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Abstract 29 

In any non-deterministic environment, unexpected events can indicate true changes 30 

in the world (and require behavioural adaptation) or reflect chance occurrence (and 31 

must be discounted). Adaptive behaviour requires distinguishing these possibilities. 32 

We investigated how humans achieve this by integrating high-level information from 33 

instruction and experience. In a series of EEG experiments, instructions modulated 34 

the perceived informativeness of feedback: Participants performed a novel 35 

probabilistic reinforcement learning task, receiving instructions about reliability of 36 

feedback or volatility of the environment. Importantly, our designs de-confound 37 

informativeness from surprise, which typically co-vary. Behavioural results indicate 38 

that participants used instructions to adapt their behaviour faster to changes in the 39 

environment when instructions indicated that negative feedback was more 40 

informative, even if it was simultaneously less surprising. This study is the first to 41 

show that neural markers of feedback anticipation (stimulus-preceding negativity) and 42 

of feedback processing (feedback-related negativity; FRN) reflect informativeness of 43 

unexpected feedback. Meanwhile, changes in P3 amplitude indicated imminent 44 

adjustments in behaviour. Collectively, our findings provide new evidence that high-45 

level information interacts with experience-driven learning in a flexible manner, 46 

enabling human learners to make informed decisions about whether to persevere or 47 

explore new options, a pivotal ability in our complex environment.  48 

1. Introduction 49 

Humans and other animals use their ability to predict which action will lead to which 50 

outcome to choose appropriate actions and monitor their success. Occurrence of 51 

unexpected events can indicate incorrect or failed actions. However, in non-52 

deterministic environments, unexpected events can happen for fundamentally 53 

different reasons: They may indicate true changes in the world and require adaptation, 54 

but sometimes they may instead reflect chance occurrence and should be discounted. 55 

To behave adaptively, an agent therefore needs to determine whether or not 56 

unexpected events indicate that a change in the environment has occurred. In other 57 

words, the agent must assess and integrate the event’s informative value. Within this 58 

framework, the informative value of an unexpected event would be high, for example, 59 

if volatility in the environment was known to be high: unexpected events in volatile 60 
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environments are more likely to reflect meaningful changes than unexpected events in 61 

stable environments. Thus, informative value is a parameter informed by a model of 62 

the world, which is at least partly dissociable from the unexpectedness of experienced 63 

events.  64 

Learning from unexpected events, or prediction errors, is the focus of 65 

reinforcement-learning (RL) theories of adaptive behaviour. A core tenet of a major 66 

class of RL theories is that successful interaction with our environment depends 67 

critically on reducing the unexpectedness of events we encounter (Schultz et al., 1997; 68 

Sutton and Barto, 1990). Linking volatile environments to RL, previous work has 69 

shown that humans can use an experience-based estimate of volatility to adjust the 70 

rate at which they learn from unexpected feedback (Behrens, et al., 2007). However, 71 

human learning does not rely solely on learning from direct experience: A 72 

fundamental human ability is to learn rapidly from explicit instruction, as instructions 73 

can provide a model of the world that helps to interpret events. Yet little is known 74 

about how instruction interacts with experience to shape behaviour (Cole, Laurent & 75 

Stocco, 2013).  76 

The present experiments investigated the effect on trial-and-error learning of 77 

instructions that influence the perceived informative value of unexpected outcomes. 78 

We tested how a change in informativeness modulates adaptive behaviour and the 79 

neural correlates of feedback processing. Specifically, we investigated the impact of 80 

instructions about the environment (in terms of its volatility) or about feedback (in 81 

terms of its reliability) in a probabilistic reversal-learning task that required 82 

participants to integrate feedback to learn rules and adjust to rule changes. 83 

In classical paradigms that focus on experience-based learning, informative 84 

value is so highly correlated with expectation and surprise that the two are often 85 

treated as isomorphic. Crucially, however, in the present experiments we dissociated 86 

effects of informative value from those of experience-based surprise: Instruction that 87 

response-outcome contingencies are volatile (i.e., likely to change) makes unexpected 88 

negative feedback more informative but at the same time less surprising, because 89 

learners should anticipate the occurrence of negative feedback indicating the need to 90 

adapt behaviour. Conversely, instruction that feedback is reliable (i.e., consistently 91 

indicative of choice accuracy) likewise makes feedback more informative, but makes 92 

unexpected negative feedback more surprising: If feedback is reliable, responses are 93 
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more likely to yield expected (positive) feedback than unexpected (negative) 94 

feedback. 95 

We tested the impact of instructions about environmental volatility and 96 

feedback reliability on adaptive behaviour and EEG correlates of feedback 97 

integration. We hypothesized that adaptation would be fast under volatility and 98 

reliability instructions, which should be evident in enhanced learning of correct 99 

responses following changes in the environment. In our EEG measures, we focused in 100 

particular on the feedback-related negativity (FRN) component as a marker of 101 

feedback processing, the stimulus preceding negativity (SPN) as a correlate of the 102 

anticipation of feedback, and the P3 as an index of feedback evaluation for immediate 103 

updating of action plans.  104 

The FRN is observed as a rapid neural response (200-300 ms) following 105 

feedback presentation (Miltner et al., 1997; Gehring & Willoughby, 2002). A wealth 106 

of evidence has identified the FRN as a reward prediction error (RPE) signal of the 107 

kind proposed by RL theories (Holroyd & Coles, 2002): The FRN is typically 108 

observed following negative outcomes, with enhanced amplitude when negative 109 

outcomes are rare, or large in magnitude (Sambrook & Goslin, 2015; Walsh & 110 

Anderson, 2012). Our core hypothesis was that explicit instruction should change 111 

perceived informativeness of feedback, with consequent impact on feedback 112 

processing as reflected in the FRN. We expected the FRN to be increased when 113 

informativeness was high (under instructions suggesting volatility of the environment 114 

or highly reliable feedback), compared to conditions with lower informative value 115 

(under instructions suggesting stability of the environment or unreliable feedback). 116 

This hypothesis stands in contrast to existing characterization of the FRN as reflecting 117 

the operation of a simple model-free RL system that learns purely from bottom-up 118 

experience (Holroyd & Coles, 2002; Walsh & Anderson, 2012), an interpretation 119 

supported by evidence that the component is strikingly insensitive to valid instruction 120 

about response-outcome associations (Walsh & Anderson, 2011). Such an RL account 121 

would predict that an increase in FRN amplitude following unexpected events would 122 

be unaffected by instructions that modulate informativeness.  123 

The account of adaptive behaviour we adopt assumes that learning relies on 124 

explicit, structured internal models of the environment (Botvinick & Weinstein, 2014) 125 

and that the informative value of feedback, derived from this model, is integrated into 126 

learning and modulates neural correlates of feedback-processing. This framework 127 
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suggests that processing of the environment is not a reactive process, but is instead 128 

actively guided by higher-order expectations. This conclusion would be consistent 129 

with recent findings and computational simulations indicating that estimates of 130 

uncertainty and volatility have partly independent effects on learning from feedback 131 

(Behrens, et al., 2007; O’Reilly, 2013; Yu & Dayan, 2005; Mestres-Misse et al., 132 

2016), and correspondingly have dissociable effects on the FRN (Bland & Schaefer, 133 

2012). The latter finding is also consistent with an account of the FRN suggesting that 134 

it reflects an index of the demand of cognitive control; the demand for cognitive 135 

control is higher when information accumulates indicating the need for behavioral 136 

adaptation (Cavanagh & Frank, 2014).  137 

We hypothesized that top-down modulation of the learning process would 138 

become further apparent in dynamic sampling of information according to its 139 

anticipated informative value. We therefore measured the SPN, a slow-wave potential 140 

observed prior to the presentation of feedback that provides useful information on task 141 

performance (Brunia, 1988, Moris et al., 2013). We expected a larger SPN amplitude 142 

under instructions suggesting high compared to low feedback informativeness.  143 

The third EEG component of interest was the P3, which occurs after feedback 144 

presentation and is associated with the evaluation of feedback (Polich, 2007) and 145 

immediate behavioural responses (Chase et al., 2011). We expected to replicate Chase 146 

et al.’s (2011) finding that P3 amplitude is predictive of participants’ behaviour on the 147 

following trial, being enhanced prior to behavioural switches, and thus signifying the 148 

decision to adapt to the environment. In contrast to the FRN, which is associated with 149 

the integration of information in learning and was hence expected to scale with 150 

informative value, we expected the P3 to be more closely tied to the subsequent action 151 

and to reflect behaviour on the next trial independent of instructions.  152 

 153 

2. Methods 154 

2.1 Participants 155 
Thirty-three participants took part in Experiment 1, 16 in Experiment 1a (7 female) 156 

and 17 in Experiment 1b (11 female). Average age in both parts of Experiment 1 was 157 

21.5 years (18-30). Data from 5 participants were excluded from the final analysis, 4 158 
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because of excessive noise in the recordings, 1 because the participants failed to reach 159 

an accuracy level within 2-standard deviations of the population’s mean performance.  160 

Seventeen participants took part in Experiment 2 (7 female), with an average 161 

age of 22.0 years. 2 datasets had to be removed, one because of excessive noise, and 162 

one because the participant failed to reach an accuracy level within 2-standard 163 

deviations of the population’s mean performance. All participants were right handed, 164 

had normal or corrected-to-normal vision, reported no history of neurological or 165 

psychiatric illness and gave written informed consent. They received monetary 166 

compensation for participation (£10/hour), but no performance-related bonus. The 167 

local ethics committee approved all procedures. 168 

2.2 Stimuli and Task 169 
Both experiments used the same novel task, an instructed probabilistic reversal-170 

learning paradigm. This task required participants to learn a new stimulus-response 171 

mapping in each block and to adapt this mapping if an unannounced rule reversal 172 

occurred. Participants were instructed to pay attention to the feedback to learn which 173 

of two possible stimulus-response mappings was correct. They were instructed that 174 

feedback was probabilistic and that a single rule reversal per block was possible. They 175 

were encouraged to keep paying attention to the trial-by-trial feedback throughout the 176 

block to detect any rule change that occurred. Prior to the main experiment, 177 

participants completed two practice blocks of the task outside the EEG booth and 178 

were allowed to ask questions. The experiments were run with the Psychophysics 179 

