
A Suspension-trace Semantics for CSP
Ana Cavalcanti∗, Robert M. Hierons†, Sidney Nogueira‡, and Augusto Sampaio§

∗University of York, UK
Email: Ana.Cavalcanti@york.ac.uk
†Brunel University London, UK

‡Universidade Federal Rural de Pernambuco, Brazil
§Universidade Federal de Pernambuco, Brazil

Abstract—CSP is well established as a process algebra for
refinement. Most refinement relations for CSP do not differentiate
between inputs and outputs, and so are unsuitable for testing.
This paper provides CSP with a denotational semantics based on
suspension traces; it gives the traditional CSP operators a novel
view, catering for the differences between inputs and outputs. We
identify healthiness conditions for the suspension-traces model
and include a treatment of termination not contemplated in
the context of input-output labelled transition systems. Using
our suspension-traces semantics, we provide for CSP a char-
acterisation of the conformance relation ioco, which is widely
used in testing. Finally, we propose a strategy to mechanise the
verification of conformance according to ioco and suspension-
trace refinement using CSP tools. This work provides the basis
for a theory of testing for CSP with inputs and outputs, and opens
up the possibility of studying algebraic laws and compositional
reasoning techniques based on ioco. Ultimately, it contributes to
making CSP models useful for both design and testing of systems.

I. INTRODUCTION

As a notation for refinement in the context of reactive
programming, CSP is very successful. It has popular model
checkers [1], [2] that have encouraged both academic and in-
dustrial take up. A variety of semantic models and refinement
relations based on traces, refusals and divergences have been
studied and related to ensure consistency [3].

The use of CSP in model-based testing, however, has been
limited. It does have a theory of testing [4], but, crucially, lacks
a notion of inputs and outputs, which is essential in testing.

In CSP, inputs and outputs are both mere synchronisa-
tions: there is no differentiated controllability by either the
process or the environment. An adaptation of the standard
CSP stable-failures model to handle inputs and outputs has
been presented in [5]. It, however, entails severe restrictions
on parallelism and renaming; it forbids, for example, sychro-
nisation on inputs and renaming inputs to outputs or vice-
versa. In addition, its input-output failures refinement relation
is incomparable to ioco [6], a conformance relation that is
widely used by the testing community.

Testing with inputs and outputs has been extensively studied
using input-output labelled transition systems (IOLTS), with
ioco as a conformance relation [6]. Recently, CSP has been
used to encode the testing theory of IOLTS with ioco, with
the CSP refinement model checker FDR used as a technology
to generate tests [7]. In that work, a notion of IO process
is defined, which partitions the alphabet of a process into

input and output events. CSP operators are redefined for IO
processes and a conformance relation, cspio, is introduced. It
is shown that, provided quiescence is annotated as a special
output event, cspio conformance verification (automated as
traces-refinement assertions using FDR) corresponds precisely
to ioco. This work, however, does not present a formal
semantic model to formalise IO processes.

A semantic treatment of ioco in the context of CSP is what
we address here. Our work opens to the testing community the
possibility of using process algebraic models. In this way, the
same models used to reason about specifications and designs
can also be used in testing. CSP models can be automatically
generated, for example, from diagrammatic domain-specific
models for (control) systems, from Java programs [8]–[10],
and even from natural language requirements [11].

We give CSP a novel denotational semantics based on
suspension traces [6]. This is the traditional model used
for characterisation of ioco (in the context of input-output
labelled transition systems). With this new model for CSP,
we can reason about arbitrary processes using ioco rather
than the restricted class of IO processes from [7]. In addition,
our semantics gives the traditional CSP operators a different
denotational view that caters for inputs and outputs.

Our work provides a basis for a theory of testing for
CSP with inputs and outputs, with a conformance relation
that corresponds to ioco, and with a justification based on
a denotational model. Moreover, it opens the possibility of
studying algebraic laws and compositional reasoning for ioco.

Specifically, we make three main contributions here.

1) Firstly, we give a characterisation of a semantic model
of suspension traces that identifies its healthiness con-
ditions and includes a treatment of termination not
contemplated in the context of IOLTSs.

2) Secondly, we give the definition of some CSP operators
in this new model.

3) Finally, we provide a general characterisation of ioco
for CSP, and a strategy to use FDR’s recent facilities [1]
for reasoning about priority to mechanise conformance
verification according to ioco and suspension-trace re-
finement.

In the next section, we briefly present CSP and the standard
definition of suspension traces. The healthiness conditions of
the suspension traces model are identified in Section III. The



CSP operators are defined in Section IV. The conformance re-
lation and a strategy for mechanised conformance verification
are addressed in Section V. Finally, we conclude considering
also related and future work in Section VI.

II. PRELIMINARIES

In this section, we describe the background material of
our work. Namely, we introduce CSP (Section II-A), its
input-output refusal traces model (Section II-B), and define
suspension traces (Section II-C).

A. CSP

Processes are the main feature of CSP, used to model
systems and components. Processes engage in atomic and
instantaneous events that represent visible actions. Events take
place synchronously as an agreement between processes and
their environment. The alphabet ΣX = Σ ∪ {X} of a process
includes the set Σ of events that can be explicitly used
in process definitions, and the special event X to represent
successful termination (as opposed to a deadlock or livelock).

Two basic CSP processes are STOP and SKIP. The process
STOP represents the canonical deadlock: a process that never
communicates and does not perform internal actions. The
process SKIP communicates X and terminates successfully.

For a ∈ Σ, the process a → Q, read a prefix Q, offers the
event a and waits for a synchronisation. Upon the occurrence
of a, it behaves as the process Q.

An external choice a → P 2 b → Q offers a and b to the
environment. If it synchronises on a, then the choice resolves
to P; if the environment synchronises on b, it is resolved to Q.
An internal choice a→ P u b→ Q behaves either as a→ P
or b → Q. The initial state is not stable due to the existence
of an internal event, corresponding to the choice of process.
When interacting with a→ P u b→ Q, the environment can
fail to synchronise if it insists on a or b, but not if it offers
both, since exactly one is nondeterministically offered.

The process P |[X ]|Q is the generalised parallel composition
of the processes P and Q with synchronisation set X ⊆ Σ. In
this parallelism, P and Q must agree on events that belong to
X, but can proceed independently for events not in X. Such
a composition terminates successfully if, and only if, P and
Q terminate (that is, we have distributed termination). The
process P ||| Q is the interleaving between P and Q. In such a
composition P and Q communicate any event freely (without
synchronisation); P ||| Q is equivalent to P |[ {} ]| Q.

The CSP process P \ X, read P hide X, has the same
behaviour as P, except that the events that belong to the set X
are internalized, and so are not available for synchronisation.
The notation \ stands for the hiding operator.

