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Abstract. In large discrete data sets which requires classification into signal and noise
components, the distribution of the signal is often very bumpy and does not follow
a standard distribution. Therefore the signal distribution is further modelled as a
mixture of component distributions.

However, when the signal component is modelled as a mixture of distributions,
we are faced with the challenges of justifying the number of components and the
label switching problem (caused by multi-modality of the likelihood function). To
circumvent these challenges, we propose a non-parametric structure for the signal
component. This new method is more efficient in terms of precise estimates and
better classifications. We demonstrate the efficacy of the methodology using a ChIP-
sequencing data set.
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1 Introduction

The observations in a finite mixture model originates independently from a mix-
ture distribution with K components that can be written as

f (x) =

K∑
k=1

πk fk(x;θk) (1)

where πk > 0 with
∑

k πk = 1 is the mixing weight of component k and fk(x;θk) belongs
to a given parameterized family θk. This model has advantages of relaxing distribu-
tional assumptions. It represent subpopulations where the population membership is
not known but is inferred from the data (McLachlan and Peel (2004)).

The existing literatures such as Diebolt and Robert (1994) and McLachlan and Peel
(2004) have shown that finite mixture models can be inferred in a simple and effective
way in a Bayesian estimation framework. Attentions has mostly focused on paramet-
ric mixture models, when the component densities are all from the same parametric
family having different parameter values for the components. For example, all the
distributions could be Poisson with different means or all the distributions could be
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Negative Binomial with different parameters (even though, in practice, it is not neces-
sary that all the densities will be of the same kind). This situation causes a persistent
challenge in the diagnostic of Markov Chain Monte Carlo (MCMC) convergence due
to two aspects.

The first aspect is the label switching problem which results from the multi-
modality of the likelihood function. Many methods exist on how to tackle the label
switching problem, for example, imposing identifiability constraints (Diebolt and
Robert (1994), Richardson and Green (1997), McLachlan and Peel (2004)) and other
methods based on relabelling algorithms (Celeux (1998), Stephens (2000b), Celeux
et al. (2000), Rodriguez and Walker (2014)). For a review and comparison of these
methods see, for example, Jasra et al. (2005) and Sperrin et al. (2010). One limitation to
the existing methods for dealing with the label switching problem is that they focus on
mixture models where all components having the same type of distributions. Another
drawback common to these methods is that they require heavy computational costs,
which make them unsuitable for large data sets and models with a large number of
components. In practice, mixture components with different types of distributions
are sometimes used, such as mixture of Poisson and Negative binomial distributions.
In such situations, the likelihood function may still have multi-modes which causes
label switching problem. But the existing methods for dealing with this problem may
not be applicable in this case.

The other aspect is the justification of the number of components, K. Many authors
have devised different stategies for estimating the number of components in Bayesian
finite mixture models, for example reversible jump MCMC (Richardson and Green
(1997)) and Birth and Death MCMC (Stephens (2000a), Nobile et al. (2007)). Another
approach to deal with the unknown number of components is to use a mixture of
Dirichlet processes (Antoniak (1974), Escobar and West (1995)), which allows an in-
finite number of components. This is also computationally non-trivial when a large
data set with several components is involved.

These motivates our study, which we discuss in detail in the following subsection.

1.1 Our motivation

In certain application areas, interest may be in classifying the observations into
two classes. For example, in the analysis of ChIP-sequencing (ChIP-seq) data, we are
interested in whether a region of the genome is bound by the protein in question or
not. For such ChIP-seq (discrete) data, although there are only two possible classes, it
is inappropriate to use a mixture of two known parametric distributions (e.g. Poisson
or Negative Binomial distributions). This is because such data sets usually have long
tails and the tails may show multi-modal patterns.

For illustration, we use ChIP-seq data generated by Ramos et al. (2010) for the
experiment on CREB binding protein (CBP) for identifying the genomic regions bound
by the histone acetyltransferases (see Bao et al. (2013) for a description of ChIP-seq
technology and this data set). For each region (1000bp) in the genome, the data report
the number of bound fragments that align to that region. A higher value means that
the corresponding region is most likely to be bound by the protein in question. The
number of regions in the data set are 33916. The lowest count is zero and the highest
count is 214, which means that some regions are tagged but with no protein of interest
and a particular region is tagged with 214 counts. The mean and the variance are
2.13 and 8.76 respectively. Figure 1 shows a histogram of the count data. The left plot
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shows that the data set has a very long tail. If we zoom in the tail of the distribution
(right plot), we see possible multi-modal patterns, suggesting that the distribution of
the data is likely to consist of several component distributions.

