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Abstract 

 

 

 This paper addresses empirically and theoretically a question derived from the 

chunking theory of memory (Chase & Simon, 1973): To what extent is skilled chess 

memory limited by the size of short-term memory (about 7 chunks)? This question is 

addressed first with an experiment where subjects, ranking from class A players to 

grandmasters, are asked to recall up to 5 positions presented during 5 seconds each. 

Results show a decline of percentage of recall with additional boards, but also show that 

expert players recall more pieces than is predicted by the chunking theory in its original 

form. A second experiment shows that longer latencies between the presentation of 

boards facilitate recall. In a third experiment, a Chessmaster gradually increases the 

number of boards he can reproduce with higher than 70% average accuracy to nine, 

replacing as many as 160 pieces correctly. To account for the results of these experiments, 

a revision of the Chase-Simon theory is proposed. It is suggested that chess players, like 

experts in other recall tasks, use long-term memory retrieval structures (Chase & 

Ericsson, 1982)  or  templates in addition to chunks in STM, to store information rapidly. 
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Templates in Chess Memory:  

A Mechanism for Recalling Several Boards 

 

 

 A regrettable finding of cognitive psychology is that the human cognitive system 

is full of severe information processing limits, in particular: a limit on the short-term 

memory (STM) capacity (about seven chunks), a limit on the amount of information that 

can be learned in a given time (about seven chunks in one minute) and a limit on the rate 

of searching through problem solving states (perhaps 10 states per minute). A felicitous 

finding of cognitive psychology is that, as experts in various domains demonstrate to us, 

these limits may be (partly) circumvented: trained subjects recall up to 100 digits dictated 

at a pace of 2 seconds each, physicists spot rapidly the solution to a difficult problem, and 

chess masters are able to play simultaneous games when blindfolded. 

 

A chunking model of chess memory 

  

 Research in cognitive psychology has pinpointed three features of expertise that 

are visible across domains: the importance of pattern recognition, the importance of 

selective search, and rich knowledge in the domain of expertise. A first attempt to tie 

these three features together in a single theoretical framework was made by Chase and 

Simon (1973b). These authors applied their theory to the game of chess, a domain that has 

historically provided a rich source of data and insight for studying expertise (Charness, 

1992). 

 

Structure of the Model 
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 Skilled chessplayers (especially Masters and Grandmasters) are able to retain 

almost complete memory of unfamiliar chess positions shown to them for only a few 

seconds.  To explain this performance, which does not extend to pieces arranged 

randomly on the board, Chase and Simon (1973a, 1973b), making use of the EPAM 

model of perception and memory (Simon & Feigenbaum, 1964), proposed that, in the 

course of acquiring their skill, chessplayers stored chunks in long-term memory (LTM) 

corresponding to patterns of pieces.  Each chunk consists of a small pattern that recurs 

frequently in the chess positions encountered while playing.  To account for their 

performance, assuming that only about a half dozen chunks can be held simultaneously in 

short-term memory, skilled players would have to accumulate a store of chunks estimated 

roughly at 50,000 or more (Simon & Gilmartin, 1973). 

 The chunking model also provided a theory of the processes underlying chess 

skill.  Skill, according to this theory, has two main components: ability to search the tree 

of possible moves and their potential consequences highly selectively,  and ability to 

evaluate positions and to discover potentially strong moves.  Both abilities are based on 

recognition of features (familiar chunks) on the chessboard.  The search of the skilled 

player is guided by heuristics, or rules of thumb, that permit it to be restricted to a small 

tree of possibilities (usually less than 100).  The heuristics, in turn, rest upon recognition 

of familiar patterns or chunks.  Recognizing familiar chunks reduces the need for "look-

ahead" search by giving access, for example, to information stored in memory  about 

moves that may be advantageous when that chunk is present.  (E.g., "If there is an open 

file, consider moving a rook onto it.").   Rapid recognition of patterns or chunks is also 

essential for evaluating the positions at the termini of searches. This recognition and 

memory retrieval capability explains how skilled players are able to play rapid-transit or 

simultaneous games at a relatively high level of competence -- games that do not allow 

time for much look-ahead search (Gobet & Simon, in press-a).  At the same time it 
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accounts for the role of selective search in playing more deliberately, at a higher level of 

skill. 

 More specifically, Chase and Simon’s model explains the main qualitative results 

in the recall task (Masters’ superiority with game positions, but minimal skill differences 

with random positions) in the following way: during the presentation of a position taken 

from a game, familiar patterns of pieces on the board are recognized as chunks, and a 

pointer to these chunks is placed in STM, the size of which is limited. Because strong 

players possess both more and larger chunks in LTM, they recognize more and larger 

patterns on the board, and therefore recall more pieces from the positions. In the case of 

random positions, however, few patterns are recognizable; hence Masters’ superiority 

almost vanishes.  

 

Problems with the Model 

 

 This model, which Chase and Simon themselves presented with reservations, and 

as only a first approximation, has been challenged, mainly on two grounds: the 

assumption that information is stored in a short-term store during the recall task, and the 

assumption that information is organized in chunks whose number reaches about 50,000 

for professional chess players. We will investigate the short-term memory assumption in 

this paper, while the question of chunking is addressed in detail in another paper (Gobet 

& Simon, in press-b). 

 

Effects of Interfering Tasks 

 

 The first kind of evidence challenging Chase and Simon’s use of STM comes 

from  a set of studies employing the Brown and Peterson interference paradigm. Brown 

(1958) and Peterson and Peterson (1959) had found that interfering tasks, such as 
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counting backward in threes from an arbitrary number, had a strong effect on the recall of 

three-consonant trigrams.
1
 

 Charness (1976) obtained quite different results when he inserted a delay of 30 sec 

between the presentation of a chess position and its recall, with or without instructions to 

rehearse and with the delay interval occupied or not by an interfering task. Under none of 

these conditions did the interference impair notably the overall performance. Charness 

found a decrease of only 6 to 8 percent in number of pieces recalled, small in comparison 

with the decrease observed with trigrams, but did find a substantial increase in the latency 

of the first piece reported. Interference using chess tasks (such as finding the best move or 

naming the pieces in a different position) did not produce stronger impairment in recall.  

 Charness (1976) interpreted the long latency for recalling the first piece as 

evidence that much of the information is stored in LTM, proposing that during this delay 

traces are organized and undergo, during the first seconds of presentation, deep processing 

that protects them against retroactive interference. In this case, chess experience 

determines the speed with which more elaborated codes are accessed. 

 Using a similar experimental approach, Frey and Adesman (1976) presented two 

positions for 8 seconds each to their subjects, who then had to count backward for 3 or 30 

seconds. Finally, they had to reconstruct the 1st or the 2nd position, without prior 

knowledge of which was going to be chosen. Results indicated only a small loss of 

performance in comparison with a control condition where only one board was presented. 

Frey and Adesman (1976) concluded that Chase and Simon’s model had to be given up in 

favor of a model stressing depth of processing (Craik & Lockhart, 1972). 

 However, the findings of Frey and Adesman, although raising some doubts about 

the chunking theory,  do not seem actually to require this proposed revision. If one takes 

into consideration learning time per chunk (5 to 10 sec for previously meaningless 

material, according to Newell and Simon, 1972), and the relatively long presentation time 

(8 sec per position) used in this experiment, the theory accounts for the Frey and Adesman 
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results. A little arithmetic establishes this: assuming that the 2 largest chunks (say 3 

pieces each) are encoded into LTM during the 16 seconds of the two board presentations, 

and that the 7 “slots” of the STM contain chunks of 2 pieces each, a total of 20 pieces can 

be retained for the 2 positions, matching the results obtained in Frey and Adesman's 

experiment (their subjects replaced correctly about 10 pieces per position). On the other 

hand, Charness’ data are not amenable to such an explanation, because of the more rapid 

presentation rate he used and the higher recall percentages of his subjects. 

 

Level of Processing 

 

 The second kind of evidence used to argue against the completeness of the Chase-

Simon theory comes from studies using the level-of-processing concept (Craik & 

Lockhart, 1972). Several authors have shown that the presence of supplementary 

information about the position, even of an abstract kind, enhances subjects' performance. 

Goldin (1978) obtained such results by asking her subjects to study the previous moves of 

the game. She found that stereotyped, highly typical positions were better recalled by all 

subjects than atypical positions, and that previous study of the game significantly 

increased the correctness of the responses as well as the confidence that subjects placed in 

them. Frey and Adesman (1976, exp. 1) observed similar results when presenting the 

moves leading to the position to be remembered.  

 However,  in both Goldin’s and Frey and Adesman’s experiments, the level-of-

processing variable is confounded with presentation time, for the subjects in the deep 

processing condition also received substantially more time to study the position or the 

moves leading to it.  As the position on the chess board changes slowly, much can be 

learned, and stored in LTM, about a particular position from study of the positions leading 

up to it.   
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 In another experiment (Exp. 2), Frey and Adesman presented six slides for 2 sec 

each, containing cumulatively the pieces of one position. The critical variable was the 

semantic meaningfulness of the sequences (pieces displayed in chunks according to the 

definition of Chase & Simon [1973a]), or the lack of it (pieces displayed by columns). 

The meaningful groupings produced better recall of the position. Similarly, Lane and 

Robertson (1979) observed that recall varied as a function of the level of semantic 

significance with which subjects could examine the position. Players who had only to 

count the number of pieces on white and black squares obtained worse results than 

players who were asked to judge the position and to try to find the best move. This 

difference disappeared, however, when subjects were notified in advance that they would 

have to reconstruct the position. Additional evidence on the role of contextual information 

is provided by Horgan and Morgan (1990), and Cooke, Atlas, Lane and Berger (1993).  

These results would at least call for adding attentional variables to the Chase-Simon 

model, for the experimental manipulations altered the amount of attention directed toward  

the chunks already stored in memory. 

 

Simultaneous and Multiple Games  

 

 Tangential evidence that the Chase and Simon model may be too simple comes 

from the fact that strong chessplayers are able to play blindfold simultaneous games 

without much loss in playing strength, despite the load imposed on memory. Saariluoma 

(1989) has shown that Grandmasters can  encode up to 4 game positions rapidly when 

pieces are dictated at a pace of 2 sec per piece (which would mean 6-8 seconds for chunks 

of size 3 or 4, respectively). Ericsson and Oliver (cited by Ericsson and Staszewski, 

1989), asked a subject (Expert level) to memorize two positions, and then probed him 

with questions like “what piece is on c4?” They found that switching between the two 

positions is quite rapid (2.4 seconds when the probing is random, 1.9 seconds when the 
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probing alternates between both positions). Although the studies reported in this 

paragraph do not directly address the question of STM capacity, because the relatively 

long encoding time would permit considerable transfer of information to LTM, they 

suggest that skilled chessplayers probably use a more complex representation than a list of 

chunks in STM. 