An interrupt operator allows us to define a process P 4 Q,
which behaves like P, but continuously offers Q in choice. If,
at any point an event offered by Q is chosen, P is interrupted,
and the process carries on with the execution of Q. We can
think of P 4 Q as a distributed external choice of Q over P.

CSP has several semantic models [3]. In the next section, we
give an overview of the input-output refusal traces model [12],

which can be used to establish the connection between our
suspension-traces model and the CSP standard models.

B. Input-Output refusal traces

The input-output refusal traces model of CSP (RT O) [12]
is based on the stable refusal-testing model RT [3], [13]–
[15], adapting the notion of a refusal trace in a manner that
distinguishes inputs and outputs.

Classically, a refusal trace includes events ai and refusals Xi;
it has the form 〈X0, a1,X1, . . . , an,Xn〉, where for 1 ≤ i ≤ n
we have that either Xi = • or Xi ∈ P(ΣX) is a refusal set [3].
The recording of • indicates that no actual refusals have been
observed, possibly, due to instability. If Xi ∈ P(ΣX) and i < n,
then ai+1 is an event in ΣX such that ai+1 /∈ Xi, since the
events in Xi are refused immediately before the observation of
ai+1. The essential idea is that refusals are observed between
events; in contrast, in failures we only observe a refusal set at
the end of a trace. Similar to failures, a refusal set can only
be observed in a stable state. If a state is unstable then the
corresponding Xi must take the value •.

The input-output refusal traces model follows the same
principle adopted in input-output stable failures in [5]. States
that communicate outputs are not stable, so no refusals are
observed. In general terms, if we let rtraces[[P]] denote the set
of refusal traces of a process P, then the set IOrtracesO[[P]] of
input-output refusal traces of P can be described as follows.

IOrtracesO[[P]] =
{〈X0, a1,X1, . . . , an,Xn〉 | ∃X′

0, . . . ,X
′
n •

〈X′
0, a1,X′

1, . . . , an,X′
n〉 ∈ rtraces[[P]] ∧

∀ 1 ≤ i ≤ n • (Xi = • ∨ X′
i = Xi ∪ O)

}

In words, for a refusal trace 〈X0, a1,X1, . . . , an,Xn〉 to be an
input-output refusal trace we require that its refusals Xi are
either • or have been observed in a stable state. Stability now
requires that no outputs are available, so in a corresponding
refusal trace 〈X′

0, a1,X
′
1, . . . , an,X′

n〉 of rtraces[[P]] no outputs
are enabled so that Xi ∪ O is a refusal that can be observed.

The RT model is more discriminating than the standard
CSP stable-failures model, and similarly RT O is more dis-
criminating than the input-output stable failures model. In
addition, it is more discriminating than ioco and suspension
traces, since it allows the refusal of inputs to be observed. As
a result, it is possible to obtain suspension traces from the
RT O model. This is detailed in the next section.

C. Suspension traces

Suspension traces were originally described [6] in the con-
text of testing from an IOLTS. Suspension traces are similar
to traces except that they can also include the observation
of quiescence. A system is quiescent if it cannot produce an
output or change state without first receiving an input.

The observation of quiescence is normally denoted δ. This
is a special type of refusal: one in which the system can
refuse the whole set of outputs. For instance, the trace 〈δ, in, δ〉



records that the process is initially stable and does not com-
municate outputs. Subsequently, the input in is communicated
and quiescence is again observed.

The interest of the testing community in suspension traces
has come from the feasibility to observe them in testing.
Typically, we observe quiescence through an implementation-
dependent timeout. Additionally, suspension traces are more
discriminating than traces. As an example, we consider
in → STOP u out → STOP and in → STOP 2 out → STOP,
where in is an input and out is an output. These processes have
the same sets of traces, but only in → STOP u out → STOP
can be quiescent before the event in.

Quiescence is the only type of refusal recorded in suspen-
sion traces. A suspension trace can be seen as an input-output
refusal trace in which refusals are reported only when all
outputs are refused, and in this case we simply report that
outputs are refused (that is, we do not report refused inputs).

Input-output failures and suspension traces semantics are
incomparable. An input-output failure (s,X ∪O) only records
quiescence at the end of a trace s, but suspension traces can
observe quiescence at any point in the trace. On the other hand,
suspension traces only record refusal of the set O (quiescence),
while input-output failures record any refusal.

A function, which we call st, maps a refusal trace, or equally
an input-output refusal trace, to its corresponding suspension
trace. If st is applied to 〈X0, a1,X1, . . . , an,Xn〉, the resulting
suspension trace retains the events a1, . . . , an, and a refusal set
Xi is either removed, if O 6⊆ Xi, or replaced by δ, if O ⊆ Xi.
More precisely, we have the following definition.

st(〈X0, a1,X1, . . . , an,Xn〉) =
fδ(X0) a 〈a1〉a fδ(X1) a . . .a 〈an〉a fδ(Xn)

For a set X of events, fδ(X) = 〈δ〉 if O ⊆ X and otherwise
fδ(X) = 〈〉. With this, we can define the set straces[[P]]
of suspension traces of a process P in terms of the set
IOrtracesO[[P]] of input-output refusal traces of P.

Definition 1:

straces[[P]] = st(| IOrtracesO[[P]] |)

IOrtracesO[[P]] is defined in terms of the set rtraces[[P]]. A
formal account of rtraces[[P]], IOrtracesO[[P]], and st is in [12].
The operator (| |) is relational image.

Example 1: The set of suspension traces for the process
P = out → STOP is straces[[P]] = {〈〉, 〈out〉, 〈out, δ〉}, for
out ∈ O. 2

The ioco conformance relation is traditionally defined in terms
of suspension traces. Given a suspension trace σ of a process
P, the standard definition of ioco refers to the possible states
of P after σ, and the outputs that are possible in these states.
We next explore the suspension traces model, and its relation
to other CSP models via Definition 1. Suspension traces are
used to define ioco in Section V.

TABLE I
SUSPENSION-TRACES MODEL: HEALTHINESS CONDITIONS

ST0 σ1 a 〈δ, δ〉 a σ2 /∈ ST
ST1 〈〉 ∈ ST
ST2 σ2 ∈ ST ∧ σ1 ≤ σ2 ⇒ σ1 ∈ ST
ST3 σ1 a 〈δ〉 a σ2 ⇒ σ1 a σ2 ∈ ST
ST4 σ a 〈e〉 ∈ ST ∧ e ∈ ΣX ⇒ X /∈ ranσ

III. HEALTHINESS CONDITIONS

This section introduces a characterisation of the model of
suspension traces, namely, by defining its healthiness con-
ditions. As explained above, the approach we adopt defines
suspension traces in terms of the set of input-output refusal
traces of a process. Thus, our model can express successful
termination behaviour, which is particular to the theory of CSP
and not defined for suspension traces of IOLTSs.