0
20

00
60

00

Count Number

Fr
eq

ue
nc

y

0 30 119 214

0
2

4
6

8
12

Count number, with values not less than 20

Fr
eq

ue
nc

y

20 52 119 214

Fig. 1. Distribution of ChIP-seq data for one experiment (left), with zoom on the tail
(right).

This situation has been observed also for other ChIP-seq analysis, where a two-
component parametric mixture model appears to be too restrictive for the analysis
of these data. An alternative approach is to use K components, with K > 2. In the
context of ChIP-seq data analysis, this is considered by Kuan et al. (2011), who allow
the signal distribution to be a mixture of two negative binomial distributions (i.e.
K = 3). However, it is very challenging to justify the true value of K. Although the
reversible jump Markov chain Monte Carlo method (Green (1995)) is readily available,
the justification of reversible-jump MCMC convergence is non-trivial and it requires
heavy computational costs. Another challenge of using K components is that it is very
difficult to determine exactly the component distributions. For instance, all compo-
nents may be chosen as Poisson distributions, or only some components are chosen as
Poisson distributions and the others are chosen as Negative Binomial distributions.
As such, using a mixture distribution with K components seems unnecessary. This
motivate us to consider a two-component mixture model for discrete observations,
with one parametric distribution and one nonparametric distribution.

The non-parametric distribution achieve several advantages. It bypasses the chal-
lenges involved in the K-component mixture models, such as the label switching
problem and the determination of the unknown parameter K. It does not need to
justify a particular parametric distribution for the signal. In the context of ChIP-seq
data, our method detects the enriched regions in the genome with higher accuracy
than the mixture of parametric distributions.

2 The model and the posterior distribution

Suppose that discrete observations x1, · · · , xn are sampled from a mixture of dis-
tributions with two components, where one component is the noise distribution and
the other component is a signal distribution. We simply use the mixture density in (1)
to model the data, where f1 is the parametric distribution for the noise, f2 is the signal
distribution, and π1 and π2 are the corresponding mixture proportions, respectively.
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Associated to each observation xi is a latent variable zi i.e. zi = k (k = 1, 2) which
represent the component from which the observation xi originates. The complete
likelihood function for (θ1,θ2) given the full data is

l(θ1,θ2|x, z) ∝
n∏

i=1

{[
π1 f1(xi;θ1)

]I[zi=1] [π2 f2(xi;θ2)
]I[zi=2]

}
. (2)

The noise distribution f1 is usually simpler to determine. For example in ChIP-
seq studies (for 1000bp where the proportion of zeros is not very large), a Poisson
distribution is a natural choice for the noise since a genomic region not bound by the
protein in question but tagged is a rare event. In contrast to this, the signal distribution
can present complicated patterns. We therefore consider using a nonparametric model
for the second component.

As the data are discrete, we can denote with x(1), · · · , x(L) the L distinct values of
the observations x1, · · · , xn. Define

f ∗2 (x( j)) = p j,
L∑

j=1

p j = 1 ; (3)

where p js ( j = 1, · · · ,L) are the unknown parameters. p j can be interpreted as the
probability of x = x( j) given that x is drawn from the signal component. This can be
viewed as a nonparametric distribution. Under this model, the distribution of x is
given by

f (x) = π1 f1(x;θ1) + π2

L∑
j=1

f ∗2 (x)I[x = x( j)]. (4)

Based on the distribution (3), we have the following likelihood function given
(xi, zi) (i = 1, · · · ,n),

l(θ1,p,π|x, z) ∝
n∏

i=1

[π1 f1(xi;θ1)
]I[zi=1]

π2

L∑
j=1

p jI[xi = x( j)]


I[zi=2]

= πn1
1 π

n2
2

n∏
i=1

[
f1(xi;θ1)

]I[zi=1]
·

L∏
j=1

p
∑n

i=1 I[zi=2,xi=x( j)]

j ;

where nk =
∑

i I[zi = k], k = 1, 2.
If we choose uniform priors for π and p and denote the prior for θ1 as g0(θ1), we

have that π, p and θ1 are independent under the posterior distributions. In particular,
the posterior distribution of π is given by the Beta distribution.

