
Meeting Quality Standards for Mobile Application Development in Businesses:

A Framework for Cross-Platform Testing

Abstract

How do you test the same application

developed for multiple mobile platforms in an effective

way? Companies offering apps have to develop the

same features across several platforms in order to

reach the majority of potential users. However,

verifying that these apps work as intended across a set

of heterogeneous devices and operating systems is not

trivial. Manual testing can be performed, but this is

time consuming, repetitive and error-prone. Automated

tools exist through frameworks such as Frank and

Robotium; however, they lack the possibility to run

repeated tests across multiple heterogeneous devices.

This article presents an extensible architecture and

conceptual prototype that showcase and combines

parallel cross-platform test execution with

performance measurements. In so doing, this work

contributes to a quality-assurance process by

automating parts of a regression test for mobile cross-

platform applications.

1. Introduction

Software testing is widely used as a method to improve

quality and reduce risk [1]. However, due to the

complexity in software it is considered infeasible to

prevent and find all possible defects within the time

window and budget of a common software

development project [2]. Software testing is therefore

focused on the most risk-reducing techniques within

the constraints given.

To understand some of the challenges related to testing

of mobile applications, it is useful to first summarize

the different approaches for developing them. Firstly,

there are native applications, namely those written in

the respective platform’s native programming

language. For iOS apps this means Objective-C, for

Android it is Java and for Windows Phone it is C#.

Applications are distributed using their platform’s

respective app store, and some require an approval

process that can take several days before an application

is published or updated. If an application crashes or

contain bugs, a user of the respective application’s app

store may post a negative rating. Even if the developer

were able to fix the bug immediately, it would be

subject to a new review process on iOS and WP7 that

could again take up several more days. Moreover,

when the fix is published one cannot force the users to

upgrade their applications. The importance of testing

native applications is therefore obvious. The

challenging part of such testing is the variety and

diversity the number of devices and OS versions in

use. This leads to the testing process being time-

consuming and it is difficult (if not outright

impossible) to cover all versions and variations of

exiting devices.

Secondly, there are mobile web applications. These

applications are mainly developed using the same tools

and languages as regular web pages, but with a touch-

friendly user interface. Although web applications

allow developers to quickly deliver apps to several

platforms, they come with similar problems as their

desktop counterparts — cross-browser compatibility.

Testing can be difficult due to cross-browser issues on

a variety of devices. On the other hand, several web

testing tools such as Selenium, JSTestDriver and

Buster.js attempt to remedy this with cross-browser

test support.

Automated testing attempts to reduce the amount of

manual work in testing. It can, however, never replace

manual testing and is most often used for unit and

regression testing [3, 4]. Additionally, Berner et al. [3]

list time-consuming development of tests, neglected

test environment, repetitive tests and maintainability as

common arguments against automated testing.

Given the diversity of mobile platforms, devices and

development techniques, it seems highly plausible that

mobile applications could benefit from automated

testing. Automated testing attempts to reduce the

amount of manual work in testing, and frameworks for

GUI testing native applications on iOS and Android

already exist. However, to the best of our knowledge

no test framework is able to run the same test against

an application developed for multiple mobile

platforms. Given that iOS and Android, combined,

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content may change
prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual Hawaii International
Conference on System Sciences

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

dominate the mobile operating system market, this then

leads to our research question: How can an extensible

cross-platform testing framework be constructed in

order to automate GUI testing of mobile applications

on iOS and Android?

2. Background
In the earliest days of software engineering, testing was

reactive and revolved around fixing defects after they

occurred by debugging the software [5]. Since 1988 the

approach has been prevention-oriented and this

proactive attitude is still considered the right approach

[1]. It is better and cheaper to find problems early

rather than finding them late or in production [6]. Still,

it is considered infeasible to prevent and find all

possible defects within the time and budget of a

common software development project [2]. This is also

reflected in the IEEE Computer Society's definition of

software testing [1].