Toolbox version 3 (Brainard, 1997) in Matlab 2009b (The Mathworks, Inc., 2009) on 180 

a Windows PC attached to a 20 inch monitor at a resolution of 1024 × 768 and a 181 

refresh rate of 75 Hz. We measured response accuracy and reaction times during the 182 

main experiment for further behavioural analyses. 183 

2.3 Experiment 1: 184 
Each block started with a written instruction displayed on the screen. In Experiment 1, 185 

participants were instructed about the volatility of the environment (Figure 1). 186 

Participants received the instruction: “The rules in this block will probably change” 187 

(volatility instruction) in half of the blocks, and the instruction “The rules in this 188 

block will probably remain stable” (stability instruction) in the other half. Rule 189 

reversals occurred in 2/3 of the volatility-instruction blocks and 1/3 of the stability-190 

instruction blocks, with these probabilities made explicit to the subjects. The use of 191 



 6 

probabilistic instructions ensured that participants had to pay attention to the feedback 192 

and be engaged with the task regardless which instruction they had received. It also 193 

allowed us to measure the behavioural effects of instructions on adaptation. Because 194 

there was at most one rule reversal per block, we were able to measure the effects of 195 

instructions over a large number of trials, i.e., all trials that preceded the rule reversal. 196 

For all blocks in the experiment, pre-rule reversal trials differ in no parameter other 197 

than instruction. In each trial, participants had to press one of two keys (‘f’ and ‘h’ on 198 

a standard keyboard) with their left or right index finger in response to the image of a 199 

familiar object on the screen (Figure 1, for a detailed description). The images were 200 

scaled so that they did not exceed 150 pixels in either width or height. There were two 201 

objects in each block, and new objects appeared in each block. A left-hand keypress 202 

was the initially correct response for one of the objects, and a right-hand keypress was 203 

the correct response for the other. Participants could only determine this initial 204 

mapping using feedback in a trial-and-error approach. Feedback contingencies were 205 

probabilistic, specifically being contingent on the correctness of the response in 75% 206 

of all trials: If participants implemented the correct mapping, they received positive 207 

feedback (a green smiley) in 75% of the trials and negative feedback (a red sad face) 208 

in 25% of the trials. For incorrect responses, participants received negative feedback 209 

in 75% of the trials and positive feedback in 25% of the trials. Failures to respond 210 

within a time limit of 2000 ms from stimulus onset were followed by a white, crossed-211 

out face. Participants were told about the probabilistic feedback and knew that they 212 

had to integrate feedback over a number of trials to learn the correct mapping and to 213 

detect rule reversals.  214 

Block lengths varied randomly between 25, 33, and 41 trials, and rule 215 

reversals occurred half-way through the respective blocks, i.e., on trial 13, 17, or 21. 216 

Block-length was counterbalanced across conditions. The symmetric setup within 217 

blocks has two advantages: First, it minimized participants’ ability to build an 218 

expectation about when rule reversal would occur, which otherwise could have helped 219 

them to decide whether an unexpected negative feedback was more likely to be 220 

caused by a rule reversal (Figure 2). Second, having as many trials before and after 221 

the rule reversal increased participants’ motivation to adapt to rule changes, and also 222 

allowed us to run statistical analysis on conditions with an equal number of trials. 223 

Performance in the pre-rule reversal phase of volatility-instructed blocks was 224 

compared with the same number of trials from the first half of stability-instructed 225 
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blocks. Thus, trial numbers and trial-position in the block were kept constant across 226 

comparisons. The same approach was taken to post-rule reversal analyses of accuracy: 227 

This analysis compared performance in trials from the second halves of the rule 228 

reversal blocks to trials from the second halves of non-reversal blocks, again 229 

achieving equal trial-numbers and comparable trial-histories thanks to the balanced 230 

setup of block lengths across conditions. Participants received feedback on percent 231 

correct responses after each block during a short, self-paced pause. Experiments 1a 232 

and 1b differed critically in the interval separating the response on a given trial and 233 

subsequent feedback. In Experiment 1a this interval was 500 ms. In Experiment 1b, 234 

we lengthened this interval to 1200 ms to enable us to measure slow preparatory 235 

potentials preceding feedback delivery. Experiment 1a had 36 blocks and experiment 236 

1b, owing to the longer response-feedback interval in each trial, had 27 blocks (Figure 237 

1).  238 

2.3.1 Behavioural analysis 239 
Behavioural analysis focused on two aspects of behaviour: We first wanted to 240 

establish that, prior to a potential rule reversal, participants learned equally well under 241 

the two instruction conditions (initial acquisition). To assess this we calculated 242 

participants’ average accuracy in the first half of each block, and also the average 243 

number of trials from the start of each block before participants first repeated the 244 

correct rule on two successive trials (a key indication that they had established this 245 

rule, and were now in a mode of deliberate exploitation as opposed to explorative, or 246 

guessing behaviour). Correct responding was defined as applying the currently correct 247 

rule, not as receiving positive feedback (which occurred probabilistically). The second 248 

focus of the behavioural analysis targeted the impact of instructions on adaptation 249 

after rule reversals. Here, we used the same two performance measures as in the first 250 

analysis, but focused on the second half of the blocks in which a rule reversal 251 

occurred to assess the influence of instructions. For this post-reversal phase, we 252 

expected participants to show reduced accuracy in stability-instructed blocks. We 253 

additionally calculated the probability with which participants would reverse their 254 

response mapping following surprising feedback as a further indication of adaptive 255 

modulation of behaviour by instructions. 256 
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2.3.2 Task design - Expectation of negative feedback 257 
A key feature of our design is that it controls for the relative frequency of negative 258 

and positive feedback (and thereby the effects of low-level unexpectedness. At the 259 

same time, it independently manipulates the surprise associated with negative 260 

feedback and its informativeness in a given instruction condition. If performance prior 261 

to rule reversals is comparable between the conditions (volatility-instructed and 262 

stability-instructed blocks)—as will later be shown to be the case—the two conditions 263 

will have the same frequency of negative feedback in the trials that enter the EEG 264 

analysis. Therefore, simple frequency effects could not explain any differences 265 

observed in the EEG correlates of feedback processing. Meanwhile, different levels of 266 

accuracy between conditions over the entire block length, i.e., including the second 267 

halves of the blocks (which are not entered into the EEG analysis) would be expected 268 

to modulate participants’ expectations of negative or positive feedback associated 269 

with an instruction. Specifically, this higher-level expectation should make negative 270 

feedback less surprising in volatility-instructed blocks compared to stability-instructed 271 

blocks. To foreshadow this important feature of our experiment, we found that the 272 

probability of receiving negative feedback was indeed significantly higher in 273 

volatility-instructed than in stability-instructed blocks (t(27) = 5.22, p < 0.01, two-274 

tailed), owing to an increase of incorrect responses following rule reversals. 275 

Unexpectedness of negative feedback was therefore lower under volatility instructions 276 

than stability instructions for a learner who took instructions into account. In sum, 277 

negative feedback under volatility instructions was on average more informative but 278 

was also on average less surprising than negative feedback under stability 279 

instructions, thus de-confounding informativeness and surprise measures, which 280 

typically co-vary.  281 

2.4 Experiment 2: 282 
In this experiment, we tested whether effects of perceived informativeness on 283 

feedback processing would generalize to instructions that do not inform on volatility 284 

of the mapping but that directly concern the feedback itself. Here, the pre-block 285 

instruction concerned the reliability of feedback. Higher (instructed) reliability made 286 

feedback more informative than lower (instructed) reliability. In half of the blocks, 287 

participants were instructed: “The feedback in this block will be reliable” (reliability 288 

instruction). In the other half, participants were instructed: “The feedback in this 289 

block will be unreliable” (unreliability instruction).  290 
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These two types of instructions preceded blocks with three different degrees 291 

of reliability. One quarter of all blocks had highly reliable feedback (87.5% 292 

contingent on correctness of the response). These blocks were always preceded by the 293 

reliability instruction. A second quarter of all blocks had considerably less reliable 294 

feedback (62.5% contingent on correctness of the response). These blocks were 295 

always preceded by the unreliability instruction. The remaining blocks were of 296 

intermediate feedback reliability, which was the same as implemented in Experiment 297 

1 (75% contingent on correctness of the response). Half of these blocks with 298 

intermediate reliability (1/4 of all blocks) were preceded by the reliability instruction, 299 

whilst the other half was preceded by the unreliability instruction (Figure 1). These 300 

latter two block types (fixed intermediate level of reliability, two types of 301 

instructions) are the crucial blocks for analysis, which allowed us to test for 302 

instruction effects comparable to Experiment 1. 303 

 The task was the same probabilistic reversal-learning task as in Experiment 1. 304 

A single reversal occurred in 3/4 of the blocks (each reliability condition appeared 8 305 

times over the entire experiment, creating an equal number of reversals per reliability 306 

condition). Block lengths were set to 33 trials and the single rule reversal occurred 307 

equally often on trial 9, 17, or 25. This design choice differed slightly from the setup 308 

in Experiment 1 but preserved the core characteristics: First, setting the average rule 309 

reversal trial to the middle of the block (trial 17), and at least 9 trials before the end of 310 

the block again ensured that participants had the motivation and opportunity to adapt 311 

to the new rule. Second, as the reliability levels can be realized as proportions of 8 312 

trials (highly reliable: 7/8 trials contingent, intermediate reliable: 6/8 contingent, 313 

highly unreliable: 5/8 contingent), locating the switch after multiples of 8 trials 314 

allowed us to keep the reliability in the run-up to the rule reversal and post rule 315 

reversal evenly distributed. Lastly, not exceeding 33 trials in length (which is the 316 

average trial-length in Experiment 1)—even after late rule reversals—increased 317 

design efficiency, as the EEG analyses again focused on the pre-rule reversal phase of 318 

each block. Participants were again explicitly informed about the rule reversal 319 

probability. Importantly, however, they did not know that more than two degrees of 320 

reliability existed. They received feedback on the percentage of correct responses in 321 

each block during a short, self-paced pause after each of the 32 blocks.   322 

In summary, the difference in informativeness by instruction in this 323 

experiment again relates to the probability that an unexpected negative event was 324 
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indicative of a change in the rules. Over all blocks of the experiment (including the 325 

truly more reliable and truly more unreliable feedback blocks), this probability was 326 

higher following reliability instructions than unreliability instructions.  327 

 328 

2.4.1 Behavioural analysis 329 
Analysis focused on the conditions that varied in instructed reliability but in fact had 330 

the same feedback contingency. Our analyses implemented the same tests as the 331 

analysis of Experiment 1. The relevant markers of behaviour were percent correct 332 

responses in the part of the block preceding a rule reversal and trials-to-repetition of 333 

the initially correct mapping as measures of initial acquisition and performance 334 