Based on this, Gibbs sampler can be use to draw realisations from the posterior
distribution and carry out a Bayesian Monte Carlo analysis. This leads to the following
algorithm:
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Algorithm 1: The Gibbs sampler

Initialization: select, z(0),π(0), p(0) and θ(0)
1 ;

Set m = 1 ;
repeat

for i = 1 to n do
Update zi with probability in

P(zi = 1) ∝ π1 f1(xi;θ1) ;

P(zi = 2) ∝ π2

L∑
j=1

p jI[xi = x( j)] ;

end
Update θ1 from the posterior in

g(θ1|x, z) ∝
n∏

i=1

[
f1(xi;θ1)

]I[zi=1] g0(θ1) ;

Update π from the posterior in

g(π|x, z) ∝ πn1
1 π

n2
2 ;

Update p from the posterior in

g(p|x, z) ∝
L∏

j=1

p
∑n

i=1 I[zi=2,xi=x( j)]

j ;

m = m + 1
until Enough MCMC steps have been simulated;

3 Simulation study

In the simulation study, we consider a mixture distribution with five-components,
where the noise component is a Poisson distribution and the signal components are
Negative Binomial distributions. We sample 500 observations. Our intention is to
compare our proposed method with fully parametric mixture model in terms of
estimation and classification. The true model for the simulation is given by

f (x) = π1Poi(x;λ) +

5∑
k=2

πkNB(x; rk, vk). (5)

We chose different values for the parameters λ, rk and vk in order to compare our
method with existing methods under different settings.

In the First scenario, we choose the set of true parameters (Set 1) as λ = 2,
π1 = 0.6, π2 = · · · = π5 = 0.1, r = (15, 13, 10, 8) and v = (0.9, 0.7, 0.6, 0.5). This choice
of r and v for the NB components gives the corresponding component means as
(1.68, 5.57, 6.67, 8.00). Such a choice implies that the means of Poisson component and
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all the other NB components are not too far apart. From Table 1 we can see that our
method has clear posterior estimates, which approximate the true parameter value.
The trace plot confirms that our method does not suffer from the label switching
problem (see Figure 2). In fact label switching does not occur in our methodology.

Fig. 2. MCMC trace plots for λ, π1 for our new model for the true parameters in Table
1

However, for the Poisson component and other NB components, the above situa-
tion causes some identifiability problems when traditional Gibbs sampling method is
used (see Figure 3). The MCMC trace plots in Figure 3 for π1 and λ clearly show the
occurrence of the label switching problem. This issue severely distorts the posterior
estimates, see Table 1. For example the posterior mean for λ is 2.4371 (the true value
is 2) and the posterior mean for π1 is 0.2952 (the true value is 0.6). On the contrary,
if we use the proposed method, the estimates for λ and π1 are 2.2514 and 0.6987,
respectively, which are closer to the true values. For simplicity we did not provide the
estimates for r and v since the main aim here is classification and under the new model
r and v are not involved. Instead we compare the misclassification rate (the ratio of
the number of wrongly classified observations over the total number of observations)
for the two methods. This can be easily obtained as the Bayesian approach provides
the simulated z from the full posterior. From the last column of Table 1 we can see that
our method has smaller misclassification rate than the parametric mixture model.

Fig. 3. MCMC trace plots for λ, π1 for a mixture of a Poisson and four NB distributions
for the true parameters in Table 1

In the second set of the simulation, the choice of the true parameters are λ = 7,
π1 = 0.6, π2 = · · · = π5 = 0.1, r = (15, 20, 40, 30) and v = (0.4, 0.3, 0.3, 0.2). This
choice of r and v for the NB components gives the corresponding component means
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Table 1. Parameter Set 1. (i) the new method; (ii) true mixture model of five compo-
nents.

Model True value Posterior mean Error rate
λ π1 r1 r2 r3 r4 v1 v2 v3 v4 λ π1 e

(i) 2 0.6 15 13 10 8 0.9 0.7 0.6 0.5 2.2514 0.6987 0.31
(1.8881,2.6680) (0.5680,0.7885)

(ii) 2 0.6 15 13 10 8 0.9 0.7 0.6 0.5 2.4371 0.2952 0.46
(1.0576,4.9958) (0.0249,0.7433)

as (22.5, 46.7, 93, 120). This gives very different component means with the Poisson
component having the smallest mean. This situation is similar to the real ChIP-seq
data, in terms of long tail and the noise component has the smallest mean value. From
Table 2 we can see that our method gives posterior mean estimates for λ and π1 with
smaller bias and shorter credible intervals than the parametric mixture approach.
This is because our method does not incur the label switching problem. Contrarily,
the larger bias and variation in the estimates in the existing methods is due to the
label switching problem, see Figure 4. Still, the new method performs better in terms
of misclassification rate.