A study on Android fragmentation revealed 3997

distinct device models [7]. If we combine this with the

different OS versions on Android, we clearly see that

testing an application on all combinations of devices

and operating systems is also practically infeasible.

Other key issues in software testing include selecting a

suitable set of test cases, optimizing towards the most

efficient ways to test, and developing software that is

testable. Software testing is also done for different

objectives. A subset of these includes acceptance

testing, performance testing and regression testing. In

acceptance testing the software is tested to verify that

the customer's major functional and non-functional

requirements are met [8].

Regression testing is performed on existing software to

ensure previous tests still pass after modifications have

been made [1]. Ideally, all parts of the software would

be retested, but time and budget require prioritizing the

features to retest [2]. Thus, with the aforementioned

landscape of mobile devices and versions, regression

testing can be particularly challenging.

Performance testing attempts to discover how well a

test subject performs under different conditions and

load, for instance how many users your app is able to

handle simultaneously, or how many devices a testing

tool can handle at once.

Testing can also be used as a part of software design,

usually on the level of unit and integration testing.

Accordingly, test-driven development (TDD) involves

writing a small test first, implementing code to make it

pass, and refactoring that code to reach production

quality [9]. Since TDD’s focus is on making small and

fast increments between test and implementation, a

testing tool that supports this fast feedback cycle is

desirable. Moreover, it is debatable whether TDD leads

to improved reuse

2.1. Automated Testing
To reduce the manual labor involved in testing,

automated testing can be employed at different levels

and objectives. It is a widely used industry practice,

mostly for unit and regression testing [4]. Libraries

such as JUnit (Java)1, Mocha (JavaScript)2 and

OCUnit3 (Objective-C)3 can be used to write

automated tests. These are typically used to verify that

components behave correctly on a unit or integration

test level. Another example is Selenium4. It is a

browser automation framework used to verify that a

web application works as expected in a set of browsers

(Firefox, IE, Safari, Opera, Chrome). It is able to run

on multiple platforms and can be used for automated

regression testing.

Although automated testing is widely used, it is often

employed with unrealistic expectations, such as saving
money on ''unproductive'' testing activities, time and

testing resources [3]. Automated testing cannot replace

manual testing, however: “With automated tests, the

expert testers are freed from running the same boring

regression test suite over and over again and more

resources are available for difficult tasks” [3].

Moreover, a study performed by Kasurinen et al. [4]

found that organizations only automated 26% of their

test cases, suggesting that test automation was a

demanding effort. They also found cases where

automation was discarded on smaller projects, due to

high start- up costs. Observations in Berner et al. [3]

support this and found that maintaining the test scripts,

test data and the test environment is hard, resulting in

high maintenance costs. Also, tests must run frequently

or they will not be maintained. This becomes a

problem when they cannot run without a significant

investment in fixing the outdated tests.

Berner et al. [3] also found that automated tools

usually focus on the test execution itself. However,

installation, configuration and reporting are often

neglected, even though doing so can significantly

1 http://junit.org/
2 http://mochajs.org/
3 https://developer.apple.com
4 http://www.seleniumhq.org/

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content may
change prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual Hawaii International
Conference on System Sciences

reduce the total time spent on testing. This is very

relevant in the context of testing mobile applications,

where a diverse set of devices, OS versions, and

applications and build configurations must be

maintained for a cross-platform application.

As mentioned, automated testing is mostly used for

unit and regression testing [4]. A more specific area of

automated testing is automated GUI testing, where the

input and outputs of a graphical user interface can be

automated. This can be used for regression testing, and

is discussed next.

2.2. Automated GUI Testing
Automated regression testing of GUIs has been

described as a ''GUI smoke test'' [10]. The principle is

that a build server should be able to verify that the

major parts of an application still work after

modifications have been made. Ideally, it should be

able to run on multiple machines (in parallel) to reduce

time spent on testing. A common argument against

automated GUI testing in general is that the tests can

have false positives and be expensive to maintain [10].

