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Abstract

We develop a new quantile autoregression neural network (QARNN) model based on
an artificial neural network architecture. The proposed QARNN model is flexible and
can be used to explore potential nonlinear relationships among quantiles in time series
data. By optimizing an approximate error function and standard gradient based
optimization algorithms, QARNN outputs conditional quantile functions recursively.
The utility of our new model is illustrated by Monte Carlo simulation studies and
empirical analyses of three real stock indices from the Hong Kong Hang Seng Index
(HSI), the US S&P500 Index (S&P500) and the Financial Times Stock Exchange
100 Index (FTSE100).
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1. Introduction

Quantile regression (QR) proposed by Koenker & Bassett (1978) provides an
alternative way to explore the true relationship among variables. Instead of mean
regression, quantile regression focuses on the entire conditional quantiles of a response
y given predictors z. QR has been widely applied in many disciplines, such as
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financial economics, survival analysis, environmental modelling, see Yu et al. (2003)
for more details.

While the linear-in-parameters QR offers an effective approach in many applica-
tions and can be tested using methods of Jiang et al. (2014), it may misspecify the
underlying functional relationships, which are often nonlinear-in-parameters. How-
ever, as pointed out by Koenker (2005), it is still challenging to specify an appropriate
nonlinear function for nonlinear quantile regression. A seminal work in this area is
Engle & Manganelli (2004) who provided the conditional autoregressive value at risk
(CAViaR) model, which has been widely extended, see Chen et al. (2012) and Jeon
& Taylor (2013). But the nonlinear relationship in CAViaR needs to be set according
to experience in advance. This prior specification of the nonlinear functional form is
probably not appropriate for some complicated data.

Inspired by Cannon (2011), in order to overcome the nonlinearity issue, we consid-
er a nonlinear quantile regression in the context of time series and develop a quantile
autoregression neural network (QARNN) model by adding an artificial neural net-
work (ANN) structure to quantile autoregression (QAR) model. The QARNN model
is flexible and can implement a nonlinear quantile autoregression for time series data
and estimate nonlinear relationships without the need to specify a precise function-
al form. To illustrate the efficacy of QARNN, we conduct Monte Carlo simulation
studies and real world applications. The numerical results show that the QARN-
N model is able to describe dynamics in various financial time series and generally
outperforms other classical models, such as GARCH-type models, CAViaR models,
Riskmetrics and QRNN model, in terms of the accuracy for VaR evaluation.

The rest of the paper is organized as follows. Section 2 explores the literature
review from both technical and application aspects. Section 3 gives a brief overview of
quantile autoregression methods and presents the QARNN model in details. Monte
Carlo simulation studies and real world applications are carried out in Section 4. We
conclude with a summary in Section 5. More details of QARNN model is elaborated
in the Appendix.

2. Literature review

Quantile regression presents a comprehensive strategy for giving an impression of
the entire conditional distribution of a response y given x instead of the conditional
mean only. The idea behind quantile regression can be traced back to the advance
in loss functions.The asymmetric loss function (check function) in Koenker (2005)

ρτ (u) =

{
τu u ≥ 0

(τ − 1)u u < 0
(1)
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with τ ∈ (0, 1) can yield quantiles. It captures the rationale, recalling that the
quadratic loss function yields mean, while the absolute value loss function yields
median.

The parametric and nonparametric quantile regression have been extensively s-
tudied in the last decades. In an important generalization of the quantile regression
model, Powell (1984, 1986) introduced the censored quantile regression model, which
consistently estimates conditional quantiles when observations on the dependent vari-
able are censored. Yu & Jones (1998) proposed the nonparametric regression quantile
estimation by kernel weighted local linear fitting. Auśin et al. (2014) developed a
Bayesian semiparametric approach to relax the constraints of GARCH models, utiliz-
ing mixtures of Gaussian distribution with a Dirichlet process prior. See more details
in Koenker (2005), which gave an overview of theory, methodology, and application
of quantile regression.

As mentioned above, nonlinear quantile regression experience is much more limit-
ed, compared to extensive computational experience with quantile regression compu-
tation for linear-in-parameters models. In order to address the problem, Chen et al.
(2009) proposed a copula-based nonlinear quantile autoregression, which addressed
the possibility of deriving nonlinear parametric models for families of conditional
quantile functions. This method can address nonlinearity, asymmetry, serial depen-
dence as well as the heavy-tails of financial assets marginal and joint probability
distribution. Inspired by Chen et al. (2009), Righi & Ceretta (2015) proposed a
pair-copula construction approach, considering the dependence with past observa-
tions isolating the effect for lags. Koenker (2005) and Ghouch & Genton (2009)
developed local polynomial quantile regression model via adopting the local poly-
nomial expansion. Koenker et al. (1994) explored a class of quantile smoothing
splines, which extended by Koenker & Mizera (2004) with introducing a continuous,
piecewise linear function over the trigram model.

Moreover, nonparametric methods, such as ANN, has been widely employed to
explore complex nonlinearities due to its flexibility (Saravanan et al., 2010). ANN is
also used to develop a nonlinear quantile regression approach. Taylor (2000) proposed
a nonparametric and nonlinear quantile regression neural network (QRNN) method,
which combined the advantages of both quantile regression and neural network. This
method efficiently reveals the entire conditional distribution of the response variable
and also simulates the nonlinearity of financial system comprehensively. The QRNN
model (Taylor, 2000) is also applied to estimate the conditional distribution of multi-
period returns, which avoids the need to specify appropriate explanatory variables
in Taylor (1999).

A nonparametric conditional quantile estimation via nerual network structure,
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developed by Feng et al. (2010), has been applied to credit portfolio data analysis.
The results showed that QRNN is more robust in fitting outliers compared to both
local linear regression and spline regression. Cannon (2011) implemented QRNN
model in R, which provided a comprehensive package and Yeh (2014) applied QRNN
into estimating distribution of concrete strength through adding an ANN structure
to the QR model for cross sectional data.

In the field of time series analysis, autocorrelation is a common phenomenon
and can be fully revealed by an Autoregression (AR) method. Following the idea of
the AR, QAR model is developed by Koenker & Xiao (2006) and Galvao Jr et al.
(2013). In their work, the model is still linear-in-parameters. Additive models for
quantile regression, proposed by Gouriéroux & Jasiak (2008) and Koenker (2011),
show both autoregressive and dynamic properties of quantile. Although a threshold
quantile autoregressive model is proposed by Galvao Jr et al. (2011) to investigate
the asymmetric dynamics in financial time series, there is relatively little literature
that considers nonlinear quantile regressions in the context of time series. Moreover,
it is worth noting that the QRNN model only takes explanatory variables as inputs,
without considering the nonlinear-in-parameters effects of exogenous variables or the
lagged endogenous variables.

Therefore, in order to address the problem, we develop a general strategy QARNN
for deriving families of nonlinear-in-parameters conditional quantile functions in time
series data analysis via adding an ANN structure to QAR model. The novel proposed
method is elaborated in Section 3.

3. Model Setup

In this section we first give a brief overview of some popular quantile autore-
gression models in the context of time series. Then we propose our QARNN model,
utlizing the architecture of QRNN model.

