchymal stem cells within tumour 
stroma promote breast cancer metastasis', Nature, 449(7162), pp. 557-563.  

Karrison, T.G., Ferguson, D.J. and Meier, P. (1999) 'Dormancy of mammary carcinoma after 
mastectomy', Journal of the National Cancer Institute, 91(1), pp. 80-85.  

Kastan, M.B., Canman, C.E. and Leonard, C.J. (1995) 'P53, cell cycle control and apoptosis: 
implications for cancer', Cancer and metastasis reviews, 14(1), pp. 3-15.  

Katoh, M. and Katoh, M. (2005) 'Identification and characterization of rat Ankrd6 gene in silico.', 
International journal of molecular medicine, 15(2), pp. 359.  

Kaucka, M., Plevova, K., Pavlova, S., Janovska, P., Mishra, A., Verner, J., Prochazkova, J., 
Krejci, P., Kotaskova, J., Ovesna, P., Tichy, B., Brychtova, Y., Doubek, M., Kozubik, A., 
Mayer, J., Pospisilova, S. and Bryja, V. (2013) 'The planar cell polarity pathway drives 
pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte 
migration', Cancer research, 73(5), pp. 1491-1501.  

Kawano, Y. and Kypta, R. (2003) 'Secreted antagonists of the Wnt signalling pathway', Journal 
of cell science, 116(Pt 13), pp. 2627-2634.  

Kenny, P.A., Lee, G.Y., Myers, C.A., Neve, R.M., Semeiks, J.R., Spellman, P.T., Lorenz, K., 
Lee, E.H., Barcellos-Hoff, M.H. and Petersen, O.W. (2007) 'The morphologies of breast 
cancer cell lines in three-dimensional assays correlate with their profiles of gene 
expression', Molecular oncology, 1(1), pp. 84-96.  

Keydar, I., Chen, L., Karby, S., Weiss, F., Delarea, J., Radu, M., Chaitcik, S. and Brenner, H. 
(1979) 'Establishment and characterization of a cell line of human breast carcinoma origin', 
European Journal of Cancer (1965), 15(5), pp. 659-670.  

Khalili, P., Arakelian, A., Chen, G., Plunkett, M.L., Beck, I., Parry, G.C., Donate, F., Shaw, D.E., 
Mazar, A.P. and Rabbani, S.A. (2006) 'A non-RGD-based integrin binding peptide (ATN-
161) blocks breast cancer growth and metastasis in vivo', Molecular cancer therapeutics, 
5(9), pp. 2271-2280.  

Kilander, M.B., Dahlström, J. and Schulte, G. (2014) 'Assessment of Frizzled 6 membrane 
mobility by FRAP supports G protein coupling and reveals WNT-Frizzled selectivity', 
Cellular signalling, .  

Kim, D., Kim, S., Koh, H., Yoon, S.O., Chung, A.S., Cho, K.S. and Chung, J. (2001) 'Akt/PKB 
promotes cancer cell invasion via increased motility and metalloproteinase production', 
FASEB journal : official publication of the Federation of American Societies for 
Experimental Biology, 15(11), pp. 1953-1962.  



196 
 

Kim, H.Y. and Davidson, L.A. (2011) 'Punctuated actin contractions during convergent 
extension and their permissive regulation by the non-canonical Wnt-signaling pathway', 
Journal of cell science, 124(Pt 4), pp. 635-646.  

Kim, N.G., Koh, E., Chen, X. and Gumbiner, B.M. (2011) 'E-cadherin mediates contact inhibition 
of proliferation through Hippo signaling-pathway components', Proceedings of the National 
Academy of Sciences of the United States of America, 108(29), pp. 11930-11935.  

Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., 
Nakano, T., Okawa, K., Iwamatsu, A. and Kaibuchi, K. (1996) 'Regulation of myosin 
phosphatase by Rho and Rho-associated kinase (Rho-kinase)', Science (New York, N.Y.), 
273(5272), pp. 245-248.  

Kinoshita, N., Iioka, H., Miyakoshi, A. and Ueno, N. (2003) 'PKC delta is essential for 
Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent 
extension movements', Genes & development, 17(13), pp. 1663-1676.   

Kinoshita, N., Sasai, N., Misaki, K. and Yonemura, S. (2008) 'Apical accumulation of Rho in the 
neural plate is important for neural plate cell shape change and neural tube formation', 
Molecular biology of the cell, 19(5), pp. 2289-2299. 

Klemm, F., Bleckmann, A., Siam, L., Chuang, H., Rietkötter, E., Behme, D., Schulz, M., 
Schaffrinski, M., Schindler, S. and Trümper, L. (2011) 'β-Catenin-independent WNT 
signaling in basal-like breast cancer and brain metastasis', Carcinogenesis, 32(3), pp. 434-
442.  

Klominek, J., Robert, K.H. and Sundqvist, K.G. (1993) 'Chemotaxis and haptotaxis of human 
malignant mesothelioma cells: effects of fibronectin, laminin, type IV collagen, and an 
autocrine motility factor-like substance', Cancer research, 53(18), pp. 4376-4382.  

Klopocki, E., Kristiansen, G., Wild, P.J., Klaman, I., Castanos-Velez, E., Singer, G., Stöhr, R., 
Simon, R., Sauter, G. and Leibiger, H. (2004) 'Loss of SFRP1 is associated with breast 
cancer progression and poor prognosis in early stage tumors', International journal of 
oncology, 25(3), pp. 641-649.  

Koblinski, J.E., Ahram, M. and Sloane, B.F. (2000) 'Unraveling the role of proteases in cancer', 
Clinica Chimica Acta, 291(2), pp. 113-135.  

Kohn, A.D. and Moon, R.T. (2005) 'Wnt and calcium signaling: beta-catenin-independent 
pathways.', Cell calcium, 38(3-4), pp. 439.   

Kolben, T., Peröbner, I., Fernsebner, K., Lechner, F., Geissler, C., Ruiz-Heinrich, L., Capovilla, 
S., Jochum, M. and Neth, P. (2012) 'Dissecting the impact of frizzled receptors in Wnt/β-
catenin signaling of human mesenchymal stem cells', Biological chemistry, 393(12), pp. 
1433-1447.  

Koo, C., Muir, K.W. and Lam, E.W. (2012) 'FOXM1: From cancer initiation to progression and 
treatment', Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(1), 
pp. 28-37. 

Kouros-Mehr, H., Slorach, E.M., Sternlicht, M.D. and Werb, Z. (2006) 'GATA-3 maintains the 
differentiation of the luminal cell fate in the mammary gland', Cell, 127(5), pp. 1041-1055.  

Krishan, A. (1975) 'Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium 
iodide staining', The Journal of cell biology, 66(1), pp. 188-193.  

Krueger, J.S., Keshamouni, V.G., Atanaskova, N. and Reddy, K.B. (2001) 'Temporal and 
quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility 
and invasion', Oncogene, 20(31), pp. 4209-4218.  

Kuhl, M. (2004) 'The WNT/calcium pathway: biochemical mediators, tools and future 
requirements', Front Biosci, 9(1), pp. 967-974.  



197 
 

Kuhl, M., Sheldahl, L.C., Malbon, C.C. and Moon, R.T. (2000) 'Ca(2+)/calmodulin-dependent 
protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell 
fates in Xenopus', The Journal of biological chemistry, 275(17), pp. 12701-12711. 

Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., Yasui, W. and 
Kikuchi, A. (2006) 'Expression of Wnt-5a is correlated with aggressiveness of gastric 
cancer by stimulating cell migration and invasion', Cancer research, 66(21), pp. 10439-
10448.  

Laemmli, U.K. (1970) 'Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4', Nature, 227(5259), pp. 680-685.  

Lahlou, H. and Muller, W.J. (2011) 'β1-integrins signaling and mammary tumor progression in 
transgenic mouse models: implications for human breast cancer', Breast Cancer Res, 
13(6), pp. 229.  

Lane, D.P. (1992) 'Cancer. p53, guardian of the genome', Nature, 358(6381), pp. 15-16.  

Lara‐Medina, F., Pérez‐Sánchez, V., Saavedra‐Pérez, D., Blake‐Cerda, M., Arce, C., Motola‐
Kuba, D., Villarreal‐Garza, C., González‐Angulo, A.M., Bargalló, E. and Aguilar, J.L. (2011) 
'Triple‐negative breast cancer in Hispanic patients', Cancer, 117(16), pp. 3658-3669.  

Lasfargues, E.Y. and Ozzello, L. (1958) 'Cultivation of Human Breast Carcinomas2', .  

Lasfargues, E.Y., Coutinho, W.G. and Redfield, E.S. (1978) 'Isolation of two human tumor 
epithelial cell lines from solid breast carcinomas', Journal of the National Cancer Institute, 
61(4), pp. 967-978.  

Lauffenburger, D.A. and Horwitz, A.F. (1996) 'Cell migration: a physically integrated molecular 
process', Cell, 84(3), pp. 359-369.  

Le Floch, N., Rivat, C., De Wever, O., Bruyneel, E., Mareel, M., Dale, T. and Gespach, C. 
(2005) 'The proinvasive activity of Wnt-2 is mediated through a noncanonical Wnt pathway 
coupled to GSK-3β and c-Jun/AP-1 signaling', The FASEB journal, 19(1), pp. 144-146.  

Lee, G.Y., Kenny, P.A., Lee, E.H. and Bissell, M.J. (2007) 'Three-dimensional culture models of 
normal and malignant breast epithelial cells', Nature methods, 4(4), pp. 359-365.  

Lee, K.M., Choi, K.H. and Ouellette, M.M. (2004) 'Use of exogenous hTERT to immortalize 
primary human cells', Cytotechnology, 45(1), pp. 33-38.  

Lee, J., Kim, D.H., Lee, S., Yang, Q.H., Lee, D.K., Lee, S.K., Roeder, R.G. and Lee, J.W. (2009) 
'A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-
4 methyltransferase MLL3 or its paralogue MLL4', Proceedings of the National Academy of 
Sciences of the United States of America, 106(21), pp. 8513-8518.  

Lei, Y., Zhang, T., Li, H., Wu, B., Jin, L. and Wang, H. (2010) 'VANGL2 mutations in human 
cranial neural-tube defects', New England Journal of Medicine, 362(23), pp. 2232-2235.  

Lei, Y., Zhu, H., Yang, W., Ross, M.E., Shaw, G.M. and Finnell, R.H. (2014) 'Identification of 
novel CELSR1 mutations in spina bifida', PloS one, 9(3), pp. e92207.  

Leppa, S. and Bohmann, D. (1999) 'Diverse functions of JNK signaling and c-Jun in stress 
response and apoptosis', Oncogene, 18(45), pp. 6158-6162.  