In Adamoli et al. [11], an extensive survey of prior
techniques for GUI testing was performed. Of the 50

surveyed papers, 18 used a technique called ''record &

playback'', in which the tester performs actions on the

GUI while the tool records these actions for playback

later. Depending on how the tool is implemented, a

problem with this approach is change. Just moving a

button can render the test case useless. The remaining

papers in Adamoli et al. [11] used techniques not

strictly bound to event sequences, called model-based

testing. A model intends to abstract the event

sequences away so steps can be reordered, inserted and

deleted with minimal effort [12]. This can remedy

some of the maintenance costs associated with

automated testing.

A concrete example can be found in Jaaskelainen et al.

[12]. Here “system API” is described as a method,

meaning that the mobile application exposes an

endpoint capable of answering question regarding the

current system state. The authors exclude the GUI from

this method, but similar approaches also exercising the

GUI exist and are described as “keyword and action

word” testing [13]. All these build on the concept of

model-based testing.

A less popular alternative is assertion with images,

according to which screenshots are taken of the

application during tests and compared to the “expected

image” a test designer supplied beforehand. Kwon and

Hwang [14] developed a testing tool to easily model

the flow with expected screens and ran these against a

device. Maintainability is the main problem with this

solution, as changing a color used in many places

requires updating all the images to their new version

[15]. Also, with the frequent use of animation and

platform-specific GUI components on iOS, Android

and Windows Phone today, one would need three set

of “expected images” or sophisticated algorithms to

cater for all variations.

Based on the literature, it thus seems that a model-

based GUI testing is the most flexible approach. To

gain further insight and background information the

abstraction was increased and focus moved to

abstraction layer.

2.3. Abstractions as a Key for Testing
Abstractions are employed in software engineering to

reduce complexity. For cross-platform testing a loose

coupling to the underlying platform is required to

abstract the different platforms implementation away.

This may be achieved by using a language that is not

tied to a platform or programming language.

A challenge in cross-platform testing is identifying
User Interface (UI) elements across applications on

different platforms. Adamoli et al. [11] state that the

problem is present even in applications without cross-

platform support. One reason for this is that capture

and replay tools often store a very specific reference to

the targeted element making it fragile to modifications

later. Another reason described by Adamoli et al. [11]

is the “temporal synchronization problem”, which can

occur in testing applications depending on animations

and clocks, and may result in timing issues. This can

render the element invisible or disabled and thus prone

to failing the test if the testing tool doesn't account for

these timing issues. A related approach found in Matos

and Sousa's [16] work is capable of generating a

mocked user interface along with functional tests based

on use case models. Use case scenarios are written in a

“controlled natural language”, i.e. English with strict

language semantics. This enables the non-programmers

to understand, and even write the test without any

programming skills.

A similar approach is found in Cucumber5. Cucumber

is widely recognized in the Ruby community and

several books are written on it. The requirements can

be specified in a neutral language called Gherkhin6. A

strength of Cucumber and Gherkin is that the tests can

be written in any format and language as user stories

5 https://cucumber.io/
6 https://github.com/cucumber/cucumber/wiki/Gherkin

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content may
change prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual Hawaii International
Conference on System Sciences

and follow the Given...When...Then format used in

Cucumber. A mapping between test description and the

actual functions can then be written next and is used to

relate this to developer environments.

In summary, testing an application across all platforms

and supported devices is time consuming and error-

prone when done manually. While there exist

automated GUI testing tools for iOS and Android,

research is lacking on whether these platforms can be

test-driven simultaneously with the same test and same

tool. This is the precise focus of this article, which

presents Mobilette, a framework for testing mobile

cross-platform applications. Accordingly, the structure

of the remainder of the paper is as follows: the

methodology employed in our research is presented

next; Section 4 then describes the Mobilette

framework, while Section 5 details its evaluation

results. Lastly, conclusions are drawn and

opportunities for future work identified in Section 6.