 

Other Interference Effects 

 

 Motivated by  Baddeley's (1986) theory of working memory, Bradley, Hudson, 

Robbins and Baddeley (1987) studied the effect of interfering conditions during the 

presentation of chess positions. They found that a verbal task (repeating "the" every 

second) had only a minimal effect on performance, while a task aimed at occupying either 

the visuospatial system (typing a predefined series of keys on a calculator with the index 

finger of the non-preferred hand) or the central executive (generating letters randomly) 

caused a significant decline in performance (more than 2/3 in comparison with the control 

group). These authors observed a similar pattern of results during the resolution of tactical 

problems, but the performance decrease was not as drastic (only 1/3). Some of these 

results –- effect of visuospatial interference and absence of  articulatory interference -– 

have been replicated by Saariluoma (1992), whose subjects, by way of interference, had to 

count the number of minor pieces (Bishops and Knights) on the board  or solve chess 

quizzes.  As chess stimuli are visual, not auditory, these findings are consistent with a 

chunking theory, but difficult to reconcile with Charness' (1976) findings, which showed 

little interference even by visual intervening chess tasks. 

 

Summary of Problems 
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 In summary, while the chunking model gives a good qualitative account of expert 

memory for single positions, a number of questions can be raised about its quantitative fit 

to the data we have cited. It appears that skilled players sometimes retain more chunks 

than could be held simultaneously in short-term memory. Other anomalies have also been 

observed that suggest that the Chase-Simon model may need modification.    

 

 In order to define more accurately the limits of the original model and alternative 

models, we will test their predictions against the findings of two experiments that use 

more demanding experimental tasks than those used by Charness (1976) and Frey and 

Adesman (1976).  We will also report a longitudinal experiment that is still being 

extended (Experiment 3). After analyzing the findings of the three experiments, we will 

propose an elaboration and revision of the EPAM-based theory that incorporates into the 

model LTM retrieval structures similar to those already identified in other expert memory 

performances (Ericsson & Staszewski, 1989).   With this modification both the old and 

the new evidence can be accommodated in a single theory that extends beyond chess to 

expert memory in general.   

 Independently of our work, Cooke et al. (1993) have recently used a similar 

multiple-board technique, testing a different theoretical hypothesis. We will discuss the 

similarities and differences between the two techniques and compare the Cooke et al. 

results with ours after the analysis of our second experiment.   

 

Experiment 1 

 

 

 A logical extension of Frey and Adesman's (1976) study of memory for either of 

two positions is to ask subjects to reconstruct both  positions.   Moreover, this procedure 

can be extended to more than two positions.  Models based solely on STM encoding 



 Templates in Chess Memory 11 

predict that recall should increase more or less steadily to a value fixed by STM capacity, 

and that the number of pieces replaced should remain constant while the percentage of 

pieces replaced decreases as this limit is exceeded.  On the other hand, models 

hypothesizing a rapid encoding in LTM predict a continuing increase in number of pieces 

recalled with more boards, and therefore a more or less constant percentage of recall, 

perhaps with some loss due to interference in LTM. 

  

Methods 

 

Subjects 

 Thirteen subjects participated voluntarily in this experiment: 3 Masters (mean 

ELO
2
: 2453), 4 Experts (mean ELO: 2180) and 6 Class A players (mean ELO: 1883).  

The sample mean ELO was 2106 (sd = 260), with a maximum of 2510 and a minimum of 

1783. Age ranged from 18 to 49, with a mean of 28 and a standard deviation of 8.6. The 

subjects were recruited from the Fribourg (Switzerland) Chess Club and from players 

participating in the Nova Park Zürich tournament, and were paid SFr 10.- (SFr 20.- for the 

players having a FIDE title). These subjects also participated in the copy task experiment 

presented in Gobet and Simon (1994a). 

 

Materials 

 In order to check against the possibility that the strong players had superior 

memory capacities, we also presented as the control task three random positions (mean 

number of pieces=25), constructed by assigning the pieces from a normal game position 

to squares on the chessboard according to random numbers.  Subjects received these three 

positions before the multiple board task. 

 For the multiple board task, we selected 26 positions from Lisitsin (1958), Wilson 

(1976), Reshevsky (1976), Euwe (1978), Moran (1989) and Smyslov (1972), using the 
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following criteria: (a) the position was reached after about 20 moves; (b) White is to 

move; (c) the position is "quiet" (i. e. is not in the middle of a sequence of exchanges); 

and (d) the game was played by (Grand)masters, but is obscure.  

 These positions were randomly assigned (differently for each subject) to 5 sets 

corresponding to the five conditions (sequences of 1, 2, 3, 4 or 5 positions, respectively). 

We varied the number of trials in order to maintain more or less constant the total number 

of positions (five, on average) per condition. Thus, subjects received 5 trials with one 

position to recall, 3 with two positions each, 2 with three positions each, 1 with four 

positions, and one trial with five positions to recall.  Keeping the number of trials the 

same for all numbers of positions would have lengthened the experiment considerably, 

creating problems of fatigue and motivation (with 3 trials per condition, a total of 45 

positions would have to be presented; with our design, only 26). The mean number of 

pieces in a position was 25±1 for the 5 groups. 

 Positions were presented on the screen of a Macintosh SE/30, and subjects had to 

reconstruct them using the mouse (See appendix in Gobet & Simon, 1994a, for a 

description of the experimental computer software).  

 

Design and procedure 

 Subjects were first familiarized with the goal of the experiment and instructed on 

how to use the program for reconstructing positions. They received then, in order, the 

control task (recall of random positions) and the multiple board recall task. In the latter 

task, subjects began with reproducing single positions, then the number of positions was 

incremented by one, up to 5 positions. Each position was presented for 5 seconds, 

followed by a dark screen for 5 seconds.  At this point, subjects either received a new 

position or, after the prescribed number had been presented, had to start to reconstruct the 

position(s). During the reconstruction of multiple positions, only a single board was 

depicted on the screen at a time; subjects could switch to other boards by clicking in the 
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appropriate box.
3
   No indication was given of whether White or Black was to play the 

next move, and no feedback was given on the number of pieces correctly recalled. After 

the 26 positions had been presented, the experimenter asked the best subjects whether 

they would agree to try to remember more than 5 positions. No player showed enthusiasm 

for further trials. 

 Dependent variables are the number and percentage of pieces correct; the order of 

reconstruction; the numbers and kinds of errors; the interpiece latency and the latency 

before placing the first piece; and the number and maximum size of chunks. 

 

Results 

 

 As no correlation was found between age and our dependent variables, we shall 

proceed without attention to this variable. However, a strong correlation was found 

between scores and time spent on reconstructing the positions during the experiment.  We 

shall discuss this point at the end of the results section. 

 

Percentage and Number of pieces correct 

  

 Random Positions. 

 Masters were somewhat better than the others in the recall of random boards 

(mean percentage for Masters = 21, sd=4.6; for Experts=16, sd=5.0; for Class A 

players=12, sd=5.0). Masters placed correctly about 5 pieces, Experts about 4 and Class A 

players about 3. The differences are not,  however, significant at the .05 level: 

F(2,10)=3.46, ns. This result agrees with those found in the literature (see Gobet & 

Simon, 1994b  for a discussion of results for random positions). 

 

 Multiple Positions.  
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  As subjects were not required to reconstruct the positions in any particular order, 

for scoring, we had to identify which reconstructed position matched which stimulus 

position.  The matching was based on subjects' comments and strategies (some subjects 

always replaced the positions in the same order) and on salient chess features (e.g. type of 

opening or presence of a conspicuous strategic or tactical motive). Except for a few rare 

cases with weak players, the matching was quite obvious.  

 Figure 1 (upper panel) shows the percentage of pieces correct for each Skill level 

and Number of positions to recall (percentages for single random positions are also shown 

for comparison). Analysis of variance indicates a main effect of Skill [F(2,10)=22.47, 

p<.001] and of Number of positions [F(4,40)=9.11, p<.001]; the linear component is 

significant: F(1,10)=36.90, p<.001. No interaction is found: F(8,40)=1.39, ns. All groups 

show a decrease in percentage of pieces replaced correctly when more than one position 

was to be recalled. 

 Masters' results are biased downward for the five-position condition, as one 

subject (the Grandmaster) did not pay sufficient attention when the first position of this 

trial was presented to him on the screen, and suddenly recalled a position of the preceding 

trial -- a position he had not previously been able to reconstruct and had been very 

troubled about. If we discard this subject's results, the Masters' percentage for the  recall 

of 5 positions rises to 50%.      

    ------------------------------ 

    Insert Figure 1 about here 

    ------------------------------ 

 

 The lower panel of Figure 1 expresses the results in terms of numbers of pieces 

replaced correctly. We see that the Masters are able to replace up to 60 pieces.  Experts 

show a ceiling of about 40 pieces, and Class A players are not able to recall more than 20 
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pieces.  ANOVA on the number of pieces gives similar results as that on percentage 

correct. 

 

Order of reconstruction and serial position   

 

Verbal learning research has shown that the recall of nonsense syllables in a sequence 

may  show the so-called primacy and recency effects. From a theoretical standpoint, an 

approach assuming STM storage would predict the recency effect in such a curve, while 

with rapid encoding in LTM the recall probability for a given position would depend 

essentially on the strategy used.  In our analyses, we have assessed the order in which 

subjects recall the various positions by the order of placement of the first  pieces of these 

positions.  

 Although subjects used several strategies, some of them favoring recall of the last 

positions, others of the first positions, the order of reconstruction does not seem to be a 

function of skill level.  Therefore, we will combine the data for all three skill levels.  

 For trials of 4 and 5 positions and with all subjects pooled, the curves of number 

of subjects recalling (partly) a position and of average percentage of total pieces recalled 

as a function of serial order of the positions are U-shaped;  there is both a primacy and a 

recency effect (see Table 1). A one-way analysis of variance, using serial position as 

within-subject variable and percentage correct as dependent variable,  indicates that the 

effect of serial position is not statistically significant with the recall of four positions 

[F(3,36) = 1.89, p > .10 ], but is significant with the recall of five positions [F(4,48) =  

3.36, p < .05]. In both cases, trend analysis finds a statistically significant quadratic term 

at the level of .05.  There are essentially no differences by Skill in how often the board 

best remembered is the first one reconstructed.  

 

    ------------------------------ 
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    Insert Table 1 about here 

    ------------------------------ 

 

Analysis of errors   

 

Following Chase and Simon, (1973b), we have divided errors into errors of omission and 

of commission.  The number of errors of omission is defined as the number of pieces in 

the stimulus position minus the number of pieces placed by the subject. The errors of 

commission are the pieces placed wrongly by the subject.   

 Table 2  gives the average number, per position, of errors of omission (upper 

panel), and the errors of commission (lower panel).  