Levine, A.J., Momand, J. and Finlay, C.A. (1991) 'The p53 tumour suppressor gene', Nature, 
351(6326), pp. 453-456.  

Li, F., Tiede, B., Massagué, J. and Kang, Y. (2007) 'Beyond tumorigenesis: cancer stem cells in 
metastasis', Cell research, 17(1), pp. 3-14.  



198 
 

Li, F., Tiede, B., Massagué, J. and Kang, Y. (2006) 'Beyond tumorigenesis: cancer stem cells in 
metastasis', Cell research, 17(1), pp. 3-14.  

Li, V.S., Ng, S.S., Boersema, P.J., Low, T.Y., Karthaus, W.R., Gerlach, J.P., Mohammed, S., 
Heck, A.J., Maurice, M.M. and Mahmoudi, T. (2012) 'Wnt signaling through inhibition of β-
catenin degradation in an intact Axin1 complex', Cell, 149(6), pp. 1245-1256.  

Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, 
L., McCombie, R., Bigner, S.H., Giovanella, B.C., Ittmann, M., Tycko, B., Hibshoosh, H., 
Wigler, M.H. and Parsons, R. (1997) 'PTEN, a putative protein tyrosine phosphatase gene 
mutated in human brain, breast, and prostate cancer', Science (New York, N.Y.), 
275(5308), pp. 1943-1947.  

Liang, H., Chen, Q., Coles, A.H., Anderson, S.J., Pihan, G., Bradley, A., Gerstein, R., Jurecic, 
R. and Jones, S.N. (2003) 'Wnt5a inhibits B cell proliferation and functions as a tumor 
suppressor in hematopoietic tissue', Cancer cell, 4(5), pp. 349-360.  

Liedtke, C., Mazouni, C., Hess, K.R., Andre, F., Tordai, A., Mejia, J.A., Symmans, W.F., 
Gonzalez-Angulo, A.M., Hennessy, B., Green, M., Cristofanilli, M., Hortobagyi, G.N. and 
Pusztai, L. (2008) 'Response to neoadjuvant therapy and long-term survival in patients with 
triple-negative breast cancer', Journal of clinical oncology : official journal of the American 
Society of Clinical Oncology, 26(8), pp. 1275-1281.  

Lin, S.Y., Xia, W., Wang, J.C., Kwong, K.Y., Spohn, B., Wen, Y., Pestell, R.G. and Hung, M.C. 
(2000) 'Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 
expression and cancer progression', Proceedings of the National Academy of Sciences of 
the United States of America, 97(8), pp. 4262-4266.  

Lindvall, C., Bu, W., Williams, B.O. and Li, Y. (2007) 'Wnt signaling, stem cells, and the cellular 
origin of breast cancer', Stem cell reviews, 3(2), pp. 157-168.  

Liotta, L.A. (1984) 'Tumor invasion and metastases: role of the basement membrane. Warner-
Lambert Parke-Davis Award lecture', The American journal of pathology, 117(3), pp. 339-
348.  

Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G., Tan, Y., Zhang, Z., Lin, X. and He, X. (2002) 
'Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism', Cell, 
108(6), pp. 837-847.  

Liu, W. and Heckman, C. (1998) 'The sevenfold way of PKC regulation', Cellular signalling, 
10(8), pp. 529-542.   

Liu, S., Goldstein, R.H., Scepansky, E.M. and Rosenblatt, M. (2009) 'Inhibition of rho-associated 
kinase signaling prevents breast cancer metastasis to human bone', Cancer research, 
69(22), pp. 8742-8751.  

Lohsiriwat, V., Martella, S., Rietjens, M., Botteri, E., Rotmensz, N., Mastropasqua, M.G., Garusi, 
C., De Lorenzi, F., Manconi, A. and Sommario, M. (2012) 'Paget’s disease as a local 
recurrence after nipple-sparing mastectomy: clinical presentation, treatment, outcome, and 
risk factor analysis', Annals of surgical oncology, 19(6), pp. 1850-1855.  

Lombaerts, M., Van Wezel, T., Philippo, K., Dierssen, J., Zimmerman, R., Oosting, J., Van Eijk, 
R., Eilers, P., van De Water, B. and Cornelisse, C. (2006) 'E-cadherin transcriptional 
downregulation by promoter methylation but not mutation is related to epithelial-to-
mesenchymal transition in breast cancer cell lines', British journal of cancer, 94(5), pp. 
661-671.  

Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. and Jacks, T. (1993) 'p53 is required for 
radiation-induced apoptosis in mouse thymocytes', Nature, 362(6423), pp. 847-849.  

Lu, X. and Kang, Y. (2007) 'Organotropism of breast cancer metastasis', Journal of mammary 
gland biology and neoplasia, 12(2-3), pp. 153-162.  



199 
 

Lu, D., Zhao, Y., Tawatao, R., Cottam, H.B., Sen, M., Leoni, L.M., Kipps, T.J., Corr, M. and 
Carson, D.A. (2004) 'Activation of the Wnt signaling pathway in chronic lymphocytic 
leukemia', Proceedings of the National Academy of Sciences of the United States of 
America, 101(9), pp. 3118-3123.  

Ludwig, J.A. and Weinstein, J.N. (2005) 'Biomarkers in cancer staging, prognosis and treatment 
selection', Nature Reviews Cancer, 5(11), pp. 845-856.  

Luga, V., Zhang, L., Viloria-Petit, A.M., Ogunjimi, A.A., Inanlou, M.R., Chiu, E., Buchanan, M., 
Hosein, A.N., Basik, M. and Wrana, J.L. (2012) 'Exosomes mediate stromal mobilization of 
autocrine Wnt-PCP signaling in breast cancer cell migration', Cell, 151(7), pp. 1542-1556.  

Luga, V. and Wrana, J.L. (2013) 'Tumor-stroma interaction: Revealing fibroblast-secreted 
exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis', 
Cancer research, 73(23), pp. 6843-6847.  

Lundgren, S., Lønning, P., Utaaker, E., Aakvaag, A. and Kvinnsland, S. (1990) 'Influence of 
progestins on serum hormone levels in postmenopausal women with advanced breast 
cancer-I. General findings', Journal of steroid biochemistry, 36(1), pp. 99-104.  

Luo, W. and Lin, S.C. (2004) 'Axin: a master scaffold for multiple signaling pathways', Neuro-
Signals, 13(3), pp. 99-113.  

Lyons, J.P., Mueller, U.W., Ji, H., Everett, C., Fang, X., Hsieh, J., Barth, A.M. and McCrea, P.D. 
(2004) 'Wnt-4 activates the canonical beta-catenin-mediated Wnt pathway and binds 
Frizzled-6 CRD: functional implications of Wnt/beta-catenin activity in kidney epithelial 
cells.', Experimental cell research, 298(2), pp. 369.  

Ma, X., Dahiya, S., Richardson, E., Erlander, M. and Sgroi, D.C. (2009) 'Gene expression 
profiling of the tumor microenvironment during breast cancer progression', Breast Cancer 
Res, 11(1), pp. R7.  

Machesky, L.M. and Hall, A. (1997) 'Role of actin polymerization and adhesion to extracellular 
matrix in Rac- and Rho-induced cytoskeletal reorganization', The Journal of cell biology, 
138(4), pp. 913-926.  

Macsai, C.E., Foster, B.K. and Xian, C.J. (2008) 'Roles of Wnt signalling in bone growth, 
remodelling, skeletal disorders and fracture repair', Journal of cellular physiology, 215(3), 
pp. 578-587.  

Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., 
Ohashi, K., Mizuno, K. and Narumiya, S. (1999) 'Signaling from Rho to the actin 
cytoskeleton through protein kinases ROCK and LIM-kinase', Science (New York, N.Y.), 
285(5429), pp. 895-898.  

Maity, G., Choudhury, P.R., Sen, T., Ganguly, K.K., Sil, H. and Chatterjee, A. (2011) 'Culture of 
human breast cancer cell line (MDA-MB-231) on fibronectin-coated surface induces pro-
matrix metalloproteinase-9 expression and activity', Tumor Biology, 32(1), pp. 129-138.  

Malanchi, I., Santamaria-Martínez, A., Susanto, E., Peng, H., Lehr, H., Delaloye, J. and 
Huelsken, J. (2012) 'Interactions between cancer stem cells and their niche govern 
metastatic colonization', Nature, 481(7379), pp. 85-89.  

Malkin, D., Li, F.P., Strong, L.C., Fraumeni, J.F.,Jr, Nelson, C.E., Kim, D.H., Kassel, J., Gryka, 
M.A., Bischoff, F.Z. and Tainsky, M.A. (1990) 'Germ line p53 mutations in a familial 
syndrome of breast cancer, sarcomas, and other neoplasms', Science (New York, N.Y.), 
250(4985), pp. 1233-1238. 

Mani, S.A., Guo, W., Liao, M., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., 
Zhang, C.C. and Shipitsin, M. (2008) 'The epithelial-mesenchymal transition generates 
cells with properties of stem cells', Cell, 133(4), pp. 704-715.  



200 
 

Mantovani, A. and Sica, A. (2010) 'Macrophages, innate immunity and cancer: balance, 
tolerance, and diversity', Current opinion in immunology, 22(2), pp. 231-237.  

Mao, J., Wang, J., Liu, B., Pan, W., Farr, G.H., Flynn, C., Yuan, H., Takada, S., Kimelman, D. 
and Li, L. (2001) 'Low-density lipoprotein receptor-related protein-5 binds to Axin and 
regulates the canonical Wnt signaling pathway', Molecular cell, 7(4), pp. 801-809.  

Mao, Y. and Schwarzbauer, J.E. (2005) 'Fibronectin fibrillogenesis, a cell-mediated matrix 
assembly process', Matrix biology, 24(6), pp. 389-399.  

Martin, A. and Weber, B.L. (2000) 'Genetic and hormonal risk factors in breast cancer', Journal 
of the National Cancer Institute, 92(14), pp. 1126-1135.  

Matsuda, Y., Schlange, T., Oakeley, E.J., Boulay, A. and Hynes, N.E. (2009) 'WNT signaling 
enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 
suppresses MDA-MB-231 xenograft growth', Breast Cancer Res, 11(3), pp. R32.  

McCarthy, J.B., Hagen, S.T. and Furcht, L.T. (1986) 'Human fibronectin contains distinct 
adhesion- and motility-promoting domains for metastatic melanoma cells', The Journal of 
cell biology, 102(1), pp. 179-188.  

McEntyre, J., Ostell, J., Pruitt, K., Brown, G., Tatusova, T. and Maglott, D. (2012) 'The 
Reference Sequence (RefSeq) Database', .  