3.1. Quantile Autoregression

The AR model plays an important role in time series analysis. Following the idea
of the AR, QAR model is developed by Koenker & Xiao (2006) under the framework
of quantile regression. The QAR model can be written as

Qyt(τ |Ft) = α0(τ) + α1(τ)yt−1 + · · ·+ αp(τ)yt−p = z′tθ(τ), (2)

where 0 < τ < 1, zt = (1, yt−1, · · · , yt−p)′ is a predictor vector, θ(τ) = (α0(τ), α1(τ),
· · · , αp(τ))′ is a coefficient vector to be estimated, and F is the σ-field generated by
{yt−1, · · · , yt−p}.
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Then, the QAR model in (2) is fitted by

θ̂(τ) = arg min
θ∈Rp+1

1

T − T0

T∑
t=T0+1

ρτ (yt − z′tθ), (3)

where T0 = p, ρτ (u) is a check function given by equation (1).
Given θ̂(τ), the τ th quantile of yt conditional on Ft can be estimated by

Q̂yt(τ |Ft) = z′tθ̂(τ). (4)

3.2. Quantile Autoregressive Distributed Lag

The QAR model is generalized by Galvao Jr et al. (2013) to the quantile autore-
gressive distributed lag (QARDL) model in an autoregressive dynamic framework.
By adding exogenous covariates to the QAR model (2), QARDL is given by

Qyt(τ |Ft) = α0(τ) +

p∑
j=1

αj(τ)yt−j +

q∑
l=0

x′t−1βl(τ) = z′tθ(τ), (5)

where zt = (1, yt−1, · · · , yt−p,xt, · · · ,xt−q)′, θ(τ) = (α0(τ), α1(τ), · · · , αp(τ),β′0(τ),
β′1(τ), · · · ,β′q(τ))′, and Ft is the σ-field generated by {ys,xs; s ≤ t}.

The estimation procedure of QARDL is also based on standard linear quantile
regression and is similar to equation (3) except for T0 = max{p, q}. In QARDL the
choice of p and q is very important and can be implemented using Akaike information
criterion (AIC) or Bayesian information criterion (BIC).

3.3. Conditional autoregressive value at risk

An early quantile autoregressive framework is proposed by Engle & Manganelli
(2004) which focuses on value-at-risk (VaR) estimation via autoregressive process.
The model is called CAViaR and has the following generic specification

Qyt(τ |Ft) = α0(τ) +

p∑
j=1

αj(τ)Qyt−j
(τ) +

q∑
l=0

f(x′t−1)βl(τ) = z′tθ(τ), (6)

where f is a nonlinear function, zt = (1, Qyt−1(τ), · · · , Qyt−p(τ),xt, · · · ,xt−q)′, θ(τ) =
(α0(τ), α1(τ), · · · , αp(τ),β′0(τ),β′1(τ), · · · ,β′q(τ)), and F is the σ-field generated by
{xs; s ≤ t}. The autoregressive terms αj(τ)Qyt−j

(τ) ensure that the conditional
quantile changes smoothly over time. The role of f(x′t−i) is to link the conditional
quantile to observable variables in the information set Ft . Comparing to QAR and
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QARDL models, which apply QR to the conventional linear time series depending on
past values of the response and model a linear conditional quantile function, CAViaR
models the quantile functions directly as an autoregressive process.

There are four commonly used CAViaR models defined as follows, with CAViaR-
1, CAViaR-2, CAViaR-3, and CAViaR-4 denoting CAViaR Symmetric Absolute Val-
ue, CAViaR-Asymmetric Slope, CAViaR-Indirect GARCH(1,1) model and CAViaR-
Adaptive, separately.

CAViaR-1 : Qt(θ) = ω + αQt−1(θ) + β|yt−1|, (7)

CAViaR-2 : Qt(θ) = ω + αQt−1(θ) + β1(yt−1)+ + β2(yt−1)−, (8)

CAViaR-3 : Qt(θ) = (1− 2I(θ < 0.5))(ω + αQt−1(θ)2 + βy2
t−1)1/2, (9)

CAViaR-4 : Qt(θ) = Qt−1(θ) + α[θ − I(yt−1 < Qt−1(θ)], (10)

where (yt−1)+ = max(yt−1, 0) and (yt−1)− = −min(yt−1, 0).
The parameters of the CAViaR model can be estimated by equation (3) through

recursive forms, and the conditional quantile functions can be recursively estimated
using equation (4).

3.4. Quantile Autoregression Neural Network

Inspired by the above, we develop the QARNN model by combining QAR method
with an ANN structure. We first present the model specification and then discuss
its estimation procedure. In addition, two criteria are used for parameter selection
in the QARNN model.

3.4.1. Model Specification

Inspired by the QRNN of Cannon (2011) which implements a flexible nonlinear
quantile regression for cross-section data without prior specification of the form of
the relationships, we consider a nonlinear quantile regression in the context of time
series and develop the QARNN model.

We extend CAViaR model to a general dependent structure as

Qyt(τ |Ft) = f(Qyt−1(τ), · · · , Qyt−p(τ),xt,xt−1, · · · ,xt−q; θ̂(τ)), (11)

where f is an arbitrary nonlinear function and we consider the use of ANN to sim-
ulate the nonlinear structure in f . As the recursive terms need to be initialized for
training the neural network at the beginning, we compute the empirical quantile cor-
responding to each τ using the first m observations, specifically, m is often chosen as
1/10 of the sample size. Given predictors Qyt−1(τ), · · · , Qyt−p(τ),xt,xt−1, · · · ,xt−q
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and a predicted Qyt(τ), outputs from a QARNN, which is pictured in Fig.1, are cal-
culated as follows. First, an output from the k-th hidden layer node gk,t(τ) is given
by applying a sigmoid transfer function to the inner product between the predictors
and the hidden layer weights w

(h)
pk plus the hidden layer bias b

(h)
k

gk,t(τ) = f (h)

(
p∑
i=1

w
(h)
ik (τ)Qyi−1

(τ) +

q∑
j=0

w
(h)
j+p+1,k(τ)xt−j + b

(h)
k (τ)

)
, (12)

where w(h) = (w
(h)
1k , w

(h)
2k , · · · , w

(h)
p+q+1,k) is a weight vector of hidden layer, b(h)(τ) =

(b
(h)
1 (τ), b

(h)
2 (τ), · · · , b(h)

K )(τ) is a bias vector of hidden layer, and f (h) denotes a sig-
moid transfer function such as the hyperbolic tangent. Second, an estimate of the
conditional τth conditional quantile of response is then given by

Qyt(τ) = f (o)

(
K∑
k=1

w
(o)
k gk,t(τ) + b(o)(τ)

)
(13)

where w
(o)
k are the output layer weights, b(o)(τ) is the output layer bias, and f (o) is

the output layer transfer function such as the identity function.

Figure 1: Schematic diagram showing a QARNN model

3.4.2. Model Estimation

Outputs in QARNN are the estimates of conditional regression quantiles. In
order to estimate (or train) the QARNN model, we define the quantile regression
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error (or cost) function as

C(τ) =
1

T − T0

T∑
t=T0+1

ρτ (yt − Q̂yt(τ)) (14)

where T0 = max{p, q}.
In general, parameters in the QARNN model are trained through gradient based

nonlinear optimization algorithm. The check function ρτ (u) defined in equation (1)
is, however, not differentiable everywhere, as its derivative is invalid at the origin.
Following the suggestion by Cannon (2011) for QRNN, the Huber norm, which can
provide a smooth transition between absolute and squared errors around the origin

h(u) =


u2

2ε
, 0 ≤ |u| ≤ ε

|u| − ε

2
, |u| > ε

(15)

is used here to approximate the check function by

ρ(a)
τ (u) =

{
τh(u), u ≥ 0

(τ − 1)h(u), u < 0
(16)

where ε is a given threshold magnitude, with fixed schedule of values (ε = 2i for
i = −8,−9, · · · ,−32), which is used by default in the R package “qrnn”. Cannon
(2011) developed this package to fit a QRNN with optional left censoring using a
variant of the finite smoothing algorithm. Using the approximate check function, we
revise the quantile regression error and get the approximate error function

C(a)(τ) =
1

T − T0

T∑
t=T0+1

ρ(a)
τ (yt − Q̂yt(τ)). (17)

Therefore, we can estimate the QARNN model by optimizing the approximate
error function via standard gradient based optimization algorithms. In the whole
optimization procedure, ε in the Huber norm is first set to a relatively large value, but
a smaller value is required during the second optimization run. Moreover, ε decreases
with the process, repeating until ε goes to zero and the algorithm converges.