 

    ------------------------------ 

    Insert Table 2 about here 

    ------------------------------ 

 

 For the errors of omission, one finds a significant effect  of Skill level 

[F(2,10)=18.61, p<.001] and an effect of Number of positions [F(4,40)=15.80, p<.001; 

linear component: F(1,10)=36.33, p<.001]; the interaction approaches significance 

[F(8,40)=2.03, p=.068]. 

  For the errors of commission, analysis of variance does not show any main effect 

[F(2,10)=2.90, ns., and F(4,40)=1.00, ns.], but indicates an interaction [F(8,40)=2.31, 

p<.05]. The pattern of means indicates that Masters tend to make more errors of 

commission with an increase in the number of positions, whereas Class A players show 

an opposite trend. Experts do not show a clear pattern.   

 

Inter-piece latencies   
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 The median inter-piece latency is not affected by Skill and/or the  number of 

positions. Analysis of variance, computed after log-transformation of latency times, 

indicates no main  effect [F(2,10)=.83, ns.; F(4,40)=.71, ns.] nor any interaction 

[F(8,40)=1.79, ns.].   

 

Latency for the first piece   

Charness (1976) found that an interfering task affected only marginally the recall of a 

chess position, but that the time needed for the subjects to place the first piece on the 

board was then substantially longer than for recall without interference.  This result, 

which is theoretically important in suggesting that subjects are proceeding differently in 

the two cases, has apparently not been replicated. 

 One can view recall of multiple boards as an interference paradigm, where each 

position interferes, proactively or retroactively, with recall of the others.  As we permitted 

any position to be recalled first, our experiment is, however, not wholly similar to 

Charness'.  Keeping in mind this difference, we compared the latency in placing the first 

piece when one position was presented with the latency when more than one position was 

to be remembered.   

 All players show the same pattern: the time to place the first piece is several times 

longer in the recall of multiple boards than in the recall of a single position. With one 

position to recall, the median latency to place the first piece averages 3.1 sec for Masters, 

3.6 sec for Experts and 2.8 sec for Class A players. With several positions, the respective 

median latencies are 6.0, 5.0 and 3.9 sec.  The standard deviation within groups increases 

when several positions are to be recalled. Analysis of variance, performed after log-

transformation of the medians, indicates a main effect of Number of positions 

[F(1,10)=8.77, p<.02], no effect of Skill level [F(2,10)=1.14, ns] and no interaction 

[F(2,10)=.40, ns]. 
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Number  and size of chunks 

STM capacity is defined by number of chunks, and not by the total amount of information 

stored.  Two parameters fix the limit on recall from STM in Chase and Simon’s model: 

the number of chunks (limited to around 7) and the size of chunks (assumed to asymptote 

at 4 or 5 pieces). As some of our subjects remembered much more than what these 

parameters predict, an important question is whether they exceeded the limit on the size 

of chunks or on the number of chunks. 

 We define a chunk as a sequence of pieces (correct or incorrect) placed within  

latencies of less than two seconds each. Because moving the mouse slowed the 

replacement in comparison with standard chess pieces and boards, we computed an 

adjusted interpiece latency time: the time to move the mouse, once a piece is selected, is 

subtracted from the interval between the placement of two pieces.  We have shown 

elsewhere (Gobet & Simon, 1994a) that this adjustment yields results close to those found 

by Chase and Simon (1973a) for recall as well as copy tasks.  

 Note that our definition does not encompass pieces placed individually: pieces that 

may occupy one slot in STM. We decided not to count pieces placed individually as 

separate chunks because many of them are almost certainly the product of inference, of 

guessing, or of a later return to complete a chunk initially restored incompletely.
4
 If so, 

they do not indicate the size of STM chunks. By excluding them, we obtain a conservative 

estimate of the number of chunks in STM. 

 For the number of chunks, analysis of variance shows main effects of Skill 

[F(2,10) = 10.0, p< 0.05] and Number of boards [F(4,40) = 21.80, p<.001], as well as an 

interaction [F(8,40)=3.45, p< .005]. Class A players produce fewer chunks than Experts 

and Masters, who do not differ. For Experts and Masters, the number of chunks increases 

dramatically with additional boards (from 2.3 chunks with one board to 9.9 chunks with 

five boards), while the class A players’ increase is not as strong (from 2.2 chunks with 

one board to 4.5 chunks with five boards). The number of chunks is the same for the three 
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skill levels when only one board is presented, while it differs substantially with additional 

boards. While averages are within the 7±2 range, some individuals are well above it, with 

some players replacing up to 13 and 15 chunks. 

 The median size of the largest chunk differs as a function of skill [F(2,10) = 15.44, 

p<.005], with the largest chunks of stronger players larger than those of weaker players. 

There is also a main effect of the number of boards [F(4,40) = 11.38, p<.001] and an 

interaction [F(8,40) = 2.87, p<.05].  The sizes of the largest chunks of Masters and 

Experts differ substantially between the presentation of one board (on average, 19.7 

pieces for Masters and 17 pieces for Experts) and the presentation of several boards (12.4 

and 9.8 pieces, respectively), while Class A players do not show such a difference (mean 

for 1 position = 6.5 pieces; mean for two up to five positions 4.7). The ratios of one board 

to several boards are however roughly comparable between skill levels (1.6, 1.7 and 1.4 

for Masters, Experts and Class A players, respectively). 

 In summary, we have found that (a) although the average numbers of chunks is 

within the 7±2 range, some subjects clearly exceed this span (up to 15 chunks) -- even 

with our conservative estimate of the number of chunks; (b) Masters’ and Experts’ largest 

chunks are bigger when only one position is presented than when several are presented, 

while Class A players’ chunk size does not vary much with the number of boards; (c) the 

largest chunks of stronger players are larger than those of weaker players.  The first and 

second of these findings are inconsistent with Chase and Simon's model. 

 

Total time 

 One finds a strong correlation between the time spent in reconstructing a position 

and the amount of recall. The Pearsonian correlation between average time per board and 

percentage correct is .94 for one position, .93 for 2 positions, .94 for 3 positions, .90 for 4 

positions and .74 for 5 positions. For example, regressing average time per position on 
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score for 2 positions gives an excellent fit: Time = 27.42 + .98 * Percentage ; r2 = .87. 

Each additional percent correct produces an increase of  one second.  

 Of course, if more chunks and more pieces are held in memory, whether STM or 

LTM, more time will be required to recover them from memory and replace them on the 

board.  However, the times associated with high percentage of recall are too large to 

explain on this basis only, and alternative explanations must also be considered, in 

particular, differences in motivation or fatigue. The cognitive explanation is that the 

subjects who were more successful in the task had more information stored in memory to 

retrieve; the motivational (or fatigue) explanation, that those who were more strongly 

motivated (less fatigued) stuck to the task more tenaciously.   Although there is no 

positive basis in the data for choosing between these explanations, there was also no overt 

behavior of subjects, other than time spent, suggesting that those who performed less well 

were less motivated.  All the subjects appeared to persist in the task until they believed 

they could not recover additional pieces from memory, the latencies for the final pieces 

generally being quite long. 

 

Comments on strategies 

 The recall of one position, and a fortiori of several positions,  is a difficult task for 

subjects below the Master level. Weaker subjects found the presentation rate too fast, and 

complained that they had just time to notice some superficial features and not to grasp the 

meaning of the position. In contrast, Masters get to the heart of the position after an 

exposure of 5 sec, even being able to propose some good moves at this point. Their 

comments are indicative of their way of coping with this task and highlight the following 

features: (a) rapid perception of the pawn structure; (b) rapid recognition of the type of 

opening that the position may come from;
5
  (c) less often, recognition of the position itself 

or of a position similar to it. These features allow Masters to draw inferences about the 

locations of some non-recalled pieces. 
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 Masters' attentions tend to be attracted by the atypical locations of some pieces. 

Finally, Masters show special difficulty in remembering the positions of the rooks and of 

the pawns located on the "a" and "h" files. This may due to the fact that, at this stage of 

the game, rooks and "a", "h" pawns (a) have about the same likelihood of having or not 

having moved  a square or two, and (b) do not generally play a crucial role in the position. 

An alternative, perceptual, explanation is provided by the peripheral location of these 

pieces (normally, first and last ranks for the rooks, and side columns for the pawns "a" 

and "h"). 

 Subjects comment on the difficulty of organizing their memories as the number of 

boards increases. A typical remark is that replacing one position leads to the loss of other 

positions. Weaker subjects explicitly avoid encoding the whole position and focus instead 

on some precise part of the board (e.g., the White or Black King's-side position, or the 

pieces of only one color). In general, overt mnemonic strategies become more elaborate as 

the level of players' skill decreases.  

 

Discussion of Experiment 1 

 

 To summarize, when several positions are presented, the percentage of pieces 

recalled decreases as the number of positions increases, whereas the total number  of 

pieces recalled increases, for the stronger players, beyond the approximately 35 pieces 

(say, 7 chunks with average size of 4 or 5 pieces) predicted by Simon and Gilmartin 

(1973). Second, subjects' comments underline the difficulty of the task and the necessity, 

especially for the weakest players, to develop additional memory strategies beyond the 

ones normally employed.  

 Third, the latency before placing the first piece is longer when more than one 

position is presented.  From a theoretical point of view, it is unclear, however, whether 
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this increase is due to a retrieval from LTM (Charness' hypothesis), or to subjects' choice 

of  the order in which they recall the different positions.   

  Fourth, the number of pieces placed correctly increases with the time spent on the 

experiment, to an extent that cannot be explained by the time needed actually to place the 

additional pieces on the board. Fifth, there is a U-shaped recall curve for successive 

positions in the recall of 4 and 5 positions, recall being best for the first and last positions. 

Sixth, the number of errors of omission increases with additional boards. Seventh, 

stronger players replace larger chunks and more chunks (the latter particularly when 

several boards were presented). Some subjects  unquestionably placed chunks exceeding 

the 7±2 range (up to 15 chunks). Finally, the largest chunks were larger with the 

presentation of one board than with the presentation of several boards. 

 The comments of the subjects, as well as the large number of omissions with 

multiple boards, and the serial position effects, indicate that encoding multiple positions 

in LTM is not as automatic and easy as was suggested by Frey and Adesman (1976) and 

Charness (1976), and that subjects spend a non-negligible part of their processing time 

monitoring information stored in STM. The increased time needed to recall the first piece, 

the correlation between performance and total time and the numbers of chunks recalled 

suggest that subjects do access LTM to retrieve some information. Finally, the presence of 

a U-shaped recall curve, exhibiting a "primacy" effect and a "recency" effect, is usually 

interpreted as demonstrating a conjugated action of STM and LTM. 