McIntosh, G.G., Anderson, J.J., Milton, I., Steward, M., Parr, A.H., Thomas, M.D., Henry, J.A., 
Angus, B., Lennard, T.W. and Horne, C.H. (1995) 'Determination of the prognostic value of 
cyclin D1 overexpression in breast cancer', Oncogene, 11(5), pp. 885-891.  

McPherson, K., Steel, C. and Dixon, J. (2000) 'ABC of breast diseases: breast cancer—
epidemiology, risk factors, and genetics', BMJ: British Medical Journal, 321(7261), pp. 624.  

Mehra, R., Varambally, S., Ding, L., Shen, R., Sabel, M.S., Ghosh, D., Chinnaiyan, A.M. and 
Kleer, C.G. (2005) 'Identification of GATA3 as a breast cancer prognostic marker by global 
gene expression meta-analysis', Cancer research, 65(24), pp. 11259-11264.  

Merle, P., Kim, M., Herrmann, M., Gupte, A., Lefrançois, L., Califano, S., Tre, C., Tanaka, S., 
Vitvitski, L. and de la Monte, S. (2005) 'Oncogenic role of the frizzled-7/β-catenin pathway 
in hepatocellular carcinoma', Journal of hepatology, 43(5), pp. 854-862.  

Merlos-Suárez, A., Barriga, F.M., Jung, P., Iglesias, M., Céspedes, M.V., Rossell, D., Sevillano, 
M., Hernando-Momblona, X., da Silva-Diz, V. and Muñoz, P. (2011) 'The intestinal stem 
cell signature identifies colorectal cancer stem cells and predicts disease relapse', Cell 
stem cell, 8(5), pp. 511-524.  

Mikels, A.J. and Nusse, R. (2006) 'Purified Wnt5a protein activates or inhibits β-catenin–TCF 
signaling depending on receptor context', PLoS biology, 4(4), pp. e115.  

Millikan, R.C., Newman, B., Tse, C., Moorman, P.G., Conway, K., Smith, L.V., Labbok, M.H., 
Geradts, J., Bensen, J.T. and Jackson, S. (2008) 'Epidemiology of basal-like breast 
cancer', Breast cancer research and treatment, 109(1), pp. 123-139.  

Millour, J. and Lam, E. (2010) 'FOXM1 is a transcriptional target of ERα and has a critical role in 
breast cancer endocrine sensitivity and resistance', Breast Cancer Research, 12(Suppl 1), 
pp. P2. 

Milovanovic, T., Planutis, K., Nguyen, A., Marsh, J.L., Lin, F., Hope, C. and Holcombe, R.F. 
(2004) 'Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium 
and infiltrating breast carcinoma', International journal of oncology, 25(5), pp. 1337-1342.  

Minden, A., Lin, A., Claret, F., Abo, A. and Karin, M. (1995) 'Selective activation of the JNK 
signaling cascadeand c-Jun transcriptional activity by the small GTPases Rac and 
Cdc42Hs', Cell, 81(7), pp. 1147-1157.  



201 
 

Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J., Godsave, S., 
Korinek, V., Roose, J., Destrée, O. and Clevers, H. (1996) 'XTcf-3 transcription factor 
mediates β-catenin-induced axis formation in Xenopus embryos', Cell, 86(3), pp. 391-399.  

Montcouquiol, M., Rachel, R.A., Lanford, P.J., Copeland, N.G., Jenkins, N.A. and Kelley, M.W. 
(2003) 'Identification of Vangl2 and Scrb1 as planar polarity genes in mammals', Nature, 
423(6936), pp. 173-177.  

Morel, A., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S. and Puisieux, A. (2008) 'Generation of 
breast cancer stem cells through epithelial-mesenchymal transition', PloS one, 3(8), pp. 
e2888.  

Morin, P.J., Sparks, A.B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B. and Kinzler, K.W. 
(1997) 'Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-
catenin or APC', Science (New York, N.Y.), 275(5307), pp. 1787-1790.  

Mosher, D. (2012) Fibronectin. Elsevier.  

Moynahan, M.E., Chiu, J.W., Koller, B.H. and Jasin, M. (1999) 'Brca1 controls homology-
directed DNA repair', Molecular cell, 4(4), pp. 511-518.  

Muñoz, R., Moreno, M., Oliva, C., Orbenes, C. and Larraín, J. (2006) 'Syndecan-4 regulates 
non-canonical Wnt signalling and is essential for convergent and extension movements in 
Xenopus embryos', Nature cell biology, 8(5), pp. 492-500.  

Myatt, S.S. and Lam, E.W. (2007) 'The emerging roles of forkhead box (Fox) proteins in cancer', 
Nature Reviews Cancer, 7(11), pp. 847-859. 

Nahta, R. and Esteva, F.J. (2006) 'Molecular mechanisms of trastuzumab resistance', Breast 
Cancer Res, 8(6), pp. 667-674. 

Nakamura, T., Hamada, F., Ishidate, T., Anai, K., Kawahara, K., Toyoshima, K. and Akiyama, T. 

(1998) 'Axin, an inhibitor of the Wnt signalling pathway, interacts with β‐catenin, GSK‐3β 
and APC and reduces the β‐catenin level', Genes to Cells, 3(6), pp. 395-403.  

Nakashima, A., Katagiri, T. and Tamura, M. (2005) 'Cross-talk between Wnt and bone 
morphogenetic protein 2 (BMP-2) signaling in differentiation pathway of C2C12 myoblasts', 
The Journal of biological chemistry, 280(45), pp. 37660-37668.  

Narumiya, S., Tanji, M. and Ishizaki, T. (2009) 'Rho signaling, ROCK and mDia1, in 
transformation, metastasis and invasion', Cancer and metastasis reviews, 28(1-2), pp. 65-
76.  

Naz, G., Pasternack, S.M., Perrin, C., Mattheisen, M., Refke, M., Khan, S., Gul, A., Simons, M., 
Ahmad, W. and Betz, R.C. (2011) 'FZD6 encoding the Wnt receptor frizzled-6 is mutated in 
autosomal-recessive nail dysplasia', British Journal of Dermatology, , pp. no-no.  

Neta, G., Brenner, A.V., Sturgis, E.M., Pfeiffer, R.M., Hutchinson, A.A., Aschebrook-Kilfoy, B., 
Yeager, M., Xu, L., Wheeler, W., Abend, M., Ron, E., Tucker, M.A., Chanock, S.J. and 
Sigurdson, A.J. (2011) 'Common genetic variants related to genomic integrity and risk of 
papillary thyroid cancer', Carcinogenesis, 32(8), pp. 1231-1237.  

Neth, P., Ries, C., Karow, M., Egea, V., Ilmer, M. and Jochum, M. (2007) 'The Wnt signal 
transduction pathway in stem cells and cancer cells: influence on cellular invasion', Stem 
cell reviews, 3(1), pp. 18-29.  

Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., 
Coppe, J. and Tong, F. (2006) 'A collection of breast cancer cell lines for the study of 
functionally distinct cancer subtypes', Cancer cell, 10(6), pp. 515-527.  

Nguyen, P.L., Taghian, A.G., Katz, M.S., Niemierko, A., Abi Raad, R.F., Boon, W.L., Bellon, 
J.R., Wong, J.S., Smith, B.L. and Harris, J.R. (2008) 'Breast cancer subtype approximated 



202 
 

by estrogen receptor, progesterone receptor, and HER-2 is associated with local and 
distant recurrence after breast-conserving therapy', Journal of clinical oncology : official 
journal of the American Society of Clinical Oncology, 26(14), pp. 2373-2378.   

Nicoletti, I., Migliorati, G., Pagliacci, M., Grignani, F. and Riccardi, C. (1991) 'A rapid and simple 
method for measuring thymocyte apoptosis by propidium iodide staining and flow 
cytometry', Journal of immunological methods, 139(2), pp. 271-279.  

Nicolson, G.L. (1988) 'Organ specificity of tumor metastasis: role of preferential adhesion, 
invasion and growth of malignant cells at specific secondary sites', Cancer and metastasis 
reviews, 7(2), pp. 143-188.  

Niehrs, C. (2006) 'Function and biological roles of the Dickkopf family of Wnt modulators', 
Oncogene, 25(57), pp. 7469-7481.  

Niida, A., Hiroko, T., Kasai, M., Furukawa, Y., Nakamura, Y., Suzuki, Y., Sugano, S. and 
Akiyama, T. (2004) 'DKK1, a negative regulator of Wnt signaling, is a target of the β-
catenin/TCF pathway', Oncogene, 23(52), pp. 8520-8526.  

Nishita, M., Hashimoto, M.K., Ogata, S., Laurent, M.N., Ueno, N., Shibuya, H. and Cho, K.W. 
(2000) 'Interaction between Wnt and TGF-β signalling pathways during formation of 
Spemann's organizer', Nature, 403(6771), pp. 781-785.  

Nobes, C.D. and Hall, A. (1995) 'Rho, rac, and cdc42 GTPases regulate the assembly of 
multimolecular focal complexes associated with actin stress fibers, lamellipodia, and 
filopodia', Cell, 81(1), pp. 53-62.  

Nobes, C.D. and Hall, A. (1999) 'Rho GTPases control polarity, protrusion, and adhesion during 
cell movement', The Journal of cell biology, 144(6), pp. 1235-1244.  

Noble, J.R., Zhong, Z., Neumann, A.A., Melki, J.R., Clark, S.J. and Reddel, R.R. (2004) 
'Alterations in the p16INK4a and p53 tumor suppressor genes of hTERT-immortalized 
human fibroblasts', Oncogene, 23(17), pp. 3116-3121.  

Nusse, R., Brown, A., Papkoff, J., Scambler, P., Shackleford, G., McMahon, A., Moon, R. and 
Varmu, H. (1991) 'A New Nomenclature for in&l and Related Genes: The Writ Gene 
Family', Cell, 64, pp. 231-232.  

Nusse, R., van Ooyen, A., Cox, D., Fung, Y.K.T. and Varmus, H. (1984) 'Mode of proviral 
activation of a putative mammary oncogene (int-1) on mouse chromosome 15', .  

Oguma, K., Oshima, H., Aoki, M., Uchio, R., Naka, K., Nakamura, S., Hirao, A., Saya, H., 
Taketo, M.M. and Oshima, M. (2008) 'Activated macrophages promote Wnt signalling 
through tumour necrosis factor‐α in gastric tumour cells', The EMBO journal, 27(12), pp. 
1671-1681.  