3.4.3. Model Selection

The QARNN model is flexible and can represent nonlinear predictor-predicted
relationships, including those involving interactions between predictors. The level of
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model complexity is usually controlled by the size (p, q) of predictors and the number
of hidden layer nodes K. A model that is too complex may result in over-fitting, but
this can be avoided by penalizing large weights in the input-hidden layer by adding
a quadratic penalty terms to the approximate error function

Cpen(τ) =
1

T − T0

T∑
t=T0+1

ρ(a)
τ (yt − Q̂yt(τ)) + λ

1

MK

M∑
m=1

K∑
k=1

(
w

(h)
mk(τ)

)2

, (18)

where λ is a positive constant that controls the trade-off between the error and the
weight decay term.

An important issue in QARNN modeling is to find appropriate (p, q) and K. To
this end, we use the AIC and the generalized approximate cross validation (GACV)
criteria defined as

AIC(p, q,K; τ) = ln

(
1

T − T0

T∑
t=T0+1

ρ(a)
τ (yt − Q̂yt(τ))

)
+

(p+ q + 1)K + 1

T
, (19)

GACV (p, q,K; τ) =

∑T
t=T0+1 ρ

(a)
τ (yt − Q̂yt(τ))

T − df
(20)

where (p + q + 1)K + 1 denotes the number of parameters for AIC in the QARNN
model, while df for GACV is a measure of the effective dimensionality of the fit-
ted model, and can be estimated by the SURE divergence formula

∑
∂Q̂yt(τ)/∂yt

proposed in Yuan (2006). Presumably, the number of parameters in AIC would no
longer be valid if weight decay regularization is used to avoid overfitting. Therefore,
we replace the number of parameters for AIC: (p+ q+ 1)K + 1 with the df estimate
used in equation (20). In our particular case, grid search method can be used to
minimize AIC and GACV, where p, q,K take values from 1 to 10 leading to 1000
different combinations.

4. Numerical experiments

In terms of implementing the proposed method, we focus our application to es-
timate and predict VaR, which is defined as the maximum potential loss on the
portfolio over a prescribed holding period with a confidence level. From the perspec-
tive of statistics, the 100(1− τ)% VaR of a portfolio Y , a standard tool in financial
risk management, equals the negative of τ -th quantile of the distribution of Y , i.e.
V aRY (1 − τ) = −QY (τ). QR methods are, therefore, often used to evaluate VaR.
In particular, QR has been successfully applied by Taylor (1999) to estimate the
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tails of the distribution of multi-period financial returns or VaRs. Recently, there
are many articles dedicated to the estimation of VaR (Abad et al., 2014). The exist-
ing methodologies, such as some asymmetric extensions of CAViaR method(Engle &
Manganelli, 2004) and the parametric method under the skewed and fat-tail distribu-
tions lead to promising results, especially when the assumption that the standardised
returns is iid is abandoned and the conditional high-order moments are considered
to be time-varying.

In this section we conduct both Monte Carlo simulation studies and real ap-
plications to illustrate the performance of the proposed QARNN model for VaR
evaluation. We mainly compare the QARNN model with some classical models and
a state of arts approach, including CAViaR model, QRNN model, ARMA-APARCH
model, Riskmetric model, GARCH-EVT model and serial pair-copula constructions
(PCC) model.

4.1. Classical VaR estimation methods

A vast array of VaR estimation method have been proposed. We recall two more
classical VaR estimation methods, RiskMetric model and GARCH-EVT model and
one state of arts VaR evaluation approach serial PCC model, proposed in Righi &
Ceretta (2015) for further comparison.

4.1.1. RiskMetric model

Apart from the aforementioned methods, RiskMetric methodology to VaR cal-
culation developed by Morgan (1996) has been widely used in financial risk man-
agement. Let yt denote a portfolio return with the distribution function FY (y) =
P (Y ≤ y). According to the definition of VaR, the VaR of yt with the confidence level
100× (1−θ)% is the negative of the θ-th quantile of FY : V aRY (1−θ) = −QY (θ). In
application, RiskMetrics assumes that yt follows the conditional normal distribution
yt|Ft−1 ∼ N(µt, σ

2
t ) and can be described as follows{

yt = µt + εt, εt = σtzt

σ2
t = γσ2

t−1 + (1− γ)ε2t−1,
(21)

where Ft−1 denotes the information set available until time t, µt is the conditional
mean, σt is the conditional variance that evolves over time according to the EWMA
model with a weighting parameter γ (often taking the value of 0.94), εi is a random
disturbance term, and the residual sequence zt is usually set to follow the standard
normal distribution.
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Under the assumptions in RiskMetrics, financial risk with the confidence level
100× (1− θ)% can be estimated by

V aRt(1− θ) = −µt − σtz(θ) (22)

where zθ = F−1
z (θ) is the θth quantile of the standard normal distribution.

4.1.2. GARCH-EVT model

The GARCH-EVT model proposed by McNeil & Frey (2000) and Allen et al.
(2013) combines GARCH models to estimate the current volatility and EVT to
estimate the tail of the innovation distribution of the GARCH model. The model
has been widely used to estimate extreme financial risk.

The EWMA model is a special case of a generalized autoregressive conditional
heteroscedasticity model proposed by Bollerslev (1986) with the GARCH(1,1) form{

yt = µt + εt, εt = σtzt,

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1,

(23)

where zt ∼ iid.N(0, 1) and ω, α1, β1 are parameters to be estimated. We set the
conditions on parameters ω > 0, α1 > 0, β1 > 0 and α1 + β1 < 1, to ensure strong
positivity and stationarity of the conditional variance.

If F represents the distribution function of the residual series zt, the conditional
excess distribution function can be obtained as follows

Fu(y) = Pr(z − u ≤ y|z > u) =
F (z)− F (u)

1− F (u)
, (24)

where u is a given threshold, 0 ≤ y < zF − u, zF < ∞ is the right endpoint of
F and y = z − u. For a large class of underlying distribution functions F , the
conditional excess distribution function Fu(y), for large u, is well approximated by
the generalized Pareto distribution (GPD)

Gξ,σ(y) =

 1−
(

1 +
ξy

σ

)−1/ξ

, if ξ 6= 0

1− exp−y/σ, if ξ = 0,

(25)

where ξ and σ are called the shape and scale parameters, respectively. From equation
(24), we have

F (z) = (1− F (u))Fu(y) + F (u). (26)
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If we use the random proportion of the data (n − nu)/n to estimate F (u) and use
Gξ,σ(y) to approximate Fu(y), we get the tail estimator

F (z) = 1− nu
n

(
1 +

ξ

σ
(z − u)

)−1/ξ

, (27)

for z > u. Here, nu is the number of observations above u in all n observations.
The negative inverse of (27) with a probability θ gives the VaR

V aRz(1− θ) = −u− σ

ξ

[(
n

nu
(1− θ)

)−ξ
− 1

]
(28)

