
Acoustic scattering in a waveguide with a height discontinuity bridged

by a membrane: a tailored Galerkin approach.

by

Jane B. Lawrie

Department of Mathematics, Brunel University London

Uxbridge, UB8 3PH, UK

Email: Jane.Lawrie@brunel.ac.uk

and

Muhammad Afzal

Department of Mathematics

Capital University of Science and Technology, Kahuta Road

Islamabad, Pakistan

Email: dr.mafzal@cust.edu.pk

Abstract

This article is concerned with the reflection and transmission of fluid-structure cou-

pled waves at the junction between two flexible waveguides of different heights. Unlike

previous studies, in which the waveguides are joined at the height discontinuity by a

rigid or soft strip, here the height discontinuity is bridged by a membrane. The aims

are first to develop a solution method that enables a wide range of conditions to be

applied at the edges of the bridging membrane, and then to ascertain the effect that

these have on the reflected and transmitted fields. Numerical results are presented

which confirm that that the conditions applied at the edges of the bridging membrane

do have a significant effect on the reflected and transmitted components of power.

Keywords: Acoustic scattering; fluid-structure coupled waves; mode-matching; Galerkin

procedure; flexible walls; thin plates and membranes.

1



1 Introduction

Mode-matching methods provide a convenient and powerful means by which to ad-

dress a wide range of problems involving scattering in ducts or channels. The ap-

proach was originally developed for the solution of canonical problems in which the

underlying eigen-systems were of Sturm-Liouville type. In recent years, however, the

method has been advanced and extended in many directions. In particular, multi-

modal and hybrid methods have been developed to deal with rigid walled ducts with

non-canonical geometries or lined inclusions [1]-[6], and generalised orthogonality re-

lations (ORs) have been derived for problems involving propagation in ducts/channels

with high order boundary conditions [7]-[9]. The methods associated with the latter

class of ORs have been extended to three dimensional problems with rectangular

cross-sections [10]-[12], and the ability of these methods to handle singularities in the

fluid velocity field has been studied [13]. These developments have enabled a much

wider range of problems in acoustics and hydrodynamics [14]-[16] to be addressed

using mode-matching and related methods.

This article is concerned with the reflection and transmission of fluid-structure

coupled waves at the junction between two flexible waveguides of different heights.

Forcing is introduced in the form of a wave incident towards the junction; both the

fundamental mode and the first higher mode are considered in this role. Unlike pre-

vious studies [8], [13], in which the waveguides are joined at the height discontinuity

by a rigid or soft strip, here the strip joining the waveguides is also flexible. This type

of junction can be found in heating, ventilation and air conditioning (HVAC) sys-

tems and also vehicle exhaust systems. In both situations the walls of the expansion

chamber which forms part of a silencer are not rigid. In most practical applications

the flexible surfaces would be modelled using, for example, the thin plate equation or

Mindlin theory, however, in this article a prototype problem is considered in which

all flexible surfaces are modelled as membranes.

The model problem can be solved using mode-matching in conjunction with the

well established Galerkin procedure - a technique that has been extensively studied
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and used to solve a wide range of related problems [17]-[22]. Fundamental to the

Galerkin procedure is the assumption that a particular characteristic of the physical

problem can be modelled as a expansion in terms of appropriately chosen basis func-

tions. The basis functions may be chosen, for example, to model a corner singularity

in the fluid velocity field [17], [22] or, as herein, to ensure that the conditions at the

edges of a finite membrane or plate are satisfied [21]-[20]. Thus, in general, a different

set of basis functions is required for each variation of a given physical problem and,

in the current context, this can lead to a further “layer” of root-finding.

The aims of this article are: first, to develop a solution method that enables a

wide range of conditions to be applied at the the edges of the vertical membrane

without the need to change basis functions; second, to ascertain the effect that the

bridging membrane has on the reflected and transmitted fields. The new approach

is a variation of the Galerkin procedure. The displacement of the vertical membrane

is represented as a modal expansion using the eigenfunctions for the duct section

of greater height. Key to the success of this approach are the properties of these

eigenfunctions, namely, their linearly dependence and the Green’s function represen-

tation [9]. The Green’s function is used to obtain a closed-form expression for the

vertical membrane displacement in terms of the the fluid modal amplitudes and this

expression has sufficient degrees of freedom to enable a wide range of edge conditions

to be applied.

The article is organised as follows. In section 2, the two-dimensional (2D) model

problem is described and the corresponding boundary value problem is stated. The

mode-matching solution is executed in sections 3 and 4. First the problem studied

by Warren et al [8] is revisited and then the current problem is solved using the two

methods discussed above. A study of the reflected and transmitted components of

power for three different sets of edge conditions and two different incident waves is

presented in section 5. The tailored Galerkin approach is then validated by demon-

strating the conditions at matching interface are fully satisfied. The relative merits

of the two solution methods are discussed in section 6.
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2 The model problem

Consider a two-dimensional waveguide comprising two semi-infinite sections of differ-

ent heights ā and b̄, b̄ > ā, that meet along a vertical interface which, in a Cartesian

frame of reference, is specified by x̄ = 0. The lower wall of the waveguide lies along

ȳ = 0, −∞ < x̄ < ∞ and is acoustically hard whilst the upper boundaries comprise

membranes which lie on ȳ = ā, −∞ < x̄ ≤ 0 and ȳ = b̄, 0 ≤ x̄ < ∞ respectively.