Fig. 4. MCMC trace plots for λ, π1 for a mixture of a Poisson and four NB distributions
for the true parameters in Table 2

Table 2. Parameter Set 2. (i) the new method; (ii) the true mixture model of five
components.

Model True value Posterior mean Error rate
λ π1 r1 r2 r3 r4 v1 v2 v3 v4 λ π1 e

(i) 7 0.6 15 20 40 30 0.4 0.3 0.3 0.2 6.8676 0.5787 0.06
(6.4998,7.2305) (0.5226,0.6292)

(ii) 7 0.6 15 20 40 30 0.4 0.3 0.3 0.2 6.9622 0.5349 0.10
(6.4599,7.4080) (0.2279,0.6329)

For the results, we run the Gibbs sampler for 20,000 steps with 10,000 steps as burn-
in iterations over 100 simulations. Furthermore, we use a Metropolis-Within-Gibbs
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sampler to simulate from the posterior distributions for the parametric mixtures, given
the difficulty in simulating the parameters r and v for NB distributions.

4 Data analysis

4.1 ChIP-seq data

We present the application of the new method to ChIP-seq data. We consider the
GBPT301.1000bp data set from the R package enRich. Our aim is to detect the regions
in the genome that are enriched, so it is a natural two-component mixture model
problem with a noise and a signal components. Several methods for the analysis of
ChIP-seq data assume a parametric signal distribution mixed with a parametric noise
distribution. For example, Kuan et al. (2011) propose a mixture of Negative Binomial
distributions; Qin et al. (2010) adopt a generalized Poisson distribution for the signal
and Bao et al. (2013) propose a Poisson/NB for noise and a Poisson/NB for the signal.
We consider the signal component as unknown and use nonparametric distribution
to model it.

Based on the posterior distribution, the posterior classification probability can be
used to predict whether a region is enriched or not.

Di = P(zi = 1|x,θ) :=
π1 f1(xi;θ1)

π1 f1(xi;θ1) + π2
∑L

j=1 p jI[xi = x( j)]
.

The region i will be classified as an enriched region if Di < c. The threshold value
c is determined by controlling the false discovery rate (FDR) at a predefined level
(Bao et al. (2013)), say 0.002. The expected false discovery rate corresponding to the
threshold value c is given by

F̂DR :=

∑
i∈enriched region(Di)∑

i I[Di < c]
.

We present the result in Figure 5, which shows a Venn diagram of the detected regions
as enriched for GBP experiment of ChIP-seq data for our proposed model, compared
with a mixture of two Poisson distributions and a mixture of two NB distributions, at
0.2% false discovery rate. For the Poisson and NB mixtures we use the implementation
in the enRich R package. Our method detects more enriched regions than the existing
methods at the same false discovery rate.

5 Conclusion

We developed mixture model with a parametric and a nonparametric components.
We achieved several advantages by using the nonparametric component. Firstly, we
neither need to specify the distributions for the signal component nor to consider
the number of components. Secondly, the method circumvents the label switching
problem. Results on simulated data verify the validity of the approach and show a
better performance in terms of estimation and classification. We illustrate the proposed
method on ChIP-seq data (GBPT301.1000bp) to detect the enriched regions bound by
proteins of interest.
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Fig. 5. Number of enriched regions identified by the proposed model, Poisson-Poisson
mixture model, NB-NB mixture model on chromosome21 at the 0.2% FDR.

Relatively large window size (1000bp) in the ChIP-seq data motivates the use of
traditional mixture models that do not account for Markov dependencies. For a smaller
window size (say 200bp) we expect spatial dependencies between the neighboring
windows. More elaborate models such as HMMs or Markov random fields should
be considered in this case such as the method developed in Bao et al. (2014). The
possible extension of this method to account for Markov dependencies is currently
under investigation.

The proposed method is only valid for discrete data sets, thus a possible extension
might be to develop methods able to deal with continuous data sets. In this case, a
continuous distribution would be chosen for the noise component f1(x). However,
new methods would need to be developed for the nonparametric component, since
the posterior of zi in Algorithm 1 will not be valid anymore. This can be explored as
a future research work.