3. Methodology

The methodology used in this project is the Design-

science research paradigm, as described by Hevner et

al. [17]. Design-science research was used to structure
the process for investigating the research problem. It

consisted of all the common phases from collecting

objectives of a possible solution, to design,

development, and evaluation. The application of

Hevner et al.’s [17] guidelines are summarized in the

following table.

Table 1. Design Research approach

Guideline Research outcome

1. Design as an Artifact An instantiation of a test

framework as an artifact.

2. Problem Relevance Relevance proven as

outcome of the

background section.

3. Design Evaluation Demonstrated via the

test cases presented in

the evaluation

framework

4. Research Contributions To the best of our

knowledge, no similar

framework exists. Thus

the contribution will be

an instantiated artifact,

architecture and

empirical data.

5. Research Rigor Best practice in

information systems SE

was applied to the

development of the

artifact.

6. Design as a Search

Process

An iterative process

followed during the

development of the

artifact.

7. Communication of

Research

Communication through

research article

4. Mobilette Framework

 The research question posed at the outset of this

article is investigated – and subsequently answered –

through the development of Mobilette - a test

framework for cross-platform mobile applications –

which we now proceed to describe.

4.1. Functionality
The framework consists of four main parts. The server

is the heart of Mobilette. It maintains a list of all

connected devices, and sends commands and receives

responses from these. It also includes the necessary

components to build a test framework on top of these

devices and commands. The Android Robotium driver

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content may change
prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual Hawaii International
Conference on System Sciences

is included in an Android application to make it

communicate with the server. It will parse commands

from the server and translate them to the underlying

test framework (Robotium). Third, the iOS Frank

driver is included in an iOS application to make it

communicate with the server. It will parse commands

from the server and translates them to the underlying

test framework (Frank). Finally, the client is the user

interface of Mobilette. It has an "interactive mode" and

an automated mode. The components are modularized

into individual pieces.

When first starting the Mobilette server, it enables the

deployment of applications to each platform and then

runs the Mobilette client to perform tests or execute

commands (Figure 1.).

Figure 1 Mobilette components

4.2. Architecture
 As described earlier, some platform specific tools

already exist, but there is a lack of cross-platform ones.

The first architectural choice was therefore to integrate

with existing test frameworks to support mainstream
development branches. The frameworks need to be

able to work with both physical devices and virtual

simulators or emulator. This is essential, since both

physical and virtual devices are used during the

development of a mobile application. Further, the

frameworks should be well established and support a

broad amount of commands. As the underlying test

frameworks performs the actual GUI manipulation and

instrumentation, the challenge for Mobilette becomes

to integrate with these frameworks in a platform-

independent way. The solution became what Mobilette

calls a "driver", and the concept is depicted in Figure 2.

A driver is responsible for two things. Firstly, it

abstracts the underlying test framework away by

implementing a common interface. This is the topic of

this section. Secondly, a driver is responsible for

registering and keeping in touch with the server at

regular intervals, using “heartbeats”.

A driver implementation for each test framework is

found both in Mobilette's server and on the application

under test. The server translates a generic command

such as "touch" into a format that the underlying test

framework supports and transfers it to the remote

interface. If the underlying framework has a remote

interface it will be delivered directly to it. Otherwise

the remote interface will be created in Mobilette's

driver to communicate with the underlying test

framework. This is further illustrated below in Figure

2.

The specific language of the platforms, i.e. Android

and iOS, are interpreted and converted from the high-

level test language by the Mobilette driver modules.

These modules incorporate the integration of the

language specific interpreter, Robotium and Frank. By

writing the tests in a high level language, we are able

to abstract away from platform and language details,

focusing on core test outcomes. Furthermore, this

facilitates user-centered design of tests and the

possibility to include non-technical people in writing

and assessing tests. On the backend, the controlling

server instance is written in NodeJS, which is a

standard, modular JavaScript based implementation

able to run on all operating systems. Moreover, the

development roadmap of the framework indicates

secure maintenance and updates for the coming years.