   Clearly, changes are required in Chase and Simon's (1973b) model, which relies 

wholly on STM, to account for the fact that Masters have an increased level of recall for 

more than one position, when STM should already be saturated.  Some subjects recalled 

far more than the 7±2 chunks of Miller (1956). If the assumption of a limited STM is 

correct, the implication is that some of these chunks are encoded into LTM. The median 

size of the largest chunks suggests that the estimate of Chase and Simon (4 or 5 pieces) is 
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too low (in particular when only one position is remembered we found an average largest 

chunk size of 14.4 pieces).  

 

 A similar, preliminary experiment, not reported here (see Gobet, 1993a) produced 

results generally comparable to those found in Experiment 1. A main divergence was that 

Masters in the preliminary study performed, on average, less well than Masters in 

Experiment 1. One difference between the two experiments which may explain this 

quantitative difference was that the latency between the positions was 2 seconds in the 

preliminary experiment, and 5 seconds in Experiment 1. This difference may have 

allowed subjects of the latter experiment to encode more information into LTM.  To 

clarify these matters, we ran Experiment 2, in which we manipulated systematically the 

latency between the positions, while presenting 2 and 4 positions. 

  

  

Experiment 2 

 

Methods 

 

Subjects 

 Five subjects participated in this experiment: one Grandmaster (ELO: 2575), one 

International Master (2410), one Master (2280) and two Experts (2050 and 2098). They 

were paid for their participation. Four of these subjects participated in experiment 1 of 

Gobet and Simon (1994b). Their ages ranged from 24 to 33 years. 

 

Materials 

 37 positions were taken from the same sources as were used in experiment 1, and 

five random positions were generated as in experiment 1. 
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Design and Procedure 

 Subjects received first, presented individually for 5 seconds each, 5 game 

positions and 5 random positions. Due to scheduling constraints, the grandmaster received 

only two game and two random positions. Subjects then received four blocks of 3 trials 

each, two of the trials in each block having two positions each, and the other trial, four 

positions. The presentation time was 5 seconds for each position. In the different 

conditions, the latencies between successive positions within the four blocks were 1 sec, 2 

sec, 5 sec and 10 sec, respectively. Three subjects received the latencies in an ascending 

order, and the two other subjects, in a descending order. The mode of presentation and of 

reconstruction was the same as in the previous experiment. The mean number of pieces 

for all Latencies between Boards x Number of Positions cells was 25±2, and the order of 

the positions was randomly assigned for each subject. 

 

Results 

 

Percentage and number of pieces correct   

 With one game position to recall, Masters got an average of 92.3% correct, and 

Experts an average of 64.5%, results consistent with Experiment 1. With one random 

position, the Masters’ average was 21.1%  and the Experts’ was 17.7%, also consistent 

with Experiment 1.   

 As there was no difference in performance between ascending and descending 

orders, results will be grouped. Figure 2 shows the number of pieces correctly replaced as 

a function of the latency between the boards and the number of boards to remember 

(upper panel: Masters; lower panel: Experts). For both groups, the number of pieces 

recalled nearly doubled, on average, between two and four boards (but increased less than 

proportionately from one board to four). The number of pieces recalled also increases 
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substantially with increased latencies.  The gain for Masters between 1 sec and 10 sec 

latencies is 71% with two boards, and 63% with four boards. The gain is not as big with 

Experts (40% with two boards and 33% with four boards). With 10 sec latency and 4 

boards (a total of 100 pieces), Masters are able to replace 82.9 pieces and Experts 44.9 

pieces. Between the 2 sec and 5 sec latencies, there is no substantial difference. The poor 

performance of Masters with 4 boards and an interlatency time of 5 sec is due to the 

grandmaster missing one board and mistakenly recalling a board from the previous trial.  

 

    ------------------------------ 

    Insert Figure 2 about here 

    ------------------------------ 

 

Serial position effect 

 No serial position effect is apparent in the recall of 4 positions, when subjects are 

pooled across levels of skills and positions across presentation times (first board mean: 

50.5 % ; second board mean: 48.3 % ; third board mean: 51.1 % ; fourth board mean: 47.6 

%). When Skill is taken into account, Masters show a (statistically not significant) serial 

position effect (respective means: 73.0 %, 60.0 %,  43.3 % and 72.6 %), but the Experts 

do not (means: 35.4 %, 40.5 %,  56.3 % and  30.9 %). Finally, there was no difference in 

recall between positions presented during the first half of the session and positions 

presented during the second half  [t(78) = -1.12, ns]. 

 

  Discussion of Experiment 2    

 

 The increase in recall of pieces with increase in latency between successive 

positions provides an explanation, at least qualitatively, for the superiority in performance 

of  comparably skilled subjects  in Experiment 1 over the preliminary Experiment 
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reported in Gobet (1993a).  However, the improvement in Experiment 2 only appeared 

clearly with inter-position latencies of 10 seconds, while it also appeared in comparing 

inter-position latencies  of 5 seconds in Experiment 1 with 2 second latencies in the 

preliminary experiment.  We have no explanation for this quantitative difference.  In other 

respects, Experiment 2 showed great consistency with the previous experiment. For 

Masters, but not for Experts, there was again a primacy and a recency effect. 

 In both Experiments 1 and 2, the number of pieces recalled for multiple boards 

seems to exceed, especially for Masters, any plausible estimate of the capacity of short-

term memory alone, even with chunking.  We must look, therefore, for long-term memory 

mechanisms that would hold some of the information recalled without requiring 8 

seconds per chunk for transfer to LTM, a parameter that was derived from verbal learning 

experiments and which  has a strong empirical basis in those settings. 

 

Comparisons with results in Cooke et al. (1993) 

 

In order to compare the Cooke et al. (1993) Experiment 3 with our Experiments 1 and 2, 

we must describe the differences between the experiments.  First, we used 5 seconds 

exposure in our experiments, while Cooke et al. used 8 seconds. Second,  we used 5 

second latencies between the presentation of successive positions in Experiment 1 and 

various times in Experiment 2; Cooke et al. used 1 second. Hence, Cook et al.'s subjects 

had available a total presentation time (exposure plus between-board latencies) of 9 

seconds per board, our subjects total presentation times ranging from 6 to 15 seconds in 

different conditions. 

 Finally, we discouraged subjects from guessing “beyond a reasonable level”, while 

it is not clear from their paper what instructions Cooke et al. used about guessing. That 

our subjects did little guessing may be seen from the relatively low ratio of errors of 

commission to errors of omission. 
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 In general, Cooke et al.’s results accord with ours: subjects recall more pieces with 

additional boards, but the percentages decrease. The difficulty that our subjects have 

shown with four and five positions suggests that there may be a limit on the number of 

boards (instead of the number of chunks) that can be kept in memory. As even their 

strongest subject, rated at 2515 ELO, was able to retain only 7 boards out of 9 presented 

boards, Cooke et al.’s data are consistent with such a limit. Cooke et al. report a lack of 

recency effect, while there was some evidence of such an effect in our Experiment 1 but 

little in Experiment 2. Differences in strategies may explain these different outcomes. 

Cooke et  al. do not provide any data on the interpiece latency, on the latency to place the 

first piece or on variables related to chunk size and number. 

 Cooke et al. explain the high performance of their subjects on recall of multiple 

boards by distinguishing between "perceptual" and "conceptual" memory, within a depth-

of-processing framework.  Conceptual memory, in their view, makes use of "higher level" 

conceptual processes to retain information that is not obtained from perceptual processes.  

Beyond naming these categories, they do not propose specific mechanisms for the "higher 

level" learning, or a specific theory of memory organization to accommodate it.  Below, 

we propose an alternative, but not inconsistent, explanation that does not require these 

concepts, that employs specific mechanisms operating on EPAM's STM and LTM, and 

that is supported by substantial converging evidence on expert memory in other task 

domains. 

 The results of our experiments on memory for multiple chess positions create real 

difficulties for the model of Chase and Simon as a complete model of chess memory.  Our 

experiments on memory for multiple boards, together with the experiments of Cooke et 

al. show that players at all levels of skill can retain a far larger number of chunks than 

appears from their recall of single boards.   The Masters in Experiment 1 continued to 

increase the numbers of pieces they placed correctly from about 23 (out of 25) with a 

single board  to 60 (out of 100) with four boards.  If, from the single board, we estimate 
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average chunk size at about 4 pieces (4 pieces x 7 chunks = 28 pieces for Masters), then 

the Masters appear to be recalling about 15 chunks from the four boards, far more than we 

would expect them to be able to hold in STM.  

 As we commented earlier, if only STM capacity were involved, players should be 

able to remember about as many pieces from a single board (limited only by the total 

number of pieces in the stimulus position) as from a series of boards, provided that the 

presentation times were not so long as to allow the transfer of additional chunks to long-

term memory.  The only other way in which they could increase their total storage, given 

a fixed number of "slots" in STM, would be to select the largest chunks they encountered 

for retention in STM.  The data do not show an increase in maximum chunk size with 

number of boards that would support this explanation. 

 Both in our experiments and in Cooke et al.’s,  the average percentage of pieces 

replaced correctly by Masters  decreased with an increasing number of boards,  although 

the average number  of pieces replaced correctly increased.  This again suggests a possible 

limit in the number of boards  that can be recalled with a specified minimum average 

percentage correct.  Using De Groot’s (1966) "average position,"  Cooke et al. (p. 342)  

estimated the number of pieces that could be placed correctly by pure guessing at 43.7%.  

In Cooke’s et al.’s experiment, the 2 Masters drop from  an average of about 90% with 1 

board  to about 50% with 5 boards, and to about 40% with 9 boards (estimated from their 

graph), a performance attainable simply by employing knowledge about average 

locations.   In our Experiment 1, the 3 Masters drop from an average of 95% with 1 board 

to an average of 39% with 5 boards, again not more than is obtained by using knowledge 

about typical locations of pieces. Even Cooke’s et al.’s best subject recalled more than 

43.7% (on average, 11 pieces) on “only” seven boards when nine were presented. If we 

suppose, in the nine-board experiment, that even as few as 25% of the pieces (on average, 

6 pieces) are replaced correctly by guessing "usual" locations, available from LTM, the 



 Templates in Chess Memory 29 

remainder from STM,  then we have to account for only 35 pieces in STM, which could 

be achieved by storing 7 chunks averaging 5 pieces each.  

 In view of the decrease with number of boards in the percentage of pieces replaced 

correctly, Cooke et  al.’s conclusion, that the number of positions that can be recalled at a 

better-than-chance-level is at least nine (Cooke & al., 1993, p. 344), seems dubious.    

 

 Before attempting to construct a revised theory that could deal with the 

complexities we have noted, we thought it necessary to run a third experiment that would 

seek to extend the number of boards a chessmaster could reconstruct using mnemonic 

methods that had been employed successfully in other memory tasks, especially memory 

for rapidly presented digit strings (Richman, Staszewski & Simon, 1995).  We now 

describe that experiment and its findings, and then return to the task of explaining in a 

simple and consistent manner all of these complex experimental results. 