For ξ < 1, borrowing the idea of equation (22), the financial risk of yt with the
confidence level 100× (1− θ)% can be further estimated by

V aRt(1− θ) = −µt − σt[−V aRz(1− θ)] (29)

4.1.3. PCC model

Righi & Ceretta (2015) used a serial dependence structure of financial assets
based on PCC to estimate risk measures. This PCC structure considers dependence
with past observations isolating the effect for other lags. Consider that y has the
distribution function F , aligned with the procedures elaborated in section 3 in Righi
& Ceretta (2015), financial risk of with the confidence level 100 × (1 − θ)% can be
estimated by

V aR(θ) = qθ(y) = inf{q : F (q) ≥ α} (30)

ES(θ) = E [y|y < V aRt(θ) = qθ(y)] = θ−1

∫ θ

0

qs(y)ds, (31)

Consider Y has a marginal specification,

yt = µt + σtzt, (32)

where µt is the conditional mean, σt is the conditional variance that evolves over
time, zt represents the innovations white noise series. Following the specifications
in Righi & Ceretta (2015), we estimate the ARMA(m,n)-GARCH(p, q) models with
normal innovations for the marginal.

Therefore, for the parametric approach based on marginal models, VaR and ES
can be calculated as follows:

V aRt(θ) = µt +N−1(θ)σt, (33)
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ESt(θ) = µt + σt

[
1

α

∫ θ

0

yN−1(θ)dy

]
, (34)

where, µt and σt are the conditional mean and standard deviation for each asset in
period t, respectively; N−1(θ) is the inverse of normal distribution N on each asset.

4.2. Monte Carlo simulations

4.2.1. Data Generation

Autoregressive conditional heteroscedasticity (ARCH) of Engle (1982) and gen-
eralized ARCH (GARCH) of Bollerslev (1986) provide effective ways to describe
volatility of time series and have been widely used in financial risk management. In
subsequent literature, many (G)ARCH-type models are proposed to explore stylized
facts in financial markets [see Ali (2013) for details]. In particular, the asymmetric
power ARCH (APARCH) model, proposed by Ding et al. (1993) and subsequently
used in Ghourabi et al. (2015), is capable of representing a general class of model-
s that include both ARCH and GARCH models. In addition, ARMA model with
APARCH errors is also popular for time series analysis [see Wurtz et al. (2006) for
details]. A general ARMA(m,n)-APARCH(p, q) specification, which refers as simu-
lation 1, might be expressed as following

yt = c+
m∑
i=1

φiyt−i + εt −
n∑
j=1

ϕjεt−j, εt = ηtσt

σδt = ω +

p∑
i=1

αi (|εt−1| − γiεt−i)δ +

q∑
j=1

βjσ
δ
t−j

(35)

where δ > 0 and −1 < γi < 1 . The random error ηt often uses standard normal
distribution, skewed normal distribution, Student-t distribution and skewed Student-
t distribution.

As one may consider, the performance measure (35) would give only an estimate
of the performance, as the true conditional quantiles are not known. In considera-
tion of a “ground truth” from our proposed QARNN model, we account for another
simulation data via a synthetic time series sample, where a theoretical value of the
conditional quantiles can be derived. Following Galvao Jr et al. (2011), we consider
a baseline linear location-scale two-regime switching self-exciting threshold autore-
gressive model (simulation 2):{

yt = 0.05 + 0.05yt−1 − yt−1ηt, yt−1 ≤ γ0,

yt = 0.05 + 0.05yt−1 + yt−1ηt, yt−1 ≥ γ0,
(36)
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where γ0 = 0 and ηt ∼ N(0, 1) for simplicity but without loss of generality. Aligning
with Galvao Jr et al. (2011), the derived true value of conditional τ -quantile process
is: {

Qyt(τ |yt−1 ≤ 0) = 0.05 + 0.05(0.5− F−1
u (τ))yt−1,

Qyt(τ |yt−1 ≤ 0) = 0.05 + 0.05(0.5 + F−1
u (τ))yt−1,

(37)

In simulation, we first generate yt via ARMA(1,0)-APARCH(1,1) model defined
in (35), which is referred as simualtion 1, with given parameters: c = 0.001, φ1 =
0.05, ω = 0, α1 = 0.05, β1 = 0.8, γ1 = 0, δ = 1.8. Further, we evaluate the model
defined in (36) by conducting Monte Carlo experiments. Specifically, we generate
both simulation data with sample size T = 1500, in which the first 1000 sample are
used as training data for model estimation and the remaining 500 sample are left
as test data for the out-of-sample evaluation. Moreover, we generate four types of
data sets for each model in simulation 1, named as s1.norm, s1.snorm, s1.std and
s1.sstd, respectively, using the listed four different random errors above. We name
data generated via model defined in (36) as s2.norm, for clarity.

4.2.2. VaR Evaluation

We estimate ARMA-APARCH model, CAViaR model, QRNN model, Riskmetric
model, GARCH-EVT and our QARNN model, respectively. To be convenient for
explanation, we modify the proposed model with predictor |yt−j| rather than yt−j for
j = 1, 2, · · · , q, which is in accordance with CAViaR settings, and we set the penalty
parameter λ as 0 for simplicity. We consider three quantiles: τ = 1%, 5%, 10%.
The optimal number of predictors and hidden nodes at each quantile τ and each
stock index return is selected through AIC and GACV criteria, which are either
p = 2, q = 1, k = 3 or p = 1, q = 1, k = 3, shown in Table 1. This implies that
we do not need a very complicated neural network structure for practical use. To
further demonstrate the stability of the QARNN model, we implement it for both
cases of p = 2, q = 1, k = 3 and p = 1, q = 1, k = 3. Without loss of generality, we
assume QRNN the same structure as our QARNN, but excluding recursive terms.
Following the optimal hidden nodes for QARNN and balancing both learning and
generalization errors comprehensively, we let the number of hidden nodes for QRNN
equal to 3.
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Table 1: The optimal parameters in QARNN model determined by AIC
and GACV for simulation data.

Data set
τ = 1% τ = 5% τ = 10%

p, q,K GACV AIC p, q,K GACV AIC p, q,K GACV AIC
s1.norm* (1,1,3) 2.212 -15.324 (2,1,3) 4.385 -14.640 (2,1,3) 5.704 -14.377
s1.snorm* (1,1,3) 1.635 -15.430 (2,1,3) 4.019 -14.727 (2,1,3) 5.292 -14.452
s1.std* (2,1,3) 1.180 -15.952 (2,1,3) 3.561 -14.848 (2,1,3) 5.220 -14.466
s1.sstd* (1,1,3) 1.185 -15.948 (1,1,3) 3.543 -14.375 (1,1,3) 5.414 -13.687
s2.norm (2,1,3) 0.923 -0.080 (2,1,3) 3.561 1.270 (1,1,3) 5.935 1.780
NOTE: (1) * denotes GACV ×10−7; (2)norm, snorm, std, sstd denote the generated data
with random error ηt as standard normal distribution, skewed normal distribution, Student-t
distribution and skewed Student-t distribution, respectively.