(which were both expected to be unaffected by instructions, as in Experiment 1). 335 

Further, we again measured percent correct performance and trials-to-repetition after 336 

rule reversals to assess the effects of instructions on adaptation (which were expected 337 

to differ by instruction). We used probability of reversing the mapping following 338 

surprising feedback as an additional measure of instruction effects on adaptive 339 

behaviour.  340 

2.4.2 Task design - Expectation of negative feedback 341 
As will be shown later, participants’ performance (and therefore number of negative 342 

feedback events) prior to rule reversals did not differ reliably between blocks of equal 343 

feedback reliability but different instructions. However, overall, participants received 344 

more negative feedback in blocks that were instructed to be unreliable, as these 345 

include blocks in which feedback was indeed unreliable, which has negative effects 346 

on performance. To summarize, in contrast to Experiment 1, participants should be 347 

more surprised by negative feedback in the same condition under which feedback was 348 

considered to be more informative, i.e., in the blocks that were instructed to be 349 

reliable.  350 

2.5 EEG recordings 351 
Participants sat in an electrically shielded, sound attenuating booth to minimise 352 

artefacts in the EEG recordings. A Neuroscan Synamps2 system (10 GΩ input 353 

impedance; 29.8 nV resolution; Neuroscan, El Paso, TX, USA) was used to record 354 

EEG data from 32 Ag/AgCl electrodes mounted in an elastic cap at locations FP1, 355 

FPZ, FP2, F7, F3, FZ, F4, F8, FT7, FC3, FCZ, FC4, FT8, T7, C3, CZ, C4, T8, TP7, 356 

CP3, CPZ, CP4, TP8, P7, P3, PZ, P4, P8, POZ, O1, OZ, and O2. Six additional 357 
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external electrodes were attached to the outer canthi of the left and right eyes, above 358 

and below the right eye to measure electro-oculograms (EOGs), and to the left and 359 

right mastoids. Electrode recordings were referenced to the right mastoid. All 360 

electrode impedances were kept below 50 kΩ. EEG data were recorded at a sampling 361 

rate of 1000 Hz. Online high-pass filtering was implemented for experiment 1a and 2 362 

at 0.1 Hz. Online high-pass filtering was avoided for experiment 1b to allow us to 363 

measure slow-wave EEG activity preceding feedback delivery. 364 

2.6 EEG data analysis 365 
In both experiments, the core question addressed was whether instructions that 366 

changed participants’ belief about the informativeness of specific feedback would 367 

modulate feedback processing. Our analysis focused primarily on the amplitude of the 368 

FRN, a negative-going EEG waveform following feedback onset that is typically 369 

associated with the prediction-error learning signal (Sambrook & Goslin, 2014; 370 

Hauser, et al., 2014; Holroyd & Coles, 2002). We hypothesized that informativeness 371 

would impact not only processing of presented feedback, but also anticipation of 372 

feedback, a signature of a learning process that involves dynamic sampling of 373 

information. We therefore assessed whether the amplitude of the stimulus-preceding 374 

negativity (SPN) prior to feedback onset in Experiment 1b would be increased under 375 

reliability instructions. Because the SPN is associated with the anticipation of 376 

informative feedback (Kotani et al., 2003), we considered an increase in amplitude as 377 

a marker of preparation for information sampling. As a marker of later cognitive 378 

evaluation of feedback and strategic modulation (Chase et al., 2011; see Polich, 2007, 379 

for review), we measured the P3 component that occurs a few hundred milliseconds 380 

after feedback delivery. Finally, to assess whether any observed modulations of the 381 

FRN, SPN and P3 might be driven by low-level changes in visual attention to 382 

feedback, we analysed N1 and P1 potentials evoked by feedback onset. Both 383 

components are strongly associated with directed attention towards an external 384 

stimulus, be it in the auditory (Näätänen, 1987) or visual domain (Luck, et al., 2000; 385 

Eimer, 2014). Increased P1 and N1 amplitudes are taken to reflect increased attention 386 

towards the stimulus, such as may be expected for example as a correlate of increased 387 

task engagement.  388 

 Eye-blink correction was conducted using an independent components 389 

analysis approach via the EEGLab toolbox for Matlab (Delorme and Makeig, 2004) in 390 
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Experiment 1a, and using a regression approach (Semlitsch, et al., 1986), 391 

implemented in Scan 4.5 (Neuroscan, El Paso, TX, USA) in Experiments 1b and 2. 392 

After epoching the data (details below), trials with voltage differences > 100µV were 393 

discarded. All analyses were performed on data down-sampled to 250 Hz. Offline 394 

filtering was achieved with a Hamming-window synchronized finite impulse response 395 

function, as implemented in EEGLab (Widmann, 2012). For the FRN analysis, P3 396 

analysis, and analysis of N1 potentials in Experiments 1 and 2, data epochs were 397 

extracted from -500 ms prior to feedback onset to 1500 ms post feedback onset. EEG 398 

data were offline high-pass filtered at 0.1 Hz and low-pass filtered at 24 Hz. We 399 

baseline corrected each epoch to a time window from -200 ms pre feedback onset to -400 

100 ms pre feedback onset in both experiments.  401 

2.6.1 Experiment 1: 402 

2.6.1.1 FRN analysis  403 
The FRN was estimated using an average-base to peak measure (Yeung & Sanfey, 404 

2004; Chase et al., 2011). We averaged voltage measures over a fronto-central cluster 405 

comprising the electrodes: F3, FZ, F4, FC3, FCZ, FC4, C3, CZ, C4 (voltage 406 

topographies in Figure 4) and calculated the lowest voltage in a time window from 407 

240 ms to 280 ms post feedback onset, and the highest voltage in the preceding and 408 

following positive-going components (time windows: 160 ms to 220 ms post 409 

feedback onset and 300 ms to 420 ms post feedback onset, respectively). The most 410 

negative value was then subtracted from the mean of the two positive peaks to give 411 

FRN amplitude. If the highest point was on the edge of a peak window, the window 412 

was gradually widened until the highest point no longer fell on the edge (Chase et al., 413 

2011). Results with parallel analyses using quantification of the FRN as simple base-414 

to-peak amplitude did not differ materially from those reported below. 415 

FRN analysis in both experiments included only trials in which participants 416 

applied the currently correct rule, preceding the rule reversal. In Experiment 1, this 417 

included the trials from the first half of all blocks during which a rule reversal 418 

occurred and the trials from the first half of all the length-matched blocks that 419 

contained no rule reversal. Importantly, these trials differed only with regard to the 420 

instruction, but were otherwise identical. We thus ensured that equal numbers of pre-421 

switch trials in volatility and stability-instructed blocks entered the analysis. Error 422 

trials were excluded from the analysis, as participants’ feedback expectations are 423 
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unclear in these trials. The FRN analysis therefore contained 4 categories of feedback: 424 

positive vs. negative feedback after correct responses under stability instruction, and 425 

positive vs. negative feedback after correct responses under volatility instruction. 426 

Average single-subject FRN amplitudes were entered into a repeated-measures 427 

ANOVA with the factors INSTRUCTION (stability/volatility) and VALENCE 428 

(positive/negative). In a second step, we included EXPERIMENT version (a or b) as a 429 

between-subject factor in a 2 x 2 x 2 repeated-measures ANOVA to rule out that 430 

duration of the response-feedback interval had any influence on the established FRN 431 

effect. 432 

2.6.1.2 SPN analysis 433 
To test whether the amount of expected informative value of the feedback (Brunia, 434 

1988, Kotani et al., 2003; Moris et al., 2013) would lead to an active preparation for 435 

more relevant events, we measured the stimulus preceding negativity (SPN) between 436 

participants’ responses and feedback onset. The response-feedback interval in 437 

Experiment 1b was increased to 1200 ms to make measuring this slow-wave potential 438 

possible.  439 

The EEG data were epoched to response onset, with epochs beginning -500 ms 440 

prior to response onset and ending 500 ms post feedback onset. The EEG data were 441 

high-pass filtered at 0.05 Hz and low-pass filtered at 24 Hz. The soft high-pass filter 442 

leaves the type of slow-wave potential that we were interested in intact while 443 

preventing artefacts from slower voltage drifts. We baseline corrected epoched data to 444 

a time window from 200 ms after response onset to 300 ms after response onset. This 445 

analysis followed the measures taken in a recent publication which shows that the 446 

SPN tracks the value of feedback over the course of learning (Moris et al., 2013): 447 

SPN amplitude was measured as the mean amplitude in three different pre-feedback 448 

time windows 1: -600 ms to -400 ms, 2: -400ms to -200 ms, and 3: -200 ms to 449 

feedback onset. Data were extracted from an electrode cluster spanning: FC3, FCZ, 450 