References

ANTONIAK, C.E. (1974): Mixtures of Dirichlet Processes With Applications to
Bayesian Nonparametric Problems. The Annals of Statistics, 2(6), 1152–1174.

BAO, Y., VINCIOTTI, V., WIT, E. and ’T HOEN P.A.C. (2014): Joint Modelling of
ChIP-seq Data Via a Markov Random Field Model. Biostatistics, 15, 2, 296-310.

BAO, Y., VINCIOTTI, V., WIT, E. and ’T HOEN P.A.C. (2013): Accounting for Im-
munoprecipitation Eficiencies in the Statistical Analysis of ChIP-seq Data. BMC
Bioinformatics, 14, 169.

CELEUX, G. (1998): Bayesian Inference for Mixture: The Label Switching Problem.
In: R. Payne and P.J. Green, (Eds.): ’COMPSTAT 98’, Physica, Heidelberg, pp.
227-232.

CELEUX, G., HURN, M. and ROBERT, C.P. (2000): Computational and Inferential
Dificulties With Mixture Posterior Distributions. Journal of American Statististical
Association, 95, 957-970.

DIEBOLT, J. and ROBERT, C.P. (1994): Estimation of Finite Mixture Distributions
Through Bayesian Sampling. Journal of the Royal Statistical Society. Series B, 56,
363-375.



10 Bukar et al.

ESCOBAR, M.D. and WEST, M. (1995): Bayesian Density Estimation and Inference
Using Mixtures. Journal of the American Statistical Association, 90(430), 577-588.

GREEN P. (1995): Reversible Jump Markov Chain Monte Carlo Computation and
Bayesian Model Determination. Biometrika, 82(4), 711-732.

JASRA, A., HOLMES, C.C. and STEPHENS, D.A. (2005): Markov Chain Monte Carlo
Methods and the Label Switching Problem in Bayesian Mixture Modeling. Statis-
tical Science, 20, 50-67.

KUAN, P.F., CHUNG, D., PAN, G., THOMSON, J.A., STEWART, R. and KELE, S.(2011):
A Statistical Framework for the Analysis of ChIP-seq Data. Journal of the American
Statistical Association, 106(495), 891–903.

MCLACHLAN, G. and PEEL, D. (2004): Finite Mixture Models. Wiley.com.
NOBILE, A. and FEARNSIDE, A.T. (2007): Bayesian Finite Mixtures With an Unknown

Number of Components: The Allocation sampler. Statistics and Computing, 17(2),
147-162.

QIN, Z.S., YU, J., SHEN, J., MAHER, C.A., HU, M., KALYANA-SUNDARAM, S.,
YU, J. and CHINNAIYAN, A.M. (2010): HPeak: an HMM-Based Algorithm for
Defining Read-Enriched Regions in ChIP-seq Data. BMC bioinformatics, 11(1), 369.

RAMOS, Y.F.M., HESTAND, M.S., VERLAAN, M., KRABBENDAM, E., ARIYUREK,
Y., VAN GALEN M., VAN DAM, H., VAN OMMEN G.B.,DEN DUNNEN J.T.,
ZANTEMA A. and ’T HOEN P.A.C. (2010): Genome-Wide Assessment of Differ-
ential Roles for p300 and CBP in Transcription Regulation Nucleic Acids Research,
39(16), 5396-5408.

RICHARDSON, S. and GREEN, P.J. (1997): Bayesian Analysis of Mixtures With an Un-
known Number of Components (With Discussion). Journal of the Royal Statistical
Society: series B, 59:(4), 731–792.

RODRIGUEZ C.E. and WALKER S.G. (2014): Label Switching in Bayesian Mixture
Models: Deterministic Relabeling Strategies. Journal of Computational and Graphical
Statistics, 23, 25-45.

SPERRIN M., JAKI T. and WIT E. (2010): Probabilistic Relabelling Strategies for the
Label Switching Problem in Bayesian Mixture Models. Journal of Statistics and
Computing, 20, 357-366.

STEPHENS, M. (2000a): Bayesian Analysis of Mixture Models With an Unknown
Number of Components An Alternative to Reversible Jump Methods. Annal of
Statistician, 28, 40-74.

STEPHENS, M. (2000b): Dealing With Label Switching in Mixture Models. Journal of
the Royal Statistical Society: Series B, 62:(4), 795–809.

WEST, M. (1997): Hierarchical Mixture Models in Neurological Transmission Analysis.
Journal of the American Statistical Association, 92(438), 587–606.