We call STrace the set of all suspension traces. Using the
variable ST to stand for an arbitrary set of suspension traces,
we define in Table I the conditions that characterise the healthy
sets that represent a CSP process. We use variables σ, σ1,
σ2, and so on, to stand for suspension traces in STrace; the
notation δn to represent a sequence of δ events of size n, for
n ≥ 0; and, Oδ to represent O ∪ {δ}.

The condition ST0 indicates a difference between the
suspension-traces model for CSP and that for IOLTSs: qui-
escence is not recorded repeatedly. In the model for IOLTSs,
if we observe a suspension trace σ1a〈δ〉aσ2, then we can also
observe all suspension traces of the form σ1

a δn a σ2. This
is due to self-loop δ transitions in the stable states of IOLTS.
As stated in [16], however, the target state after a δ transition
is always the same as the start state. Hence, we can replace
any non-empty subsequence δn in a trace σ ∈ ST by a single
δ without loss of expressiveness in the context of reasoning
using ioco or suspension-traces inclusion.

The next conditions are counterparts for healthiness condi-
tions of sets of (input-output) refusal traces [12]. For example,
the healthiness conditions RT1 of the refusal traces model
requires every healthy set of refusal traces to include 〈•〉, and
RT2 requires that they are prefixed closed. Correspondingly,
ST1 and ST2 require the empty trace to be in ST and prefix
closure. ST3 requires that ST is closed under the removal of δ.
Finally, the healthiness conditions ST4 addresses termination.
If it is recorded, using X, this is the last event in ΣX to appear
in the suspension trace; after a X, only δ can appear.

Example 2: The set containing the traces 〈〉 , 〈δ〉, 〈in〉,
〈δ, in〉, 〈in,X〉 , 〈δ, in,X〉, 〈in,X, δ〉, 〈δ, in,X, δ〉 is an example
of a healthy set of suspension traces. This set represents the
suspension traces of the process in→ SKIP, for O = ∅. 2

We prove below that the sets of suspension traces charac-
terised by straces[[P]] are healthy.

ST0: Proof by contradiction.

σ1
a 〈δ, δ〉a σ2 ∈ straces[[P]]



⇒ ∃ ρ : IOrtracesO[[P]] • st(ρ) = σ1
a 〈δ, δ〉a σ2

[definition of straces[[P]]]

⇒ ∃ ρ : IOrtracesO[[P]]; i : 1..#ρ •
st(ρ)(i) = δ ∧ st(ρ)(i + 1) = δ

[properties of sequences]

This contradicts the definition of RTrace, the type of ρ.

ST1:

〈 • 〉 ∈ rtraces[[P]] [healthiness condition MRT0 for RT ]
⇒ 〈 • 〉 ∈ IOrtracesO[[P]] [definition of IOrtracesO[[P]]]
⇒ st(〈 • 〉) ∈ straces[[P]] [definition of straces[[P]]]
⇒ 〈〉 ∈ straces[[P]] [definition of st]

ST2:

σ2 ∈ straces[[P]] ∧ σ1 ≤ σ2

⇒ ∃ ρ2 : IOrtracesO[[P]] • σ2 = st(ρ2) ∧ σ1 ≤ σ2
[definition of straces[[P]]]

⇒ ∃ ρ1, ρ2 : IOrtracesO[[P]] •
σ2 = st(ρ2) ∧ σ1 = st(ρ1) ∧ σ1 ≤ σ2

[st is surjective]

⇒ ∃ ρ1, ρ2 : IOrtracesO[[P]] •
σ2 = st(ρ2) ∧ σ1 = st(ρ1) ∧ ρ1 ≤RT ρ2

[property of st: distribution over a,]
[and prefixing ≤RT for refusal traces]

⇒ ∃ ρ1 : IOrtracesO[[P]] • σ1 = st(ρ1) [simplification]

⇒ σ1 ∈ straces[[P]] [definition of straces[[P]]]

ST3:

σ1
a 〈δ〉a σ2 ∈ straces[[P]]

⇒ ∃ ρ : IOrtracesO[[P]] • st(ρ) = σ1
a 〈δ〉a σ2

[definition of straces[[P]]]

⇒ ∃ ρ : IOrtracesO[[P]]; ρ1, ρ2 : RTrace; X : Refusal •
ρ = ρ1

a 〈X〉a ρ2 ∧ σ1 = st(ρ1)∧
σ2 = st(ρ2) ∧ refusalO ⊆RT X

[property of st]

⇒ ∃ ρ : IOrtracesO[[P]]; ρ1, ρ2 : RTrace •
ρ = ρ1

a 〈 • 〉a ρ2 ∧ σ1 = st(ρ1) ∧ σ2 = st(ρ2)
[RT1]

⇒ ∃ ρ : IOrtracesO[[P]]; ρ1, ρ2 : RTrace •
ρ = ρ1

a 〈 • 〉a ρ2 ∧ σ1 a σ2 = st(ρ)
[property of st]

⇒ σ1
a σ2 ∈ straces[[P]] [definition of straces[[P]]]

ST4: In the following, e ∈ ΣX.

σ a 〈e〉 ∈ straces[[P]]

⇒ ∃ ρ : IOrtracesO[[P]] • σ a 〈e〉 = st(ρ)

[definition of straces[[P]]]

⇒ ∃ ρ, ρ1 : IOrtracesO[[P]]; X : Refusal •
ρ = ρ1

a 〈e,X〉 ∧ st(ρ) = σ a 〈e〉
[definition of st and RT1]

⇒ ∃ ρ, ρ1 : IOrtracesO[[P]]; X : Refusal •
ρ = ρ1

a 〈e,X〉 ∧ st(ρ1 a 〈e,X〉) = σ a 〈e〉
[predicate calculus]

⇒ ∃ ρ, ρ1 : IOrtracesO[[P]]; X : Refusal •
ρ = ρ1

a 〈e,X〉 ∧ st(ρ1 a 〈e,X〉) = σ a 〈e〉∧
X 6∈ ran ρ1

[RT3]

⇒ ∃ ρ, ρ1 : IOrtracesO[[P]]; X : Refusal •
ρ = ρ1

a 〈e,X〉 ∧ st(ρ1 a 〈e,X〉) = σ a 〈e〉∧
X 6∈ ranσ

[definition of st]

⇒ X 6∈ ranσ [predicate calculus]

An extra condition ST5 defined below holds for the
divergence-free processes, since they eventually reach a stable
state. Divergent behaviour cannot be observed (or distin-
guished from a deadlock) by testing, hence a model for
divergence-free processes is sufficient here.