FC4, C3, CZ, C4, CP3, CPZ, and CP4. Because the SPN is typically larger over the 451 

right than the left hemisphere, and amplitude increases gradually, we implemented a 2 452 

x 3 x 3 repeated-measures ANOVA, with the factors INSTRUCTION 453 

(volatility/stability), TIME (window: 1/2/3) and LATERALITY (left/central/right).  454 
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2.6.1.3 P3 analysis 455 
Two main questions motivated the P3 analyses: First, we wanted to establish whether 456 

the P3 would show a comparable instruction effect to the FRN. We therefore mirrored 457 

the FRN analysis for the P3. Single-subject P3 amplitudes were measured as the 458 

maximum voltage in condition-averaged EEG waveforms within a time window 300 459 

ms to 420 ms post feedback onset (same as the second peak in the FRN measure), 460 

across a centro-parietal electrode cluster containing the electrodes: CP3, CPZ, CP4, 461 

P3, PZ, P4, and POZ (cf. posterior cluster in Chase et al., 2011, voltage topography 462 

maps in Figure 5). Average single-subject P3 amplitudes were entered into the 463 

repeated-measures ANOVA with the factors INSTRUCTION (stability/volatility) and 464 

VALENCE (positive/negative).  465 

Second, we aimed to replicate evidence for a close link between the P3 and 466 

behavioural decisions as described by Chase et al, (2011), who showed that P3 467 

amplitude predicts reversal behaviour on a trial-by-trial basis. We therefore measured 468 

P3 amplitude as described above in trials with negative feedback outcomes within the 469 

first half of all blocks and tested in a repeated-measures ANOVA with the factors 470 

NEXT TRIAL BEHAVIOUR (repeat/reverse) and INSTRUCTION 471 

(stability/volatility) whether P3 amplitude would be significantly larger preceding 472 

trials in which participants reversed their behaviour, compared to repetition trials. 473 

2.6.1.4 Visual potentials: P1 & N1 474 
We analysed the P1 and N1 potentials to assess whether any between-condition 475 

differences in EEG activity might reflect differences in low-level attention to the 476 

feedback, which could hint, for example, at decreased task-engagement in a given 477 

condition. We estimated the P1 amplitude as the maximum amplitude across a parietal 478 

cluster of electrodes in the standard time window of 60 ms to 100 ms post feedback 479 

onset. The cluster of electrodes was chosen in a data-driven fashion by assessing the 480 

electrodes that reached the highest mean amplitude in the 4 conditions. This yielded a 481 

parietal cluster comprising P7, P3, PZ, P4, P8, POZ, O1, OZ, and O2. We also 482 

estimated the parietal N1 potential as the minimum voltage across the same electrodes 483 

as the P1 in a time window from 140 to 200 ms after feedback onset. Amplitudes of 484 

the P1 and N1 potentials were then entered into separate repeated-measures ANOVAs 485 

with the factors INSTRUCTION (volatility/stability) and VALENCE 486 

(positive/negative) to mirror the FRN analysis.  487 
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2.6.2 Experiment 2 488 
All components of interest were quantified in the same manner as for Experiment 1. A 489 

crucial design difference between the two experiments was that Experiment 2 490 

included four block types rather than two: It included two block types with equivalent 491 

feedback reliability (75%) but differing instructions, and two blocks differing in 492 

objective feedback reliability (87.5% vs. 62.5%). Our core analyses contrasted the 493 

first two block types, where feedback contingencies were objectively identical but 494 

subjective expectations differed. These analyses of the FRN, P3, and N1 and P1 used 495 

repeated-measures ANOVAs with the factors INSTRUCTION (reliable/unreliable) 496 

and VALENCE (positive/negative), and included all correct trials preceding a rule 497 

reversal. For comparison with the pure-instruction effects we observed, and with prior 498 

studies of the FRN that have manipulated objective feedback reliability, we also 499 

report FRN analyses that contrast blocks differing in objective feedback reliability 500 

(87.5% vs. 62.5% reliability). For this analysis we entered FRN amplitude measures 501 

into a repeated-measures ANOVA with the factors CONDITION (reliable/unreliable) 502 

and VALENCE (positive/negative). 503 

 504 

3. Results 505 

3.1 Experiment 1 506 

3.1.1 Experiment 1 - behavioural analysis 507 
Experiment 1 investigated the effect of instructions about the volatility of the 508 

environment on feedback processing. To compare the neural correlates of feedback 509 

processing, it was important first to show that volatility instructions did not disrupt 510 

initial learning of the mapping. All statistical analyses, if not stated otherwise, are 511 

two-tailed, paired-sample t-tests, with an alpha-level of 0.05. 512 

3.1.1.1 Experiment 1 - Initial learning 513 
To test for potential effects of instructions on learning of stimulus-response mappings, 514 

we compared accuracy during the first halves of all blocks (which differ only in terms 515 

of instructions). As expected, there were no reliable differences between the 516 

instruction types on performance accuracy (t < 1): Mean accuracy was 80% for 517 

stability instruction blocks (Standard-error of the mean (SEM) = 1%) as compared 518 

with 79% (SEM = 1%) in volatility-instructed blocks. As a related measure, we 519 
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assessed whether instructions changed how efficiently participants integrated 520 

feedback to acquire the initial mapping. We therefore measured how many trials it 521 

took participants to repeat the correct mapping, measured from the first trial of each 522 

block. Again, we found no significant differences between instruction conditions, 523 

with 2.77 (SEM = 0.13) vs. 2.72 (SEM = 0.09) trials, respectively (t < 1). Participants 524 

received negative feedback on average on 37% (SEM = 1%) of trials during the first 525 

half of volatility instructed blocks and on 34% (SEM = 6 %) of trials in the first half 526 

of stability instructed blocks. The difference was not significant (t < 1). These 527 

findings are relevant in interpreting analyses of the FRN, which is usually described 528 

as a correlate of frequency-based unexpectedness. Informativeness can only be 529 

separated from low-level frequency effects if participants experience the same amount 530 

of surprising negative feedback under both instruction conditions during the part of 531 

the blocks that enter the FRN analysis. The initially equivalent performance shows 532 

that this was the case.  533 

3.1.1.2 Experiment 1 - The effect of instructions on adaptation 534 
Clear effects of instructions became apparent when we compared behaviour in the 535 

second halves of the blocks. Following a rule reversal, participants reached higher 536 

accuracy levels under volatility than stability instructions (68%, SEM = 1%, vs. 64%, 537 

SEM = 1%; t(27) = 2.5, p < 0.01). This performance difference was brought about by 538 

faster adaptation to expected than non-expected rule reversals, revealed by 539 

significantly fewer trials-to-repetition after rule reversal under volatility instruction 540 

than stability instructions (4.7, SEM = 0.25, vs. 5.69, SEM = 0.27, respectively; t(27) 541 

= 3.61, p < 0.01). More evidence for the role of instructions, even in the absence of 542 

real changes in the environment, came from a comparison of performance in terms of 543 

percentage correct responses for the second halves of the blocks where no reversal 544 

occurred. Participants performed worse when they expected rule reversals than when 545 

they did not (t(27) = 3.68, p < 0.01). 546 

These differences in adaptation rate across instruction conditions were 547 

apparent in the earliest blocks of the experiment, and did not reliably increase in 548 

amplitude across blocks. The average difference in trials-to-repetition between the 549 

first rule reversal under volatility instructions and the first reversal under stability 550 

instructions was 2.32 trials; this difference is statistically significant in a paired-551 

samples t-test t(27)= 3.07, p = 0.0024). The effect size is re-assuring given that this 552 
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analysis relies on single block of data per subject and condition: Cohen’s d = 0.78. 553 

The difference between instructions for the last block with a rule reversal in each 554 

respective instruction condition was 1.39, a difference that was also statistically 555 

significant in a paired-samples t-test t(27)= 1.82, p = 0.039; Cohen’s d = 0.49. There 556 

is no statistically significant effect of block when we compare the difference in trials-557 

to-repetition by instruction conditions in the first and last block of each respective 558 

condition (t(27) = 0.96, p = 0.34; Cohen’s d = 0.25). Taken together, these results 559 

suggests that observed differences across conditions reflect participants’ ability to 560 

adjust their learning flexibly and rapidly according to the instruction provided, rather 561 

than reflecting long-term learning (i.e., based on the experience of prior blocks with 562 

differing instructions).  563 

To test whether the comparative advantage in adapting to a new rule under 564 

volatility instructions was caused by more exploratory behaviour following surprising 565 

feedback under volatility than stability instructions (in the absence of actual rule 566 

reversals), we compared across instruction conditions the proportion of trials in which 567 

participants reversed the present mapping following a surprising negative outcome. 568 

As expected, we found a significant effect of instruction on the probability of 569 

switching to the alternate mapping following negative feedback in the first half of 570 

blocks (t(27) = 2.08, p < 0.05), with a larger propensity to switch in volatility 571 

instruction blocks than stability instruction blocks (21% vs. 19%). The same 572 

comparison did not yield significant differences in the second half of blocks following 573 

actual rule reversals (t < 1), presumably because participants understood that rules 574 

would only reverse once per block. 575 

In sum, these analyses showed that participants used instructions to improve 576 

their behaviour and, crucially, that the rate of negative feedback between different 577 

instructions does not increase low-level unexpectedness of negative feedback 578 

under volatility instructions.  579 

3.1.1.3 Experiment 1 – No differences in model-free negative RPEs 580 
The preceding analyses demonstrate that, at an aggregate level, negative feedback was 581 

less surprising following volatility instructions than stability instructions (numerically 582 

so in the first halves of blocks, and reliably so considering both block halves). As an 583 

additional measure to further rule out the possibility that differences in FRN 584 

amplitude between instruction conditions in our paradigms may be conflated with 585 



 18 

differences in the low-level unexpectedness of negative feedback at a trial-by-trial 586 

level, we quantified instruction-blind unexpectedness by implementing a standard 587 

model-free RL learning algorithm. We applied this algorithm to calculate trial-by-trial 588 

reward prediction errors (RPEs) in all blocks (learning rate = 0.5) according to the 589 

actual sequence of stimuli, responses and outcomes experienced by each participant. 590 