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content may
change prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual Hawaii International
Conference on System Sciences

Figure 2 High Level Mobilette Architecture

4.3. Communication through Heterogeneous

Architectures
Based on client server architectures, the

implementation of Mobilette is centered on controlling

real time events. Remote controlling devices in real

time requires the devices to have an open channel that

listens for incoming requests. This channel should be

built upon a protocol that both a regular computer

acting as a test host and a mobile device supports. The

obvious choice is TCP/IP, which is supported by

modern mobile operating systems. Transporting data

could then be done over a socket opened over TCP/IP

or via a higher-level protocol building on TCP/IP.

Mobilette choses the latter and uses HTTP as its

application protocol.

HTTP is widely used and well supported on all

relevant platforms and technologies. It is request-

response based and fits well with Mobilette's need to

send commands and receive responses from devices.

However, HTTP does not maintain a bi-directional

connection in which both the server and client can

communicate freely in both directions. This is a

limitation for real-time applications such as chat and

collaborative software. WebSockets7 is a protocol that

addresses this issue and is capable of bi-directional,

full-duplex connections. Although WebSockets is a

more responsive protocol, it is not as widely supported

as HTTP and may be deprecated in cases where HTTP

solves the same problem. Based on this, our

communication takes place between server and drivers

over HTTP, and between server and client over

WebSockets. This is further illustrated in Figure 3.

This architectural set up allows for scalable device

management. By having the clients loosely coupled

from the architecture and the drivers for supporting the

different platforms included, it is possible to add any

number of devices desired. Further, this technique

allows for scalable maintenance of the platform

frameworks. For instance, when new iOS or Android

versions are released the maintenance of the Mobilette

test framework is limited only to the driver

7 https://www.websocket.org/

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content
may change prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual
Hawaii International Conference on System Sciences

implementation details in Frank and Robotium,

respectively.

Figure 3 Deployment Diagram of Mobilette

 For real time communication Node.js is chosen as it

runs on Windows, Linux and Mac OS X. This is a

benefit as developers should be able to use Mobilette

on the platform they are developing applications for.

Mobilette could have been written in any server-side

cross-platform language such as Java, but Node's fast

event-driven and non-blocking I/O makes it

particularly attractive for Mobilette, as it fits with

Node's description of a data-intensive real-time

application that run across distributed devices. Node

applications are also written in JavaScript, which give

the benefit of future, web-based, clients of Mobilette

the option to reuse models on the server if desirable

Before any commands can be sent, the server needs a

list of devices to send the commands to. This list may

update at runtime as devices connect and disconnect.

The Device Manager handles this, which is a singleton.

A device will contact the server to register itself for

testing. The Device Manager will assign an ID to the
device and put any meta information it received from

the device into a registry of registered devices. This

meta information will contain the operating system it

runs on, which Mobilette driver it uses, the IP-address

it can be contacted on, its screen size and more. If the

device is not heard from again within a few seconds, it

is considered dead and deregistered by the

DeviceManager. To stay alive, the driver-part on the

device will send heartbeats every second with the

assigned ID and meta-information. This way, the

server can maintain a fairly accurate list of available

devices, without actually having an open connection to

them.

Heartbeats are inspired from test drivers. Under this

framework, browsers such as Chrome, Firefox and

Internet Explorer can act as devices where the same

test is run to ensure that behavior is consistent between

multiple browsers. Browsers will continuously report

back to the server that they are alive and what they are

currently engaged in, such as running a command. In

this respect, Mobilette is somewhat similar to the

JSTestDriver8. Both start a server that is capable of

receiving connections from devices or browsers they

can later command. Heartbeats are sent to let the server

know who they are capable of controlling.

4.4. Evaluation

In order to provide reproducible results, a stable and

reliable test environment has to be established. Figure

4 provides a graphical overview of all key components

involved.