At x̄ = 0, the two duct sections are joined by means of a vertical strip occupying

ā ≤ ȳ ≤ b̄. Two cases are considered: a rigid strip and a membrane strip, see figure

1. A compressible fluid of density ρ and sound speed c occupies the interior region

of the duct.

An incident wave of harmonic time dependence e−iωt̄, where ω = ck is the radian

frequency in which k is the fluid wavenumber, propagates in the positive x̄ direction

towards x̄ = 0. On non-dimensionalising the boundary value problem according to

kx̄ = x, kȳ = y and ωt̄ = t, the governing equation is:

(

∇2 + 1
)

φ = 0, (1)

where φ(x, y) is the non-dimensional reduced (time independent) velocity potential

which may be expressed as

φ(x, y) =







φ1(x, y), x < 0, 0 ≤ y ≤ a

φ2(x, y), x > 0, 0 ≤ y ≤ b
. (2)

The boundary condition at the rigid base is

∂φj

∂y
= 0, y = 0, −∞ < x <∞, j = 1, 2. (3)

For the upper boundaries of the waveguide the non-dimensional membrane boundary

condition is
(

∂2

∂x2
+ µ2

)

φjy + αφj = 0, j = 1, 2 (4)

where for j = 1 the condition is applied at y = a, x < 0 and for j = 2 it is

applied at y = b, x > 0 respectively. (The subscript y here and henceforth indicates

differentiation with respect to this variable.) The non-dimensional parameter µ =
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c/cm is the in vacuo membrane wavenumber and α = ω2ρ/(Tk3) is a fluid loading

parameter. Here T denotes the membrane tension and cm =
√

T/ρm is the in vacuo

speed of waves on the membrane in which ρm is the membrane mass per unit area.

y

0

b

a

x

Figure 1: The duct geometry (depicting the membrane strip) in which a = kā and

b = kb̄.

The velocity potentials can be expressed as eigenfunction expansions of the form:

φ1(x, y) = Fℓ cosh(τℓy)e
iηℓx +

∞
∑

n=0

An cosh(τny)e
−iηnx, x < 0 (5)

and

φ2(x, y) =

∞
∑

n=0

Bn cosh(γny)e
isnx, x > 0 (6)

where the coefficients An and Bn are the complex amplitudes of nth reflected and

transmitted modes respectively. The first term in (5) is an incident wave having

amplitude Fℓ =
√

α/(Cℓηℓ), which is chosen to ensure unit incident power (Cℓ is

defined in the text just below equation (10)). The counter ℓ is taken to be either

0 or 1 corresponding respectively to the fundamental (structural) mode or the first

higher mode. The non-dimensional wave numbers, ηn =
√

τ 2n + 1 and sn =
√

γ2n + 1,

are either positive real or have positive imaginary part. The quantities τn and γn,

n = 0, 1, 2, . . . are the roots of the dispersion relations K(τ) = 0 and L(γ) = 0

respectively where

K(τ) = (τ 2 + 1− µ2)τ sinh(τa)− α cosh(τa), (7)
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and

L(γ) = (γ2 + 1− µ2)γ sinh(γb)− α cosh(γb). (8)

These roots are found numerically and their properties are discussed in, for example,

[13].

The eigenfunctions satisfy a generalised orthogonality relation (OR) which, for

those relevant to the right hand duct (that lying in x > 0), is

α

∫ b

0

cosh(γmy) cosh(γny)dy = δmnDm − γmγn sinh(γmb) sinh(γnb) (9)

where δmn is the Kronecker delta and

Dm =
αb

2
+

(

3γ2m + 1− µ2

2γ2m

)

[γm sinh(γmb)]
2. (10)

The OR for the duct lying in x < 0 is identical in structure and can be obtained

from (9)-(10) on replacing b with a, γm with τm and Dm with Cm. In addition to the

orthogonality property (9), the eigenfunctions are linearly dependent and a Green’s

function can be constructed. In terms of the eigenfunctions for the duct lying in

x > 0, the Green’s function takes the form:

α

∞
∑

q=0

cosh(γqv) cosh(γqy)

Dq
= δ(y − v) + δ(y + v)+δ(y + v − 2b),

0 ≤ y, v ≤ b (11)

where δ(y) is the usual Dirac delta function and linear dependence is indicated by:

Z(y) =

∞
∑

q=0

γq sinh(γqb) cosh(γqy)

Dq
= 0, 0 ≤ y ≤ b. (12)

It is important to note that although Z(y) = 0, 0 ≤ y ≤ b, its derivatives are

non-zero. Of particular note are the results Z ′(b) = 1 and

Z ′′(y) = (µ2 − 1)Z(y) + 2δ(y − b), 0 ≤ y ≤ b, (13)

the latter being obtained by using (8).

The eigenfunction expansion (5) comprises an incident wave and a reflected field

whereas (6) is the transmitted field. The non-dimensional reflected and transmitted
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powers are expressed in terms of the modal coefficients as:

E1 =
1

α

J1−1
∑

m=0

|Am|
2Cmηm and E2 =

1

α

J2−1
∑

m=0

|Bm|
2Dmsm, (14)

where J1(J2) is the number of cut-on modes in the left(right) hand duct. These

expressions incorporate both the fluid and the structure-borne components of the

reflected and transmitted powers [8], [13]. As mentioned above, the choice of Fℓ is

such that the incident power is unity and it follows that

E1 + E2 = 1. (15)

2.1 The mode-matching solution

At the matching interface (x = 0) the fluid pressure is continuous, thus

φ1 = φ2, 0 ≤ y ≤ a. (16)

On substituting the eigenfunction expansions (5) and (6) into (16), multiplying by

α cosh(τmy) and using the OR (equivalent to (9)) for the duct lying in x < 0, it is

found that

Am = −Fℓδmℓ + E1
τm sinh(τma)

Cm
+

α

Cm

∞
∑

n=0

BnRmn, (17)

where E1 = φ1y(0, a) and

Rmn =

∫ a

0

cosh(τmy) cosh(γny)dy. (18)

Note that the roots of dispersion relation defined in (7) and (8) are either real or

imaginary which ensures that Rmn is always real.