Oka, H., Shiozaki, H., Kobayashi, K., Inoue, M., Tahara, H., Kobayashi, T., Takatsuka, Y., 
Matsuyoshi, N., Hirano, S. and Takeichi, M. (1993) 'Expression of E-cadherin cell adhesion 
molecules in human breast cancer tissues and its relationship to metastasis', Cancer 
research, 53(7), pp. 1696-1701.  

Olayioye, M.A. (2001) 'Update on HER-2 as a target for cancer therapy: intracellular signaling 
pathways of ErbB2/HER-2 and family members', Breast Cancer Res, 3(6), pp. 385-389.  

Olmeda, D., Moreno-Bueno, G., Flores, J.M., Fabra, A., Portillo, F. and Cano, A. (2007) 'SNAI1 
is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-
MB-231 cells', Cancer research, 67(24), pp. 11721-11731.  

Paget, S. (1889) 'The distribution of secondary growths in cancer of the breast.', The Lancet, 
133(3421), pp. 571-573.  



203 
 

Pandur, P., Maurus, D. and Kühl, M. (2002) 'Increasingly complex: new players enter the Wnt 
signaling network', Bioessays, 24(10), pp. 881-884.  

Pankov, R. and Yamada, K.M. (2002) 'Fibronectin at a glance', Journal of cell science, 115(Pt 
20), pp. 3861-3863.  

Park, J. and Schwarzbauer, J. (2013) 'Mammary epithelial cell interactions with fibronectin 
stimulate epithelial-mesenchymal transition', Oncogene, 33(13), pp. 1649-1657.  

Parkin, D.M. and Fernández, L.M. (2006) 'Use of statistics to assess the global burden of breast 
cancer', The breast journal, 12(s1), pp. S70-S80.  

Patel, K.J., Veronica, P., Lee, H., Corcoran, A., Thistlethwaite, F.C., Evans, M.J., Colledge, 
W.H., Friedman, L.S., Ponder, B.A. and Venkitaraman, A.R. (1998) 'Involvement of Brca2 
in DNA repair', Molecular cell, 1(3), pp. 347-357.  

Paterson, H.F., Self, A.J., Garrett, M.D., Just, I., Aktories, K. and Hall, A. (1990) 'Microinjection 
of recombinant p21rho induces rapid changes in cell morphology', The Journal of cell 
biology, 111(3), pp. 1001-1007.  

Pauken, C.M. and Capco, D.G. (1999) 'Regulation of cell adhesion during embryonic 

compaction of mammalian embryos: Roles for PKC and β‐catenin', Molecular reproduction 
and development, 54(2), pp. 135-144. 

Pearlstein, E., Gold, L.I. and Garcia-Pardo, A. (1980) 'Fibronectin: a review of its structure and 
biological activity', Molecular and cellular biochemistry, 29(2), pp. 103-128.  

Pellegrin, S. and Mellor, H. (2007) 'Actin stress fibres', Journal of cell science, 120(Pt 20), pp. 
3491-3499.  

Perou, C.M. (2011) 'Molecular stratification of triple-negative breast cancers', The oncologist, 16 
Suppl 1, pp. 61-70.  

Petersen, O.W., Ronnov-Jessen, L., Howlett, A.R. and Bissell, M.J. (1992) 'Interaction with 
basement membrane serves to rapidly distinguish growth and differentiation pattern of 
normal and malignant human breast epithelial cells', Proceedings of the National Academy 
of Sciences of the United States of America, 89(19), pp. 9064-9068.  

Pharoah, P.D., Day, N.E. and Caldas, C. (1999) 'Somatic mutations in the p53 gene and 
prognosis in breast cancer: a meta-analysis', British journal of cancer, 80(12), pp. 1968-
1973.  

Pierceall, W.E., Woodard, A.S., Morrow, J.S., Rimm, D. and Fearon, E.R. (1995) 'Frequent 
alterations in E-cadherin and alpha- and beta-catenin expression in human breast cancer 
cell lines', Oncogene, 11(7), pp. 1319-1326.  

Pike, M.C., Spicer, D.V., Dahmoush, L. and Press, M.F. (1993) 'Estrogens, progestogens, 
normal breast cell proliferation, and breast cancer risk', Epidemiologic reviews, 15(1), pp. 
17-35.  

Pillé, J., Denoyelle, C., Varet, J., Bertrand, J., Soria, J., Opolon, P., Lu, H., Pritchard, L., 
Vannier, J. and Malvy, C. (2005) 'Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation 
and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo', Molecular 
Therapy, 11(2), pp. 267-274.  

Plopper, G. (2012) 'The Extracellular Matrix Is a Complex Network of Molecules That Fills the 
Spaces between Cells in a Multicellular Organism', in Principles of Cell Biology. Jones & 
Bartlett Publishers, pp. 193-194.  

Polakis, P. (2000) 'Wnt signaling and cancer', Genes & development, 14(15), pp. 1837-1851.  



204 
 

Pollack, J.R., Sorlie, T., Perou, C.M., Rees, C.A., Jeffrey, S.S., Lonning, P.E., Tibshirani, R., 
Botstein, D., Borresen-Dale, A.L. and Brown, P.O. (2002) 'Microarray analysis reveals a 
major direct role of DNA copy number alteration in the transcriptional program of human 
breast tumors', Proceedings of the National Academy of Sciences of the United States of 
America, 99(20), pp. 12963-12968.  

Pollard, J.W. (2004) 'Tumour-educated macrophages promote tumour progression and 
metastasis', Nature Reviews Cancer, 4(1), pp. 71-78.  

Pollard, T.D. and Borisy, G.G. (2003) 'Cellular motility driven by assembly and disassembly of 
actin filaments', Cell, 112(4), pp. 453-465.  

Porter, P. (2008) '“Westernizing” women's risks? Breast cancer in lower-income countries', New 
England Journal of Medicine, 358(3), pp. 213-216.  

Prat, A. and Perou, C.M. (2011) 'Deconstructing the molecular portraits of breast cancer', 
Molecular oncology, 5(1), pp. 5-23.  

Preston-Martin, S., Pike, M.C., Ross, R.K., Jones, P.A. and Henderson, B.E. (1990) 'Increased 
cell division as a cause of human cancer', Cancer research, 50(23), pp. 7415-7421.  

Proctor, R.A. (1987) 'Fibronectin: a brief overview of its structure, function, and physiology', 
Review of Infectious Diseases, 9(Supplement 4), pp. S317-S321.  

Psaila, B. and Lyden, D. (2009) 'The metastatic niche: adapting the foreign soil', Nature 
Reviews Cancer, 9(4), pp. 285-293.  

Pukrop, T., Klemm, F., Hagemann, T., Gradl, D., Schulz, M., Siemes, S., Trumper, L. and 
Binder, C. (2006) 'Wnt 5a signaling is critical for macrophage-induced invasion of breast 
cancer cell lines', Proceedings of the National Academy of Sciences of the United States of 
America, 103(14), pp. 5454-5459.  

Qian, B. and Pollard, J.W. (2010) 'Macrophage diversity enhances tumor progression and 
metastasis', Cell, 141(1), pp. 39-51.  

Rakha, E.A. and Ellis, I.O. (2009) 'Triple-negative/basal-like breast cancer: review', Pathology, 
41(1), pp. 40-47.  

Rakha, E.A., Reis-Filho, J.S. and Ellis, I.O. (2008) 'Basal-like breast cancer: a critical review', 
Journal of Clinical Oncology, 26(15), pp. 2568-2581.  

Ranger, A.M., Grusby, M.J., Hodge, M.R., Gravallese, E.M., de La Brousse, Fabienne Charles, 
Hoey, T., Mickanin, C., Baldwin, H.S. and Glimcher, L.H. (1998) 'The transcription factor 
NF-ATc is essential for cardiac valve formation', Nature, 392(6672), pp. 186-190.   

Rattner, A., Hsieh, J.C., Smallwood, P.M., Gilbert, D.J., Copeland, N.G., Jenkins, N.A. and 
Nathans, J. (1997) 'A family of secreted proteins contains homology to the cysteine-rich 
ligand-binding domain of frizzled receptors', Proceedings of the National Academy of 
Sciences of the United States of America, 94(7), pp. 2859-2863.  

Reis, M., Czupalla, C.J., Ziegler, N., Devraj, K., Zinke, J., Seidel, S., Heck, R., Thom, S., Macas, 
J., Bockamp, E., Fruttiger, M., Taketo, M.M., Dimmeler, S., Plate, K.H. and Liebner, S. 
(2012) 'Endothelial Wnt/beta-catenin signaling inhibits glioma angiogenesis and normalizes 
tumor blood vessels by inducing PDGF-B expression', The Journal of experimental 
medicine, 209(9), pp. 1611-1627.  

Reis‐Filho, J. and Tutt, A. (2008) 'Triple negative tumours: a critical review', Histopathology, 
52(1), pp. 108-118.  

Ren, X.D., Kiosses, W.B. and Schwartz, M.A. (1999) 'Regulation of the small GTP-binding 
protein Rho by cell adhesion and the cytoskeleton', The EMBO journal, 18(3), pp. 578-585.  



205 
 

Reya, T. and Clevers, H. (2005) 'Wnt signalling in stem cells and cancer', Nature, 434(7035), 
pp. 843-850.  

Reynen, K., Kockeritz, U. and Strasser, R.H. (2004) 'Metastases to the heart', Annals of 
Oncology : Official Journal of the European Society for Medical Oncology / ESMO, 15(3), 
pp. 375-381.  

Richard-Parpaillon, L., Héligon, C., Chesnel, F., Boujard, D. and Philpott, A. (2002) 'The IGF 
Pathway Regulates Head Formation by Inhibiting Wnt Signaling in< i> Xenopus</i>', 
Developmental biology, 244(2), pp. 407-417.  

Ridley, A.J. and Hall, A. (1992) 'The small GTP-binding protein rho regulates the assembly of 
focal adhesions and actin stress fibers in response to growth factors', Cell, 70(3), pp. 389-
399.  

Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T. 
and Horwitz, A.R. (2003) 'Cell migration: integrating signals from front to back', Science 
(New York, N.Y.), 302(5651), pp. 1704-1709.  

Roarty, K. and Serra, R. (2007) 'Wnt5a is required for proper mammary gland development and 
TGF-beta-mediated inhibition of ductal growth', Development (Cambridge, England), 
134(21), pp. 3929-3939.  

Rodriguez, L.G., Wu, X. and Guan, J. (2005) 'Wound-healing assay', in Cell Migration. Springer, 
pp. 23-29.  

Roman-Gomez, J., Jimenez-Velasco, A., Cordeu, L., Vilas-Zornoza, A., San Jose-Eneriz, E., 
Garate, L., Castillejo, J.A., Martin, V., Prosper, F. and Heiniger, A. (2007) 'WNT5A, a 
putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant 
methylation in acute lymphoblastic leukaemia', European journal of cancer, 43(18), pp. 
2736-2746.  