ST5 σ ∈ ST ∧ (σ = 〈〉 ∨ σ 6= 〈〉 ∧ lastσ 6= δ)⇒
∃ o : Oδ • σ a 〈o〉 ∈ ST

ST5 asserts that it is always possible to observe output or
quiescence (δ). A condition similar to ST5 is found in [6,
Proposition 4.17, item 4] for IOLTS.

We show below that straces[[P]] is ST5-healthy, provided
P is divergence free. In the refusal-traces model, we can
characterise the sets of traces RT that represent divergence-
free processes using the healthiness condition below [14].

MRT2 σ a 〈 • 〉 ∈ RT ⇒ σ a 〈refusal ∅〉 ∈ RT

MRT2 establishes that a proper refusal, as opposed to •, can
always be observed, and so the process is always stable.

σ ∈ straces[[P]] ∧ (σ = 〈〉 ∨ σ 6= 〈〉 ∧ lastσ 6= δ)

⇒ ∃ ρ : IOrtracesO[[P]] •
σ = st(ρ) ∧ (σ = 〈〉 ∨ σ 6= 〈〉 ∧ lastσ 6= δ)

[definition of straces[[P]]]

⇒ ∃ ρ : IOrtracesO[[P]]; φ; X : Refusal •
ρ = φa 〈X〉 ∧ σ = st(ρ) ∧ refusalO 6⊆RT X

[definition of st and (σ = 〈〉 ∨ σ 6= 〈〉 ∧ lastσ 6= δ)]

⇒ ∃ ρ, ρ2 : IOrtracesO[[P]]; φ; X : Refusal •
ρ = φa 〈X〉 ∧ ρ2 = φa 〈 • 〉∧
σ = st(ρ) ∧ refusalO 6⊆RT X

[RT1]

⇒ ∃ ρ2 : IOrtracesO[[P]]; φ •
ρ2 = φa 〈 • 〉 ∧ σ = st(ρ2)

[definition of st]

⇒ ∃ ρ2, ρ3 : IOrtracesO[[P]]; φ •
ρ2 = φa 〈 • 〉 ∧ ρ3 = φa 〈refusal ∅〉 ∧ σ = st(ρ2)

[MRT2]



⇒ ∃ ρ3 : IOrtracesO[[P]]; φ •
ρ3 = φa 〈refusal ∅〉 ∧ σ = st(ρ3)

[definition of st]

⇒ ∃ ρ3 : IOrtracesO[[P]]; φ •
ρ3 = φa 〈refusal ∅〉 ∧ σ = st(ρ3)∧
( (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]])∨
¬ (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]]) )

[predicate calculus]

⇒ ∃ ρ3 : IOrtracesO[[P]]; φ •
ρ3 = φa 〈refusal ∅〉 ∧ σ = st(ρ3)∧
( (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]])∨
¬ (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]])∧
φa 〈refusal ∅ ∪RT refusalO〉 ∈ IOrtracesO[[P]] )

[RT2]

⇒ ∃ ρ3 : IOrtracesO[[P]]; φ •
ρ3 = φa 〈refusal ∅〉 ∧ σ = st(ρ3)∧
( (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]])∨
¬ (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]])∧
φa 〈refusalO〉 ∈ IOrtracesO[[P]] )

[property of ∪RT ]

⇒ ∃ ρ3 : IOrtracesO[[P]]; φ •
ρ3 = φa 〈refusal ∅〉 ∧ σ = st(ρ3)∧
( (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]])∨
¬ (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]])∧
st(φa 〈refusalO〉) ∈ straces[[P]] )

[definition of straces[[P]]]

⇒ ∃ ρ3 : IOrtracesO[[P]]; φ •
ρ3 = φa 〈refusal ∅〉 ∧ σ = st(ρ3)∧
( (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]])∨
¬ (∃ o : O • φa 〈refusal ∅, o, • 〉 ∈ IOrtracesO[[P]])∧
σ a 〈δ〉 ∈ straces[[P]] )

[definition of st]

⇒ ∃ ρ3 : IOrtracesO[[P]]; φ •
ρ3 = φa 〈refusal ∅〉 ∧ σ = st(ρ3)∧
( (∃ o : O • σ a 〈o〉 ∈ straces[[P]])∨

(σ a 〈δ〉 ∈ straces[[P]]) )

[definition of straces[[P]] and st]

⇒ ∃ o : Oδ • σ a 〈o〉 ∈ straces[[P]] [definition of Oδ]

Next, we show how to calculate suspension traces for pro-
cesses defined using the CSP operators, including SKIP and
in→ SKIP, mentioned above.

IV. DEFINITION OF CSP OPERATORS

Table II presents the definition of a suspension-traces se-
mantics for the main CSP operators. Using Definition 1, and
a definition of input-output refusal traces [12], it is possible to
calculate these definitions. For illustration, we present below
the calculation for STOP, SKIP, prefixing and internal choice.

STOP: We recall from Section II-A that STOP refuses
all events and does not progress. Accordingly, the suspension
traces for STOP are the empty trace 〈〉 and the singleton
sequence recording just quiescence (〈δ〉). This reflects the fact
that STOP is always quiescent (although we do not repeat

quiescence due to healthiness condition ST0). The calculation
of straces[[STOP]] is as follows.

straces[[STOP]]

= st(| IOrtracesO[[STOP]] |)
[definition of straces[[STOP]]]

= st(| {X : Refusal • 〈X〉} |)
[input-output refusal traces of STOP [12]]

= {σ : STrace | ∃X : Refusal • σ = st 〈X〉}
[property of relational image]

= {σ : STrace | ∃X : Refusal •
¬ (refusalO ⊆RT X) ∧ σ = 〈 〉 ∨
refusalO ⊆RT X ∧ σ = 〈δ〉

}

[definition of st]

= {σ : STrace | σ = 〈 〉 ∨ σ = 〈δ〉 } [predicate calculus]

= {〈 〉, 〈δ〉} [property of sets]

SKIP: The suspension traces for SKIP are 〈X, δ〉 and its
prefixes. We cannot observe quiescence before the X event
because the process is not stable until it terminates. Upon
termination, that is, after recording X, SKIP behaves as a
deadlock. This semantics can be calculated as follows.

straces[[SKIP]]

= st(| IOrtracesO[[SKIP]] |) [definition of straces[[SKIP]]]

= st(| {〈 • 〉} ∪ {X : Refusal • 〈•, event(X),X〉} |)
[input-output refusal traces of SKIP [12]]

= {σ : STrace | σ = st(〈 • 〉)}∪
{σ : STrace | ∃X : Refusal • σ = st(〈•, event(X),X〉)}