In addition to continuity of pressure, a second condition giving appropriate infor-

mation about the normal component of the fluid velocity is required. Further, edge

conditions must be applied at the points where the membranes are either connected

to the rigid strip or, in the case of the bridging membrane, to each other.
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3 Rigid strip

Before considering the membrane strip it is worthwhile revisiting the problem studied

by Warren et al [8] in which the vertical strip is rigid. The appropriate velocity

condition at x = 0 is

∂φ2

∂x
=







∂φ1

∂x
, 0 ≤ y < a

0, a ≤ y ≤ b
. (19)

On substituting (5) and (6) into (19), multiplying by α cosh(γmy) and using (9), it is

found that

Bm =
αFℓηℓRℓm

Dmsm
− iE2

γm sinh(γmb)

Dmsm
−

α

Dmsm

∞
∑

n=0

AnηnRnm. (20)

Then, on using (17) to eliminate An from (20):

Bm =
2αFℓηℓRℓm

Dmsm
−

αE1

Dmsm

∞
∑

n=0

ηnτn sinh(τna)Rnm

Cn

−iE2
γm sinh(γmb)

Dmsm
−

α2

Dmsm

∞
∑

n=0

Bn

∞
∑

q=0

ηqRqnRqm

Cq

. (21)

The values of the constants E1 and E2 depend on the choice of the edge conditions

imposed on the two semi-infinite membranes. Here and henceforth it is assumed that

both have zero displacement at x = 0, y = a, b. That is

φ1y(0, a) = φ2y(0, b) = 0. (22)

On applying conditions (22), it is found that E1 = 0 and

E2S1 =− iα

∞
∑

m=0

γm sinh(γmb)

Dmsm

{

2FℓηℓRℓm − E1

∞
∑

n=0

ηnτn sinh(τna)Rnm

Cn

}

+iα2
∞
∑

m=0

γm sinh(γmb)

Dmsm

∞
∑

n=0

Bn

∞
∑

q=0

ηqRqnRqm

Cq

(23)

where

S1 =
∞
∑

m=0

[γm sinh(γmb)]
2

Dmsm
. (24)

Equations (21) and (23) can be truncated and solved numerically.
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4 Membrane strip

In this section the rigid vertical strip is replaced by a membrane. Thus, the non-

dimensional velocity condition (19) is replaced by

∂φ2

∂x
=







∂φ1

∂x
, 0 ≤ y < a

w(y), a < y < b
, (25)

where the (non-dimensional) displacement of the vertical membrane, w(y), satisfies

wyy + µ2w − αφ2 = 0, a < y < b. (26)

In addition to (22), edge conditions must now be applied at either end of the vertical

membrane. Three different sets of edge conditions are considered. It is convenient

to assume that the displacement is zero at y = a but that at y = b the membrane

displacement, gradient or a linear combination of the two is assumed to be zero. These

are discussed in more detail later in the text. Two solution methods are considered:

the first is the well known Galerkin approach; the second is a tailored version of the

latter which exploits the properties of the eigenfunctions for the duct lying in x > 0.

4.1 Solution using the Galerkin procedure

Fundamental to the Galerkin approach is the selection of an appropriate set of mutu-

ally orthogonal basis functions to describe the displacement of the vertical membrane.

An appropriate set is one in which each function satisfies the edge conditions imposed

at y = a, b. Given that w(a) = 0, w(y) can be expressed as a Fourier sine series of

the form

w(y) =
∞
∑

n=n0

Gn sin[λn(y − a)], (27)

where the Fourier coefficients Gn, n = 1, 2, 3, ... are unknown. Each term of the series

satisfies the zero displacement condition at y = a and the eigenvalues λn are chosen to

satisfy the remaining condition at y = b. It follows that n0 is either 0 or 1 depending

on the choice of λn. The coefficients Gn can be expressed in terms of the fluid modal

amplitudes Bn, n = 0, 1, 2, . . . by using (26).
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On substituting (6) and (27) into (26) it is found that

∞
∑

n=0

Gn{µ
2 − λ2n} sin[λn(y − a)] = α

∞
∑

n=0

Bn cosh(γny), a ≤ y ≤ b. (28)

Then, on multiplying (28) by sin[λm(y − a)] and using the usual OR:

Gm =
α

∆m{µ2 − λ2m}

∞
∑

n=0

BnPmn, (29)

where

Pmn =

∫ b

a

sin[λm(y − a)] cosh(γny) dy (30)

and

∆m =
b− a

2
−

sin[2λm(b− a)]

4λm
. (31)

Having obtained a Fourier sine series representation for w(y) this can be substi-

tuted, together with (5) and (6), into the velocity condition (25). On multiplying

through by α cosh(γmy) and using (9), it is found that

Bm =
αFℓηℓRℓm

Dmsm
−

α

Dmsm

∞
∑

n=0

AnηnRnm − iE2
γm sinh(γmb)