As with our EEG analyses, we focused on RPEs in first half of each block, where 591 

blocks differed solely in terms of instructions. Comparing the average RPE size (for 592 

signed, negative RPEs, which correspond to unexpected negative events) across 593 

instruction types, we found no significant difference (t < 1). As intended, this shows 594 

that an instruction-blind reinforcement-learning algorithm that treats unexpected 595 

feedback identically under different instruction conditions cannot explain the 596 

predicted differences in FRN amplitude.  597 

 598 

3.1.1.4 Experiment 1 – Hidden Markov Model shows advantage of instruction 599 

sensitivity 600 

To test formally whether an artificial learner that is sensitive to instructions would 601 

capture behaviour in the task, we compared two Bayesian Hidden State Markov 602 

Models (HMM; Gharamani, 2001; Hampton et al., 2006). This family of models has 603 

been shown to outperform reinforcement learning models in explaining reversal 604 

learning in previous work (Hampton et al., 2006) and we followed this approach 605 

closely in the construction of our basis model. The models that we tested against each 606 

other differed with regard to whether they were instruction blind (basis model), or 607 

instruction sensitive (instruction model). Thus, rather than compare RL and HMM 608 

algorithms as presented by Hampton and colleagues (2006), we aimed to 609 

establish an advantage of an instruction-sensitive compared to an instruction-610 

blind learner, within a class of models already known to be successful in 611 

reversal-learning. Decisions to reverse or persist with a mapping were based on a 612 

trial-by-trial estimate of uncertainty in the environment (formalised as entropy, 613 

Shannon, 1948; please refer to the supplemental material for a full description of the 614 

models).  615 

 As expected, model comparison using Bayesian information criterion (BIC) 616 

showed a positive (significant) advantage (Kass & Raftery, 1995) of the instruction-617 

sensitive model (model 2) over the instruction-blind model. Further, the results of the 618 

instruction-sensitive parameter fitting (see supplement) suggested that participants 619 
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were more averse to uncertainty under volatility than under stability instructions. In 620 

formal terms, the entropy avoidance parameter, , was significantly larger across the 621 

group under volatility than under stability instructions (Mean v =0.7 SEM = 0.22; 622 

Mean s   = 0.52, SEM = 0.72 t(27) = 3.22, p = 0.003). Both models performed 623 

satisfactorily at >79% correctly predicted trials in all conditions (Figure 3b). The 624 

presented models give a reasonable, albeit imperfect fit to the behavioural data. 625 

Which exact model will fit human behaviour best is a matter of ongoing research, but 626 

the comparison of these reasonably successful models suggests that artificial learners 627 

which compare experience with expectations about the environment, are better at 628 

explaining human behaviour than agents blind to this higher-order information.  629 

 630 

3.1.2 Experiment 1 - EEG analysis 631 

3.1.2.1 FRN modulation by volatility instructions 632 
The primary EEG analysis of Experiment 1 tested whether instructed volatility—633 

which should increase informativeness of feedback events—would modulate FRN 634 

amplitude. We hypothesized that the neural response towards unexpectedness is 635 

modulated by the perceived informativeness of the event, and therefore that we would 636 

observe larger FRN amplitude under volatility compared to stability instructions. In 637 

line with this hypothesis, we found a main effect of INSTRUCTION (F(1,27) = 5.36, 638 

p = 0.030) in the predicted direction, with a larger FRN for feedback under volatility 639 

compared to stability instructions in the 2 x 2 repeated-measures ANOVA (Figure 4). 640 

Further, we established a main effect of VALENCE (F(1,27) = 34.74, p < 0.001) with 641 

the typical pattern of a larger negative extent of the waveform for negative than 642 

positive feedback. There was no statistically significant interaction between the 643 

effects (F(1,27) = 2.28, p = 0.142). Investigating the main effect of instruction further in 644 

planned comparisons, we found that there was a significant difference in FRN 645 

amplitude following negative feedback under volatility instructions as compared to 646 

stability instructions: t(27) = 2.55, p = 0.016. However, the paired t-test for effects of 647 

instruction in positive feedback events failed to show a significant difference: t < 1. 648 

 To assess whether differences in response-feedback interval affected the FRN, 649 

we ran an additional 2 x 2 x 2 repeated-measures ANOVA, including the between-650 

group factor EXPERIMENT VERSION (1a/1b). We found no effect of this between-651 

group variable (F < 1) and no interaction of the between group variable with either of 652 
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the two main effects (interaction with INSTRUCTION: F < 1; interaction with 653 

VALENCE: F(1,27) = 1.71, p = 0.2). Finally, there was also no reliable three-way 654 

interaction between EXPERIMENT VERSION, INSTRUCTION, and VALENCE 655 

(F(1,27) = 1.07, p = 0.3).  656 

 657 

3.1.2.2 SPN modulation by volatility instructions 658 

We expected instructions to change not only feedback processing, but also 659 

anticipation of feedback as it is reflected in the SPN. In a repeated-measures ANOVA 660 

with the factors INSTRUCTION, TIME, and LATERALITY, we established the 661 

predicted effect of INSTRUCTION (F(1,13) = 7.01, p = 0.02). The SPN reached greater 662 

(i.e., more negative) amplitude under volatility instructions than under stability 663 

instructions, a sign of increased preparation for feedback processing in this condition. 664 

We further established a significant effect of LATERALITY (F(2,26) = 5.88, p = 665 

0.008), reflecting the typical right-hemisphere dominance of the SPN. The effect of 666 

TIME reached only marginal significance (F(2,26) = 2.69, p = 0.087), but there was a 667 

significant interaction between the TIME and LATERALITY (F(4,52) = 3.1, p = 668 

0.023), because the difference between the right and left hemisphere in the amplitude 669 

of the negative deflection of the waveform increased over time.  670 

3.1.2.3 P3 modulation reflecting behavioural adaptation 671 
A first analysis of the P3 assessed whether this component would show similar 672 

modulation by informativeness as the FRN and SPN. The results indicated not: For 673 

the P3 we found no reliable effect of INSTRUCTION (F(1,26) = 2.8, p = 0.102), but a 674 

significant effect of VALENCE (F(1,26) = 7.8, p < 0.01) with greater P3 amplitude 675 

following negative than positive feedback, and no interaction of INSTRUCTION and 676 

VALENCE (F < 1). Our second analysis of the P3 focused on its relationship with 677 

behaviour on trials following negative feedback (cf. Chase et al., 2011). In a 2 x 2 678 

repeated measures ANOVA with the factors NEXT TRIAL BEHAVIOUR (reversal 679 

or repetition) and INSTRUCTION, we found a significant effect of NEXT TRIAL 680 

BEHAVIOUR (F(1,26) = 33.79, p < 0.001), with greater P3 amplitude following 681 

negative feedback that led to reversals of behaviour (Figure 5). However, in this 682 

analysis we found no main effect of INSTRUCTION (F < 1) and no interaction 683 

between NEXT TRIAL BEHAVIOUR and INSTRUCTION (F(1,26) = 1.95, p = 0.17). 684 

We thus established that P3 amplitude was relatively insensitive to instruction but was 685 
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predictive of participants’ behaviour on the next trial. The latter finding perhaps 686 

accounts for the VALENCE effect in the first analysis: P3 amplitude may be larger 687 

for trials with negative than positive feedback because negative trials are more often 688 

followed by a reversal in behaviour.  689 

 
 

3.1.2.4 P1 and N1 modulation by volatility instructions 690 
To test whether the established FRN effect was modulated by an instruction effect on 691 

low-level attention to feedback stimuli, we measured visual P1 and N1 potentials 692 

evoked by feedback events. This analysis found no significant effect of 693 

INSTRUCTION, or VALENCE, and no interaction between the two on the P1 (all Fs 694 

< 1). There was likewise no significant main effect or interaction in the corresponding 695 

repeated measures ANOVA for the N1 (all F < 1). Similar null-effects were 696 

established in additional analyses measuring the N1 as base-to-peak amplitude either 697 

in this posterior cluster, or in a fronto-central cluster. In sum, the analyses of visual 698 

potentials towards feedback events do not suggest that the effects established in the 699 

FRN analyses are driven by an attention-orienting effect that differed across 700 

instruction conditions.  701 

3.1.3 Experiment 1 summary 702 
Behavioural analysis of Experiment 1 showed that participants integrated instructions 703 

and experienced feedback, adapting faster to unannounced rule switches faster under 704 

volatility instructions. EEG recordings showed that instructions clearly modulated 705 

preparation for stimulus processing, as signified by increased SPN amplitude under 706 

volatility instructions. Rapid evaluation of the feedback, reflected in the FRN, showed 707 

an integration of experienced feedback and instructions: FRN amplitude was 708 

increased under volatility instructions, i.e., when feedback informativeness was 709 

increased. P3 amplitude, by comparison, did not vary by instruction, but instead 710 

varied as a function of behaviour on the next trial. The lack of difference in visual 711 

potentials between instruction conditions, intact learning of the new-mapping 712 

following rule reversals in the stability-instructed blocks, and no difference in reaction 713 

times between instruction conditions show that these effects are not driven by a lack 714 

of task-engagement or attention to the task under stability instruction. 715 
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3.2 Experiment 2 716 

3.2.1 Experiment 2 - Behavioural analysis. 717 
The second experiment investigated the effect on feedback processing of instructions 718 

about feedback reliability. To create a plausible context for the target instruction 719 

conditions, which had identical feedback reliability, we also implemented two 720 

conditions that differed with regard to objective feedback reliability. We provide a 721 

brief summary of the main comparisons of conditions with objective reliability 722 

differences (high reliability vs. low reliability) and then focus on the critical 723 

comparisons of blocks with identical objective reliability but different instructions 724 

(instructed reliability vs. instructed unreliability), corresponding to the analyses 725 

presented for Experiment 1. All statistical analyses, if not stated otherwise, are two-726 

tailed, paired-sample t-test, with an alpha-level of 0.05.  727 

3.2.1.1 Performance with different levels of objective feedback reliability 728 
Initial acquisition of the correct mapping showed effects of objective feedback 729 

reliability, with significantly higher performance (percent correct) in blocks with 730 

reliable (89%, SEM = 1%) than unreliable feedback (75%, SEM = 3%; t(14) = 5.83, p 731 