Figure 4 Test set-up

A specification of the hardware used as a test host and

devices under test is listed below in Table 2. The tests

could run on a wider set of devices, but are distilled

down to the minimum amount of devices needed to

8 https://code.google.com/p/js-test-driver/

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content may
change prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual Hawaii International
Conference on System Sciences

answer the research question. The devices and host

were connected on an isolated network in order to

minimize interference from other network traffic.

Table 2 Device specification
Host iOS

emu-

lator

Android

emulator

iOS

device

Android

device

Dev MacBook

Pro

(host) (host) iPhone

6

Galaxy

5

OS OS X

10.10.3

iOS

8.3

Android 5 iOs 8.3 4.4.2

CPU 2.6 GHz

i7

ARM

emulated

ARM

v8

Quad

2.5 GHz

RAM 16 GB N/A

host

1 GB 1 GB 2 GB

The required software used for testing was:

• XCode 4.2

• Eclipse 3.7

• Frank 0.8.14

• Robotium 3.2.2

• Device server (part of Mobilette)

• Test runner (part of Mobilette)

All software not required by the OS was terminated on

the test host and the devices under test to minimize

interference with performance and test results.

Additionally, the applications under test were killed

and restarted after each test to further minimize the

possibility of the result.

Mobilette supports a subset of interaction elements in

the UI such as touching elements, setting text and

getting text. The tested application is shown in Figure

5 and tests all of these features. It is deployed on all

devices under test and works in the following manner:

when the user enters a name and clicks "Greet", the

application should respond with "Hello <user>!"

Figure 5: Application under test. iOS to the left,

Android to the right

The artifact tests are divided into two broad categories,

which will now be described: the acceptance test is a

high-level test that verifies if the developed artifact

works according to the main functionality and

requirements [8]. It was performed by running the

same test case multiple times, but with small changes

(bugs) to the application under test (Greetings),

causing the AUT's test case to fail if Mobilette works

correctly. Secondly, the scalability and performance

test’s purpose is to gather metrics on how scalable and

fast Mobilette is in practice, which is an indication of

its usefulness as an automated testing tool [10]. A

performance test also falls under the category of

''measurement techniques'' in the evaluation of

software architectures [18].

Thus, the test investigated how well it handles multiple

devices at the same time by monitoring response times

for a test to complete. Any differences between Frank

and Robotium, and between simulator, emulator and

physical devices can be thus uncovered. The amount of

test runs and metrics is derived from Adamoli et al.'s

[11] approach to GUI performance testing.

5. Results

Table 3 shows the result of running each test in the

acceptance test. All tests were successful under

expected conditions.

Table 3: Acceptance test results.
iOS

emulator

Android

emulator

iOS

device

Android

device

Test case Pass Pass Pass Pass

No text field Pass Pass Pass Pass

No button Pass Pass Pass Pass

No label Pass Pass Pass Pass

Fix bugs.

Incremental

deploy

Pass Pass Pass Pass

Overall, the acceptance test proved that the main

functional requirements were met, and that the

acceptance test can be considered successful.

Improvements can be made to how Mobilette handles

unexpected situations such as screen locking, incoming

phone calls and low battery warnings. This was not a

part of the requirements, but should be considered in

future versions.

Handling unexpected situations is device-specific and

suitable for handling in Mobilette's drivers. Taking

screen locking as an example: it may be possible to

solve this by configuring the timeout manually on all

devices, but this is not ideal and not always possible.

For instance, iOS enterprise profile restrictions may

restrict the timeout from being set longer than 5

minutes. Instead, Mobilette's driver may run code that

prevents the screen from sleeping, in a similar way to

how video players and games function.