Dmsm

−
iα2

Dmsm

∞
∑

n=0

Bn

∞
∑

q=0

PqmPqn

∆q{µ2 − λ2q}
. (32)

On using (17) to eliminate An from (32):

Bm =
2αFℓηℓRℓm

Dmsm
−

αE1

Dmsm

∞
∑

n=0

ηnτn sinh(τna)Rnm

Cn
− iE2

γm sinh(γmb)

Dmsm

−
α2

Dmsm

∞
∑

n=0

Bn

∞
∑

q=0

{

ηqRqnRqm

Cq

+
iPqmPqn

∆q{µ2 − λ2q}

}

. (33)

Before this system of equations can be truncated and solved the edge conditions (22)

must be imposed and the eigenvalues λn must be specified. Equations (22) imply that

E1 = 0; the corresponding value of E2 is (as in section 3) obtained by multiplying

(33) by γm sinh(γmb) and summing over m. Thus,

E2S1 =− iα

∞
∑

m=0

γm sinh(γmb)

Dmsm

{

2FℓηℓRℓm −E1

∞
∑

n=0

ηnτn sinh(τna)Rnm

Cn

}

(34)

+iα2

∞
∑

m=0

γm sinh(γmb)

Dmsm

∞
∑

n=0

Bn

∞
∑

q=0

{

ηqRqnRqm

Cq
+

iPqmPqn

∆q{µ2 − λ2q}

}

.
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The choice of eigenvalues, λn, is dictated by the behaviour of the bridging membrane

at y = b.

i) Zero displacement at y = a and y = b

This set of edge conditions is the most physically realistic. Clearly if the dis-

placement is zero at y = b then sin[λn(b− a)] = 0, so:

λn =
nπ

b− a
, n = 1, 2, 3, . . . . (35)

ii) Zero displacement at y = a; zero gradient at y = b

A zero gradient edge condition corresponds to the idealised situation in which

the membrane is attached to a light ring which can move freely on a horizontal

rod located, for the problem in hand, at y = b. For this set of conditions, the

correct choice is given by cos[λn(b− a)] = 0, so:

λn =
(n+ 1/2)π

b− a
, n = 0, 1, 2, . . . . (36)

iii) Zero displacement at y = a; impedance at y = b

The impedance or “spring-like” condition is defined as wy(b)+ ξw(b) = 0. This

condition corresponds to the situation, that in which neither the membrane

displacement or its gradient are zero but are coupled. Although an idealised

condition, it could be achieved by attaching the membrane to a spring which

moves horizontally in the plane y = b and is included to demonstrate the ver-

satility of the solution method. For this set of edge conditions the appropriate

values of λn, n = 0, 1, 2, . . . cannot be expressed explicitly. It transpires that

they are the roots of

λ cos[λ(b− a)] + ξ sin[λ(b− a)] = 0, (37)

where ξ = ξ̄/k and ξ̄ is the “coupling constant”.

Equations (33) and (34) can now be truncated and solved numerically.

As previously mentioned, the basis functions for the Galerkin method are chosen

so that the edge conditions are satisfied at either end of the membrane. Thus, each
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set of edge conditions requires a different set of basis functions and for some sets,

as in case iii), the eigenvalues must be found numerically. Further, it is not easy

to see how conditions such as continuity of gradient (or indeed higher derivatives of

the displacement) could be applied at the membrane edges. Whilst such conditions

are not relevant to the current study, they are important at the junction of two thin

plates, see for example, [12], [13], [23], [24]. In the next section a variation of the

Galerkin approach is presented which addresses these issues.

4.2 Solution using the “tailored” approach

In order to broaden the range of edge conditions that can be addressed and avoid

the need for additional root-finding, it is necessary to express the vertical membrane

displacement in terms of a set of basis functions which are already known, and which

are non-zero and have non-zero derivatives at y = a, b. Thus, it is convenient to

express the displacement as a modal expansion using the eigenfunctions for the duct

of height b. As previously mentioned, key to the success of this approach are the

properties of these eigenfunctions, namely, their linearly dependence and the Green’s

function representation [9]. The membrane displacement is expressed as

w(y) =

∞
∑

n=0

Gn cosh(γny), a ≤ y ≤ b, (38)

where the modal coefficients Gn are unknown (and unrelated to those of section 4.1).

On substituting (6) and (38) into (26), it is found that

∞
∑

n=0

Gn{γ
2
n + µ2} cosh(γny) = α

∞
∑

n=0

Bn cosh(γny). (39)

Then, on multiplying (39) by cosh(γqy) and integrating over a ≤ y ≤ b, it is found

that
∞
∑

n=0

Gn{γ
2
n + µ2}Tnq = α

∞
∑

n=0

BnTnq, (40)

where

Tnq =

∫ b

a

cosh(γqy) cosh(γny)dy. (41)
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On integrating by parts twice, expression (41) can be rearranged as:

γ2nTnq = γ2qTnq + γn sinh(γnb) cosh(γqb)− γn sinh(γna) cosh(γqa)

− γq sinh(γqb) cosh(γnb) + γq sinh(γqa) cosh(γna). (42)

This enables (40) to be expressed as:

∞
∑

n=0

GnTnq =−
E3 cosh(γqa)

γ2q + µ2
−
E4 cosh(γqb)

γ2q + µ2
−
E5γq sinh(γqa)

γ2q + µ2

−
E6γq sinh(γqb)