< 0.01), and fewer initial trials-to-repetition of the correct rule, (2.21, vs. 4.71, trials, 732 

t(14) = 5.51, p < 0.01). Unreliable feedback also made it harder to adapt behaviour to 733 

unannounced changes in task rules, as evident from higher accuracy after rules had 734 

reversed in the reliable (85%, SEM =1%) than the unreliable feedback blocks (58%, 735 

SEM = 3%; t(14) = 7.99, p <0.01), and fewer trials-to-repetition in reliable (3.62, 736 

SEM = 0.17) compared to unreliable blocks (6.7, SEM = 0.58; t(14) = 5.34, p <0.01). 737 

Lastly, the propensity to switch to an alternative mapping following negative 738 

feedback was higher under reliability (20%, SEM = 2%) than unreliability conditions 739 

(14%, SEM = 3%), although the difference was only marginally significant (t(14) = 2, 740 

p < 0.1). 741 

3.2.1.2 Experiment 2- Effect of reliability instructions on initial acquisition 742 
Comparing performance in blocks with objectively identical feedback reliability but 743 

differing instructions, we found no reliable difference in accuracy between reliability-744 

instruction blocks (86%, SEM = 1%) than unreliability-instructed blocks (80%, SEM 745 

= 4%; t(14) = 1.28, p = 0.22). As hypothesized, and similar to the results of 746 

Experiment 1, instructions had no reliable effect on the number of trials to establish 747 

the initially correct mapping under instructed reliability (2.7, SEM = 0.15) than 748 
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instructed unreliability (3.8, SEM = 0.69; t(14) = 1.44, p = 0.17) (Figure 2). Finally, 749 

instruction effects were evident as the propensity to switch to an alternative mapping 750 

following negative feedback was significantly higher (t(14) = 2.14, p < 0.05) under 751 

reliability instructions (16%, SEM = 2%) than unreliability instructions (12%, SEM = 752 

2%).  753 

 754 

3.2.1.3 Experiment 2 - Effect of instructions on adaptation of behaviour 755 
Participants showed less sensitivity to rule reversals in unreliability-instructed blocks 756 

than reliability-instructed blocks. Overall accuracy was numerically higher post-757 

reversal in reliability-instructed blocks than in unreliability-instructed blocks (74% vs. 758 

67%), although this difference did not reach significance (t(14) = 1.6, p = 0.26). 759 

Reduction in trials-to-repetition of the correct rule reached marginal significance 760 

(t(14) = 1.98, p = 0.066), with fewer trials in reliability-instructed (4.9, SEM = 0.43) 761 

compared to unreliability-instructed (6.08, SEM = 0.6) blocks (Figure 2).  762 

Comparison of adaptation rate measured as trials-to-repetition in the first 763 

block and last block of each instruction condition led to slightly less conclusive 764 

results than in Experiment 1. There was no significant effect of instruction comparing 765 

only the first block of each instruction type in which there was a rule reversal (t(14) = 766 

0.9, p = 0.19, Cohen’s d = 0.26). The effect was significant in the last block, however 767 

(t(14) = 2.9, p = 0.058, Cohen’s d = 0.88). As in Experiment 1, there was no effect of 768 

block between the differences found under different instructions (t(14) = -1.1, p = 769 

0.31, Cohen’s d = -0.37. Again, we thus find no conclusive evidence to suggest that 770 

the modulation of behaviour by instructions was altered by long-term experience with 771 

the instructions. We note that the power of this statistical test may be limited, as it is 772 

based on observations from a single block per condition across 15 participants. 773 

Finally, there were no effects of instruction on the likelihood of participants 774 

reversing their mapping following surprising negative feedback once they had 775 

established the new rule (t < 1); again this effect can be explained by participants 776 

understanding that rules would reverse only once during a block.  777 

3.1.1.4 Experiment 2 – No differences in model-free negative RPEs 778 
The same instruction-blind, model-free RL algorithm that was used for Experiment 1 779 

was applied to the data from Experiment 2, and yielded again no difference in average 780 

negative RPE amplitude between instruction conditions in trials preceding rule 781 
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reversals (t(14) = 1.51, p = 0.151). Low-level unexpectedness is therefore unlikely to 782 

account for any differences in amplitude of relevant EEG components across 783 

instruction conditions, as established below. 784 

3.2.2 Experiment 2- EEG 785 
The EEG analysis in Experiment 2 proceeded in three steps. We first established the 786 

effects of differences in objective reliability on the FRN, comparing only the highly 787 

reliable and highly unreliable conditions in a 2 x 2 repeated-measures ANOVA with 788 

the factors VALENCE and CONDITION. After establishing the effects of real 789 

differences in reliability, we then tested whether instructed reliability would lead to 790 

comparable effects on the FRN as instructions on volatility. Third, we again tested 791 

whether an effect of directed attention could account for changes in FRN amplitude 792 

(measuring N1 and P1) and assessed the pre-reversal effects on P3 amplitude, as in 793 

Experiment 1. 794 

3.2.2.1 FRN modulation by objective feedback reliability 795 
Testing for the effects of objective reliability, we found that CONDITION had no 796 

significant effect on the size of the FRN (F(1,14) = 2.52, p = 0.13). Feedback 797 

VALENCE had the expected significant effect on the FRN (F(1,14) = 195.39 p < 0.01), 798 

with greater amplitude following negative than positive feedback. Moreover, there 799 

was a significant interaction between the two factors (F(1,14) = 13.46, p < 0.01), 800 

indicating that the difference in FRN amplitude between positive and negative 801 

feedback was larger when feedback was highly reliable than when it was unreliable. 802 

3.2.2.2 FRN modulation by instructed reliability 803 
The crucial test for the modulation of the FRN by instructions in Experiment 2, 804 

yielded no significant main effect of INSTRUCTION (F(1,14) = 1.2, p = 0.29), a 805 

significant effect of VALENCE (F(1,14) = 82.98, p < .001) and a significant interaction 806 

between the two factors (F(1,14) = 9.09  p < 0.01). A paired t-test showed that the 807 

difference between instruction conditions was highly significant for negative feedback 808 

(t(14) = 2.38, p = 0.03; two-tailed), with reliability instructions leading to larger FRN 809 

amplitude than unreliability instructions, as predicted. Interestingly, the paired t-test 810 

for positive feedback showed that the interaction was also influenced by the positive 811 

feedback events, which yielded a significant difference in the opposite direction. That 812 

is, positive feedback led to a larger FRN under unreliability instructions than under 813 

reliability instructions (t(14) = -3.21, p = .006) (Figure 6). 814 
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3.2.2.3 P3 modulation reflecting behavioural adaptation 815 
As in Experiment 1, overall P3 amplitude following negative and positive feedback 816 

was not reliably influenced by instruction: A repeated measures ANOVA with the 817 

factors INSTRUCTION and VALENCE yielded no significant effect of 818 

INSTRUCTION (F(1,14) = 1.96, p  = 0.18) and contrary to Experiment 1, no effect of 819 

VALENCE (F <1), and likewise no interaction (F < 1). As in Experiment 1, we 820 

additionally investigated the relationship between P3 amplitude and behavioural 821 

adaptation following negative feedback. Here we once again replicated the effect of 822 

NEXT TRIAL BEHAVIOUR on P3 amplitude (F(1,14) = 8.75, p = 0.01), with larger 823 

P3 amplitude preceding switches than repetitions of the mapping applied. There was 824 

no reliable main effect of INSTRUCTION (F < 1), but a significant interaction 825 

between NEXT TRIAL BEHAVIOUR and INSTRUCTION (F(1,14) = 11.09, p < 826 

0.01). This interaction indicated that the reversal-related increase in P3 amplitude was 827 

greater under reliability-instruction than unreliability-instruction (Figure 5). 828 

3.2.2.4 P1 and N1 modulation by instructions 829 
Analysis of the P1 and N1 components provided some evidence of differences in low-830 

level attention to feedback as a function of instruction condition. For the P1, we found 831 

no significant effect of INSTRUCTION (F < 1), a significant effect of VALENCE 832 

(F(1,14) = 8.074, p = 0.013), with positive feedback leading to a larger P1 than negative 833 

feedback, and a trend-level interaction (F(1,14) = 4.05, p = 0.063). The interaction was 834 

driven by a larger P1 amplitude after positive than negative feedback especially in 835 

blocks with reliability instruction compared to blocks with unreliability instruction. 836 

For the N1 component, we observed a reliable main effect of VALENCE (F(1,14) = 837 

7.99, p = 0.013), a main effect of INSTRUCTION (F(1,14) = 7.4, p = 0.016) and a 838 

significant interaction (F(1,14) = 47.14, p < 0.001). The interaction was driven by a 839 

larger N1 following negative feedback than positive feedback, specifically under 840 

instructed reliability. Thus, overall in this experiment, it seems that more attention 841 

was directed towards feedback events that were expected to be reliable (and which 842 

subsequently elicited an enhanced FRN).  843 
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3.2.3 Experiment 2 summary 844 
Behavioural analysis of Experiment 2 replicated and extended the major findings of 845 

Experiment 1. Instructions that increased the informativeness of the feedback (here, 846 

reliability instructions) led to faster adaptation following rule reversals. Further, 847 

Experiment 2 replicated the key finding that feedback processing can be modulated by 848 

higher-order representations, again showing an increase in FRN amplitude for 849 

instructions emphasizing informativeness of the feedback. In contrast to the results of 850 

Experiment 1, this FRN modulation was accompanied by reliable changes in early 851 

visual potentials evoked by feedback presentation, suggesting differences in the level 852 

of attention paid to feedback across instruction conditions. However, behavioural 853 

markers (e.g., how quickly the initial mapping is acquired in both conditions) suggest 854 

that overall task engagement did not differ as a function of instructed reliability. 855 

Finally, this experiment replicated the finding that P3 amplitude was predictive of 856 

changes in behaviour on the next trial but, in contrast to Experiment 1, that this effect 857 

was modulated by instruction (as a function of the informative value of the feedback).  858 