[relational image]

= {〈〉}∪
{σ : STrace | ∃X : Refusal •
σ = st(〈 • 〉) a 〈X〉a st(〈X〉)

}

[definition of st]

= {〈〉}∪
{σ : STrace | ∃X : Refusal •
σ = 〈X〉 ∧ ¬(refusal O ⊆ X) ∨
σ = 〈X, δ〉 ∧ refusal O ⊆ X

}

[definition of st]

= {〈〉} ∪ {σ : STrace | σ = 〈X〉 ∨ σ = 〈X, δ〉}
[predicate calculus]

= {〈〉, 〈X〉, 〈X, δ〉} [predicate calculus]



TABLE II
SUSPENSION TRACES MODEL

Process P straces[[P]]

STOP {〈〉, 〈δ〉}

SKIP {〈〉, 〈X〉, 〈X, δ〉}

a→ P {σ : STrace | σ = 〈〉 ∨ (a /∈ O ∧ σ = 〈δ〉)}∪
{σ1, σ2 : STrace | (σ1 = 〈〉 ∨ (a /∈ O ∧ σ1 = 〈δ〉)) ∧ σ2 ∈ straces[[P]]
• σ1 a 〈a〉 a σ2
}

P u Q straces[[P]] ∪ straces[[Q]]

P 2 Q
{

straces[[P]] ∪ straces[[Q]] if 〈δ〉 ∈ straces[[P]] ∩ straces[[Q]]
strip(| straces[[P]] ∪ straces[[Q]] |) otherwise

P |[ X ]| Q
⋃
{σ1 : straces[[P]]; σ2 : straces[[Q]] • (σ1 |[ X ]|ST σ2)}

Prefixing: Given a process P, the suspension traces of the
prefixing a→ P include those of the form 〈a〉aσ, where σ is
a suspension trace of P, and the prefixes of 〈a〉. In addition,
if a is not an output, the initial state of the prefixing is stable
and quiescence is recorded. In this case, the trace 〈δ, a〉 a σ
and the prefixes of 〈δ, a〉 are also suspension traces of a→ P.

Example 3: For input event in and output event out, we con-
sider the processes P1 = in→ STOP and P2 = out→ STOP.
The set straces[[P1]] = {〈〉, 〈δ〉, 〈in〉, 〈δ, in〉, 〈in, δ〉, 〈δ, in, δ〉}
defines that P1 is initially stable and waits for the environment
to synchronise on in. After that, P1 deadlocks. Similarly,
straces[[P2]] =̂ {〈〉, 〈out〉, 〈out, δ〉}. This records that P2 is
not stable initially because out is offered. P2 becomes stable
afterwards. 2

In calculating the model of prefixing, we use two lemmas.
The first considers the traces before the event a takes place.

Lemma 1:(
∃X : Refusal •

(X = • ∨ event a /∈RT X ∧ a /∈ O) ∧ σ = st(〈X〉)

)
=
σ = 〈〉 ∨ (a /∈ O ∧ σ = 〈δ〉)

Proof:

∃X : Refusal •
(X = • ∨ event a /∈RT X ∧ a /∈ O) ∧ σ = st(〈X〉)

= (∃X : Refusal • X = • ∧ σ = st(〈X〉)) ∨
a /∈ O ∧ (∃X : Refusal • event a /∈RT X ∧ σ = st(〈X〉))

[predicate calculus]

= σ = 〈〉 ∨
( a /∈ O ∧

( (∃X : Refusal •
event a /∈RT X ∧ ¬ (refusalO ⊆RT X) ∧
σ = 〈〉) ∨

(∃X : Refusal •
event a /∈RT X ∧ refusalO ⊆RT X ∧ σ = 〈δ〉) ) )

[definition of st]

= σ = 〈〉 ∨
( a /∈ O ∧

( (∃X : Refusal •
event a /∈RT X ∧ ¬ (refusalO ⊆RT X)) ∧
σ = 〈〉 ∨

(∃X : Refusal •
event a /∈RT X ∧ refusalO ⊆RT X) ∧ σ = 〈δ〉 ) )

[definition of st]

= σ = 〈〉 ∨ (a /∈ O ∧ (σ = 〈〉 ∨ σ = 〈δ〉))
[property of sets and predicate calculus]

= σ = 〈〉 ∨ (a /∈ O ∧ σ = 〈δ〉) [predicate calculus]

2

For the traces after a occurs, we have the following result.
Lemma 2:

{σ : STrace | ∃ ρ : IOrtracesO[[P]]; X : Refusal •
(X = • ∨ event a /∈RT X ∧ a /∈ O) ∧
σ = st(〈X, event a〉a ρ)

}
=
{σX, σρ : STrace |

(σX = 〈〉 ∨ (a /∈ O ∧ σX = 〈δ〉)) ∧ σρ ∈ straces[[P]]
• σX

a 〈a〉a σρ
}

Proof:

{σ : STrace | ∃ ρ : IOrtracesO[[P]]; X : Refusal •
(X = • ∨ event a /∈RT X ∧ a /∈ O) ∧
σ = st(〈X, event a〉a ρ)

}

= {σ : STrace | ∃ ρ : IOrtracesO[[P]]; X : Refusal •
(X = • ∨ event a /∈RT X ∧ a /∈ O) ∧
σ = st(〈X〉) a 〈a〉a st(ρ)

}
[definition of st]



= {σX, σa, σρ : STrace | ∃ ρ : IOrtracesO[[P]]; X : Refusal •
(X = • ∨ event a /∈RT X ∧ a /∈ O) ∧
σX = st(〈X〉) ∧ σa = 〈a〉 ∧ σρ = st(ρ)

• σX
a σa

a σρ
}

[property of sets]

= {σX, σa, σρ : STrace |
(∃X : Refusal •

(X = • ∨ event a /∈RT X ∧ a /∈ O) ∧
σX = st(〈X〉)) ∧

σa = 〈a〉 ∧
(∃ ρ : IOrtracesO[[P]] • σρ = st(ρ))

• σX
a σa

a σρ
}

[predicate calculus]

= {σX, σa, σρ : STrace |
(σX = 〈〉 ∨ (a /∈ O ∧ σX = 〈δ〉)) ∧
σa = 〈a〉 ∧
(∃ ρ : IOrtracesO[[P]] • σρ = st(ρ))

• σX
a σa

a σρ
}

[Lemma 1]

= {σX, σρ : STrace |
(σX = 〈〉 ∨ (a /∈ O ∧ σX = 〈δ〉)) ∧
σρ ∈ {ρ : IOrtracesO[[P]] • st(ρ)}

• σX
a 〈a〉a σρ

}

[property of sets]