Romieu, I., Scoccianti, C., Chajes, V., de Batlle, J., Biessy, C., Dossus, L., Baglietto, L., Clavel‐
Chapelon, F., Overvad, K. and Olsen, A. (2015) 'Alcohol intake and breast cancer in the 
European Prospective investigation into Cancer and Nutrition: Short title: Alcohol intake 
and breast cancer', International Journal of Cancer, .  

Roszko, I., Sawada, A. and Solnica-Krezel, L. (2009) 'Regulation of convergence and extension 
movements during vertebrate gastrulation by the Wnt/PCP pathway', Seminars in cell & 
developmental biology. Elsevier, 986-997.  

Roy, V. and Perez, E.A. (2009) 'Beyond trastuzumab: small molecule tyrosine kinase inhibitors 

in HER-2-positive breast cancer', The oncologist, 14(11), pp. 1061-1069.  

Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, E. and Polakis, P. (1997) 'Stabilization 
of beta-catenin by genetic defects in melanoma cell lines', Science (New York, N.Y.), 
275(5307), pp. 1790-1792.  

Ruoslahti, E. (1984) 'Fibronectin in cell adhesion and invasion', Cancer and metastasis reviews, 
3(1), pp. 43-51.  

Ruoslahti, E. (1999) 'Fibronectin and its integrin receptors in cancer', Advances in Cancer 
Research, 76, pp. 1-20.  

Ryo, A., Nakamura, M., Wulf, G., Liou, Y. and Lu, K.P. (2001) 'Pin1 regulates turnover and 
subcellular localization of β-catenin by inhibiting its interaction with APC', Nature cell 
biology, 3(9), pp. 793-801.  

Saad, S., Gottlieb, D.J., Bradstock, K.F., Overall, C.M. and Bendall, L.J. (2002) 'Cancer cell-
associated fibronectin induces release of matrix metalloproteinase-2 from normal 
fibroblasts', Cancer research, 62(1), pp. 283-289.  



206 
 

Sabari, J., Lax, D., Connors, D., Brotman, I., Mindrebo, E., Butler, C., Entersz, I., Jia, D. and 
Foty, R.A. (2011) 'Fibronectin matrix assembly suppresses dispersal of glioblastoma cells', 
PLoS One, 6(9), pp. e24810.  

Sahai, E. and Marshall, C.J. (2002) 'RHO–GTPases and cancer', Nature Reviews Cancer, 2(2), 
pp. 133-142.  

Salehi, F., Turner, M.C., Phillips, K.P., Wigle, D.T., Krewski, D. and Aronson, K.J. (2008) 
'Review of the etiology of breast cancer with special attention to organochlorines as 
potential endocrine disruptors', Journal of Toxicology and Environmental Health, Part B, 
11(3-4), pp. 276-300.  

Samuels, Y., Diaz, L.A., Schmidt-Kittler, O., Cummins, J.M., DeLong, L., Cheong, I., Rago, C., 
Huso, D.L., Lengauer, C. and Kinzler, K.W. (2005) 'Mutant PIK3CA promotes cell growth 
and invasion of human cancer cells', Cancer cell, 7(6), pp. 561-573.  

Sandal, T., Valyi-Nagy, K., Spencer, V.A., Folberg, R., Bissell, M.J. and Maniotis, A.J. (2007) 
'Epigenetic Reversion of Breast Carcinoma Phenotype Is Accompanied by Changes in 
DNA Sequestration as Measured by< i> Alu</i> I Restriction Enzyme', The American 
journal of pathology, 170(5), pp. 1739-1749.  

Saneyoshi, T., Kume, S., Amasaki, Y. and Mikoshiba, K. (2002) 'The Wnt/calcium pathway 
activates NF-AT and promotes ventral cell fate in Xenopus embryos', Nature, 417(6886), 
pp. 295-299. 

Saramäki, O.R., Porkka, K.P., Vessella, R.L. and Visakorpi, T. (2006) 'Genetic aberrations in 
prostate cancer by microarray analysis', International journal of cancer, 119(6), pp. 1322-
1329.  

Sasco, A.J., Lowenfels, A.B. and Pasker-De Jong, P. (1993) 'Review article: Epidemiology of 
male breast cancer. A meta-analysis of published case-control studies and discussion of 
selected aetiological factors', International Journal of Cancer, 53(4), pp. 538-549.  

Sato, A., Yamamoto, H., Sakane, H., Koyama, H. and Kikuchi, A. (2010) 'Wnt5a regulates 
distinct signalling pathways by binding to Frizzled2', The EMBO journal, 29(1), pp. 41-54.  

Satoh, S., Daigo, Y., Furukawa, Y., Kato, T., Miwa, N., Nishiwaki, T., Kawasoe, T., Ishiguro, H., 
Fujita, M. and Tokino, T. (2000) 'AXIN1 mutations in hepatocellular carcinomas, and 
growth suppression in cancer cells by virus-mediated transfer of AXIN1', Nature genetics, 
24(3), pp. 245-250.  

Schaffner, F., Ray, A.M. and Dontenwill, M. (2013) 'Integrin α5β1, the fibronectin receptor, as a 
pertinent therapeutic target in solid tumors', Cancers, 5(1), pp. 27-47.  

Schindl, M., Schoppmann, S.F., Samonigg, H., Hausmaninger, H., Kwasny, W., Gnant, M., 
Jakesz, R., Kubista, E., Birner, P., Oberhuber, G. and Austrian Breast and Colorectal 
Cancer Study Group (2002) 'Overexpression of hypoxia-inducible factor 1alpha is 
associated with an unfavorable prognosis in lymph node-positive breast cancer', Clinical 
cancer research : an official journal of the American Association for Cancer Research, 
8(6), pp. 1831-1837. 

Schlessinger, K., Hall, A. and Tolwinski, N. (2009) 'Wnt signaling pathways meet Rho 
GTPases', Genes & development, 23(3), pp. 265-277.  

Schor, S.L., Schor, A.M. and Bazill, G.W. (1981) 'The effects of fibronectin on the migration of 
human foreskin fibroblasts and Syrian hamster melanoma cells into three-dimensional gels 
of native collagen fibres', Journal of cell science, 48, pp. 301-314.  

Schroeder, J.A., Adriance, M.C., McConnell, E.J., Thompson, M.C., Pockaj, B. and Gendler, 
S.J. (2002) 'ErbB-beta-catenin complexes are associated with human infiltrating ductal 
breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic 
carcinomas', The Journal of biological chemistry, 277(25), pp. 22692-22698.  



207 
 

Schulte, G. (2010) 'International Union of Basic and Clinical Pharmacology. LXXX. The class 
Frizzled receptors', Pharmacological reviews, 62(4), pp. 632-667.  

Schwartz, M.A. and Shattil, S.J. (2000) 'Signaling networks linking integrins and rho family 
GTPases', Trends in biochemical sciences, 25(8), pp. 388-391.  

Seifert, J.R. and Mlodzik, M. (2007) 'Frizzled/PCP signalling: a conserved mechanism regulating 
cell polarity and directed motility', Nature Reviews Genetics, 8(2), pp. 126-138.  

Selzner, M., Morse, M.A., Vredenburgh, J.J., Meyers, W.C. and Clavien, P. (2000) 'Liver 
metastases from breast cancer: long-term survival after curative resection', Surgery, 
127(4), pp. 383-389.  

Sengupta, S. and Harris, C.C. (2005) 'p53: traffic cop at the crossroads of DNA repair and 
recombination', Nature reviews Molecular cell biology, 6(1), pp. 44-55.  

Serfling, E., Berberich-Siebelt, F., Chuvpilo, S., Jankevics, E., Klein-Hessling, S., Twardzik, T. 
and Avots, A. (2000) 'The role of NF-AT transcription factors in T cell activation and 
differentiation', Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1498(1), pp. 
1-18.   

Shang, X., Marchioni, F., Sipes, N., Evelyn, C.R., Jerabek-Willemsen, M., Duhr, S., Seibel, W., 
Wortman, M. and Zheng, Y. (2012) 'Rational design of small molecule inhibitors targeting 
RhoA subfamily Rho GTPases', Chemistry & biology, 19(6), pp. 699-710.  

Sharma, R. and Chopra, V. (1976) 'Effect of the wingless (wg 1) mutation on wing and haltere 
development in Drosophila melanogaster', Developmental biology, 48(2), pp. 461-465.  

Shi, F., Long, X., Hendershot, A., Miano, J.M. and Sottile, J. (2014) 'Fibronectin Matrix 
Polymerization Regulates Smooth Muscle Cell Phenotype through a Rac1 Dependent 
Mechanism', PloS one, 9(4), pp. e94988.  

Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D'Amico, M., Pestell, R. and Ben-Ze'ev, 
A. (1999) 'The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway', Proceedings 
of the National Academy of Sciences of the United States of America, 96(10), pp. 5522-
5527.  

Shulewitz, M., Soloviev, I., Wu, T., Koeppen, H., Polakis, P. and Sakanaka, C. (2006) 
'Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer', Oncogene, 25(31), 
pp. 4361-4369.  

Siitonen, S.M., Kononen, J.T., Helin, H.J., Rantala, I.S., Holli, K.A. and Isola, J.J. (1996) 
'Reduced E-cadherin expression is associated with invasiveness and unfavorable 
prognosis in breast cancer', American Journal of Clinical Pathology, 105(4), pp. 394-402.  

Silva, J.M., Li, M.Z., Chang, K., Ge, W., Golding, M.C., Rickles, R.J., Siolas, D., Hu, G., 
Paddison, P.J. and Schlabach, M.R. (2005) 'Second-generation shRNA libraries covering 
the mouse and human genomes', Nature genetics, 37(11), pp. 1281-1288.  

Simons, M. and Mlodzik, M. (2008) 'Planar cell polarity signaling: from fly development to 
human disease', Annual Review of Genetics, 42, pp. 517-540.  

Sims, A.H., Howell, A., Howell, S.J. and Clarke, R.B. (2007) 'Origins of breast cancer subtypes 
and therapeutic implications', Nature Clinical Practice Oncology, 4(9), pp. 516-525.  

Singh, A. and Settleman, J. (2010) 'EMT, cancer stem cells and drug resistance: an emerging 
axis of evil in the war on cancer', Oncogene, 29(34), pp. 4741-4751.  

Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A. and McGuire, W.L. (1987) 
'Human breast cancer: correlation of relapse and survival with amplification of the HER-
2/neu oncogene', Science (New York, N.Y.), 235(4785), pp. 177-182.  