4. Discussion 859 

The present experiments demonstrate consistent influence of high-level belief, 860 

manipulated via explicit instruction, on behavioural and neural markers of adaptive 861 

learning. Specifically, we assessed the impact of manipulating perceived informative 862 

value of trial-by-trial feedback in a novel reversal-learning task, by providing 863 

instructions about the volatility of the environment and the reliability of the feedback. 864 

We predicted that increased informativeness would change how readily participants 865 

adapt behaviour following unexpected feedback, and would modulate processing in a 866 

neural system so far predominantly associated with experience-driven reward 867 

prediction errors. Both experiments confirmed these predictions, showing that 868 

learning is faster and FRN amplitude increases when negative feedback is perceived 869 

to be more informative of changes in the environment. These instruction effects were 870 

observed in the very first blocks of the experiment, demonstrating that they did not 871 

depend on global expectancies built up through participants’ experience with task 872 

contingencies, but rather reflected rapid and flexible assimilation of instructed 873 

information into the learning process. These changes in learning as a function of 874 

perceived informativeness of feedback were reflected in increased amplitude of the 875 
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FRN component. At the same time, we observed increased preparation for feedback 876 

processing as its informational value increased, as reflected in enhanced pre-feedback 877 

EEG activity. Together, these findings are indicative of a flexible learning system that 878 

integrates instruction and experience to guide adaptive behaviour. 879 

A core component of adaptive behaviour is determining whether unexpected 880 

outcomes are a consequence of lasting changes in our environment, or rather reflect 881 

chance occurrence. Whereas environmental changes require adaptation, perseverance 882 

is crucial in producing effective goal-directed behaviour when faced with random 883 

aberrations. High-level knowledge about the informativeness of feedback in a given 884 

environment can assist in accurately interpreting that feedback. A key feature of our 885 

experimental designs was therefore de-confounding experience-based expectancies 886 

and informative value. In Experiment 1, instruction that rules are likely to reverse 887 

(high volatility) made negative feedback more informative compared to negative 888 

feedback under stability instructions; however, if anything negative feedback was also 889 

less surprising under volatility instructions compared to stability instructions. In 890 

Experiment 2, instructions indicating increased feedback reliability render negative 891 

feedback more surprising and more informative than it appears under unreliability 892 

instructions. Both experiments showed that the FRN increased with the informative 893 

value of negative feedback, even in the absence of accompanying differences in the 894 

expectedness negative feedback (as reflected in overall probability, and in negative 895 

reward prediction error derived from a simple model-free reinforcement learning 896 

algorithm).  897 

Our findings thus represent a departure from existing characterizations of the 898 

FRN-indexed learning system as reflecting a rapid evaluation of experience, with 899 

regard to the valence of feedback (Nieuwenhuis et al., 2004; Yeung & Sanfey, 2004) 900 

or reward prediction error (Holroyd & Coles, 2002; Walsh & Anderson, 2012; 901 

Hauser, 2014 Sambrook & Goslin, 2014). Instead, they suggest that the neural system 902 

generating prediction errors is cognitively penetrable and integrates higher-order 903 

information in prediction error processing. This conclusion suggests a direct and 904 

facilitatory effect of instruction on reinforcement learning, which points to a nuanced 905 

picture of the relationship between instruction-based and experience-based learning 906 

(cf. O’Reilly, 2013).  907 

On the one hand, previous results seem to suggest independence of model-based 908 

processing, which refers to knowledge about the contingencies between events, and 909 
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model-free processing of experienced feedback. This work proposed a two-stage 910 

model of adaptive learning and goal-directed action (Daw, Niv, & Dayan, 2005; 911 

Walsh & Anderson, 2011). Within this framework, responses that are implemented 912 

based on instructions (i.e., based on a model of events) override, rather than directly 913 

modulate, the computations of model-free reinforcement learning. This account has 914 

been supported by evidence that information about the value of choosing a particular 915 

stimulus influences choice behaviour but does not modulate FRN amplitude (Walsh & 916 

Anderson, 2011). On the other hand, some recent work suggests an antagonistic 917 

relationship between model-free and model-based learning, with neural signatures of 918 

model-free prediction errors diminished when participants made choices driven by 919 

model-based evaluation of stimulus outcomes (Doll et al., 2015). Thus, across 920 

different studies, there is evidence that instruction and experience work in concert (as 921 

in the present experiments), that they can operate largely independently (Walsh & 922 

Anderson, 2011), or that they are mutually inhibitory (Doll et al., 2015).   923 

We interpret these findings and theories as consistent rather than contradictory, 924 

specifically by pointing to the flexibility of the learning process according to current 925 

task demands: When instructions are valid and render feedback irrelevant to choice, 926 

optimal behaviour relies on implementing the instruction and essentially ignoring the 927 

feedback, so integration of experience and instruction and not required (Walsh & 928 

Anderson, 2011). Conversely, when model-based evaluation and model-free learning 929 

are equally suited to solve a task, it seems that the model-based system will inform the 930 

model-free learner to the degree to which the higher-order system is involved in 931 

selecting actions (Doll et al. 2015). This finding of possible communication between 932 

systems is consistent with our results. However, our paradigm is unique in that 933 

optimal behaviour relies on integration of information from two different sources—934 

participants use a model of the world (based on instructions) to inform their 935 

interpretation of experienced low-level contingencies (based on feedback), rather than 936 

trading-off the utility of information from high-level representations and low-level 937 

contingencies. This conclusion considerably extends existing knowledge in showing 938 

that higher-order representations can amplify, rather than diminish prediction error 939 

processing.  940 

An interesting tangent in this regard is work that characterizes prediction 941 

errors as markers of the salience of external events, rather than as indices of the 942 

valence of feedback (Redgrave & Gurney, 2006). In the context of this idea, our 943 
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findings would imply that informativeness is a high-level source of salience, 944 

which constitutes an unsigned, valence-unrelated quality modulating the neural 945 

response to feedback above and beyond the effects of low-level unexpectedness 946 

(unsigned surprise).  947 

The neural mechanisms underlying integration of instruction-modulated and 948 

experience-driven learning is likely to involve a functional interplay between the 949 

prefrontal cortex and the basal ganglia. The basal ganglia are classically associated 950 

with model-free prediction errors; while the FRN is understood to be generated in the 951 

anterior cingulate cortex (Hauser et al., 2014), it is assumed to relate to the output of 952 

basal ganglia computations (Foti et al., 2011; Hauser et al., 2014; Holroyd & Coles, 953 

2002). We thus add to recent work, as our results suggest that basal ganglia 954 

processing is informed by high-level beliefs from instruction; previous work has 955 

suggested that these high-level representation likely depend on flexible 956 

representations in prefrontal cortex (Doll, 2011; Stocco et al., 2010; 2012; Chatham, 957 

Frank, & Badre, 2014; Mestres-Misse et al., 2016). If this is the case, one mechanism 958 

by which modulation could be achieved is through PFC influence on striatal 959 

processing as observed by Li et al. (2011).  960 

Further work that supports the link between basal-ganglia prediction errors and 961 

higher-order beliefs comes from a recent combination of computational modelling and 962 

genotyping: Participants of a genotype that diminishes the striatal response to 963 

unexpected negative events find it harder to re-learn the actual worth of a stimulus 964 

after receiving false information (Doll, et al., 2011). Further, patients with 965 

schizophrenia, a neurological condition associated with a change in dopaminergic 966 

innervation of the prefrontal cortex (Doll et al., 2014), are less susceptible to (false) 967 

instructed beliefs about the value of a stimulus than healthy controls. Together, these 968 

results suggest interplay of basal ganglia and prefrontal computations where, on the 969 

one hand, prefrontal modulation provides an additional input to basal ganglia 970 

computations. On the other hand, tracking of prediction errors in the basal ganglia can 971 

reverse the influence of false higher-order information (Doll et al., 2011). Our results 972 

go further in providing evidence that prediction error signals, which constitute the 973 

output of the basal ganglia, are informed by prefrontal input when integration of 974 

experience and higher-order knowledge is essential for optimal behaviour in the task. 975 

In this context, however, we note that the relationship between basal ganglia 976 

prediction errors and the FRN remains a topic of debate, and information transfer 977 
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between these network components may be bi-directional (Frank, Woroch, and 978 

Curran, 2005, Cavanagh & Frank, 2014). Whether integration of higher-order and 979 

low-level information is achieved at the stage of the basal ganglia computation, or 980 

within the PFC, is a key question for future work. 981 

Regardless, the mechanistic implication of this model is that the integrated 982 

learning system is proactive in selecting relevant information to guide learning. We 983 

find evidence of this active preparation for processing learning-relevant feedback in 984 

modulations of the SPN component (Kotani et al., 2013), which we have shown to be 985 

influenced by current beliefs regarding the informative value of feedback. This effect 986 

was observed in the absence of consistent modulation of early visual potentials, 987 

suggesting that preparation does not simply entail low-level attentional adjustments. 988 

Rather, we find a modulation preceding the sampling process by interpretation of 989 

the anticipated relevance of feedback for adaptive behaviour. 990 

The suggestion that integration of higher-order beliefs modulates 991 

behaviour is consistent with findings from our Hidden Markov Model (HMM) 992 

comparison. Here, we modelled the impact of volatility instructions as increasing 993 

the learner’s aversion towards uncertainty caused by unexpected feedback. An 994 

implication of this approach is that instructions modulate how experience is 995 

interpreted to form action policies, rather than modulating state estimations 996 