Another observation is that while the tests were quick

to run, deployment and configuration is time

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content may change
prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual Hawaii International Conference
on System Sciences

consuming. This corresponds to Berner et al.’s [3]

findings, suggesting that automated test frameworks

should also focus on automating installation and

configuration. Depending on the use case, the time to

deploy applications to all devices may be too long. For

instance, Test Driven Development (TDD) uses small

code increments and fast feedback cycles between test

and implementation [9]. When used as a tool for

regression and acceptance testing the time to deploy is

more acceptable. However, future versions of

Mobilette could remove the manual deployment step

by supporting automated deployment via the respective

platform's SDK. Android has mature command line

tools ready to perform this task. To the best of the our

knowledge, the task is more difficult on iOS, where

deployment is only available from the XCode IDE. It

may be possible to perform this using "fruitstrap", a

tool that reverse-engineers Apple's private API for

deploying to devices from the command line [19].

In respect of the scalability and performance test, in

Figure 6 we compare response times between different

test-run configurations. A test case is first executed on

each device separately. Then the simulator and

emulator would run in parallel, followed by the

physical devices in parallel and, finally, all four

devices in parallel.

Figure 6: Performance test results

Results highlight nearly no performance degradation

between running tests on a device alone or in parallel

with all other devices. The total time required to run a

test case is limited to the slowest device. This suggests

that even more devices may participate in parallel test

runs. Based on the current performance degradation, it

is more likely that other factors such as SDK

limitations and available USB ports will limit the

amount of devices. Moreover, being able to run the test

on many devices in parallel means that less time is

required to wait on test results [10]. On the other hand,

if Mobilette is only used towards the end of a new

release and not continuously during development, this

may be of less importance to the user.

The results also show that testing on iOS is four times

faster than on Android. This was not investigated

further in our current work, but may be a result of one

or more factors:

1. iOS performs better than Android in testing

2. Frank performs better than Robotium —and

related to this: launching a test with a test

session attached to IDEA (Robotium) is slower

than launching the application detached from the

IDE (Frank).

Another observation is that the Android emulator and

device performs nearly identical with averages of 4.49

and 4.65 seconds. The relative difference is larger on

iOS, with averages of 0.79 (simulator) and 1.2 seconds

(device). This is expected as the Android emulator

actually emulates the ARM architecture on a device.

On iOS the simulator runs on a i386 architecture while

the device runs on ARM.

The differences between the devices can be measured

in seconds and are of little practical importance to a

tester running a regression test. On the other hand, it

may be of more interest to a tester using Mobilette as a

TDD-tool [9].

6. Conclusions and Future Work

Existing research and tools point towards the need for a

tool such as Mobilette. Accordingly, this paper has

shown how a cross-platform GUI test framework for

mobile devices can be developed and be open for

extension. In so doing, the answer to the research

question posed at the outset of this paper is a positive

one.

Scalability and performance tests run on Mobilette

found that tests can run in parallel on multiple devices

with little to no performance degradation. Thus, the

time required to run a test was the time spent by the

slowest device. This suggests that a regression test on

all relevant devices can be performed in parallel

without performance issues. Mobilette’s evaluation

also highlighted that, while the tests themselves are fast

to execute, building and deploying to a set of devices is

time consuming. This is consistent with observations in

[3] for traditional GUI testing. These findings indicate

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content may
change prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual Hawaii
International Conference on System Sciences

that a cross-platform GUI testing framework is suitable

for regression testing, but too slow to be used for test-

driven development

A natural continuation of the work described in this

paper would be to evaluate the artifact in a real-world

environment —ideally on different projects to gather

data on its usefulness and performance in practice.

It should be noted that the experiments were done in a

controlled environment with a very basic application

under test. This was done to maintain focus on the core

challenges in cross-platform testing. Mobilette’s

architecture is designed to be extensible. More

complex applications must add support for additional

commands and better error handling in unexpected

situations. Additionally, compatibility with corporate

network configurations and potential firewall issues

should be investigated.

Currently, UI elements need to be laid out similarly

across platforms. Future research could also investigate

how applications with multiple screens and different

interface paradigms can be supported.