208 
 

Slusarski, D.C., Corces, V.G. and Moon, R.T. (1997) 'Interaction of Wnt and a Frizzled 
homologue triggers G-protein-linked phosphatidylinositol signalling', Nature, 390(6658), pp. 
410-413.  

Smalley, M.J. and Dale, T.C. (2001) 'Wnt signaling and mammary tumorigenesis', Journal of 
mammary gland biology and neoplasia, 6(1), pp. 37-52.  

Smid, M., Wang, Y., Zhang, Y., Sieuwerts, A.M., Yu, J., Klijn, J.G., Foekens, J.A. and Martens, 
J.W. (2008) 'Subtypes of breast cancer show preferential site of relapse', Cancer research, 
68(9), pp. 3108-3114.  

Smith, I.C., Heys, S.D., Hutcheon, A.W., Miller, I.D., Payne, S., Gilbert, F.J., Ah-See, A.K., 
Eremin, O., Walker, L.G. and Sarkar, T.K. (2002) 'Neoadjuvant chemotherapy in breast 
cancer: significantly enhanced response with docetaxel', Journal of Clinical Oncology, 
20(6), pp. 1456-1466.  

Smith, R.A. (2003) 'IARC handbooks of cancer prevention, volume 7: breast cancer screening', 
Breast Cancer Res, 5(4), pp. 216-217.  

Sobin, L.H. and Fleming, I.D. (1997) 'TNM classification of malignant tumors, (1997)', Cancer, 

80(9), pp. 1803-1804.  

Soerjomataram, I., Louwman, M.W., Ribot, J.G., Roukema, J.A. and Coebergh, J.W.W. (2008) 
'An overview of prognostic factors for long-term survivors of breast cancer', Breast cancer 
research and treatment, 107(3), pp. 309-330.  

Sorlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., 
van de Rijn, M., Jeffrey, S.S., Thorsen, T., Quist, H., Matese, J.C., Brown, P.O., Botstein, 
D., Lonning, P.E. and Borresen-Dale, A.L. (2001) 'Gene expression patterns of breast 
carcinomas distinguish tumor subclasses with clinical implications', Proceedings of the 
National Academy of Sciences of the United States of America, 98(19), pp. 10869-10874.  

Sotiriou, C., Neo, S.Y., McShane, L.M., Korn, E.L., Long, P.M., Jazaeri, A., Martiat, P., Fox, 
S.B., Harris, A.L. and Liu, E.T. (2003) 'Breast cancer classification and prognosis based on 
gene expression profiles from a population-based study', Proceedings of the National 
Academy of Sciences of the United States of America, 100(18), pp. 10393-10398.  

Soule, H.D., Vazguez, J., Long, A., Albert, S. and Brennan, M. (1973) 'A human cell line from a 
pleural effusion derived from a breast carcinoma', Journal of the National Cancer Institute, 
51(5), pp. 1409-1416.  

St Croix, B., Sheehan, C., Rak, J.W., Florenes, V.A., Slingerland, J.M. and Kerbel, R.S. (1998) 
'E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase 
inhibitor p27(KIP1)', The Journal of cell biology, 142(2), pp. 557-571.  

Stead, L.A., Lash, T.L., Sobieraj, J.E., Chi, D.D., Westrup, J.L., Charlot, M., Blanchard, R.A., 
Lee, J.C., King, T.C. and Rosenberg, C.L. (2009) 'Triple-negative breast cancers are 
increased in black women regardless of age or body mass index', Breast Cancer Res, 
11(2), pp. R18.  

Steele, B.M., Harper, M.T., Macaulay, I.C., Morrell, C.N., Perez-Tamayo, A., Foy, M., Habas, R., 
Poole, A.W., Fitzgerald, D.J. and Maguire, P.B. (2009) 'Canonical Wnt signaling negatively 
regulates platelet function', Proceedings of the National Academy of Sciences, 106(47), 
pp. 19836-19841.  

Stephens, P.J., Tarpey, P.S., Davies, H., Van Loo, P., Greenman, C., Wedge, D.C., Nik-Zainal, 
S., Martin, S., Varela, I. and Bignell, G.R. (2012) 'The landscape of cancer genes and 
mutational processes in breast cancer', Nature, 486(7403), pp. 400-404.  

Stevanovic, A., Lee, P. and Wilcken, N. (2006) 'Metastatic breast cancer', Australian Family 
Physician, 35(5), pp. 309.  



209 
 

Stockinger, A., Eger, A., Wolf, J., Beug, H. and Foisner, R. (2001) 'E-cadherin regulates cell 
growth by modulating proliferation-dependent beta-catenin transcriptional activity', The 
Journal of cell biology, 154(6), pp. 1185-1196.  

Stout, R.D. and Suttles, J. (2004) 'Functional plasticity of macrophages: reversible adaptation to 
changing microenvironments', Journal of leukocyte biology, 76(3), pp. 509-513.  

Strutt, D.I., Weber, U. and Mlodzik, M. (1997) 'The role of RhoA in tissue polarity and Frizzled 
signalling', Nature, 387(6630), pp. 292-295.  

Strutt, D. (2003) 'Frizzled signalling and cell polarisation in Drosophila and vertebrates', 
Development (Cambridge, England), 130(19), pp. 4501-4513.  

Stuebner, S., Faus‐Kessler, T., Fischer, T., Wurst, W. and Prakash, N. (2010) 'Fzd3 and Fzd6 
deficiency results in a severe midbrain morphogenesis defect', Developmental Dynamics, 
239(1), pp. 246-260.  

Sugimura, R. and Li, L. (2010) 'Noncanonical Wnt signaling in vertebrate development, stem 
cells, and diseases', Birth defects research.Part C, Embryo today : reviews, 90(4), pp. 243-
256.  

Sun, H., Lesche, R., Li, D.M., Liliental, J., Zhang, H., Gao, J., Gavrilova, N., Mueller, B., Liu, X. 
and Wu, H. (1999) 'PTEN modulates cell cycle progression and cell survival by regulating 
phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway', 
Proceedings of the National Academy of Sciences of the United States of America, 96(11), 
pp. 6199-6204.  

Suzuki, H., Toyota, M., Caraway, H., Gabrielson, E., Ohmura, T., Fujikane, T., Nishikawa, N., 
Sogabe, Y., Nojima, M. and Sonoda, T. (2008) 'Frequent epigenetic inactivation of Wnt 
antagonist genes in breast cancer', British journal of cancer, 98(6), pp. 1147-1156.  

Symons, M. (1996) 'Rho family GTPases: the cytoskeleton and beyond', Trends in biochemical 
sciences, 21(5), pp. 178-181.  

Szollosi, J., Balazs, M., Feuerstein, B.G., Benz, C.C. and Waldman, F.M. (1995) 'ERBB-2 
(HER2/neu) gene copy number, p185HER-2 overexpression, and intratumor heterogeneity 
in human breast cancer', Cancer research, 55(22), pp. 5400-5407. 

Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., Hess, F., Saint-
Jeannet, J. and He, X. (2000) 'LDL-receptor-related proteins in Wnt signal transduction', 
Nature, 407(6803), pp. 530-535.  

Tanihara, H., Inoue, T., Yamamoto, T., Kuwayama, Y., Abe, H. and Araie, M. (2013) 'Phase 2 
randomized clinical study of a Rho kinase inhibitor, K-115, in primary open-angle glaucoma 
and ocular hypertension', American Journal of Ophthalmology, 156(4), pp. 731-736. e2.  

Tao, H., Manak, J.R., Sowers, L., Mei, X., Kiyonari, H., Abe, T., Dahdaleh, N.S., Yang, T., Wu, 
S. and Chen, S. (2011) 'Mutations in prickle orthologs cause seizures in flies, mice, and 
humans', The American Journal of Human Genetics, 88(2), pp. 138-149.  

Tate, M.C., Shear, D.A., Hoffman, S.W., Stein, D.G., Archer, D.R. and LaPlaca, M.C. (2002) 
'Fibronectin promotes survival and migration of primary neural stem cells transplanted into 
the traumatically injured mouse brain', Cell transplantation, 11(3), pp. 283-295.  

Terasaki, H., Saitoh, T., Shiokawa, K. and Katoh, M. (2002) 'Frizzled-10, up-regulated in 
primary colorectal cancer, is a positive regulator of the WNT-β-catenin-TCF signaling 
pathway', International journal of molecular medicine, 9(2), pp. 107-112.  

Tetsu, O. and McCormick, F. (1999) 'Beta-catenin regulates expression of cyclin D1 in colon 
carcinoma cells', Nature, 398(6726), pp. 422-426.  



210 
 

Tian, E., Zhan, F., Walker, R., Rasmussen, E., Ma, Y., Barlogie, B. and Shaughnessy Jr, J.D. 
(2003) 'The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic 
lesions in multiple myeloma', New England Journal of Medicine, 349(26), pp. 2483-2494.  

Tokuhara, M., Hirai, M., Atomi, Y., Terada, M. and Katoh, M. (1998) 'Molecular Cloning of 
Human< i> Frizzled-6</i>', Biochemical and biophysical research communications, 243(2), 
pp. 622-627.  

Torban, E., Wang, H.J., Groulx, N. and Gros, P. (2004) 'Independent mutations in mouse 
Vangl2 that cause neural tube defects in looptail mice impair interaction with members of 
the Dishevelled family', The Journal of biological chemistry, 279(50), pp. 52703-52713.  

Tree, D.R., Shulman, J.M., Rousset, R., Scott, M.P., Gubb, D. and Axelrod, J.D. (2002) 'Prickle 
mediates feedback amplification to generate asymmetric planar cell polarity signaling', Cell, 
109(3), pp. 371-381.  

Tsuji, T., Ishizaki, T., Okamoto, M., Higashida, C., Kimura, K., Furuyashiki, T., Arakawa, Y., 
Birge, R.B., Nakamoto, T., Hirai, H. and Narumiya, S. (2002) 'ROCK and mDia1 
antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts', The Journal of cell 
biology, 157(5), pp. 819-830.  

Tuch, B.E. (2006) 'Stem cells--a clinical update', Australian Family Physician, 35(9), pp. 719-
721.  

Turner, N., Pearson, A., Sharpe, R., Lambros, M., Geyer, F., Lopez-Garcia, M.A., Natrajan, R., 
Marchio, C., Iorns, E., Mackay, A., Gillett, C., Grigoriadis, A., Tutt, A., Reis-Filho, J.S. and 
Ashworth, A. (2010) 'FGFR1 amplification drives endocrine therapy resistance and is a 
therapeutic target in breast cancer', Cancer research, 70(5), pp. 2085-2094.  