 

Experiment 3 

 

 The study presented in this section is a first report of a long-term experiment that 

we intend to continue.   In it, we investigate how far a Master can push the limits of chess 

memory, using various mnemonics. The main question is how easily, and how far, he can 

go beyond the limit of about 7 boards remembered, assuming each board constitutes one 

large chunk (more specifically, one large retrieval structure, or template, in STM).  We 

believe that the results obtained to date in this experiment shed important light on the 

nature of expert memory and allow  us to test the generality of the concept of retrieval 

structures. 

 Indirectly, this experiment also addresses two criticisms of Experiment 1 

mentioned by a reviewer. First, the presentation order in that experiment always went 

from 1 board to 5 boards.  Subjects' poorer percentage-wise performance with many 
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boards may have been due to fatigue and waning motivation. Experiment 2, where no 

difference in recall performance was found between the first half and the second half of 

the trials, suggests that order confounding was not a serious problem. In the new 

experiment, only one trial is given each day, so that no such confound is present.  

 Second, the use of mouse and computer instead of an actual board and pieces to 

reconstruct positions may have slowed down subjects in the other experiments, and 

therefore impaired their performance in a task where speed of reconstruction could be 

crucial. Because the subject in the present experiment  is highly practiced in 

reconstructing positions on the screen, it is unlikely that he was impeded by the 

experimental setting. (The alternative apparatus used by Cooke et al. (1993) -- 

reconstruction with position and board--also slows down Ss, because they have to move 

physically when the number of boards becomes large, say more than 6). 

 

Method 

Subject 

 

A single S (the first author of the paper
6
) has been participating in this experiment for 

more than one year. A former chess professional turned psychologist, he holds the title of 

International Master. At the beginning of the experiment, his international rating was 

2380 ELO, and his USCF rating 2396 ELO. This ranks him roughly among the 250 best 

players in the US. Except during the first two or three months, when he began to replay 

games from chess magazines (an essential part of Masters' training which he hadn't done 

for four years), S did not play much chess, apart from a few rapid-transit games.  

 

Materials 
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 The positions
7
 were taken from databases of recent games (from 1975 to 1993). 

The positions within a database were presented in a random order. They were all taken 

after Black's 20th move. A position that was selected was taken sometimes in the middle 

of an exchange or of some other tactical development, situations normally eliminated in 

most chess research. For this reason, the average typicality of positions was somewhat 

lower than in most published chess research,  and the atypical positions were perhaps 

more difficult to reconstruct.   S was a bit confused by these positions in the first sessions, 

but then got used to them.  

 Positions were displayed by the same program that was used in the first two 

experiments.  As in the previous experiments, S could switch during the reconstruction 

among the various positions, which were accessible through buttons on the screen. He 

could choose any order during the reconstruction, and come back to any position at any 

time. 

 A MacIIci was used for the first 36 sessions, then a Mac PowerBook 160. S did 

not express any preference between the two modes of presentation. The experimental 

session took place (almost) daily (from Monday through Friday), at about the same time 

each day  (between 9 AM and 10 AM). The first 35 sessions took place in S's office, the 

subsequent sessions at his home. Both sites were quiet. 

 

 

Procedure 

 

Each position is presented for 8 seconds. The time between positions and between the last 

position and the display of the reconstruction board is 2 seconds. There is no limit on the 

time allowed to reconstruct the positions.  

 A session begins with the presentation of two warm-up positions, followed by the 

multiple position task proper. The number of positions for a given session is determined 
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in the following way:  (a) the minimum number of positions (other than the warm-up 

positions) is four; (b) if no more than one position in the previous session was below 60% 

correct, then the number of positions for the next session is increased by one; else, it is 

decreased by one. The experiment started with four positions.  

 S could pace his experiment as he wished. He would typically concentrate before 

the experiment on the names on his cue list (see below) matching the current number of 

positions in the multiple-board trial, then do the two-position warm-up, then concentrate 

again on the cue-list, and then perform the multiple-board task.  

 After the reconstruction, S compared the order of his reconstruction with the order 

of presentation, and made necessary changes so that the two sets of positions would 

match. The matching between positions was almost always obvious. In some cases, 

however, S found the matching process tedious and time consuming--which was a good 

motivation for him to get the order correct. 

 After a session, S received from an auxiliary program feedback on his 

performance: namely, percentage correct for each position and a detailed list of the errors 

he committed. He then jotted down a few comments about the session, mainly the labels 

and associations he used with his cue-list.  Progress and difficulties were discussed 

weekly in a research group, of which S was member. 

 

Results 

 

We begin by reporting results when S was not using his retrieval structure (baseline). We 

then describe the retrieval structure he used, as well as training techniques he employed in 

order to enhance his memory. The progression of his performance over trials is presented 

last. 

 

Baseline (results without using retrieval structure) 
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In order to estimate S’s baseline performance, S completed the first three sessions without 

using his cue list. He was tested twice on four positions (per cent correct: 50% and 55%, 

respectively;  number of pieces correct: 50 and 55, respectively),  and once on five 

positions (per cent  correct: 54.3%; number of pieces correct: 68). On 2 positions, his 

average was 79.9% correct, i.e. about 40 pieces correct. These results are in line with 

those of the Masters of Experiment 1 and of Cooke et al. (1993). 

 

Recall with a retrieval structure: The cue list 

 

 S’s mnemonics are based on classical techniques (see Yates, 1966) and on more 

recent developments in extraordinary digit memory research (Chase & Ericsson, 1982, 

Staszewski, 1993). S’s main technique was to associate each position with the 

corresponding element in a pre-learned list, which serves as a retrieval structure. During 

recall, each element of the list serves as a cue to the retrieval of the corresponding 

position. In order that the elements of the list could lead easily to meaningful associations 

with the positions, S choose as elements the names of chess world champions, in the order 

of their reigns (see Table 3, second column). Around the 10th week, S abbreviated the 

names to their first syllables (see Table 3, third column), in order to pronounce them 

subvocally more rapidly during the association phase. We have then a variation of the 

method of loci, which we may call method of magistri.  The cue-list was not used for the 

warm-up trials (recall of 2 positions). 

----------------------------------- 

Insert Table 3 about here 

----------------------------------- 
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We illustrate the use of the cue-list by a few examples, going from rich to poor 

associations. In the first two examples, S recognizes the type of position, retrieves a 

verbal label for it, and associates the label with the name on the cue-list. In the third 

example, a relatively useless label (concerning only 2 pieces)  is associated with the cue-

list name. In the last example, the position is identified, but no association is made. 

 

(1) Position #5. Name on the list: Euwe. 

 “A Panov attack. Black has a strong Knight on d5, typical for Euwe’s play.” 

(2) Position #6. Name on the list: Botvinnik. 

 “A Grünfeld defense, as in the match Karpov-Kasparov, Seville. Botvinnik 

used to play the Grünfeld”. 

(3) Position #1. Name on the list: Steinitz. 

 “White has the Bishop pair. Steinitz liked the Bishop pair.” 

(4) Position #2. Name on the list: Lasker. 

 “A Maroczy without g6.”  

 

 Before a trial, S visualized the faces of the champions on his cue list, and  recalled 

-- rapidly -- some information about their playing styles and the types of positions they 

played. For the first 12 sessions, S scanned the list in a linear fashion. From around 

session 13 to around session 70, he scanned the list by (mentally) placing each world 

champion in one of the corners of the room starting from the front wall. In the later 

sessions, he used a hierarchical organization, grouping the 13 players by group of threes 

(group of four for the last four players). 

 S devised, outside the sessions, a few exercises to improve his ability to use the 

retrieval structure, both to access the names and to make associations. Altogether, he 

spent about 10 hours, distributed over three months (from around session 36 to around 

session 70) doing the following exercises:  (a) drilling to access a name from a given 
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number (2 -> Lasker); (b) drilling to access a number, given a name (Lasker -> 2); (c) 

associating name and positions by groups of three, without time pressure; (d) repeating to 

himself the cue list as fast as possible; (e) labeling positions taken randomly from books 

and chess magazines 

 The following difficulties sometimes occurred with the use of the retrieval 

structure: (a) the access to a name was too slow, disrupting the recall process; (b) no 

association could be made between the cue name and the position; (c) the position could 

not be categorized, making it hard to form an association; (d) although an association was 

formed, S did not remember it during recall. 

 

S’s progression over trials 

 

Figure 3 depicts S’s progression for the first 150 trials (grouped by blocks of five trials 

(days)), spanning 37 weeks. The dependent variable is the total number of pieces correct. 

 

------------------- 

Insert Figure 3 

-------------------- 

 

 For the warm-up trials with 2 positions, there is a gradual improvement, from the 

40 pieces (80%) of the baseline and 36 (72%) average in the first block to a near-perfect 

47 piece (94%) average in the last block. The regression line is: Number_of_pieces = 

35.75 + 0.31 * block (r2= 0.69;  p < .001). Thus, S gains about one third of a piece for 

every block of 5 sessions. 

 For the multiple-board task proper, two  “jumps” may be singled out. The first one 

is after the first block (44 pieces correct), where S was even below the baseline 

performance (53 pieces, on average)
8
, to the fourth block (79 pieces). There is then a long 
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plateau, with a small peak at blocks  10 and 11 (89 and 94 pieces) up to block 16, which 

initiates a dramatic rise, with a maximum at block 18 (152 pieces). S's performance then 

decreases slightly, and plateaus at 123 pieces on average per block. In only four cases did 

S manage to place more than 160 pieces correctly:  

 

 Session 89:  9 positions attempted, 163 pieces correct;  

 Session 90:    10 positions attempted, 160 pieces correct; (only attempt with 10) 

 Session 130: 9 positions attempted, 167 pieces correct; 

 Session 150:  9 positions attempted, 178 pieces correct. 

 

 Expressed in terms of the average number of boards attempted per block of 5 

sessions, the results are as follows: up to block 15, only two blocks average more than 5 

boards (6 boards in block 10, and seven in block 11). Then, after a peak of 9 boards 

(block 18), S averages 8 positions (from block 19 to 22), and later 7 positions (from block 

23 to 30).   Note that, up to the present time, although S has almost doubled the number of 

boards he can recall above the criterion (of no more than one board less than 60% 

correct), and more than tripled the number of pieces replaced correctly, the number of 

boards he can replace above the criterion is still within the usual STM span. 

 

 As the experiment progressed, S increased linearly the average percentage of 

pieces correct per position, both for the warm-up trials and for the multiple-board task. 