γ2q + µ2
+ α

∞
∑

n=0

BnTnq
γ2q + µ2

, (43)

in which the quantities E3-E6 are constants. (In fact, E3 = −wy(a), E4 = w(b),

E5 = w(a) and E6 = −w(b) where w(y) is given by (38).) On multiplying (43) by

α cosh(γqy)/Dq and summing over q, it is found that:

α

∞
∑

n=0

Gn

∞
∑

q=0

cosh(γqy)

Dq
Tnq =−E3ψ

(1)(y)− E4ψ
(2)(y)− E5ψ

(3)(y)

−E6ψ
(4)(y)+α2

∞
∑

n=0

∞
∑

q=0

Bn cosh(γqy)Tnq
(γ2q + µ2)Dq

, a ≤ y ≤ b, (44)

where the functions ψ(j)(y), j = 1, . . . , 4 are defined by

ψ(1)(y) = α

∞
∑

q=0

cosh(γqa) cosh(γqy)

(γ2q + µ2)Dq
, (45)

ψ(2)(y) = α
∞
∑

q=0

cosh(γqb) cosh(γqy)

(γ2q + µ2)Dq

, (46)

ψ(3)(y) = α
∞
∑

q=0

γq sinh(γqa) cosh(γqy)

(γ2q + µ2)Dq
, (47)

ψ(4)(y) = α

∞
∑

q=0

γq sinh(γqb) cosh(γqy)

(γ2q + µ2)Dq
. (48)

The reader is reminded that the aim is to construct w(y) from (44), and also that

no explicit OR exists for the functions cosh(γny) on the range a ≤ y ≤ b. The

quantity Tnq is, however, defined in (41) as an integral and this enables the Green’s

function (11) to be used in lieu. Thus, on interchanging the orders of summation and
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integration on the left hand side of (44) and using (11), it is found that:

w(y) =−E3ψ
(1)(y)− E4ψ

(2)(y)− E5ψ
(3)(y)− E6ψ

(4)(y)

+ α2
∞
∑

n=0

∞
∑

q=0

Bn cosh(γqy)Tnq
(γ2q + µ2)Dq

, a ≤ y ≤ b. (49)

Note that the steps taken in obtaining (49) from (40) have involved interchanging

the orders of summation and/or integration. These steps are justified only if each

summand is suitably convergent - a point which is now addressed. First, however,

the reader is requested to note that i) by using (8) it may be shown that ψ(2)(y) =

(1−2µ2)ψ(4)(y)/α+Z(y) where Z(y) is defined in (12) and ii) any arbitrary constant

times Z(y) can be added to (49). Thus, w(y) can be expressed as

w(y) =− E3ψ
(1)(y)− Ê4Z(y)−E5ψ

(3)(y)− Ê6ψ
(4)(y)

+ α2
∞
∑

n=0

∞
∑

q=0

Bn cosh(γqy)Tnq
(γ2q + µ2)Dq

, a ≤ y ≤ b. (50)

where Ê6 = E6 + (1 − 2µ2)E4/α and Ê4 is truly arbitrary. On differentiating (44)

twice, it is found that

wyy + µ2w−α

∞
∑

n=0

Bn cosh(γny) = −E3δ(y − a)− 2Ê4δ(y − b) (51)

− E5δ
′(y − a)− {αÊ6 + (µ2 − 1)Ê4}Z(y),

which is consistent with (26). Since Z(y) = 0, 0 ≤ y ≤ b, expression (51) contains

three arbitrary constants. Two of these can be specified by considering the behaviour

of the fluid velocity field and the membrane displacement close to the corners.

The velocity potential in the vicinity of the corner at x = 0, y = a is determined

by considering the local problem. That is, the boundary value problem obtained

after converting to polar coordinates (r, θ), with r =
√

x2 + (y − a)2, and re-scaling

so as to focus on the region r << 1. Then, at leading order, the governing equation

reduces to Laplace’s equation and the membrane boundary conditions, (4) and (26),

simplify significantly. It is found that:

φ(r, θ) ∼ α0 + α1r cos[θ + ξ1] + α2r
2 cos[2(θ + ξ2)] + α3r

2/3 cos[
2

3
(θ −

π

2
)]

+ α4r
4/3 cos[

4

3
(θ −

π

2
)] + . . . , r → 0 (52)
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where ξ1, ξ2, α0-α4 are arbitrary constants (the latter not to be confused with the

fluid loading parameter α). It is interesting to note that expression (52) differs from

the equivalent expression for a rigid corner through the presence of two extra terms:

those pre-multiplied by α1 and α2. These occur due to the second order derivatives in

conditions (4) and (26). Differentiation of (52) reveals that, as r =
√

x2 + (y − a)2 →

0, the velocity field has a singularity of O(r−1/3). This is reflected in (51) through

the presence of the delta function δ(y − a). Expression (51) also contains the term

δ′(y−a) which, were it to be retained, would generate a Heaviside type of singularity

in the membrane displacement. Such behaviour is inconsistent with w(a) = 0 and

is avoided by choosing E5 = 0; a choice which also ensures that the preceding steps

involving the interchanging of the orders of summation and summation/integration

are justified.