= {σX, σρ : STrace |
(σX = 〈〉 ∨ (a /∈ O ∧ σX = 〈δ〉)) ∧
σρ ∈ st(| IOrtracesO[[P]] |)

• σX
a 〈a〉a σρ

}

[property of relational image]

= {σX, σρ : STrace |
(σX = 〈〉 ∨ (a /∈ O ∧ σX = 〈δ〉)) ∧
σρ ∈ straces[[P]]

• σX
a 〈a〉a σρ

}

[definition of straces[[P]]]

2

Finally, we proceed with the calculation of the suspension
traces of a prefixing a→ P as follows.

straces[[a→ P]]

= st(| IOrtracesO[[a→ P]] |) [definition of straces[[a→ P]]]

= st(| {X : Refusal |
X = • ∨ event a /∈RT X ∧ a /∈ O • 〈X〉

} ∪
{ρ : IOrtracesO[[P]]; X : Refusal |

X = • ∨ event a /∈RT X ∧ a /∈ O
• 〈X, event a〉a ρ

} |)
[definition of IOrtracesO[[a→ P]]]

= {σ : STrace | ∃X : Refusal •
(X = • ∨ event a /∈RT X ∧ a /∈ O) ∧ σ = st(〈X〉)}∪

{σ : STrace | ∃ ρ : IOrtracesO[[P]]; X : Refusal •
(X = • ∨ event a /∈RT X ∧ a /∈ O) ∧
σ = st(〈X, event a〉a ρ)}

[property of relational image]

= {σ : STrace | σ = 〈〉 ∨ (a /∈ O ∧ σ = 〈δ〉)}∪
{σX, σρ : STrace |

(σX = 〈〉 ∨ (a /∈ O ∧ σX = 〈δ〉)) ∧
σρ ∈ straces[[P]]

• σX
a 〈a〉a σρ

}
[Lemmas 1 and 2]

P u Q: The suspension traces of the internal choice of
the processes P and Q is the union of the suspension traces
of P and the suspension traces of Q.

straces[[P u Q]]

= st(| IOrtracesO[[P u Q]] |) [definition of straces[[P u Q]]]

= st(| IOrtracesO[[P]] ∪ IOrtracesO[[Q]] |)
[input-output refusal traces of P u Q [12]]

= st(| IOrtracesO[[P]] |) ∪ st(| IOrtracesO[[Q]] |)
[property of relational image]

= straces[[P]] ∪ straces[[Q]] [definition of straces]

Example 4: We show below the suspension traces of the
internal choice P1 u P2.

straces[[P1 u P2]] =
{〈〉, 〈δ〉, 〈in〉, 〈out〉, 〈δ, in〉, 〈in, δ〉, 〈out, δ〉, 〈δ, in, δ〉}

The process P1 u P2 is not stable in its initial state, since
it can change through an internal event to a state where it
behaves as P1, or to a state where it behaves as P2. Once an
internal choice has been made the process behaves like either
P1 or P2 and so can then be stable (despite no observations
having been made). This justifies a trace like 〈δ〉, which starts
with δ even though the initial state of P1 u P2 is unstable.
This is a trace of P1 as shown in Example 3. 2

External choice: The suspension traces of an external
choice P 2 Q reflect the fact that its initial state is quiescent
only if P and Q are both initially quiescent themselves.
Otherwise, the choice can be made without the agreement of
the environment and we cannot observe quiescence.

Accordingly, as usual in CSP models, in defining external
choice, we have to consider separately the behaviours before
and after the choice is made. The definition of straces[[P 2 Q]]
is given by the union of the suspension traces of P and
the suspension traces of Q, if P and Q record quiescence
in the first state. Otherwise, the suspension traces are de-
fined by strip(| straces[[P]] ∪ straces[[Q]] |), that is, the set
obtained by applying the function strip to all elements of



straces[[P]] ∪ straces[[Q]]. Basically, this is again the union of
the sets of traces for P and Q, but any leading δ events in
these traces are removed. As explained above, in this case,
quiescence is not really observed in the choice, even if it may
be individually in P or Q. Stripping of the leading δ events is
achieved by applying the function strip, defined below.

strip(〈〉) = 〈〉
strip(〈δ〉a σ) = σ
strip(〈e〉a σ) = 〈e〉a σ if e 6= δ

As a consequence of the above definitions, internal and ex-
ternal choices can be distinguished in the suspension traces
model if one process in the choice is stable and the other is
not.

Example 5: The model for P1 2 P2, where P1 and P2 are
as defined in Example 3, can be calculated as follows.

straces[[P1 2 P2]]

= strip(| straces[[P1]] ∪ straces[[P2]] |)
[〈δ〉 ∈ straces[[P1]] and 〈δ〉 /∈ straces[[P2]]]

= strip (| {
〈〉, 〈δ〉, 〈in〉, 〈out〉, 〈δ, in〉, 〈in, δ〉,
〈out, δ〉, 〈δ, in, δ〉

} |)
[straces[[P1]] ∪ straces[[P2]] (see Example 4)]

= {〈〉, 〈in〉, 〈out〉, 〈in, δ〉, 〈out, δ〉, 〈in, δ〉}
[definition of strip]

In P1 2 P2, the input in and the output out are offered in
choice, so in straces[[P1 2 P2]] stability cannot be observed
before in. Comparing the sets straces[[P1 u P2]] (see Exam-
ple 4)) and straces[[P1 2 P2]], we can observe that the trace
〈δ, in〉 belongs to the former but not to the latter. 2

We now give an example where internal and external choice
are indistinguishable via suspension traces.

Example 6: We consider P3 = out2 → STOP, whose
model is straces[[P3]] = {〈〉, 〈out2〉, 〈out2, δ〉}. The internal
and external choices between P2 and P3 are indistinguishable.

straces[[P2 u P3]] = straces[[P2 2 P3]] =
{〈〉, 〈out〉, 〈out2〉, 〈out, δ〉, 〈out2, δ〉}

The processes P2 and P3 communicate outputs in the first
state; none of them is stable at that stage. 2

Parallelism: The set of suspension traces for the gener-
alised parallel composition P |[ X ]| Q is defined in the usual
way, as the combination of the traces of P and Q according
to an operator |[X]|ST for traces. Like in all CSP models, the
parallel composition σa |[X ]|σb of suspension traces σa and σb

defines the set of suspension traces representing the interleaved
execution of σa and σb synchronising on X. The traces are
obtained by merging σa and σb, to represent their interleaved
execution. On events in the set X, however, they need to agree.
If they do not, the parallel execution does not lead to any trace.

If they do, just one occurrence of the corresponding event is
included in the merged traces. To explain the issues particular
to composition of suspension traces, we use a few examples.