To evaluate the accuracy of VaR estimation, we use the likelihood ratio (LR) test
of Kupiec (2006) and the independence and conditional coverage test of Christoffersen
(1998) to backtesting. To distinguish these two tests, we name them as uc.LR and
cc.LR, respectively. Define the observed proportion of failures as

p =
N

T
=

1

T

T∑
t=1

I(−yt > V aRt(1− θ)). (38)

The ideas of both uc.LR test and cc.LR test are to check whether H0 : p = p∗, where
p∗ = θ denotes the expected probability of failures. Under the null hypothesis, the
corresponding uc.LR statistic

uc.LR = 2 ln
[
(1− p)T−NpN

]
− 2 ln

[
(1− θ)T−NθN

]
, (39)

is asymptotically χ2(1) distributed.
Based on the uc.LR test, Christoffersen (1998) proposed the cc.LR test which

is extended to include a separate statistic for independence of exceptions. The test
defines an indicator variable

It =

{
0 if no violation occurs

1 if violation occurs

Following the definition, the test statistic for independence of exceptions is

ind.LR = −2 ln
[
(1− π)n00+n10πn01+n11

]
− 2 ln [(1− π0)n00πn01

0 (1− π1)n10πn11
1 ] (40)
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where nij, i, j = 0, 1 denote the number of times that It−1 = i, It = j occurs; πi, i =
0, 1 represent the probability that a violation occurs conditional on the previous day,
that is π0 = n01

n00+n01
, π1 = n10

n00+n11
and π = n01+n11

n00+n01+n10+n11
. Under the null hypothesis,

the corresponding conditional coverage cc.LR statistic:

cc.LR = uc.LR + ind.LR (41)

is asymptotically χ2(2) distributed (Christoffersen, 1998).
Furthermore, in order to demonstrate that our QARNN model outperforms the

aforementioned available approaches, three measurements are employed to evaluate
the prediction accuracy for simulation 2, namely, the empirical quantile risk (Risk),
the root mean square error (RMSE) and the mean absolute error (MAE).They are
defined as:

Risk(τ) =
1

n

n∑
i=1

ρτ

(
Qyi(τ |x)− Q̂yi(τ |x)

)
, (42)

RMSE(τ) =

√√√√ 1

n

n∑
i=1

(
Qyi(τ |x)− Q̂yi(τ |x)

)2

, (43)

MAE(τ) =
1

n

n∑
i=1

∣∣ (Qyi(τ |x)− Q̂yi(τ |x)
) ∣∣, (44)

where Q̂yi(τ |x) is the prediction of the true quantile Qyi(τ |x).

4.2.3. Performance results

Table 2 presents the observed proportion of failures of each method for the two
simulation data at three confidence levels 90%, 95%, and 99% corresponding to
quantiles 10%, 5%, and 1% respectively. The last two columns of Table 2 report the
value of NS1 and NS2, which represent a count for the number of uc.LR test and
cc.LR test separately for which the null is rejected at 5% significance level. The closer
the proportion of failures to 10%, 5% and 1% under 90%, 95% and 99% confidence
level separately, the better the model is.
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Table 2: Out-of-sample VaR backtesting on simulation data.

τ Models
s1.norm s1.snorm s1.std s1.sstd s2.norm

NS1 NS2
F P1 P2 F P1 P2 F P1 P2 F P1 P2 F P1 P2

1% Riskmetric 1.23 0.32 0.22 2.53 0 0 0.87 0.60 0.41 1.60 0.03 0.02 0.73 0.28 0 2 3

Garch-POT 0.80 0.64 0.33 0.06 0.33 0 1.40 0.14 0.07 0.60 0.33 0 2.20 0 0 2 3

CAViaR1 0.93 0.78 0.11 1.00 0.99 0.58 1.40 0.14 0.10 0.93 0.78 0.41 0.67 0.17 0.02 0 1

CAViaR2 1.00 0.99 0.30 1.14 0.59 0.42 1.40 0.14 0.07 0.93 0.78 0.23 0.73 0.28 0.03 0 1

CAViaR3 1.13 0.62 0.42 0.93 0.78 0.56 1.07 0.79 0.52 1.14 0.59 0.12 0.60 0.09 0.01 0 1

CAViaR4 0.93 0.78 0.01 1.00 0.99 0.77 1.13 0.62 0.42 1.13 0.62 0.44 0.27 0 0 1 2

QRNN 1.20 0.45 0.32 1.13 0.62 0.01 0.93 0.78 0.41 0.93 0.78 0.83 1.13 0.61 0.37 0 1

APARCH 1.27 0.31 0.22 2.20 0 0 1.14 0.59 0.41 1.55 0.05 0.05 5.60 0 0 2 2

PCC 0.80 0.64 0.33 0.80 0.64 0.33 1.14 0.59 0.41 0.60 0.33 0.15 0 0 0 1 1

QARNN-1 1.00 0.99 0.98 1.00 0.99 0.89 1.27 0.31 0.27 1.00 1.00 0.57 1.20 0.45 0.34 0 0

QARNN-2 0.93 0.78 0.80 0.93 0.78 0.60 1.20 0.45 0.61 0.93 0.78 0.79 0.93 0.80 0.55 0 0

5% Riskmetric 3.00 0.03 0 5.60 0.55 0.78 3.20 0.05 0 5.40 0.69 0.42 1.13 0 0 3 3

Garch-EVT 3.80 0.03 0.06 4.60 0.50 0.77 4.20 0.15 0.34 5.54 0.35 0.35 4.55 0.42 0.30 1 0

CAViaR1 4.86 0.80 0.57 4.67 0.55 0.33 4.60 0.47 0.30 4.86 0.80 0.51 4.60 0.48 0.04 0 1

CAViaR2 5.70 0.22 0.51 4.74 0.64 0.58 4.87 0.82 0.91 4.80 0.72 0.25 4.47 0.34 0.17 0 0

CAViaR3 5.84 0.15 0.03 4.55 0.42 0.22 4.67 0.55 0.33 4.06 0.09 0.04 4.87 0.82 0 0 3

CAViaR4 4.47 0.34 0.01 4.55 0.42 0.30 4.93 0.90 0.54 6.07 0.07 0.02 0.73 0 0 1 3

QRNN 4.93 0.90 0.55 5.07 0.90 0.55 4.86 0.80 0.77 4.80 0.72 0.51 4.34 0.23 0.51 0 0

APARCH 4.47 0.34 0.11 4.55 0.42 0.30 6.80 0 0 6.47 0.01 0 6.20 0.23 0 2 3

PCC 2.80 0.01 0 6.00 0.32 0.42 5.40 0.69 0.41 5.80 0.43 0.70 0 0 0 2 2

QARNN-1 4.94 0.91 0.83 5.27 0.63 0.94 4.60 0.47 0.97 5.00 1.00 0.63 5.27 0.63 0.94 0 0

QARNN-2 5.00 0.99 0.88 4.74 0.64 0.94 4.86 0.80 0.97 5.00 1.00 0.89 5.07 0.90 0.56 0 0

10%Riskmetric 6.67 0 0 8.73 0.10 0.23 7.67 0 0.01 10.27 0.72 0.50 1.40 0 0 3 3

Garch-EVT 5.40 0 0 8.80 0.36 0.66 9.20 0.55 0.26 9.00 0.45 0.39 8.80 0.36 0.66 1 1

CAViaR1 10.80 0.31 0.26 9.87 0.87 0.33 9.67 0.67 0.44 9.87 0.87 0.65 9.07 0.23 0.02 0 1

CAViaR2 9.13 0.26 0.21 9.87 0.87 0.45 9.15 0.27 0.11 9.93 0.93 0.70 9.54 0.55 0.08 0 0

CAViaR3 11.90 0.02 0 9.53 0.54 0.29 9.60 0.60 0.31 9.41 0.44 0.38 10.07 0.93 0.34 1 1