In contrast, the velocity potential in the vicinity of the corner at x = 0, y = b

takes the form:

φ(r, θ) ∼ β0 + β1r cos[θ + χ1] + β2r
2 cos[2(θ + χ2)] + β3r

2 cos(2θ)

+ β4r
4 cos(4θ) + . . . , r → 0 (53)

where r =
√

x2 + (y − b)2 is the distance from this corner and χ1, χ2, β0-β4 are

arbitrary constants. Again, note that the terms pre-multiplied by β1 and β2 arise due

to the high order boundary conditions. It is clear from (53) that the fluid velocity

and its derivatives are regular in the vicinity of x = 0, y = b which indicates that

Ê4 = 0. Thus,

w(y) = −E3ψ
(1)(y)− Ê6ψ

(4)(y) + α2

∞
∑

n=0

∞
∑

q=0

Bn cosh(γqy)Tnq
(γ2q + µ2)Dq

, a ≤ y ≤ b. (54)

It is convenient, henceforth, to use E6 instead of Ê6.

Having obtained an expression for w(y) in terms of the duct eigenfunctions this

is substituted, together with (5) and (6), into the velocity condition (25). On multi-
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plying through by α cosh(γmy) and using (9), it is found that

Bm =
αFℓηℓRℓm

smDm
−

α

smDm

∞
∑

n=0

AnηnRnm − iE2
γm sinh(γmb)

smDm

+
iα

smDm

{

E3Ψ
(1)
m + E6Ψ

(4)
m

}

−
iα3

smDm

∞
∑

n=0

Bn

∞
∑

q=0

TqmTqn
(γ2q + µ2)Dq

(55)

where

Ψ(j)
m =

∫ b

a

ψ(j)(y) cosh(γmy) dy, j = 1, 4. (56)

On using the pressure condition (17) to eliminate the coefficients An, this reduces to

Bm =
2αFℓηℓRℓm

smDm

−
αE1

smDm

∞
∑

n=0

ηnτn sinh(τna)Rnm

Cn

− iE2
γm sinh(γmb)

smDm

+
iα

smDm

{

E3Ψ
(1)
m + E6Ψ

(4)
m

}

−
α2

smDm

∞
∑

n=0

Bn

∞
∑

q=0

{

ηnRqmRqn

Cq

+
iαTqmTqn

(γ2q + µ2)Dq

}

. (57)

The above equation involves the constants E1−E3 and E6 which can be found by using

(22) together with the edge conditions for the vertical membrane. On recollecting

that E1 = 0, and on multiplying (57 ) by γm sinh(γmb), summing over m and using

(22), it is found that

E2S1 = −iα

∞
∑

m=0

γm sinh(γmb)

smDm

{

2FℓηℓRℓm −E1

∞
∑

n=0

ηnτn sinh(τna)Rnm

Cn

}

+α

∞
∑

m=0

γm sinh(γmb)

smDm

{

E3Ψ
(1)
m + E6Ψ

(4)
m

}

(58)

+iα2
∞
∑

m=0

γm sinh(γmb)

smDm

∞
∑

n=0

Bn

∞
∑

q=0

{

ηqRqmRqn

Cq

+
iαTqmTqn

(γ2q + µ2)Dq

}

.

It remains to apply appropriate conditions to the edges of the vertical membrane.

As mentioned previously, the displacement at y = a is chosen to be zero. That is,

w(a) = 0 which may be expressed as

E3ψ
(1)(a) + E6ψ

(4)(a) = α2
∞
∑

n=0

∞
∑

q=0

Bn cosh(γqa)Tnq
(γ2q + µ2)Dq

. (59)
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i) Zero displacement at y = a and y = b

Zero displacement at y = b is specified by:

E3ψ
(1)(b) + E6ψ

(4)(b) = α2

∞
∑

n=0

∞
∑

q=0

Bn cosh(γqb)Tnq
(γ2q + µ2)Dq

. (60)

ii) Zero displacement at y = a; zero gradient at y = b

The zero gradient condition is wy(b) = 0, that is:

E3ψ
(1)
y (b) + E6ψ

(4)
y (b) = α2

∞
∑

n=0

∞
∑

q=0

Bnγq sinh(γqb)Tnq
(γ2q + µ2)Dq

. (61)

iii) Zero displacement at y = a; impedance at y = b

The appropriate condition for the impedance condition, wy(b) + ξw(b) = 0, is:

E3{ψ
(1)
y (b) + ξψ(1)(b)}+ E6{ψ

(4)
y (b) + ξψ(4)(b)}

= α2
∞
∑

n=0

∞
∑

q=0

BnTnq{γq sinh(γqb) + ξ cosh(γqb)}

(γ2q + µ2)Dq

. (62)

Each set of edge conditions comprises a coupled pair of equations for E3 and E6.

These together with (57) and (58) are truncated and solved numerically.

5 Numerical Results

The results presented in this section are obtained by truncating the systems of equa-

tions obtained in sections 4.1 and 4.2 (that is, (33) for the Galerkin procedure and

(57) for the “tailored” approach) and solving the reduced systems together with the

appropriate edge conditions. For both the “tailored” approach and the Galerkin

method the systems of equations were truncated to 75 terms. The membrane tension

and mass are T = 350 N and ρm = 0.1715 kg m−2. In addition, the fluid parameters

are c = 344 ms−1 and ρ = 1.2 kg m−3 respectively. The dimensional duct heights are

ā = 0.06 m (x < 0) and b̄ = 0.085 m (x > 0).

For the purposes of comparison, figure 2 shows the reflected and transmitted

powers for the rigid strip [8] discussed in section 3. Two different incident fields are

considered: the structural-borne fundamental mode and the fluid-borne second mode
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Figure 2: Reflected (dashed) and transmitted (solid) powers against frequency for

the Warren et al case (rigid strip), forcing by: (a) fundamental mode (ℓ = 0) and (b)

first higher order mode (ℓ = 1).

which, for the duct of height ā = 0.06m cuts on at approximately 553 Hz. Note

that, for the duct of height b̄ = 0.085m the first cut-on is at approximately 443 Hz.