Example 7: The traces of P4 = out1 → in → STOP and
P5 = in→ out2→ STOP are enumerated below.

straces[[P4]] =
{ 〈〉, 〈out1〉, 〈out1, δ〉, 〈out1, in〉,
〈out1, δ, in〉, 〈out1, in, δ〉, 〈out1, δ, in, δ〉 }

straces[[P5]] =
{ 〈〉, 〈δ〉, 〈in〉, 〈δ, in〉, 〈in, out2〉,
〈δ, in, out2〉, 〈in, out2, δ〉, 〈δ, in, out2, δ〉 }

For P4 |[ {in} ]| P5, the suspension traces are defined below.

straces[[P4 |[ {in} ]| P5]] =
{ 〈〉, 〈out1〉, 〈out1, δ〉, 〈out1, in〉, 〈out1, δ, in〉,
〈out1, in, out2〉, 〈out1, δ, in, out2〉,
〈out1, in, out2, δ〉, 〈out1, δ, in, out2, δ〉}

The first state of the parallel composition is not stable
since P4 can communicate the output out1, and P5 can-
not communicate in as it belongs to the synchronisation
set. After out1, the composition behaves as the process
in → STOP |[ {in} ]| in → out2 → STOP, which is stable
and can synchronise on the input in. After that, it behaves as
STOP |[ {in} ]| out2 → STOP, which is again not stable due
to the offer of the output out2. Finally, after communicating
out2, the process is quiescent and behaves as STOP. 2

So, the composition of 〈〉 with a suspension trace 〈δ〉aσ that
records quiescence as the first event does not record stability,
since stability occurs only if both sides are stable.

Example 8: The composition of 〈〉 and 〈δ, in〉, from the
the processes P4 and P5 in Example 7, gives the traces in
〈〉 |[ {in} ]|ST 〈in〉, that is, no traces at all. 2

The composition of 〈δ〉 with itself yields 〈δ〉: when both pro-
cesses are stable, the composition is as well. The composition
of 〈δ〉 with a trace 〈y〉 a σ, starting with an event y not in
X, yields traces that start with y and continue with traces in
〈δ〉|[X]|STσ. The occurrence of y does not affect the quiescence
recorded in 〈δ〉, and so it is still considered in the composition.

Example 9: The composition of 〈δ〉 and 〈out1, δ〉, which
belong to the processes P4 and P5 in Example 7 is 〈out1, δ〉.
2

If the trace composed with 〈δ〉 records quiescence before y,
the resulting traces start with δ because the composed traces
record stability. The traces after δ are those in 〈δ〉|[X]|ST 〈y〉aσ.

The composition of a trace 〈δ, x〉 a σ1 that offers initially
an event in X in a stable state with another trace 〈y〉 a σ2
starting with an event not in X yields traces that start with
〈y〉 and proceed with those in 〈δ, x〉 a σ1 |[ X ]|ST σ2. Since x
has not occurred, the quiescence remains. The composition of
〈δ, y〉aσ1, which offers y in a stable state, with 〈x〉aσ2 gives
traces that do not record quiescence, since δ is just in one of
the composed traces and is discarded; the composition is just
〈y〉aσ1 |[X ]|ST 〈x〉aσ2. The composition of traces 〈δ, x〉aσ1



and 〈δ, y〉a σ2 whose first events are offered in stable states,
but one is in X and the other is not contains the traces that start
with 〈δ, y〉: a δ is recorded because both traces record stability,
and y follows because it is not in X. The traces following y
are those in 〈δ, x〉a σ1 |[ X ]|ST σ2. The quiescence before x is
maintained because x is offered in the same (quiescent) state,
although, after y we can have another (non stable) state.

Example 10: The composition of 〈out1, δ〉 and 〈δ, in〉 from
P4 and P5 is empty, because we get traces starting with out1
followed by those in 〈δ, in〉 and 〈δ〉, but since in requires
synchronisation, we have a deadlock: no traces. 2

The composition of traces 〈δ, x1〉 a σ1 and 〈δ, x2〉 a σ2 that
initially offer events in X in a stable state gives traces that
record stability (δ) in addition to synchronisation, if possible.
If we have different events in X, no traces are yielded.

Example 11:

〈out1, δ, in〉 |[ {in} ]|ST 〈δ, in〉
= {σ : 〈δ, in〉 |[ {in} ]|ST 〈δ, in〉 • 〈out1〉a σ}
= {σ : 〈δ, in〉 • 〈out1〉a σ}
= {〈out1, δ, in〉}

2

A trace that records termination is of the form σ1
a 〈X〉aσ2,

where σ2 is either 〈〉 or 〈δ〉. A parallel composition terminates
only if both parallel processes terminate, so we can think
of X as an implicit event of every synchronisation set. Ac-
cordingly, the composition of a trace that records termination
(σ1 a 〈X〉 a σ2) with another that does not (σ3), yields no
traces. On the other hand, if both traces to be composed record
termination, σ1a〈X〉aσ2 |[X]|STσ3

a〈X〉aσ4, the composition
can record termination. Such a composition yields the traces
in the form σ5

a 〈X〉aσ6, where σ5 is a trace yielded by the
composition of the traces before X, and σ6 is a trace yielded
by the composition of the traces after the X.

Example 12: The first state of SKIP |[ X ]| out → SKIP
is not stable, since this process offers the output out. After
communicating out, it behaves as SKIP |[ X ]| SKIP, which is
equivalent to SKIP. Accordingly, we have

straces[[SKIP |[ X ]| out→ SKIP]] =
{〈〉, 〈out〉, 〈out,X〉, 〈out,X, δ〉}

This set is obtained by combining the traces of SKIP with
those of out → SKIP. For instance, 〈X〉 |[ X ]|ST 〈out,X〉 is
{〈out,X〉}. 2

Calculation of the definitions of external choice and paral-
lelism, and of other CSP operators, is work in progress. In
the next section, we discuss the possibility of mechanising
verification based on suspension traces.

V. CONFORMANCE BASED ON SUSPENSION TRACES

For input-enabled specifications, ioco and suspension-traces
inclusion are equivalent. In general, however, the latter is
strictly stronger because it restricts the inputs that can be
accepted by the implementation based on the specification.

Moreover, ioco is defined only for input-enabled implemen-
tations. We define below cspioco, our account of ioco in
the setting of CSP with a suspension-traces semantics. Our
definition is very similar to the classical definition of ioco.
Here, however, we can give a precise definition of the output
events of a process after a trace.

Definition 2: For processes P and Q, with P input enabled.