CAViaR4 9.00 0.19 0.33 9.87 0.87 0.45 11.1 0.16 0 9.03 0.20 0.52 3.54 0 0 1 2

QRNN 9.94 0.94 0.99 9.93 0.93 0.54 9.60 0.60 0.41 9.93 0.93 0.70 10.14 0.86 0.77 0 0

APARCH 12.70 0 0 9.27 0.34 0.50 13.60 0 0 13.20 0 0 6.80 0 0 4 4

PCC 6.40 0.02 0.02 9.00 0.45 0.57 11.40 0.31 0.47 11.40 0.31 0.58 0 0 0 2 2

QARNN-1 9.21 0.30 0.57 10.10 0.89 0.97 9.53 0.54 0.66 10.01 0.99 0.70 10.47 0.54 0.56 0 0

QARNN-2 9.21 0.30 0.51 10.00 0.99 0.51 10.01 0.99 0.70 9.92 0.92 0.63 9.47 0.50 0.72 0 0
NOTE: (1)norm, snorm, std, sstd denote the generated data with random error ηt as standard normal distribution,
skewed normal distribution, Student-t distribution and skewed Student-t distribution, respectively. (2) CAViaR-1,
CAViaR-2, CAViaR-3, and CAViaR-4 denote CAViaR Symmetric Absolute Value, CAViaR-Asymmetric Slope,
CAViaR-Indirect GARCH(1,1) model and CAViaR-Adaptive; (3) F denotes proportion of failures while P1 and P2
stand for p-values obtained via uc.LR test and cc.LR test separately; (4)NS1 and NS2 represent a count for the
number of uc.LR test and cc.LR test separately for which the null is rejected at 5% significance level.
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It is apparent that both Riskmetric model and APARCH(1,1) model show rela-
tively poor performance compared to the others at all the chosen quantiles. It may
be noticed that CAViaR-Indirect GARCH(1,1) is performing slightly better than our
QARNN model yet only with s1.std at τ = 0.01 and s2.norm at τ = 0.1. Howev-
er, under a stricter VaR conditional coverage test, 90% VaR and 95% VaR derived
from CAViaR-Indirect GARCH(1,1) model and CAViaR-Adaptive model are gener-
ally poor, with 3 NSs at τ = 5% and 2 NSs at τ = 10%. The state of art approach
PCC model performs inferior than our QARNN model under all three quantiles, with
1NS, 2NSs and 2NSs, respectively. Moreover, although other existing models, such as
QRNN, provide relatively significant estimates, the simulation results indicate that
these models are still inferior to our QARNN model. Table 3 summarizes the best
model for VaR evaluation on both simulation data. It is obvious that our QARNN
model is recommended most often as the best model for different cases.

Table 3: The best models for VaR evaluation on simulation data.

Test τ
Confidence level Best model

(%) s1.norm s1.snorm s1.std s1.sstd s2.norm

uc.LR 0.01 99 QARNN-1 QARNN-1 CAViaR-3 QARNN-1 QARNN-2
0.05 95 QARNN-2 QRNN CAViaR-4 QARNN-2 QARNN-2
0.10 90 QRNN QARNN-2 QARNN-2 QARNN-1 CAViaR-3

cc.LR 0.01 99 QARNN-1 QARNN-1 QARNN-2 QRNN QARNN-2
0.05 95 QARNN-2 QARNN-1 QARNN-1 QARNN-2 QARNN-1
0.10 90 QRNN QARNN-1 QARNN-2 QARNN-1 QRNN

The superiority of the proposed QARNN method is demonstrated in Table 4
which summarizes the simulation results for three representative values of τs: 0.01,
0.1, and 0.5. The average value of evaluation indices for QARNN is always less than
those for the other methods, except for the values of MAE with QRNN at τ = 0.01,
which demonstrate that our method outperforms the others. The bold face results
show that QARNN is the optimal method almost for simulation 2 at three different
quantiles.

4.3. Real Applications

4.3.1. Real World Data

We illustrate the efficacy of our QARNN model on three important stock market
indices: the HSI, the S&P500 and the FTSE100. Our application analysis uses daily
observations of the above-mentioned three stock indices from 1st January 2008 to
31st December 2013. After merged the time-period, 1431 log returns are delivered,

18



Table 4: Average value of the evaluation indices for 500 test data.

τ Indices Riskmetric Garch-EVT CAViaR1 CAViaR2 CAViaR3 CAViaR4 QRNN APARCH PCC QARNN-1 QARNN-2
1% Risk 19.32 0.35 17.57 8.46 20.48 42.47 12.07 22.46 47.05 0.08 0.13

RMSE 8.11 3.65 4.23 2.92 4.56 6.88 3.53 6.24 8.13 1.18 1.16
MAE 5.91 2.89 1.55 1.30 1.59 3.17 0.79 3.14 3.38 1.72 1.16

5% Risk 12.85 0.41 2.22 0.06 2.44 244.12 4.70 15.89 27.26 3.53 0.26
RMSE 6.22 2.85 1.19 0.64 1.99 16.32 2.48 5.20 6.13 0.75 0.60
MAE 4.56 2.32 1.10 0.45 1.12 8.86 0.64 2.71 2.46 0.99 0.41

10%Risk 9.00 0.71 5.19 0.42 6.41 15.87 1.80 11.57 16.68 1.07 0.19
RMSE 5.17 2.54 2.41 4.15 2.69 4.26 1.45 4.63 4.86 1.38 0.69
MAE 3.90 2.09 0.64 1.65 0.81 1.54 0.41 2.56 1.89 1.51 0.19

NOTE: CAViaR-1, CAViaR-2, CAViaR-3, and CAViaR-4 denote CAViaR Symmetric Absolute Value, CAViaR-
Asymmetric Slope, CAViaR-Indirect GARCH(1,1) model and CAViaR-Adaptive.

which are defined as rt = log×(ln pt − ln pt−1). The first 954 samples are used as
training data for model estimation and the remaining 477 samples are left as test
data for the out-of-sample evaluation. Table 5 collects the summary statistics of
these daily log returns. We find that all returns have mean close to 0 while standard
deviations are greater than 1. All of them are negative skewed except for the return
of HSI.

Table 5: Summary statistics of daily log returns.

Mean Median Min Max Std. Dev Skewness Kurtosis
HSI -0.011 0.000 -13.582 13.407 1.843 0.104 8.154

S&P500 0.014 0.078 -9.470 10.957 1.546 -0.283 8.179
FTSE100 0.000 0.000 -9.265 9.384 1.424 -0.086 6.927

4.3.2. Performance of QARNN Model

To further illustrate the performance of our QARNN model for real world data, we
also consider the ARMA-APARCH model of Wurtz et al. (2006), the CAViaR model
of Engle & Manganelli (2004), and the QRNN model of Cannon (2011) and make
thorough and specific comparisons. To be convenient for explanation, we modify the
proposed model with predictor |yt−j| rather than yt−j for j = 1, 2, · · · , q, which is in
accordance with CAViaR settings. Moreover, the choice of penalty parameter λ is
implemented using AIC and GACV, where λ is fixed and takes value from 0, 0.001,
0.01, 0.1, 1, 10, 100 and 1000. We estimate the QARNN models by minimizing AIC
and GACV, corresponding to each λ. Then we compare the index Risk in equation
(37) using the predicted quantile obtained from each QARNN model. The results
show that λ = 1, which minimizes the index Risk, is the optimal choice.