The regression equations are: 

 

 Percent_N_boards = 54.97 + 0.71 * block  (r2 = 0.51, p < .001) 

 Percent_2_boards  = 71.82 +  0.58 * block  (r2 = 0.68, p < .001) 
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That the percentage of pieces correct per position increases is a bit surprising, as this was 

not what S was training for; he was seeking to reconstruct all boards at at least the 60% 

level.  Theoretically, his increase in percentage correct may be explained by S gradually 

expanding his discrimination net and learning new templates (see general discussion, 

below). However, this explanation is not entirely convincing, because the time S spent on 

chess during this experiment is very small compared with the time he spent during his 

earlier career.   It is more plausible to suppose that over the course of the experiment, he 

may be gradually recovering his earlier knowledge.   It may also be that what S has added 

to his templates are slots useful for recalling positions, while what he had developed 

earlier were slots useful for playing chess. 

 

A few additional features of the experiment merit comment. 

 (a) Motivation.  S was not strongly motivated at the beginning of the experiment, 

which he took as a whim of the second author, but he was gradually seduced by the task 

and became curious about how far he could go.  His daily performance became an 

important part of his weekly routine. A bad performance would, in some cases, vex him 

for the rest of the day, a good one would exhilarate him for a few hours.  

 (b) Interruptions. In two cases, S interrupted the experiment for  two weeks. 

Interestingly, he seemed to do better on the multiple-board task after the interruption. The 

first interruption occurred between the 8th and 9th experimental weeks (between sessions 

36 and 37), the second after the 34th and 35th experimental weeks (between sessions 143 

and 144).  Over the final week before the first interruption, S averaged 41 pieces correct 

with 2 positions and 62 with n positions. After resuming, his respective averages were 38 

and 86. Before the second interruption, his respective averages were 46 and 118. After the 

interruption, 46 and 124. We speculate that interruption decreased the proactive inhibition 

in LTM. 
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 (c) Verbal labeling. As shown in the examples illustrating the cue-list, S often uses  

names -- mainly opening names, such as “King’s Indian”; “Queen’s Gambit with a 

minority attack” -- in order to label the position. That verbal labeling is important in 

recalling positions has been noted in chess research on several occasions before (e.g. De 

Groot & Gobet, in press). While position labeling is generally advantageous for S, two 

qualifications are worth noting. First, some positions, although labeled correctly, produce 

a low recall percentage. This occurs typically when the label does not differentiate enough 

and is compatible with several typical positions. Second, some positions that S could not 

label, even after the feedback phase of the session, are well recalled. In these cases, S has 

either identified the position as a whole (“I know this type of position”) even though no 

name could be associated with it, or noticed several small chunks, or various relations of 

attack between the pieces. 

 

Discussion of Experiment 3 

 

 Cooke et al. seem to have been too optimistic in their conclusion that chess 

masters could recall (easily) at least 9 boards. The subject of this experiment, only slightly 

weaker than their best Master (2396 vs. 2515 USCF rating; a one-half standard-deviation 

difference), has reached a (temporary?) ceiling after 150 sessions with 10 positions 

attempted, and with something of a plateau around 8 positions reconstructed at or above 

criterion. (In appendix 1, a mathematical model shows that such a plateau can be expected 

given S’s current probability of scoring, in a position, above the 60% criterion.) Although 

this does not prevent future progress,  it indicates that his performance in the recall of 

multiple boards, although based on LTM encoding strategies,  probably also requires the 

retention in STM of the information that identifies the templates for these positions.  

 In our present understanding of this experiment, S’s performance relies on two 

processes: (a) recognition of the position -- with or without verbal labeling -- so that the 
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appropriate template can be retrieved and its slots filled; and (b) association of this 

template with the current name on the cue list. Position recognition is a direct test of S's 

chess expertise, and we hypothesize that the only way to improve this skill very much 

would be to train again to a professional level in order to elaborate his  perceptual 

discrimination net (EPAM net) and to increase the number of templates for recalling 

positions. Interestingly, as shown by the increase in average percentage per position, both 

for the warm-up positions and the multiple-board positions, S seems to have gradually 

improved this part of his skill. The second part, acquiring a more powerful retrieval 

structure, seems more accessible to “conscious” strategies, like SF’s and DD’s 

construction of their retrieval structures (Chase and Ericsson, 1982; Staszewski, 1993). 

This part has been harder for S to improve than we thought it would be at the beginning of 

this experiment. 

 

General Discussion 

 

 To explain the complex data we have reviewed, we propose a modified theory of 

chess memory that makes a minimum of special assumptions. We  conjoin the chunking 

mechanism of Chase and Simon with another mechanism that has shown considerable 

success in explaining other expert memory performances.  This is  the mechanism of 

retrieval structures or templates which, operating within the EPAM model of perception 

and memory, has matched in great detail the performance of experts who have learned to 

recall long strings of digits presented to them at a rate of one every second or two seconds 

(Richman, Staszewski & Simon, 1995).   

 One basic question in the theory of chess memory is what part of the performance 

employs short-term memory, and what part long-term memory.  A second question is 

what learned structures in long-term memory, whether learned as part of the acquisition of 

chess skill or learned specifically to improve performance in this recall task, can increase 
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the number of boards that can be reconstructed, and to what extent.  Our answers to these 

questions draw extensively on the theory, developed initially by Chase, Ericsson and 

Staszewski, and formalized and tested in detail by Richman, Staszewski and Simon 

(1995), of memory for rapidly presented digit sequences.    

 1. The model we propose assumes a short-term memory of "normal" capacity, 

measured as 7± 2 chunks (familiar and recognizable patterns) or as the number of chunks 

that can be rehearsed in about two seconds (Miller, 1956; Baddeley, 1986; Zhang & 

Simon, 1985).   

 2. It assumes a discrimination net (EPAM net) that has learned to recognize and 

discriminate among a large number of such chunks, and has stored information about 

them in long-term memory.   

 3. Among the chunks relevant to chess stored in long-term memory are (a) clusters 

of pieces (up to five or more), (b) position templates, and (c) a retrieval structure pointing 

to a sequence of such templates. 

 (a)  The clusters are the chunks of the Chase-Simon theory.  As they are the 

familiar patterns of pieces that are commonly encountered in chess game positions, they 

can be recognized by expert players whenever they are present on the board, the number 

that can be recognized varying with experience and skill.   The number of such chunks in 

the long-term memory of a master is probably in the neighborhood of 50,000 or more. 

 (b)  The templates are patterns of the chess board found in familiar openings and 

lines of play, again of the sorts frequently encountered in games.  The templates specify 

the locations of perhaps a dozen pieces in the position (thus specifying a class of 

positions), but also contain variables (slots) in which additional information can be 

placed, thus fixing the positions of additional pieces.   Perceived individual pieces or 

chunks of type (a) can be assigned to slots in a matter of a second or two.  Some of the 

slots may have default values that can be altered.  The templates are implicitly acquired 
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by chess players in the course of their study of games, both those they play and those they 

examine in the chess literature. 

 (c)  The retrieval structure is a deliberately acquired structure in long-term 

memory that is used to store identifiers for the list of individual positions encountered in 

the course of a multiple board trial.  We described above the retrieval structure, using the 

names of world champions, that was learned and used by S in Experiment 3. 

 The main novelty of this theory is the hypothesis that, in addition to the fixed 

chunks specified by Chase and Simon, there are chunks (retrieval structures and 

templates) in long-term memory that contain variables (slots), and that these slots can be 

filled rapidly with new perceptual information.  This hypothesis derives from previous 

empirical observations on memory.  The EPAM model (Simon & Feigenbaum, 1962), 

using discrimination nets to access memory, postulates that when new items are learned, 

different processing times are required: (1) to elaborate the discrimination net and  (2) to 

store information about the new chunk at the leaf node.  Evidence from other recall tasks 

(Simon, 1976, esp. pp. 72-73) suggests that most of the time required for learning new 

chunks (8 seconds per chunk) is spent in elaborating the net, and that information may be 

stored at existing leaf nodes rather quickly (less than 1 second per item).  The idea of 

rapidly modifiable long-term memory structures (retrieval structures) was then shown 

capable of explaining the remarkable memory performances of mnemonists, including the 

subjects who trained themselves to recall rapidly presented sequences of digits  (Chase & 

Ericsson, 1982; Ericsson & Polson, 1988; Ericsson & Staszewski, 1989; Staszewski, 

1988, 1993).
9
  

  

   

The single template hypothesis 
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 If we accept the "standard" theory (Newell & Simon, 1972), the durations of the 

stimulus presentations are too short (5 seconds per board) to allow the chunks to be 

transferred to long-term memory;  for at 8 seconds per chunk the time to store information 

in LTM is nearly a minute for seven chunks.  However,  the eight-second estimate is 

based on experiments where the subject must first learn to differentiate the response 

chunk from other chunks, and then store it in LTM in association with the corresponding 

stimulus.  In the present experiments the subject needs simply to recognize familiar 

chunks, whose content is already stored in LTM and add information to them, without 

expanding the discrimination net.   The empirical evidence suggests that the time required 

for such an addition to a chunk in the EPAM theory is about one second.         

 This hypothesis is not an ad hoc  explanation for a previously discovered 

phenomenon, but has strong independent sources of support.  The study of phenomenal 

memory performances, which, on an anecdotal basis goes back to classical times, and 

which has been revived in systematic studies in recent years by Chase, Ericsson, 

Staszewski and others,  explains the phenomena convincingly  on the basis of precisely 

this mechanism. 

 Chase and Ericsson (1982) and Staszewski (1988) have shown that subjects 

possessing normal STM spans and normal abilities to acquire new information in LTM 

can learn, but only after  many months or even several years of training, to recall 

sequences of 100 or more digits when these are read to them at rates of a digit every 

second or two.  Similar performances recorded in the past have always been associated 

with some variant of the so-called "method of loci,"  in which the mnemonist acquires a 

fixed retrieval structure in LTM by study over some period.  The retrieval structure is 

often a building stored in memory ("Memory Palace") composed of many rooms, with 

furniture on which objects can be placed  (in imagination).  When a list is to be 

memorized, the mnemonist proceeds, in imagination, through the rooms in a fixed order, 

placing the successive items on successive surfaces ("slots"). 
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 Chase, Ericsson and Staszewski showed that their trained mnemonists used 

retrieval structures that they acquired deliberately  during their training, and of which they 

were fully aware.  In the case of sequences of digits, the structures were tree-like, chunks 

of three or four digits being associated with each successive twig of the tree.  In other 

experiments by Ericsson and Polson (1988), restaurant waiters retained multiple 

customers' orders, and the templates were standard menus with a slot for each course.  

The mnemonists and the trained waiters also acquired, or had previously acquired, 

familiar chunks, which were stored in LTM. In the digit sequence recall, these chunks 

were running times (it happened that the subjects were experienced runners) and ages; in 

the case of the waiters, they were standard menu items. 

 In a first attempt to apply the idea of retrieval structures to chess (Richman, Simon 

& Gobet, 1991; see also Ericsson & Kintsch, 1995, for a similar approach) we proposed a 

retrieval structure in the form of a single chess board with slots for storing chunks in 

association with the squares.  When  information was stored from two or more successive 

positions, this could be done on a single retrieval structure, or separate copies of the 

structure could be used.  With the first alternative, some information had to be stored with 

each chunk to identify the position it came from.   