Ueno, K., Hazama, S., Mitomori, S., Nishioka, M., Suehiro, Y., Hirata, H., Oka, M., Imai, K., 
Dahiya, R. and Hinoda, Y. (2009) 'Down-regulation of frizzled-7 expression decreases 
survival, invasion and metastatic capabilities of colon cancer cells', British journal of 
cancer, 101(8), pp. 1374-1381.  

Ueno, K., Hiura, M., Suehiro, Y., Hazama, S., Hirata, H., Oka, M., Imai, K., Dahiya, R. and 
Hinoda, Y. (2008) 'Frizzled-7 as a potential therapeutic target in colorectal cancer', 
Neoplasia, 10(7), pp. 697-705.  

Ueno, K., Hirata, H., Majid, S., Yamamura, S., Shahryari, V., Tabatabai, Z.L., Hinoda, Y. and 
Dahiya, R. (2012) 'Tumor suppressor microRNA-493 decreases cell motility and migration 
ability in human bladder cancer cells by downregulating RhoC and FZD4', Molecular 
cancer therapeutics, 11(1), pp. 244-253.  

Ugolini, F., Charafe-Jauffret, E., Bardou, V.J., Geneix, J., Adelaide, J., Labat-Moleur, F., 
Penault-Llorca, F., Longy, M., Jacquemier, J., Birnbaum, D. and Pebusque, M.J. (2001) 
'WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor 
suppressor gene SFRP1 in most invasive carcinomas except of the medullary type', 
Oncogene, 20(41), pp. 5810-5817.  

Usary, J., Llaca, V., Karaca, G., Presswala, S., Karaca, M., He, X., Langerød, A., Kåresen, R., 
Oh, D.S. and Dressler, L.G. (2004) 'Mutation of GATA3 in human breast tumors', 
Oncogene, 23(46), pp. 7669-7678.  

van Amerongen, R. and Berns, A. (2006) 'Knockout mouse models to study Wnt signal 
transduction', TRENDS in Genetics, 22(12), pp. 678-689.  

van Amerongen, R., Bowman, A.N. and Nusse, R. (2012) 'Developmental stage and time 
dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland', Cell stem 
cell, 11(3), pp. 387-400.  

van Amerongen, R. and Nusse, R. (2009) 'Towards an integrated view of Wnt signaling in 
development', Development (Cambridge, England), 136(19), pp. 3205-3214.  



211 
 

Van De Wetering, M., Sancho, E., Verweij, C., De Lau, W., Oving, I., Hurlstone, A., Van Der 
Horn, K., Batlle, E., Coudreuse, D. and Haramis, A. (2002) 'The β-catenin/TCF-4 complex 
imposes a crypt progenitor phenotype on colorectal cancer cells', Cell, 111(2), pp. 241-
250.  

van Genderen, C., Okamura, R.M., Farinas, I., Quo, R.G., Parslow, T.G., Bruhn, L. and 
Grosschedl, R. (1994) 'Development of several organs that require inductive epithelial-
mesenchymal interactions is impaired in LEF-1-deficient mice', Genes & development, 
8(22), pp. 2691-2703.  

van Golen, K.L., Wu, Z., Qiao, X., Bao, L. and Merajver, S.D. (2000) 'RhoC GTPase 
overexpression modulates induction of angiogenic factors in breast cells', Neoplasia, 2(5), 
pp. 418-425.  

van Nieuw Amerongen, G.P., Koolwijk, P., Versteilen, A. and van Hinsbergh, V.W. (2003) 
'Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and 
angiogenesis in vitro', Arteriosclerosis, Thrombosis, and Vascular Biology, 23(2), pp. 211-
217.  

Vanhaesebroeck, B. and Waterfield, M. (1999) 'Signaling by distinct classes of phosphoinositide 
3-kinases', Experimental cell research, 253(1), pp. 239-254.  

Veeck, J. and Esteller, M. (2010) 'Breast cancer epigenetics: from DNA methylation to 
microRNAs', Journal of mammary gland biology and neoplasia, 15(1), pp. 5-17. 

Veeck, J., Wild, P.J., Fuchs, T., Schuffler, P.J., Hartmann, A., Knuchel, R. and Dahl, E. (2009) 
'Prognostic relevance of Wnt-inhibitory factor-1 (WIF1) and Dickkopf-3 (DKK3) promoter 
methylation in human breast cancer', BMC cancer, 9, pp. 217-2407-9-217.  

Vega, F.M., Fruhwirth, G., Ng, T. and Ridley, A.J. (2011) 'RhoA and RhoC have distinct roles in 
migration and invasion by acting through different targets', The Journal of cell biology, 
193(4), pp. 655-665.  

Veltmaat, J.M., Van Veelen, W., Thiery, J.P. and Bellusci, S. (2004) 'Identification of the 
mammary line in mouse by Wnt10b expression', Developmental dynamics, 229(2), pp. 
349-356.  

Venkitaraman, A.R. (2002) 'Cancer susceptibility and the functions of BRCA1 and BRCA2', Cell, 
108(2), pp. 171-182.  

Vermeulen, L., Felipe De Sousa, E Melo, van der Heijden, M., Cameron, K., de Jong, J.H., 
Borovski, T., Tuynman, J.B., Todaro, M., Merz, C. and Rodermond, H. (2010) 'Wnt activity 
defines colon cancer stem cells and is regulated by the microenvironment', Nature cell 
biology, 12(5), pp. 468-476.  

Vincan, E. and Barker, N. (2008) 'The upstream components of the Wnt signalling pathway in 
the dynamic EMT and MET associated with colorectal cancer progression', Clinical & 
experimental metastasis, 25(6), pp. 657-663.  

Vinson, C.R., Conover, S. and Adler, P.N. (1989) 'A Drosophila tissue polarity locus encodes a 
protein containing seven potential transmembrane domains', .  

Visvader, J.E. and Lindeman, G.J. (2008) 'Cancer stem cells in solid tumours: accumulating 
evidence and unresolved questions', Nature Reviews Cancer, 8(10), pp. 755-768.  

Vivanco, I. and Sawyers, C.L. (2002) 'The phosphatidylinositol 3-kinase–AKT pathway in human 
cancer', Nature Reviews Cancer, 2(7), pp. 489-501.  

Vogel, C.L., Cobleigh, M.A., Tripathy, D., Gutheil, J.C., Harris, L.N., Fehrenbacher, L., Slamon, 
D.J., Murphy, M., Novotny, W.F., Burchmore, M., Shak, S., Stewart, S.J. and Press, M. 
(2002) 'Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-



212 
 

overexpressing metastatic breast cancer', Journal of clinical oncology : official journal of 
the American Society of Clinical Oncology, 20(3), pp. 719-726.  

Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J., Nevo, J., Gjerdrum, C., Tiron, C., Lorens, J. 
and Ivaska, J. (2010) 'Vimentin regulates EMT induction by Slug and oncogenic H-Ras and 
migration by governing Axl expression in breast cancer', Oncogene, 30(12), pp. 1436-
1448.  

Wallingford, J.B. and Habas, R. (2005) 'The developmental biology of Dishevelled: an enigmatic 
protein governing cell fate and cell polarity', Development (Cambridge, England), 132(20), 
pp. 4421-4436.  

Wang, H., Xu, M., Ma, J., Zhang, Y. and Xie, C. (2012) 'Frizzled-8 as a putative therapeutic 
target in human lung cancer', Biochemical and biophysical research communications, 
417(1), pp. 62-66.  

Wang, X., Moon, J., Dodge, M.E., Pan, X., Zhang, L., Hanson, J.M., Tuladhar, R., Ma, Z., Shi, 
H. and Williams, N.S. (2013) 'The development of highly potent inhibitors for porcupine', 
Journal of medicinal chemistry, 56(6), pp. 2700-2704.  

Wang, X., Fu, L., Li, X., Wu, X., Zhu, Z., Fu, L. and Dong, J. (2011) 'Somatic mutations of the 
mixed-lineage leukemia 3 (MLL3) gene in primary breast cancers', Pathology & Oncology 
Research, 17(2), pp. 429-433.  

Wang, Y., Chang, H. and Nathans, J. (2010) 'When whorls collide: the development of hair 
patterns in frizzled 6 mutant mice', Science Signaling, 137(23), pp. 4091.  

Wang, Y., Guo, N. and Nathans, J. (2006a) 'The role of Frizzled3 and Frizzled6 in neural tube 
closure and in the planar polarity of inner-ear sensory hair cells', The Journal of 
neuroscience, 26(8), pp. 2147-2156.  

Wang, J., Hamblet, N.S., Mark, S., Dickinson, M.E., Brinkman, B.C., Segil, N., Fraser, S.E., 
Chen, P., Wallingford, J.B. and Wynshaw-Boris, A. (2006b) 'Dishevelled genes mediate a 
conserved mammalian PCP pathway to regulate convergent extension during neurulation', 
Development (Cambridge, England), 133(9), pp. 1767-1778.  

Wang, Y. (2009) 'Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy', 
Molecular cancer therapeutics, 8(8), pp. 2103-2109.  

Wang, Y., Krivtsov, A.V., Sinha, A.U., North, T.E., Goessling, W., Feng, Z., Zon, L.I. and 
Armstrong, S.A. (2010) 'The Wnt/beta-catenin pathway is required for the development of 
leukemia stem cells in AML', Science (New York, N.Y.), 327(5973), pp. 1650-1653.  

Wang, Y. and Nathans, J. (2007) 'Tissue/planar cell polarity in vertebrates: new insights and 
new questions', Development (Cambridge, England), 134(4), pp. 647-658.  

Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. and Narumiya, S. (1999) 'Cooperation between 
mDia1 and ROCK in Rho-induced actin reorganization', Nature cell biology, 1(3), pp. 136-
143.  

Weber‐Hall, S.J., Phippard, D.J., Niemeyer, C.C. and Dale, T.C. (1994) 'Developmental and 
hormonal regulation of Wnt gene expression in the mouse mammary gland', Differentiation, 
57(3), pp. 205-214.  

Weeraratna, A.T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M. and Trent, J.M. 
(2002) 'Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma', 
Cancer cell, 1(3), pp. 279-288.  

Westfall, T.A., Brimeyer, R., Twedt, J., Gladon, J., Olberding, A., Furutani-Seiki, M. and 
Slusarski, D.C. (2003) 'Wnt-5/pipetail functions in vertebrate axis formation as a negative 
regulator of Wnt/{beta}-catenin activity', Science Signaling, 162(5), pp. 889.   



213 
 

Wieduwilt, M. and Moasser, M. (2008) 'The epidermal growth factor receptor family: biology 
driving targeted therapeutics', Cellular and Molecular Life Sciences, 65(10), pp. 1566-
1584.  