Before conducting VaR evaluation, the optimal lags of predictors and hidden
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nodes in QARNN model determined by AIC and GACV are reported in Table 6.
The results show that the optimal choice of lags is either p = 2, q = 1, k = 3 or p =
1, q = 1, k = 3 , which also indicates that we do not need a very complicated neural
network structure in real applications. To save space, we only present VaR estimates
at confidence levels 99%, 95%, and 90% via the QARNN model for τ = 1%, 5%, 10%
and p = 1, q = 1, k = 3 in Fig. 2. It is clear that the volatility of estimated VaR is
similar to stock indices returns. We also apply both the uc.LR test and the cc.LR
test to assess the performance of models in VaR backtesting and report the results
in Table 7.

Interestingly, relative poor performances are measured by CAViaR models. Only
CAViaR-Asymmetric Slope performs well without any significant for both uc.LR test
and cc.LR test under 5% quantile. It is also worth noting that at the extreme quantile
τ = 0.01, our QARNN model is the only one that performs well, whereas others yield
higher or lower values of NS. PCC model is recommended to use only for stock HSI
under 1% quantile, however, the rest poor performances show that our QARNN
model prevails over the other state of arts VaR evaluation methods. The results,
summarized in Table 8, show that the QARNN model outperforms the other models
in most cases. Moreover, it is not surprisingly that the QARNN model performs
better for real world data than for simulation data, with 16/18 recommendations
for real stock indices versus 22/30 for numerical experiments. The reason may be
that the auto-correlation relationship is common and complicated in the real stock
market, and can be successfully resolved by the QARNN model instead of other more
restrictive models.

Table 6: The optimal parameters in QARNN model determined by AIC
and GACV for stock indices.

Stock index
τ = 1% τ = 5% τ = 10%

p, q,K GACV AIC p, q,K GACV AIC p, q,K GACV AIC
HSI (1,1,3) 0.269 -1.092 (1,1,3) 0.738 -0.400 (2,1,3) 1.091 0.087
S&P500 (1,1,3) 0.220 -1.318 (1,1,3) 0.571 -0.711 (1,1,3) 0.770 -0.261
FTSE100 (1,1,3) 0.177 -1.500 (2,1,3) 0.447 -0.874 (2,1,3) 0.658 -0.419
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Table 7: Out-of-sample VaR backtesting on each stock index.

τ Models
HSI S&P 500 FTSE100

NS1 NS2
F P1 P2 F P1 P2 F P1 P2

1% Riskmetric 1.87 0 0 2.60 0 0 2.47 0 0 3 3
Garch-EVT 0.80 0.42 0.15 0.20 0.03 0 0.04 0.13 0 1 2
CAViaR1 1.38 0.16 0.42 1.67 0.02 0 1.38 0.16 0.55 1 1
CAViaR2 1.00 0.99 0.84 1.52 0.06 0 0.89 0.66 0.23 0 1
CAViaR3 0.88 0.63 0.02 1.52 0.06 0.04 1.25 0.35 0.40 0 2
CAViaR4 0.77 0.35 0.56 8.12 0 0 0.89 0.66 0.72 1 1
QRNN 0.78 0.37 0.22 1.36 0.18 0.02 0.89 0.66 0.23 0 1
APARCH 1.72 0.01 0.34 3.53 0 0 1.55 0.05 0.11 2 1
PCC 1 1 0.54 0 0 0 0.02 0.03 0.03 2 2
QARNN-1 0.87 0.60 0.22 0.87 0.60 0.56 1.00 1.00 0.83 0 0
QARNN-2 0.80 0.42 0.15 0.73 0.28 0.40 1.27 0.32 0.56 0 0

5% Riskmetric 6.14 0.05 0.14 6.54 0.01 0.01 6.74 0 0 3 2
Garch-EVT 3.80 0.12 0 2.80 0.01 0 3.60 0.13 0 1 3
CAViaR1 5.97 0.09 0.04 6.49 0.01 0.01 4.20 0.14 0.12 1 2
CAViaR2 4.43 0.30 0.26 4.54 0.41 0.34 4.54 0.41 0.17 0 0
CAViaR3 5.84 0.15 0.11 6.75 0 0 5.97 0.09 0.12 1 1
CAViaR4 6.09 0.06 0 7.31 0 0 6.22 0.04 0 2 3
QRNN 5.12 0.83 0.52 5.24 0.67 0.55 5.24 0.67 0.52 0 0
APARCH 5.93 0.11 0.10 6.53 0.01 0 3.51 0.01 0 2 2
PCC 3.60 0.13 0.05 3.00 0.03 0 4.20 0.40 0.23 1 1
QARNN-1 5.12 0.83 0.74 4.80 0.73 0.91 5.27 0.63 0.82 0 0
QARNN-2 5.27 0.63 0.89 4.90 0.86 0.84 5.20 0.72 0.17 0 0

10%Riskmetric 10.41 0.60 0.37 9.41 0.44 0.44 10.74 0.34 0.05 0 0
Garch-EVT 7.00 0.02 0 6.00 0 0.01 6.80 0.01 0 3 3
CAViaR1 8.52 0.05 0 12.20 0.01 0 8.06 0.01 0 2 3
CAViaR2 8.97 0.18 0 12.20 0.01 0 12.30 0 0 2 3
CAViaR3 12.30 0 0 8.17 0.02 0 12.61 0 0 3 3
CAViaR4 20.30 0 0 21.00 0 0 21.20 0 0 3 3
QRNN 9.18 0.28 0.11 9.66 0.66 0.35 9.67 0.67 0.13 0 0
APARCH 9.21 0.30 0.47 8.57 0.06 0.04 8.77 0.11 0.18 0 1
PCC 7.40 0.04 0.05 7.00 0.02 0.06 7.80 0.09 0.19 2 1
QARNN-1 9.41 0.44 0.52 10.10 0.90 0.13 9.61 0.61 0.43 0 0
QARNN-2 10.40 0.61 0.84 9.27 0.35 0.64 10.00 0.95 0.51 0 0

NOTE: The same as Table 2.
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Table 8: The best models for VaR evaluation on stock indices.

Test τ
Confidence level Best model

(%) HSI S&P500 FTSE100
uc.LR 0.01 99 PCC QARNN-1 QARNN-1

0.05 95 QARNN-1 QARNN-2 QARNN-2
0.10 90 QARNN-2 QARNN-1 QARNN-2

cc.LR 0.01 99 CAViaR2 QARNN-1 QARNN-1
0.05 95 QARNN-2 QARNN-1 QARNN-1
0.10 90 QARNN-2 QARNN-2 QARNN-2

5. Conclusions

In this article, we reconsider the QAR model based on neural networks and de-
velop a novel nonlinear quantile autoregression model QARNN. The QARNN gener-
alizes existing models and is very flexible at describing complicated data structures.
An appealing feature of the QARNN model is that the autoregressive quantiles are
used as predictors recursively and can be estimated directly. To illustrate the ef-
ficacy of the proposed model we conduct Monte Carlo simulation studies and ex-
tensive tests on different stock indices. Numerical results show that the QARNN
model is able to explore nonlinearity in financial time series and performs better in
VaR evaluation than some competing models, including RiskMetric, GARCH-EVT,
ARMA-APARCH, CAViaR, PCC and QRNN.

A noteworthy issue in QARNN modelling lies in penalization of weights in both
hidden layer and output layer. We use a quadratic or L2-norm penalty terms to
address the overfitting problem. Alternative penalty terms such as L1-norm regular-
ization terms can also be implemented for variable selection, which will increase the
interpretability of our model for the case of large numbers of variables.

The current version of QRNN or QARNN is for continuous quantile regression
analysis, and we plan to develop a classification version of QARNN by combining
binary quantile regression of Kordas (2006) with ANN techniques. A more thorough
comparison of the QRNN or QARNN model to other classification methods on dif-
ferent benchmark data sets is also desired. But how to design a QRNN or QARNN
model for multi-class classification is still a challenging task.