It is clear from figure 2(a) that the reflected power is significantly reduced (and the

transmitted power correspondingly raised) between the two cut-on frequencies.
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Figure 3: Reflected and transmitted powers against frequency for the membrane strip

with w(a) = w(b) = 0, forcing by: (a) fundamental mode (ℓ = 0) and (b) first higher

order mode (ℓ = 1).

The results presented in figures 3-5 relate to the membrane strip and comprise

a comparison of the reflected and transmitted components of power, plotted against

frequency, for each of the three sets of edge conditions discussed in the previous

section. As for the case of the rigid strip of figure 2, two different incident fields are

considered: the structural-borne fundamental mode and the fluid-borne second mode.

In each of figures 3-5 the solid curves are obtained using the “tailored approach”

of section 4.2 whilst the symbols (N for transmitted and • for reflected powers)
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are obtained using the Galerkin method of section 4.1. There is clearly excellent

agreement between the methods for all cases considered.

Figure 3 demonstrates that, for the parameter values considered herein, the re-

flected and transmitted powers do not differ significantly from those for a rigid strip

when the vertical membrane displacement is zero at both y = a and y = b and the in-

cident field comprises the fundamental mode. The presence of the bridging membrane

becomes apparent, however, when the forcing is due to the first higher order mode: a

sharp inversion of the reflected and transmitted powers occurs at approximately 856

Hz.
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Figure 4: Reflected and transmitted powers against frequency for the membrane strip

with w(a) = wy(b) = 0, forcing by: (a) fundamental mode (ℓ = 0) and (b) first higher

order mode (ℓ = 1).

In contrast (see figure 4), when the vertical membrane displacement is zero at

y = a and the gradient is zero at y = b the reflected and transmitted powers do

not differ significantly from those for a rigid strip when the first higher order mode

is incident. When the fundamental mode is incident, however, the reflected and

transmitted powers differ from those for a rigid strip in that there is an sharp inversion

at approximately 437 Hz and a narrow stop-gap in the frequency range 428-452 Hz

(which encompasses the two “cut-ons” mentioned above).

Figure 5 depicts the reflected and transmitted powers when the vertical membrane

has zero displacement at y = a and satisfies the impedance or “spring-like” condition

wy(b) + ξw(b) = 0 at y = b where ξ = ξ̄/k with ξ̄ = 15. Clearly, the condition at

y = b reduces to the zero gradient condition as k increases and it is not surprising,
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Figure 5: Reflected and transmitted powers against frequency for the membrane strip

with w(a) = wy(b) + ξw(b) = 0, ξ̄ = 15, forcing by: (a) fundamental mode (ℓ = 0)

and (b) first higher order mode (ℓ = 1).

therefore, that figures 4(b) and 5(b) do not differ significantly. Figures 4(a) and 5(a)

(fundamental forcing) do show a modest difference.

The results presented in figures 3-5 focus on the reflected and transmitted energies

for two different incident waves and three different sets of edge conditions. Bearing

in mind (see (52)) that the velocity field is singular in the vicinity of x = 0, y = a

(that is, φθ/r = O(r−1/3) as r =
√

x2 + (y − a)2 → 0), it is useful to validate the

mode-matching method. This can be done by confirming, first, that sufficient terms

have been included in the truncation of equations (57) and (58) to ensure that the

modal coefficients have converged adequately and, second, that the coefficients con-

tain the correct information to enable the matching conditions, (16) and (25), to be

reconstructed. The reader is reminded that Galerkin and the “tailored” approach are,

in fact, variations of the same mode-matching approach and thus have very similar

convergence properties. Hence, for the purposes of validation, attention is restricted

to the “tailored” approach. It is also worth mentioning that a comprehensive study

of the convergence of a similar system but with a significantly stronger singularity

(φθ/r = O(r−3/4) as r → 0) is presented in [13]. In that article the system was

truncated using 80 terms for fundamental mode forcing and 200 terms when the first

higher mode was incident. The rate of convergence for such systems is known to be

inversely related to the strength of the singularity in the velocity field and, thus, it

is expected to achieve good convergence, in both cases, with far fewer terms for the
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problem considered herein.

In fact, the transmitted and reflected energies converge quickly and so the equiva-

lent of figure 6 in [13] (which shows the rate of convergence of the transmitted energy

against truncation parameter) is not repeated here. The energy balance is, however,

not a good predictor of the level convergence of a system of equations or, indeed,

that the solution obtained is in fact correct. It is necessary to confirm that all the

matching conditions have been satisfied. Thus, in this section figures showing the

real parts of the non-dimensional pressures and velocities at the matching interface

are presented for the new “tailored” Galerkin approach. In view of the singularity

in the velocity field and the associated Gibb’s phenomenon, the velocity fields are

computed using the Lanczos filter, of which details are presented in [13]. Thus, for

example, instead of plotting simply the truncated form of φ2x(0, y) as obtained by

differentiating (6) with respect to x, the quantity

φσ
2x,T (0, y) =

T
∑

n=0

Bnisnσn cosh(γny), (63)

is plotted in which

σn =
sinh(γnb/T )

γnb/T
(64)

and T + 1 is the number of terms to which the system of equations is truncated.