(e.g., of the likelihood of negative vs. positive feedback). Indeed, we found that 997 

the FRN amplitude did not predict behaviour on the next trial, suggesting that 998 

although this signal integrates higher-order beliefs and experience, the 999 

behavioural effect of instructions may be driven by a modulation of a parameter 1000 

at a later stage in the action selection hierarchy. However, it remains for future 1001 

work to test formally whether artificial learners that focus on the integration-1002 

stage could predict behaviour better than learners in which instruction alters 1003 

parameters of action selection, and whether neural markers of the selection stage 1004 

vary according to beliefs.  1005 

Both of the present experiments replicated the finding that P3 amplitude 1006 

following negative feedback increases when participants’ choose to change strategy 1007 

on the following trial (Chase et al., 2011). As previously mentioned, no close link to 1008 

trial-by-trial behaviour was apparent in the FRN. We interpret this finding within the 1009 

framework of the P3 as a marker of decision-making which holds that P3 amplitude 1010 

reflects the accumulation of evidence in favour of one decision (e.g., stay or switch) 1011 
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over another (O’Connell, Dockree, & Kelly, 2012). The nature of the study does not 1012 

allow us to discriminate whether the P3 amplitude reflects behavioural adaptation as a 1013 

global process, or is limited to rule-switching. 1014 

Contrary to the FRN, this P3 effect did not consistently vary according to 1015 

participants’ beliefs about the informativeness of the current feedback: We found 1016 

modulation of P3 amplitude only with instructions about feedback reliability, and not 1017 

environment volatility. A possible explanation for this difference is that if the P3 in 1018 

fact tracks evidence for the correctness of a foregoing decision, this tracking may be 1019 

influenced by information about the evidence itself (i.e., the feedback reliability), but 1020 

not to the same degree by information about the environment in which this evidence 1021 

occurs (i.e., information in volatility of the environment).  1022 

 1023 

Conclusion 1024 
We used instructions about the environment as a canonical form of high-level 1025 

influence in a task requiring flexible adaptation of behaviour. Our experiments show 1026 

that instructions about higher-level features of the environment can change neural 1027 

processing of action outcomes. In light of the present findings, and against the 1028 

backdrop of previous work, we argue that experience of outcomes and instruction can 1029 

mutually inform each other to promote flexible, adaptive behaviour. Clearly, 1030 

instructions are just one, arguably uniquely human, source of higher-order 1031 

representation. Past experience can likewise aggregate to higher-order representations, 1032 

shaping expectations that can in turn modulate how the surprise associated with 1033 

immediate feedback is interpreted. 1034 

Collectively, these computations solve the task of determining the significance of 1035 

unexpected events. This flexibility allows human learners to successfully navigate in 1036 

our complex, volatile environments, and to make informed decisions about whether to 1037 

persevere or explore new options when we are surprised by the consequences of our 1038 

actions. Future work will need to address the neural basis of this flexible 1039 

learning, testing whether informativeness-modulated surprise signals are 1040 

generated within the prefrontal-basal ganglia network as we propose above, and 1041 

whether neural correlates of action selection reflect parameters that predict 1042 

behaviour. Combining computational models of behaviour with trial-by-trial 1043 

measures of neural variability, such as afforded by fMRI and MEG, appears the 1044 
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most promising approach to uncover the foundations underlying this type of 1045 

flexible behaviour.  1046 
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Figure Legends 1191 
Figure 1: Paradigm setup 1192 

A: In Experiment 1, half of the blocks were instructed to be volatile, and the other half 1193 
of the blocks were instructed to be stable. Following volatility instructions, the task 1194 
rules reversed in 2/3 of the blocks. Following stability-instructions, rules only 1195 
reversed in 1/3 of the blocks. Rule reversals occurred half way through the blocks, 1196 
which varied in length to make the timing of rule reversals unpredictable. In 1197 
Experiment 2, two different instructions, one indicating reliable feedback, the other 1198 
one indicating unreliable feedback were paired with three degrees of reliability. The 1199 
outer two conditions create a plausible context for the conditions of instruction-effect 1200 
comparison. The latter conditions were critical, with a fixed, intermediate level of 1201 
objective feedback reliability (75%) but with varying instruction about feedback 1202 
reliability. B: In both experiments, participants had to respond to two different images 1203 
per block, one of which required a left-hand response and the other one a right-hand 1204 
response. Participants had to learn this mapping from the probabilistic, trial-wise 1205 
feedback. 1206 
 1207 
Figure 2 : Learning rates 1208 
Pattern of behavioral accuracy in experiment 1 (A) and experiment 2 (B). Percent 1209 
correct responses are shown for bins of 4 trials from the start of each block (left 1210 
panels), or the switch trial (right panels), respectively. A: Participants learned as fast 1211 
under volatility instruction (pink) as under stability instruction (blue), as evident from 1212 
virtually identical accuracy in the three bins covering the first 12 trials. However, 1213 
there was a clear effect of volatility instruction on adaptation behavior, as evident in 1214 
lower accuracy for the first few trials following the switch under stability compared to 1215 
volatility instructions. B: Participants learned faster and performed slightly better 1216 
under reliability (red) compared to unreliability instructions (cyan). Likewise, 1217 
adaptation was faster following reliability compared to unreliability instructions. All 1218 
error bars display standard-error of the mean. 1219 
 1220 

Figure 3: HHM 1221 
A: Modeled parameters. Participants gave a response on every trial (1), either 1222 
implementing mapping 1 or mapping 2, according to which one they believed 1223 
reflected the correct mapping at that time. In this example, the required mapping (i.e. 1224 
the state of the world) switches after 19 trials; the participants needs 6 trials to adjust 1225 
to this switch. Each response was paired with feedback in the form of positive (green) 1226 
and negative (red) smileys (2). The information of the feedback becomes integrated 1227 
with the prior of the implemented mapping being correct (initially at 0.5), and the 1228 
information (surprise) associated with this outcome is captured in I. Unexpected 1229 
negative feedback leads to an increase in the Surprise parameter I; during a series of 1230 
negative feedback outcomes towards the implemented mapping, this value decreases 1231 
as the prior probability of the correctness of the implemented mapping decreases, too. 1232 
Entropy (H) reflects the uncertainty that results from an accumulation of informative 1233 
outcomes, and thus the uncertainty at the beginning of the respective next trial (3). B: 1234 
The HMM switches the mapping when an individually fitted entropy-aversion 1235 
parameter (alpha) is crossed. An instruction-blind model (model 1), assuming the 1236 
same entropy-aversion score for all types of blocks (displayed in c), leads to slightly 1237 
lower percent correctly predicted trials at the level of the individual, than an 1238 
instruction-sensitive model (model 2). C: The individually fitted alpha values explain 1239 
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why participants switch faster in blocks with volatility instruction (patterned bars) – 1240 
participants displayed significantly greater entropy aversion under volatility compared 1241 
to stability instructions; The BIC model comparison yields a difference of approx. 6 1242 
suggesting a positive advantage of the instruction-sensitive over the instruction-blind 1243 
model (Kaas & Raftery, 1995).  1244 
 1245 

 1246 
 1247 

A: Time-voltage plots showing the FRN component following positive (dashed lines) 1248 
and negative (solid lines) unexpected feedback under volatility (left panel) and 1249 
stability (right panel) instructions. The bar graph (middle panel)  plot the average over 1250 
individual amplitudes, showing the significant effect of instruction on amplitude (1), 1251 
and the significant difference between FRN amplitude following unexpected negative 1252 
events in the comparison of volatility-instructed and stability-instructed blocks (2). 1253 
Voltage topographies show the difference between positive and (unexpected) negative 1254 
feedback under the respective instruction conditions in the time interval between 200 1255 
ms and 310 ms post stimulus onset. B: The time-voltage plot for the SPN show that 1256 
this negative pre-feedback component reached a higher amplitude (lower voltage) 1257 
preceding feedback under volatility compared to stability instructions. W1-3 refers to 1258 
the time-windows for analysis. Voltage topographies show the difference in raw 1259 
voltage between volatility and stability instruction conditions in the last time window. 1260 
Dark electrodes delineate clusters that entered the respective statistical analysis and 1261 
correspond to the electrodes averaged in time-voltage plots. All error bars display 1262 
standard-error of the mean.  1263 
 1264 
Figure 5: Reversal effects on P3 amplitude 1265 
A: Effects of behavior on the next trial on P3 amplitude under volatility (left panel) 1266 
and stability (right panel) instructions. The P3 amplitude was enhanced preceding 1267 
reversals of the current mapping (dark lines), compared to repetitions of the ongoing 1268 
mapping under both instruction conditions. B:  Effects of behavior on the next trial on 1269 
P3 amplitude under reliability (left panel) and unreliability (right panel) instructions. 1270 
There is a positive difference between trials preceding reversals compared to 1271 
repetitions under the reliability instructions. A&B: Voltage topographies show the 1272 
difference between trials preceding reversals and repetitions under the respective 1273 
instruction conditions, dark electrodes delineate the cluster that entered the statistical 1274 
analysis and underlies the time-voltage plots to either side. 1275 
 1276 
Figure 6: Modulation of the FRN by Reliability Instruction 1277 

Figure 4: Modulation of ERPs by Volatility Instruction 
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Time-voltage plots showing the FRN component following positive (dashed lines) 1278 
and negative (solid lines) unexpected feedback under reliability (left panel) and 1279 
unreliability (right panel) instructions in the intermediate conditions, which are 1280 
matched for actual feedback reliability. The bar graphs (middle panel) plot the 1281 
average over individual amplitudes, showing that there is no significant main effect of 1282 
instruction on amplitude (1), instead we find the significant interaction between 1283 
valence and instruction. This interaction is driven by significant difference between 1284 
FRN amplitude following unexpected negative events in the comparison of reliability-1285 
instructed and unreliability-instructed blocks (2), as well as a significant (positive) 1286 
difference between FRN amplitude following positive feedback under unreliability 1287 
instruction compared with unexpected negative feedback under reliability instruction. 1288 
Voltage topographies show the difference between positive and (unexpected) negative 1289 
feedback under the respective instruction conditions in the time interval between 200 1290 
ms and 310 ms post stimulus onset. Dark electrodes delineate clusters that entered the 1291 
respective statistical analysis and correspond to the electrodes averaged in time-1292 
voltage plots. All error bars display standard-error of the mean. 1293 
 1294 
  1295 
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HIGHLIGHTS 1296 
 1297 

 Study used instructions to modulate beliefs about informativeness of feedback 1298 

 Reversal learning performance improved with perceived informativeness 1299 

 Instruction-sensitive Hidden Markov Model provides good fit of behaviour 1300 

 EEG recordings of feedback-related negativity (FRN) show modulation by instructions 1301 

 Findings suggest reinforcement learning integrates experience with high-level beliefs 1302 