22



−10
−5

0
5

10

2008 2009 2010 2011 2012 2013

Time

Re
turn

 / V
aR

tau = 1%
tau = 5%
tau = 10%

(a) S&P 500

−10
−5

0
5

10

2008 2009 2010 2011 2012 2013

Time

Re
turn

 / V
aR

tau = 1%
tau = 5%
tau = 10%

(b) HSI

−10
−5

0
5

10

2008 2009 2010 2011 2012 2013

Time

Re
turn

 / V
aR

tau = 1%
tau = 5%
tau = 10%

(c) FTSE 100

Figure 2: Stock indices returns plot superimposed by VaR estimates via
QARNN model with p = 1, q = 1, k = 3 at τ = 1%, 5% and 10%.
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Appendix

We supplement sufficient detail of the QARNN model from the following aspects:
design and implementation, Domain of use and execution, Quality, reliability and
limitations, and the significance of the model.
Design and implementation of QARNN

Inspired by the QRNN of Cannon (2011), which implements a flexible nonlinear
quantile regression for cross-section data without prior specification of the form of
the relationships, we consider a nonlinear quantile regression in the context of time
series and develop the QARNN model. The relationships among several popular
regression methods are summarized in Fig. 3.

AR QAR QARNN

ANN QRNN
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Figure 3: The relationships among several popular regression methods

It is worth to note that our QARNN method is different from Cannon (2011). In
Cannon (2011), the QRNN model they developed only take explanatory variables as
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inputs, however, our QARNN model considers the nonlinear-in-parameters effects not
only of exogenous variables but also of the lagged endogenous variables. Therefore,
the QARNN model is flexible and can implement a nonlinear quantile autoregression
for time series data and estimate nonlinear relationships without the need to specify
a precise functional form.

In CAViaR model, the impacts of autoregressive terms and exogenous covariates
on the conditional quantile of response are independent with specified form in ad-
vance, which is perhaps not suitable for actual data. We extend CAViaR model to
a general dependent structure as

Qyt(τ |Ft) = f(Qyt−1(τ), · · · , Qyt−p(τ),xt,xt−1, · · · ,xt−q; θ̂(τ)), (45)

where f is an arbitrary nonlinear function and we consider the use of ANN to simulate
the nonlinear structure in f . As the recursive terms need to be initialized for training
the neural network at the beginning, we compute the empirical quantile correspond
to each τ using the first m observations, specifically, m is often chosen as 1/10
of the sample size. Given predictors Qyt−1(τ), · · · , Qyt−p(τ),xt,xt−1, · · · ,xt−q and
a predicted Qyt(τ), outputs from a QARNN, are calculated as follows. First, an
output from the k-th hidden layer node gk,t(τ) is given by applying a sigmoid transfer
function to the inner product between the predictors and the hidden layer weights
w

(h)
pk plus the hidden layer bias b

(h)
k

gk,t(τ) = f (h)

(
p∑
i=1

w
(h)
ik (τ)Qyi−1

(τ) +

q∑
j=0

w
(h)
j+p+1,k(τ)xt−j + b

(h)
k (τ)

)
, (46)

where w(h) = (w
(h)
1k , w

(h)
2k , · · · , w

(h)
p+q+1,k) is a weight vector of hidden layer, b(h)(τ) =

(b
(h)
1 (τ), b

(h)
2 (τ), · · · , b(h)

K )(τ) is a bias vector of hidden layer, and f (h) denotes a sig-
moid transfer function such as the hyperbolic tangent. Second, an estimate of the
conditional τth conditional quantile of response is then given by

Qyt(τ) = f (o)

(
K∑
k=1

w
(o)
k gk,t(τ) + b(o)(τ)

)
(47)

where w
(o)
k are the output layer weights, b(o)(τ) is the output layer bias, and f (o) is

the output layer transfer function such as identity function.
The designed structure is flexible, which considers the nonlinear-in-parameters

effects of both exogenous variables and the lagged endogenous variables. The model-
ing process mainly includes the model estimation and model selection. In the model
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estimation, we substitute the approximate check function in equation (16) for the
original one in equation (1), as its derivative is invalid at the origin. The substitution
makes sure that the standard gradient optimization algorithm can be implemented to
estimate the model. In the model selection, we add the penalty term, which controls
the trade-off between the error and the weight decay term, to avoid the over-fitting
issue during the estimating process. Moreover, we adopt AIC and GACV criteria to
perform parameters tuning.

Domain of use and execution

In our particular paper, we account for the implementation only with VaR evalua-
tion, however, the proposed approach can be extended to various areas of application
similar to ANN or QRNN model, for example, environmental modelling (Nagy et al.,
2002, Shu & Burn, 2004 Cannon, 2011), management (Feng et al., 2010), and survival
analysis (Eleuteri et al., 2003), etc.

We implement the proposed QARNN in R. Under the computation environment,
the running time for obtaining results of Monte Carlo simulation studies and real
world applications are summarized in Table 9. The model can also be executed
in Matlab, SAS, etc. All numerical experiments are carried out on an Intel(R)
Core(TM) i7-4510U CPU (2.60 GHz) processors and 8 GB RAM.

Table 9: Running time of QARNN models (in seconds)

Data QARNN-1 QARNN-2
s1.norm 77.92 131.43
s1.std 85.27 122.73

s1.snorm 97.53 144.79
s1.sstd 66.86 121.93
s2.norm 79.80 61.62

HSI 76.31 79.29
GSPC 106.31 112.35
FTSE 81.40 80.42

Quality, reliability and limitation

Since quality and reliability are important to decide whether the proposed model
under examination is acceptable, we have utilized several ways to elaborate whether
the models chosen are consistent with whatever data are available in Section 4.2.3.
According to the results of all the simulation data, we could tell that our QARN-
N method outperforms the others by both out-of-sample VaR backtesting and the
evaluation indices, which show both quality and reliability of the model.
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It is worthy noting that, similar to QAR in Koenker & Xiao (2006), the issues of
identifiability and possible misspecification of models suggest that extra care should
be made in making this kind of links. For example, in terms of the scheme of
conditional quantile inference, we compute the empirical quantile correspond to each
τ using the first m observations (m is often chosen as 1/10 of the sample size)
to initialize the recursive terms. Although the reliability has been proved through
Monte Carlo results, further studies of how robust the fitting techniques are to the
model misspecification are still needed.

Significance

The QARNN model is proposed that combines an ANN with the QAR method for
time series data. It has two advantages. First, the QARNN model can be used to ex-
plore potential nonlinear relationships by taking advantage of the powerful nonlinear
processing capacity of ANN. The main advantages of nonlinear models are parsi-
mony, interpretability, and prediction (Bates & Watts, 2007). In general, nonlinear
models are capable of accommodating a vast variety of mean functions, although
each individual nonlinear model can be less flexible than linear models in terms of
the variety of data they can describe; however, nonlinear models appropriate for a
given application can be more easily interpretable. Moreover, predictions of nonlin-
ear models tend to be more robust that competing polynomials, especially outside
the range of observed data, which make the proposed model is able to achieve high
prediction accuracy. The second advantage of the QARNN model is that it provides
more information for decision-making by using the ability of QAR to discover the
entire conditional distribution of time series. For example, the model consists of a
process behavior and also the disturbance term/noise showing drifting characteris-
tics, therefore one can determine forecasting of the outputs easily and accurately by
considering the process behavior, disturbances and outputs.
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