Figure 6 presents (a) the real parts of φ1(0, y) and φ2(0, y), 0 ≤ y ≤ a and

(b) the real parts of both sides of equation (25) for the case where the first higher

mode is incident (ℓ = 1) with the zero displacement edge conditions imposed on the

bridging membrane at y = b. The frequency is 700 Hz and the system is truncated at

T = 74 (corresponding to 75 terms). Note that φ1x(0, y) and φ2x(0, y) are computed

using the Lanczos filter. The non-dimensional pressures are in excellent agreement

and the normal velocities also agree well in the fluid region. Further, as required,

φ2x(0, y) = w(y) for a < y ≤ b where w(y) is given by (49). The corner singularity

is apparent in velocity field at at y = a ∼ 0.77 and it is also clear that there is

no singularity at y = b. Note that the quantity w(y) satisfies the edge condition

ℜ{w(b)} = 0 but the fluid velocity is not as accurate at this point. (The reader is

advised that the imaginary parts much better satisfy the condition ℑ{w(b)} = 0 but
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Figure 6: (a) The real parts of φ1(0, y) and φ2(0, y), and (b) the real parts of both

sides of equation (25) at 700 Hz for the membrane strip with w(a) = w(b) = 0, ℓ = 1.

the real part was selected for presentation to demonstrate the “worst case”.)

Figure 7 presents (a) the real parts of φ1(0, y) and φ2(0, y), 0 ≤ y ≤ a and (b) the

real parts of both sides of equation (25) for the case where the fundamental mode is

incident (ℓ = 0). The edge conditions imposed on the bridging membrane are zero

displacement at y = a and zero gradient at y = b. The frequency is 700 Hz and,

as for all previous figures, the system is truncated at T = 74 (corresponding to 75

terms). Again, the non-dimensional pressures are in excellent agreement, the normal
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Figure 7: (a) The real parts of φ1(0, y) and φ2(0, y), and (b) the real parts of both

sides of equation (25) at 700 Hz for the membrane strip with w(a) = wy(b) = 0,

ℓ = 0.

velocities agree well in the fluid region and φ2x(0, y) = w(y) for a ≤ y ≤ b as required.

It is also clear that the edge condition Re{wy(b)} = 0 is satisfied. Figures 6 and 7

demonstrate that the matching conditions (16) and (25) have been reconstructed
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using the modal coefficients obtained by truncating equations (57) and (58) together

with the appropriate edge conditions. This validates the method and the numerical

results presented in figures 3-5.

6 Discussion

In this article the scattering of fluid-structure coupled waves in a waveguide with

abrupt change in height has been considered. First the problem studied by Warren et

al [8] was revisited and then the rigid strip closing the two duct sections was replaced

with a membrane. The reflected and transmitted powers have been compared. The

results presented in section 5 demonstrate that the conditions applied at the edges

of the bridging membrane have a significant effect on the reflected and transmitted

powers.

Two solution methods have been used. The first approach is the standard Galerkin

procedure in which the displacement is represented as a generalised Fourier series.

This method, although conceptually simpler, requires a different set of basis func-

tions for each set of edge conditions applied to the vertical membrane. Further, for

some conditions the eigenvalues cannot be expressed explicitly and must be found

numerically. The second method (referred to as the “tailored” approach) makes use

of the properties of the eigenfunctions for the duct lying in x > 0 to construct a

modal representation for the displacement of the vertical membrane. This approach

can deal with a wide range of edge conditions without modification.

As mentioned in the introduction, the problem considered herein is a prototype

and that of real interest is the case where each section of membrane is replaced by

a thin plate. In this context, it is worth noting that once the vertical membrane is

replaced by a thin elastic plate, the eigenvalues for the Galerkin method can be ex-

plicitly stated only for the case where both edges are pin-jointed and must be found

numerically even for the case where the vertical plate is clamped at one or both

ends. Further, there are many practical applications in which the appropriate edge

conditions are continuity of, for example, gradient and/or bending moment at the
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junctions between the vertical and horizontal plates. The classical Galerkin method

as described in section 4.1 cannot handle such conditions. In contrast the “tailored”

approach presented in section 4.2 offers viable means of addressing this class of prob-

lem.
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Figure Legends

1. The duct geometry (depicting the membrane strip) in which a = kā and b = kb̄.

2. Reflected (dashed) and transmitted (solid) powers against frequency for the

Warren et al case (rigid strip), forcing by: (a) fundamental mode (ℓ = 0) and

(b) first higher order mode (ℓ = 1).

3. Reflected and transmitted powers against frequency for the membrane strip

with w(a) = w(b) = 0, forcing by: (a) fundamental mode (ℓ = 0) and (b) first

higher order mode (ℓ = 1).

4. Reflected and transmitted powers against frequency for the membrane strip

with w(a) = wy(b) = 0, forcing by: (a) fundamental mode (ℓ = 0) and (b) first

higher order mode (ℓ = 1).

5. Reflected and transmitted powers against frequency for the membrane strip

with w(a) = wy(b) + ξw(b) = 0, ξ̄ = 15, forcing by: (a) fundamental mode

(ℓ = 0) and (b) first higher order mode (ℓ = 1).

6. (a) The real parts of φ1(0, y) and φ2(0, y), and (b) the real parts of both sides

of equation (25) at 700 Hz for the membrane strip with w(a) = w(b) = 0, ℓ = 1.

7. (a) The real parts of φ1(0, y) and φ2(0, y), and (b) the real parts of both sides of

equation (25) at 700 Hz for the membrane strip with w(a) = wy(b) = 0, ℓ = 0.
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