 While the single retrieval structure hypothesis will account for data from 

interference experiments (Charness, 1976; Frey & Adesman, 1976), it suffers from some 

weaknesses.  In Gobet’s (1993a,b) simulations, which used such a retrieval structure, 

some data on the location of chunks did not fit when the structure was used, but did when 

it was not. Second, such a scheme predicts better recall with random positions than is 

actually observed. Third, it predicts that subjects can encode, in the recall of several 

boards, only one piece per square. However, the protocols of subjects in the multiple 

board task show that they sometimes encode several pieces on the same square for 

different positions, or several chunks in the same part of the board. Finally, there is 

relatively little interference between boards, contrary to the prediction of the theory. 
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The multiple template hypothesis 

 

 These shortcomings lead us to propose that previously-stored multiple templates 

are used to remember chess positions.  Chess players have seen thousands of positions; 

and for expert players, most positions they see readily remind them of positions or types 

of positions they have seen before.  They have information about the positions that arise 

when the Ruy Lopez opening is played, or the King's Indian Defense.  A Grandmaster or 

Master holds in memory  literally thousands of such patterns,  each of which specifies the 

locations of ten or a dozen pieces, with revisable defaults for others.  We will take these 

patterns as the templates in our theory. Templates, under various names, are familiar 

objects in cognitive psychology and in artificial intelligence programs.  They have been 

called "schemas" (Bartlett, 1932), "frames" (Minsky, 1975) or "prototypes" (for example, 

for chess, Goldin, 1978; Hartston and Wason, 1983). Without any common agreed upon 

usage of these terms, we have chosen for the purpose of this paper the term “template.” 

  We hypothesize that these templates have slots which can be filled with various 

types of information, such as the location of pieces on the board, the opening such a 

position is likely to come from, the potential plans and moves in the position, and so on. If 

the similarity of a briefly presented position to one of these templates is recognized, the 

template can be used, with modifications, to store the information about the current board. 

Figure 4 shows such a template, as postulated for a relatively weak player. 

---------------------------------- 

Insert Figure 4 around here 

---------------------------------- 

 

 Because chess is primarily a visual task, templates will be accessed mainly  

through  patterns of pieces on the board.  Recognizing the appropriate template requires 
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no more than an EPAM-like discrimination mechanism, like the one proposed by Chase 

and Simon (1973), and implemented by Gilmartin and Simon (1973). However, while all 

nodes in the net were previously assumed to store the same kind of chunk, the multiple-

template theory postulates that some chunks evolve into more complex structures (the 

templates) having slots, which may themselves be filled with chunks. The new proposal 

supposes that the time needed to fill a slot in an already existing LTM template is brief 

(less than one second). 

 According to this hypothesis, chessmasters recall a position better than weaker 

players both because they can retrieve larger chunks (the hypothesis of Chase and Simon) 

and because the larger chunks are templates with slots. In the recall of several boards, a 

pointer to the distinct template for each board is placed in STM.
10

 The hypothesis 

therefore predicts that no more than 7 ± 2 positions can be retained, the exact number 

depending on the time required to access the labels of the schemas. (Cooke et al.’s data 

are compatible with this hypothesis, as even their best subject’s
11

 performance is within 

this range). The idea that experts may maintain a number of different retrieval structures 

in STM is not completely new. Recently, Staszewski (1988) has shown that expert mental 

calculators keep several retrieval structures in STM when solving arithmetic tasks.  

 The hypothesis also produces the phenomena attributed to  high-level descriptions 

by Cooke et al. (1993) and Gruber and Ziegler (1990). These authors did not specify how 

high-level descriptions are accessed, and a high-level description may point to several 

positions. The multiple-template model removes these difficulties; for recognition of 

similarity between the current position and positions for which a template already exists 

in LTM  associates the position with the stored template, and variants of positions 

associated with a single template can be specified by filling slots. 

 Finally, the multiple-templates version of the theory is not excessively accurate at 

remembering random positions, which we have seen to be a problem with the single-

template hypothesis.  Random positions simply do not evoke a rich template.  Even in 
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random positions, however, search processes may disclose adventitious relations (e.g., 

attack, defense) among pieces or groups of pieces on the board, relations that are not 

salient to immediate perception.  We would expect high-level players to detect more such 

relations in a given search time than weaker players.  This explains the observed modest 

superiority of Masters over weaker players in random positions (Gobet & Simon, 1994b). 

 The multiple template hypothesis also explains the rapidity with which these 

retrieval structures are accessed (through the mechanisms embodied in the EPAM theory); 

how they are slowly learned (by the EPAM discrimination and familiarization processes); 

and how they fit together with the data on chunks (perceptual mechanisms direct attention 

during the creation of the EPAM net).  The application to chess only requires EPAM to 

learn and add to LTM the templates corresponding to previously experienced chess 

positions.  

 Why, then, does the number of pieces recalled not increase linearly with the 

number of positions presented?  Because STM must now be used also to hold the 

identifying labels for the particular templates that have been retrieved and modified.  If 

these labels are verbal and multisyllabic ("it's the Dragon Variation of the Sicilian 

Defense"), the Baddeley model of STM would predict that only a small number can be 

retained (Baddeley, 1986; Zhang and Simon, 1985).  If they are themselves encoded as 

perceptual cues, there is still the familiar limit of 7±2.  

 Finally, we can conjecture why the largest chunks recalled are bigger when single 

positions are presented than when positions are presented in sets.  (The size ratio was 

about 1.6:1 in Experiment 1.)   Filling in free slots requires some STM capacity, and this 

resource may be exhausted when more than one position is presented. In this case, only 

the core of a template, with perhaps a few default values, may be accessed during recall. 

 An alternative hypothesis lies in the subjects' strategies when replacing multiple 

boards. Two strategies frequently seen among our Masters or Experts would cause a 

reduction in the measured size of the largest chunks. The first strategy consists in placing 
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a few pieces on each board (thereby providing recognition cues to recover the template for 

each position, and the full chunks, later), and then going back to complete each position. 

Replacement of chunks piecemeal, in this way, would lead us to underestimate chunk size 

and overestimate the number of chunks.  The second strategy, having a similar effect, 

consists in placing first, for each position,  pieces the  subject is unsure of (e.g., the 

positions of Rooks, of “a” and “h” pawns, of Queens and Kings) and afraid of forgetting.  

 

Comparison with higher-level descriptions 

 

 In what respects do Multiple Templates (MTs) differ from the higher-level 

descriptions (HLDs) postulated by Craik and others? Perhaps the most fundamental 

difference is that the MT concept is part of a detailed comprehensive process model, 

while the HLD concept is not.   Second, as opposed to MTs, HLDs do not account for 

slots and rapid encoding into LTM.  Third, MTs may or may not give access to high-level 

descriptions such as type of position or of  the opening to which the position belongs. In 

MTs, "high-level descriptions" become slot-values in the template.  In Experiment 3, S 

could sometimes  reconstruct positions without being able to label them verbally. Fourth, 

(chess) templates have a strong visuo-spatial character. This is lacking in the HLD 

concept. Fifth, nothing is said about how HLDs are accessed, while we propose that MTs 

are accessed through a discrimination process like that incorporated in EPAM. 

 There is nothing antithetical about the two concepts, but the one, MT, is defined in 

terms of a precise set of mechanisms and processes already incorporated in an existing 

model tested on other tasks, while the other, HLD, is characterized in only a very general 

and imprecise way.  For  this reason, it is easier to design experiments for MTs than for 

HLDs that put the theory to a sharp test.   

 

Conclusion 
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   The ability of chessmasters to recall the main features of many, perhaps most, of 

the serious games they have played, as well as hundreds or thousands of games from the 

chess literature, indicates that, given sufficient time, many distinct  templates can be 

stored in LTM, with associated information about the positions of pieces.  We have no 

data that permit us to estimate how much time is required for such learning, but as it 

usually requires several hours to play a single game, and nearly the same time to study one 

seriously, the times available for learning appear adequate to the task. We think that the 

weight of evidence now available supports the multiple-template hypothesis of chess 

memory we have just discussed. 

 To test quantitatively a model as complex as this one requires it to be specified 

rigorously as a computer program so that the effects of its many interacting mechanisms 

can be sorted out and compared consistently with the data from many diverse 

experiments.  Our research group has constructed and successfully tested such a 

simulation for the expert digit-span performance (Richman, Staszewski & Simon, 1995) 

and has developed a preliminary model for chess memory (CHREST, Gobet, 1993a,b). At 

the core of these models is the long-established EPAM program, which is already able to 

predict behavior over a wide range of perceptual and memory tasks, amplified by a 

mechanism for creating and employing retrieval structures or templates in LTM in the 

manners indicated above.  We intend to report separately on the application of these 

models to a wide range of empirical chess data.   
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Appendix 1 

Probability of Success in Replacing Pieces on Multiple Boards 

 

 

 

Suppose that S attempts to replace the pieces from a sequence of n boards and that the 

probability of achieving a replacement of at least 60% on any board, selected at random, 

is q per cent.   Then the probability of a successful trial (defined as a trial in which not 

more than one of the n boards has a replacement of less than 60%) is shown in the table 

below.  The equation is: 

 

          prob. success = q(n-1) (q + n(1-q)) 

 

It can be seen in Table A-2 that for the player to succeed more often than fail with 6 

boards requires q=.75; with 7 boards;  q=.775; with 8 boards, q = .8; and with 9 boards, q 

= .825.  To break even with 11 boards calls for a q just over .85.   

 In the multiple board task (without the warm-up positions), S obtains 73% of the 

boards above criterion in the 150 first sessions. The percentage increases to 77%  if only 

the last 75 sessions are considered, which gives S an equilibrium just below 8 boards, 

according to this mathematical model. 

 

----------------------------------- 

Insert Table A-1 around here 

----------------------------------- 
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Appendix 2 

Comparison of chess templates with DD’s retrieval structure 

 

As the data on two subjects, SF and DD, retrieving lengthy number strings have been a 

major basis for the skilled expert memory theory (Chase and Ericsson, 1982) and the 

concept of retrieval structure, it is informative to compare the chess templates we have 

put forward in this paper with the structure DD learned in order to perform the memory 

task. Table A.1 summarizes the main points of similarity and dissimilarity.  To determine 

whether the same mechanisms can explain both chess memory and digit retrieval, we are 

now collecting data (Experiment 3) on one subject, trained in a manner as similar as 

possible to the way SF or DD were trained, to remember as many briefly presented chess 

boards as possible.  