P cspioco Q =̂ ∀σ : straces[[Q]] • out(P, σ) ⊆ out(Q, σ)

where

out(R, σ) = {a : Oδ | σ a 〈a〉 ∈ straces[[R]] }

For a process R and a suspension trace σ, the set out(R, σ)
contains the output events (including δ) of R, after the trace σ.
As with ioco, the relation cspioco establishes that any output
event observed in an implementation P, after any suspension
trace σ of Q is also observed in the specification Q.

Example 13: As an example, we consider the processes S, I1
and I2 below, with input alphabet {coin} and output alphabet
{coffee, choc}, where S is a sample specification, and I1 and
I2 are (input enabled) candidate implementations.

S = coin→ coffee→ S
I1 = coin→ (coffee→ I1

2 coin→ (choc→ I1 2 I1))
I2 = coin→ (coffee→ I2

2 choc→ I2
2 I2)

We note that I1 cspioco S holds, but I2 cspioco S does not.
Despite the fact that I1 performs an output (choc) that is
not specified in S, this output happens after traces that
are not in straces[[S]], such as, 〈coin, coin〉. However, be-
cause out(I2, 〈coin〉) = {coffee, choc} is not a subset of
out(S, 〈coin〉) = {coffee}, the trace 〈coin〉 is a counter-
example for I2 cspioco S. 2

Although the suspension traces model is not implemented in
any refinement checker for CSP, we can automate verification
according to Definition 2 using a traces-refinement checker.
The following theorem captures our proposed strategy.

Theorem 1 (Verification of cspioco):

P cspioco Q⇔ Qδ vT (Qδ 4 ANY(Oδ, STOP)) |[ Σδ ]| Pδ

For any process P, we define a corresponding process Pδ that
outputs δ in all quiescent states of P.

Definition 3: Pδ =̂ prioritise(P ||| RUN({δ}), 〈O, {δ}〉)
The general form of the prioritise operator is
prioritise(P, 〈X1, . . . ,Xn〉). Its behaviour is similar to
that of P, but it prevents any event in Xi (for i > 1) from
taking place when τ (that is, an internal event), X (that is,
termination) or an event in some Xj, with j < i, is possible.

We provide now a sketch for the proof of the above theorem.
As shown in [7], if all quiescences are identified in the traces
as the special output δ, then cspioco can be verified as a traces-



refinement assertion. P cspioco Q holds if, and only if,

Q vT (Q 4 ANY(Oδ, STOP)) |[ Σδ ]| P (1)

where ANY(X,R) = 2 a : X • a→ R, and Σδ = Σ ∪ {δ}.
We cannot compare P to Q directly since, as shown in

Example 13, P can have traces that are not traces of Q: it
can accept extra inputs and offer any output after a trace not
in Q. We, therefore, consider whether Q is traces refined by the
parallelism (Q 4 ANY(Oδ, STOP)) |[Σδ ]| P, which masks the
traces of P that are not relevant for the verification of cspioco.

The parallelism blocks inputs of Q that are not accepted
by P. These are allowed by cspioco and do not need to be
checked. The interruption with the process ANY(Oδ, STOP),
on the other hand, prevents the parallelism from refusing
outputs that P can perform but Q cannot; ANY(Oδ, STOP)
allows these outputs to be communicated to P. If P can
perform such outputs, then they appear in the traces of the
parallelism, which falsifies the refinement, as required.

Example 14: For illustration, we consider the verification of
I1 cspioco S using the above assertion. The processes I1 and S
are those in Example 13. I1 can engage in two coin events in
a row, which is not possible for S. The parallel composition
(S 4 ANY(Oδ, STOP)) |[Σδ ]| I1 cannot do the same, as only
I1 is ready to accept the second coin event. Because refused
events are not recorded in the traces model, they are not in
the traces of the parallelism. New inputs of the implementation
are, therefore, allowed by the above refinement.

In the case of I2 cspioco S, we have a forbidden output.
When I2 engages in the output choc, this is recorded in the
trace of the parallelism because, although S does not offer
this event, ANY(Oδ, STOP) takes over and engages in it. This
event, however, is not part of any trace of S, as it is never
offered by S. Therefore, the refinement does not hold. 2

Although the refinement assertion (1) captures cspioco confor-
mance, it does not show how quiescent states of P and Q are
effectively signalled using the event δ. To take advantage of
(1) in a mechanisation of cspioco conformance verification,
we use a notion of priority for CSP processes in [3]. Pδ

defined above behaves like P whenever P can engage in an
event in O (that is, an output event). When no outputs are
available, Pδ behaves like RUN({δ}), which models a δ-loop.
This additional behaviour happens only in the absence of
output because of the order of the sets 〈O, {δ}〉 in the prioritise
operator, which gives priority to output events over δ. Input
events are incomparable to O and to δ.

The prioritise operator is implemented in FDR3, which can
then be used to check for mechanical verification of cspioco
and suspension-trace inclusion.

VI. CONCLUSION

We have defined a suspension traces model for CSP, in-
cluding its healthiness conditions and denotations for some
CSP operators. Our approach is to calculate the suspension
traces for each operator from an input-output refusal traces
model [12]. Our goal is to introduce the foundations for

reasoning about suspension traces in a process algebra. It is
suitable not only to explore approaches to test-case generation,
but also compositional conformance verification, due to the
rich repertoire of operators available.

We have also introduced the cspioco relation between CSP
processes, defined in terms of suspension traces. This relation
is weaker than suspension-traces inclusion, but the two rela-
tions coincide if specifications are input enabled. Additionally,
we have shown that cspioco verification can be mechanised as
a refinement assertion in the standard traces model, provided
a notion of priority is used to identify quiescence in the
specification and implementation models.

Despite the extensive adoption of suspension traces in
testing theories based on ioco [6], [16], [18], as far as we
are aware, our denotational definition is a novel contribution.
Suspension traces have been characterised previously only in
the context of operational models, particularly IOLTS.

Previous work [7], [19] explored test generation and com-
positional verification in the context of CSP, distinguishing
input and output events. In those works, a relation cspio was
defined and used for test-case generation via counterexamples
of refinement in the traces model. However, no formal account
of suspension traces was provided and, as a consequence, no
proper treatment of quiescence was given. The work here is a
formal basis to justify the syntactic encodings in [7], [19].

Perhaps the main benefit of a process algebraic char-
acterisation of suspension traces is as a suitable frame-
work to study compositionality. We plan to explore com-
positional conformance verification; particularly, for an im-
plementation model I and partial specifications S1, . . . , Sn,
we intend to uncover the conditions to ensure that
I cspioco S1, . . . , I cspioco Sn ⇒ I cspioco S1 ‖ . . . ‖ Sn. We
aim to do the same for all other CSP operators, and relax
restrictions on input enabledness of the specification, present
in current results on compositionality [19], [20].
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