Willerford, D.M., Chen, J., Ferry, J.A., Davidson, L., Ma, A. and Alt, F.W. (1995) 'Interleukin-2 
receptor α chain regulates the size and content of the peripheral lymphoid compartment', 
Immunity, 3(4), pp. 521-530.  

Willert, K.H. (2008) 'Isolation and application of bioactive Wnt proteins', in Wnt Signaling. 
Springer, pp. 17-29.  

Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R. 
and Nusse, R. (2003) 'Wnt proteins are lipid-modified and can act as stem cell growth 
factors', Nature, 423(6938), pp. 448-452.  

Willett, A., Michell, M. and Lee, M. (2010) 'Best practice diagnostic guidelines for patients 
presenting with breast symptoms', DOH, London, .  

Williams, C.M., Engler, A.J., Slone, R.D., Galante, L.L. and Schwarzbauer, J.E. (2008) 
'Fibronectin expression modulates mammary epithelial cell proliferation during acinar 
differentiation', Cancer research, 68(9), pp. 3185-3192.  

Winklbauer, R., Medina, A., Swain, R.K. and Steinbeisser, H. (2001) 'Frizzled-7 signalling 
controls tissue separation during Xenopus gastrulation', Nature, 413(6858), pp. 856-860.   

Winn, R.A., Marek, L., Han, S.Y., Rodriguez, K., Rodriguez, N., Hammond, M., Van Scoyk, M., 
Acosta, H., Mirus, J., Barry, N., Bren-Mattison, Y., Van Raay, T.J., Nemenoff, R.A. and 
Heasley, L.E. (2005) 'Restoration of Wnt-7a expression reverses non-small cell lung 
cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion 
of cell differentiation', The Journal of biological chemistry, 280(20), pp. 19625-19634.  

Winston, J.T., Strack, P., Beer-Romero, P., Chu, C.Y., Elledge, S.J. and Harper, J.W. (1999) 
'The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated 
destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha 
ubiquitination in vitro', Genes & development, 13(3), pp. 270-283.  

Wissmann, C., Wild, P.J., Kaiser, S., Roepcke, S., Stoehr, R., Woenckhaus, M., Kristiansen, G., 
Hsieh, J., Hofstaedter, F. and Hartmann, A. (2003) 'WIF1, a component of the Wnt 
pathway, is down‐regulated in prostate, breast, lung, and bladder cancer', The Journal of 
pathology, 201(2), pp. 204-212.  

Wodarz, A. and Nusse, R. (1998) 'Mechanisms of Wnt signaling in development', Annual 
Review of Cell and Developmental Biology, 14(1), pp. 59-88.  

Wong, H., Bourdelas, A., Krauss, A., Lee, H., Shao, Y., Wu, D., Mlodzik, M., Shi, D. and Zheng, 
J. (2003) 'Direct binding of the PDZ domain of Dishevelled to a conserved internal 
sequence in the C-terminal region of Frizzled', Molecular cell, 12(5), pp. 1251-1260.  

Wong, H., Bourdelas, A., Krauss, A., Lee, H., Shao, Y., Wu, D., Mlodzik, M., Shi, D. and Zheng, 
J. (2003c) 'Direct binding of the PDZ domain of Dishevelled to a conserved internal 
sequence in the C-terminal region of Frizzled', Molecular cell, 12(5), pp. 1251-1260.  

Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjoblom, T., Leary, R.J., Shen, D., Boca, S.M., 
Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., 
Nikolsky, Y., Karchin, R., Wilson, P.A., Kaminker, J.S., Zhang, Z., Croshaw, R., Willis, J., 
Dawson, D., Shipitsin, M., Willson, J.K., Sukumar, S., Polyak, K., Park, B.H., Pethiyagoda, 
C.L., Pant, P.V., Ballinger, D.G., Sparks, A.B., Hartigan, J., Smith, D.R., Suh, E., 
Papadopoulos, N., Buckhaults, P., Markowitz, S.D., Parmigiani, G., Kinzler, K.W., 
Velculescu, V.E. and Vogelstein, B. (2007) 'The genomic landscapes of human breast and 
colorectal cancers', Science (New York, N.Y.), 318(5853), pp. 1108-1113.  



214 
 

Woodburn, J. (1999) 'The epidermal growth factor receptor and its inhibition in cancer therapy', 
Pharmacology & therapeutics, 82(2), pp. 241-250.  

Worthylake, R.A., Lemoine, S., Watson, J.M. and Burridge, K. (2001) 'RhoA is required for 
monocyte tail retraction during transendothelial migration', The Journal of cell biology, 
154(1), pp. 147-160.  

Wozniak, M.A., Modzelewska, K., Kwong, L. and Keely, P.J. (2004) 'Focal adhesion regulation 
of cell behavior', Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1692(2), 
pp. 103-119.  

Wu, C., Keivenst, V.M., O'Toole, T.E., McDonald, J.A. and Ginsberg, M.H. (1995) 'Integrin 
activation and cytoskeletal interaction are essential for the assembly of a fibronectin 
matrix', Cell, 83(5), pp. 715-724.  

Wu, Q.L., Zierold, C. and Ranheim, E.A. (2009) 'Dysregulation of Frizzled 6 is a critical 
component of B-cell leukemogenesis in a mouse model of chronic lymphocytic leukemia', 
Blood, 113(13), pp. 3031-3039.  

Wyckoff, J.B., Jones, J.G., Condeelis, J.S. and Segall, J.E. (2000) 'A critical step in metastasis: 
in vivo analysis of intravasation at the primary tumor', Cancer research, 60(9), pp. 2504-
2511.  

Xu, H., Wei, Q., Liu, Y., Yang, L., Dai, S., Han, Y., Yu, J., Liu, N. and Wang, E. (2007) 
'Overexpression of axin downregulates TCF-4 and inhibits the development of lung 
cancer', Annals of surgical oncology, 14(11), pp. 3251-3259.  

Xu, Y.K. and Nusse, R. (1998) 'The Frizzled CRD domain is conserved in diverse proteins 
including several receptor tyrosine kinases', Current biology, 8(12), pp. R405-R406.  

Xu, H.T., Wang, L., Lin, D., Liu, Y., Liu, N., Yuan, X.M. and Wang, E.H. (2006) 'Abnormal beta-
catenin and reduced axin expression are associated with poor differentiation and 
progression in non-small cell lung cancer', American Journal of Clinical Pathology, 125(4), 
pp. 534-541.  

Yamana, N., Arakawa, Y., Nishino, T., Kurokawa, K., Tanji, M., Itoh, R.E., Monypenny, J., 
Ishizaki, T., Bito, H., Nozaki, K., Hashimoto, N., Matsuda, M. and Narumiya, S. (2006) 'The 
Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells 
through mobilizing Apc and c-Src', Molecular and cellular biology, 26(18), pp. 6844-6858.  

Yamanaka, H., Moriguchi, T., Masuyama, N., Kusakabe, M., Hanafusa, H., Takada, R., Takada, 
S. and Nishida, E. (2002) 'JNK functions in the non-canonical Wnt pathway to regulate 
convergent extension movements in vertebrates', EMBO reports, 3(1), pp. 69-75.  

Yan, W., Cao, Q.J., Arenas, R.B., Bentley, B. and Shao, R. (2010) 'GATA3 inhibits breast 
cancer metastasis through the reversal of epithelial-mesenchymal transition', The Journal 
of biological chemistry, 285(18), pp. 14042-14051.  

Yang, L., Wu, X., Wang, Y., Zhang, K., Wu, J., Yuan, Y., Deng, X., Chen, L., Kim, C. and Lau, 
S. (2011) 'FZD7 has a critical role in cell proliferation in triple negative breast cancer', 
Oncogene, 30(43), pp. 4437-4446.  

Yarden, Y. and Sliwkowski, M.X. (2001) 'Untangling the ErbB signalling network', Nature 
reviews Molecular cell biology, 2(2), pp. 127-137.  

Yee Jr, H.F., Melton, A.C. and Tran, B.N. (2001) 'RhoA/rho-associated kinase mediates 
fibroblast contractile force generation', Biochemical and biophysical research 
communications, 280(5), pp. 1340-1345.  

Yoneda, T. and Hiraga, T. (2005) 'Crosstalk between cancer cells and bone microenvironment 
in bone metastasis', Biochemical and biophysical research communications, 328(3), pp. 
679-687.  



215 
 

Yoon, N.K., Maresh, E.L., Shen, D., Elshimali, Y., Apple, S., Horvath, S., Mah, V., Bose, S., 
Chia, D. and Chang, H.R. (2010) 'Higher levels of GATA3 predict better survival in women 
with breast cancer', Human pathology, 41(12), pp. 1794-1801.  

Youlden, D.R., Cramb, S.M., Dunn, N.A., Muller, J.M., Pyke, C.M. and Baade, P.D. (2012) 'The 
descriptive epidemiology of female breast cancer: an international comparison of 
screening, incidence, survival and mortality', Cancer epidemiology, 36(3), pp. 237-248.  

Young, H.E. and Black, A.C. (2004) 'Adult stem cells', The Anatomical Record Part A: 
Discoveries in Molecular, Cellular, and Evolutionary Biology, 276(1), pp. 75-102.  

Zeng, Y.A. and Nusse, R. (2010) 'Wnt proteins are self-renewal factors for mammary stem cells 
and promote their long-term expansion in culture', Cell stem cell, 6(6), pp. 568-577.  

Zeng, X., Huang, H., Tamai, K., Zhang, X., Harada, Y., Yokota, C., Almeida, K., Wang, J., 
Doble, B., Woodgett, J., Wynshaw-Boris, A., Hsieh, J.C. and He, X. (2008) 'Initiation of Wnt 
signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, 
dishevelled and axin functions', Development (Cambridge, England), 135(2), pp. 367-375.  

Zhang, H., Zhang, X., Wu, X., Li, W., Su, P., Cheng, H., Xiang, L., Gao, P. and Zhou, G. (2012) 
'Interference of Frizzled 1 (FZD1) reverses multidrug resistance in breast cancer cells 
through the Wnt/β-catenin pathway', Cancer letters, 323(1), pp. 106-113.  

Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A.M. and Burridge, K. 
(1998) 'Rho-mediated contractility exposes a cryptic site in fibronectin and induces 
fibronectin matrix assembly', The Journal of cell biology, 141(2), pp. 539-551.  

Zhong, H., De Marzo, A.M., Laughner, E., Lim, M., Hilton, D.A., Zagzag, D., Buechler, P., 
Isaacs, W.B., Semenza, G.L. and Simons, J.W. (1999) 'Overexpression of hypoxia-
inducible factor 1alpha in common human cancers and their metastases', Cancer research, 
59(22), pp. 5830-5835. 

 