-------------------------------- 

Insert Table A-2 about here 

-------------------------------- 

 

 One of the main differences patent in the two columns of Table 3 is that DD both 

constructed and used his retrieval structure deliberately, while chess players’ templates 

are acquired as a by-product of their chess practice and training. In both cases the creation 

and refinement of such structures takes years; but, once acquired, the slots in them may be 

filled rapidly. We do not have direct estimates of the time required to fill slots in chess 

templates, but we propose an upper bound. Saariluoma’s experiments (1989), where 

positions are verbally dictated at a rapid rate, show that Masters are able to retain a 

random position dictated at a pace of one piece every 2 sec. The recall is high, but not 

perfect (60%). As templates are not available for random positions, we cannot derive a 

direct estimate from these data; but if Masters are no slower in encoding game positions, 
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where templates are at hand, it follows that template slots can be filled at a rate of 2 

seconds or less per slot, with an accuracy of at least 60%.  

 Comments of players playing blindfold games suggest that they focus their 

attention only on parts of the board, and that they do not maintain at one time in the ir 

mind’s eye an entire representation of the chess board  (Binet, 1894; Gobet, 1993a). 

Similar remarks are valid for DD: both during encoding and recall, DD only directs his 

attention, at any given time, to small parts of his retrieval structure. 

 While DD’s retrieval structure was specifically constructed for purposes of 

memorization, the raison d'être for chessplayers’ templates is to allow them to search 

efficiently while choosing a move. In particular, the templates give access to semantic 

information likely to be useful in this choice. Another useful characteristic of templates, 

saving time during both problem solving and memory tasks, is the presence of default 

values.  

 Finally, a chess template may point to other templates, describing earlier or later 

positions in the game (From which opening does this position come? To which endgame 

is it likely to lead?) These features do not exist for DD’s retrieval structure.  It 

seems that chess players templates are more complex structures than DD’s retrieval 

structure: the latter is a tree, the former are networks.  DD’ retrieval structure is an 

arbitrary representation of a list of digits, while the chess players’ template contains an 

isomorphic representation of the chess board. Such a template provides many 

redundancies; for example,  a given square is related not only to adjacent squares, but to 

squares on the same diagonal, or even to plans in which this square plays an important 

role.  DD also uses redundant encoding of information, but of a different kind (Richman, 

Staszewski & Simon, 1993). There is one respect in which DD’s template is more 

powerful than those used by chess players’: it can encode the order in which digits were 

dictated, whereas there is no evidence that chess players are good at remembering the 

exact order in which pieces were dictated in auditory presentation. 
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 In sum, while the retrieval structures and chess templates use the same 

fundamental processing mechanisms (rapid encoding in slots, long construction time, 

information stored in LTM...), they differ in features that are dictated by the peculiarities 

of their respective task environments.  The characteristics of retrieval structures have been 

determined for only a few environments.  We have already mentioned, in addition to digit 

lists and chess, waiters' memory for orders from menus, and the classical mnemonic 

devices like the "Memory Palace."   Retrieval structures will be better understood as 

research is extended  to other domains: for example, sports, scientific disciplines, 

engineering drawing, music and natural language. 
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Table 1 

Frequency of Recall of Positions as a Function of Presentation Order 

 

 

 

                           Order of presentation 

            

      #1 #2 #3 #4 #5 

 

 

4 positions to memorize 

 

Number of subjects recalling 

(part or all of) the positiona   12 11 8 11  - 

Average percent of pieces  recalled  40.8 29.5 20.7 38.2  -  

 

 

5 positions to memorize 

 

Number of subjects recalling  

(part or all of) the positiona   12 10 10 8 10 

Average percent of pieces  recalled  41 20.8 22.6 14.3 27  

 

 

Note. The three skill levels are pooled. 

a Maximum=13 subjects. 
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Table 2 

Mean Number (per position) of Errors of Omission and Errors of Commission as a 

Function of Skill and Number of Positions Presented  

 

  
 

Number of  positions  presented  
 

 

Skill level 1  2  3  4  5  

 

  Errors of omission 
 

 

Masters  0.4  (0.5)  0.6  (0.7)  7.4  (1.9)  7.2  (0.7) 11.5  (7.3) 

Experts  5.4  (4.7)  8.2  (5.3)  8.5  (5.4) 11.0  (4.7) 10.8  (8.8) 

Class A 14.1  (5.5) 19.5  (3.1) 20.6  (1.8) 20.7  (1.7) 20.7  (2.5) 

 

  Errors of commission 
 

 

 

Masters 0.8  (0.4) 3.1  (2.2) 2.6  (2.8) 2.7  (0.9) 3.8  (2.4) 

Experts 2.9  (1.7) 5.3  (3.5) 5.0  (2.5) 4.0  (3.3) 5.4  (4.8) 

Class A 3.3  (3.6) 1.6  (1.1) 1.1  (0.8) 0.9  (0.7) 1.1  (1.0) 

 

 

Note. Standard deviations are given in parentheses. 
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Table 3 

List of the Chess World Champions Used by S as a Cue List (Retrieval Structure) 

 

 

1.  Steinitz Stein 

2.  Lasker Las 

3.  Capablanca Cap 

4.  Alekhine Al 

5.  Euwe Euw 

6.  Botvinnik Bot 

7.  Smyslov Smys 

8.  Tal Tal 

9.  Petrossian Pet 

10.  Spasski Spass 

11.  Fischer Fish 

12.  Karpov Kar 

13.  Kasparov Kas 

 

 

Note. The third column indicates the abbreviations used by S when rehearsing  the names 

subvocally. 
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Table A-1 

Probability of Meeting the Criterion for a Trial of n Boards when the Probability of  

Scoring at least 60% on a Randomly Chosen Board is q.   

 

 

              Number of boards 

 

     

q 5 6 7 8 9 10 

 

       

.750 0.6328  0.5339  0.4449  0.3671  0.3003  0.2440  

.775 0.6854  0.5941  0.5092  0.4324  0.3644  0.3051  

.800 0.7373  0.6554  0.5767  0.5033  0.4362  0.3758  

.825 0.7875  0.7166  0.6464  0.5788  0.5150  0.4559  

.850 0.8352  0.7765  0.7166  0.6572  0.5995  0.5443 

 

 

Note.   Criterion = not more than one board less than 60% correct.  

            Example: if q is .775, then there is a probability of .5092 of meeting the criterion 

in  a trial of 7 boards. 
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Table A-2 

Comparison between DD’s Retrieval Structures and Chess Templates 

 

Features Chess Template 
DD's retrieval 

structure 

type of information stored chess information  digits 

speed of information encoding  into slots rapid  (1-2 sec) rapid  (~ 1 sec) 

accessibility of the entire structure at the 

same time 

 no no 

duration of construction   years  years  

contains indications for actions yes ?  

consciousness during construction   low high 

consciousness for accessing structure low high 

duration of information in slots ? lasts hours 

presence of default values yes no 

type of structure network structure tree structure 

structure is semantically laden yesa no 

presence of redundancy yes yes 

points to possible future templates 

points to past templates 

yes 

yes 

no 

no 

multiplicity of templates yes  yes 

dimensionality bidimensional unidimensional 

order matters no yes 

 

 

a Provided by the topology of the chess board. 



 Templates in Chess Memory 64 

     

Figure captions 

 

 

Figure 1: Mean percentage (upper panel) and mean number (lower panel) of correct pieces 

as a function of chess skill and of number of positions to memorize. Mean percentage and 

mean number of random positions are shown for comparison. 

 

Figure 2: Mean number of correct pieces as a function of number of positions to 

memorize and inter-position latency for Masters (upper panel) and Experts (lower panel).  

 

Figure 3: Number of pieces placed correctly by S as a function of the number of blocks of 

five practice sessions.  

 

Figure 4: Upper panel:  Illustration of the concept of template. The template indicates the 

stable pieces for a class of positions and contains among others slots for pieces squares 

openings plans and moves. It also contains links to other templates (e.g. a possible type of 

position after 10 additional moves). Lower panel: Diagrammatic representation of the 

same template. Pieces on the board indicates the core pieces in the template and crosses 

indicates values contained in piece or square slots. 
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Footnotes 
 

1
Interestingly, this lack of impairment was also found by Murdock (1961) when a three-

letter word was used as stimulus. However, the interfering task had a substantial effect 

when three such words were to be recalled. 

2
The ELO rating is an interval scale that ranks competition chess players. Its standard 

deviation (200 points) is often interpreted as delimiting skill classes. Grandmasters are 

normally rated above 2500, Masters above 2200, and Experts above 2000. The American 

rating system (USCF rating) uses the same mode of computation as the international 

system (ELO). However, because of differences in the games selected for computation, 

USCF rating is in general about 50 points above the international rating. 

3
The switch between positions was easy enough to allow the Ss to sometimes reconstruct 

several boards in parallel or to scan the reconstructed boards rapidly  to inform them on 

their progress. 

4
As chunks are two-dimensional structures, subjects are likely, when replacing pieces 

serially on the board, to proceed down one path at a bifurcation point in a chunk and 

neglect pieces on the other path.  Later comparison of the chunk in memory with the 

pieces replaced could notice the omission and repair it.  This would afford one 

explanation of why most trials end in replacements of a sequence of one-piece "chunks." 

The other explanations (noted in the text) are inference and guessing. 

5
Obviously, this type of recognition is more likely to happen when the opening leading to 

the stimulus position belongs to the subject's repertoire. 

6
Given the long duration of the experiment, we chose this procedure over the expensive 

choice of employing another professional player.  In incorporating in the experimental 

design the collaboration of subject with experimenter to find ways of enhancing 
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performance, we follow the examples of Ebbinghaus, and of the earlier subjects on expert 

memory for digit strings,  SF and DD (Chase & Ericsson, 1982; Ericsson, Chase & 

Faloon, 1980; Staszewski, 1993).  In a test of cognitive abilities, with no deception in the 

experiment's design, and no possibility for subject deception in an upward direction,  an 

expert member of the research team is an appropriate subject. The research question is 

how far, using any available knowledge of the process, expert memory can be stretched.   

7
We thank Peter Jansen and Murray Campbell warmly for gathering these positions and 

coding them into an appropriate format. 

8
We hypothesize that this loss in performance is due to the attention S had to spend in 

monitoring the use of his retrieval structure. 

9
 Appendix 2 offers a direct comparison between chess templates and the retrieval 

structures used in the digit-span task studies. 

10
There is some evidence from the multiple board experiments that players may access a 

position after a search of several minutes in LTM without using a pointer held in STM. 

We propose to account for this (rather rare) phenomenon with an LTM activation 

mechanism similar to that employed  by Richman, Statszewski and Simon (1995). 

11
 This subject seems to use a mnemonic scheme to access the addresses of these 

templates rapidly in LTM. If our interpretation of the Cooke and al. data is correct, this 

subject would then use, as did S in experiment 3,  two types of retrieval structures: one to 

encode the addresses of the positions, and the others (a template for each position 

accessed) to encode the pieces in the position. 