Last but not least, future research could also implement

and investigate the benefits of adding support for

hybrid and web-based applications. A tool with cross-

platform support for testing native, hybrid and web-

applications could be used in all types of modern

mobile application development.

7. References
[1] IEEE Computer Society (2004). Software Engineering

Body of Knowledge (SWEBOK), EUA. Available:

http://www.computer.org/web/swebok [Accessed: 12-05-

2015].

[2] Whittaker, J. (2000). What is software testing? and why is

it so hard?, IEEE Software 17(1): 70–79.

[3] Berner, S., Weber, R. & Keller, R. K. (2005).

Observations and lessons learned from automated testing,

Proceedings of the 27th international conference on Software

engineering, ICSE '05, ACM, New York, NY, USA, p. 571–

579.

[4] Kasurinen, J., Taipale, O. & Smolander, K. (2010).

Software test automation in practice:

empirical observations, Advances in Software Engineering

2010: 4:1–4:13.

[5] Gelperin, D. & Hetzel, B. (1988). The growth of software

testing, Communications of the ACM 31(6): 687–695.

[6] Adrion, W. R., Branstad, M. A. & Cherniavsky, J. C.

(1982). Validation, verification, and testing of computer

software, ACM Computing Surveys 14(2): 159–192.

[7] OpenSignal (2012). Android fragmentation visualized.

Available: http://opensignal.com/reports/fragmentation.php

[Accessed: 22-04-2015].

[8] Hsia, P., Kung, D. & Sell, C. (1997). Software

requirements and acceptance testing, Annals

of Software Engineering 3(1): 291–317.

[9] Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M.

& Erdogmus, H. (2010). What do we know about test-driven

development?, IEEE Software 27(6): 16–19.

[10] Memon, A. & Xie, Q. (2005). Studying the fault-

detection effectiveness of GUI test cases for rapidly evolving

software, IEEE Transactions on Software Engineering

31(10): 884 – 896.

[11] Adamoli, A., Zaparanuks, D., Jovic, M. & Hauswirth,

M. (2011). Automated gui perfor- mance testing, Software

Quality Journal 19: 801–839.

[12] Jaaskelainen, A., Katara, M., Kervinen, A., Maunumaa,

M., Paakkonen, T., Takala, T. & Virtanen, H. (2009).

Automatic GUI test generation for smartphone applications -

an evaluation, Software Engineering - Companion Volume,

2009. ICSE-Companion 2009. 31st International Conference

on, p. 112–122.

[13] Hwang, S. & Chae, H. (2008). Design & implementation

of mobile GUI testing tool, Convergence and Hybrid

Information Technology, 2008. ICHIT '08. International

Conference on, p. 704–707.

[14] Kwon, O. & Hwang, S. (2008). Mobile GUI testing tool

based on image flow, Computer and Information Science,

2008. ICIS 08. Seventh IEEE/ACIS International Conference

on, p. 508– 512.

[15] Memon, A. (2002). GUI testing: pitfalls and process,

Computer 35(8): 87–88.

[16] Matos, E. C. B. & Sousa, T. C. (2010). From formal

requirements to automated web testing and prototyping,

Innovations in Systems and Software Engineering 6(1-2):

163–169.

[17] Hevner, A. R., March, S. T., Park, J. & Ram, S. (2004).

Design science in information systems research,

Management Information Systems Quarterly 28(1): 75–106.

[18] Dobrica, L. & Niemela, E. (2002). A survey on software

architecture analysis methods, , IEEE Transactions on

Software Engineering 28(7): 638–653.

[19] Hughes, G. (2012). fruitstrap. Available:

https://github.com/ghughes/fruitstrap [Accessed: 16-08-20

This article has been accepted for publication in a future issue of this conference, but has not been fully edited. Content may
change prior to final publication. Citation information: DOI10.1109/HICSS.2016.706, Proceedings of the Annual Hawaii International
Conference on System Sciences

