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Abstract— A new nonlinear filtering algorithm based on
sparse-grid Gauss-Hermite filter (SGHF) incorporated with the
technique of algorithm adapting to dimensions based on their
nonlinearity, is presented. The motive of this work is to reduce
the computatioanl load of SGHF, while maintaining similar
filtering accuracy. This is achieved by implementing adaptive
tensor product to construct the multidimensional sparse-grid
quadrature points. This reduction in computational burden may
increase the scope of application of this filtering algorithm for
higher dimensional problems in on-board applications. Perfor-
mance of the proposed algorithm is illustrated by estimating the
frequency and amplitude of multiple superimposed sinusoids.

I. INTRODUCTION
The problem of non-linear filtering has been widely

studied and discussed in literature. This problem involves
the recursive estimation of unknown states of a system by
making use of noisy measurements. In recent years, the
Bayesian framework has been most accepted for addressing
these problems. Under this framework, the posterior prob-
ability densities are computed using the predicted motion
of the unknown states and the measurement likelihood [1].
The discrete state-space model of a dynamic system, which
includes both the process and measurement models can be
described as

xk = φ(xk−1)+wk−1 (1)

and
yk = γ(xk)+ vk (2)

respectively. Here xk ∈ℜn represents the unknown states of
the system, yk ∈ℜp denotes the measurement at any instant
k, where k = 0,1,2, ...,N. φ(xk) and γ(xk) are given nonlinear
functions. The process and measurement noises are given by
wk ∈ℜn and vk ∈ℜp respectively. These are assumed to be
uncorrelated and normally distributed with zero mean and
covariances Qk and Rk, respectively. The two main steps in
Bayesian framework can be described as:

1) Prediction step: In this step, Chapman-Kolmogorov
equation is used for obtaining the prior probability density
function,

p(xk|yk−1) =
∫

p(xk|xk−1)p(xk−1|yk−1)dxk−1. (3)

2) Update step: In this step, the posterior probability den-
sity function is obtained using the prior probability density
function and new measurements. The relation is realized with
Bayes rule and can be expressed as

p(xk|yk) =
p(yk|xk)p(xk|yk−1)∫

p(yk|xk)p(xk|yk−1)dxk
. (4)

There is no method for obtaining the solution of above
equations (3) and (4) when the process and measurement

is nonlinear and the pdf encountered is non-Gaussian. This
is because of the fact that these integrals become intractable
and hence, we have to go for sub-optimal solutions.

Literature about early suboptimal algorithms for nonlinear
filtering begins with the extended Kalman filter (EKF) [1].
However, it resulted in undesirable performances like poor
tracking accuracy or divergence in estimation error [2]. Later,
various nonlinear filtering algorithms such as the unscented
Kalman filter (UKF) [2],[3], cubature Kalman filter (CKF)
[4] and its variants [5], cubature quadrature Kalman filter
(CQKF) [6] and its variants [7] etc. were introduced and
these filters performed with acceptable accuracy. Square
root version of CQKF [8] has also been introduced which
takes account of the problem of negative definite covariance
matrices, which happens quite often during filtering. To
achieve more accuracy, Gauss-Hermite filter (GHF) was also
introduced [9], [10]. It makes use of the Gauss-Hermite
quadrature rule and has superior performance among all
the above mentioned filters. But, it suffers from the curse
of dimensionality problem since the number of quadrature
points required increases exponentially with the increase in
dimension of the system. So it is difficult to apply it on-board
for higher dimensional problems.

To reduce the computational burden incurred by GHF,
multiple quadrature Kalman filter (MQKF) [11] is intro-
duced. It works on the state-space partitioning technique and
runs several filters in parallel. This technique significantly
reduces the computational load in the algorithm, but its
application is limited because of the fact that the function
φ(xk) must be diagonally occupied so that partitioning can be
done. Sparse-grid quadrature filter (SGQF) [12] is an efficient
filtering algorithm which can achieve accuracy levels almost
as high as GHF, but with comparatively less computational
load. It uses the Smolyak rule [13] for extending the one-
dimensional quadrature rule to multi-dimensional problems.
To further reduce the computational burden, multiple sparse-
grid Gauss-Hermite filter (MSGHF) was proposed [14].
Adaptation of SGQF algorithm to nonlinearity has been
studied and reported in [15], [16].

In this work, we further reduce the computational burden
of SGHF by applying a dimension adaptive tensor product to
construct the multidimensional quadratue points. This tech-
nique automatically find the dimensions with comparatively
less nonlinearity and generate fewer points for approximation
along them. Further, by using two separate tuning param-
eters, a trade-off can be achieved between accuracy and
computational burden.



II. DIMENSION ADAPTIVE SPARSE-GRID
GAUSS-HERMITE FILTERING

In this section, we propose the dimension adaptive sparse-
grid Guass-Hermite filter. As a prelude to this, SGHF is also
briefly discussed to convey the idea of how Smolyak rule
constructs multidimensional quadrature points for approxi-
mation of intractable integrals.

A. Sparse-grid Gauss-Hermite filter

Consider an integral of the form

In,L( f n(x)) =
∫

ℜn
f n(x)ℵ(x;0, In)dx

with an n dimensional function and ℵ(x;0, In) denote the
normal distribution of x with zero mean and unity covariance.
The approximate solution for this integral can be constructed
using the Smolyak rule, which uses tensor product of differ-
ence formulae computed over a set of accuracy levels defined
for univariate quadrature rules. This difference formula for
a univariate function can be expressed as

4l f 1(x) = (Il− Il−1) f 1(x),

where I0 f (1) = 0. Now for n dimensional functions, f n(x),
In,L( f n(x)) can be expressed as

In,L( f n(x)) = ∑
Ξ∈Nn

q

(4l1 ⊗·· ·⊗4ln) f n(x), (5)

where l1, l2, ..., ln represents the univariate accuracy levels
corresponding to the dimensions of f n. Nn

q denotes the set
defined by

Nn
q =

{
n

∑
j=1

l j = n+q

}
for q≥ 0

=∅ for q < 0

where ∅ represents the null set and q is an integer i.e.
L− n ≤ q ≤ L− 1 and L the accuracy level corresponding
to the approximation of In,L( f n(x)). This means that the
approximation is exact for all the polynomials having degree
upto (2L−1). After some algebraic simplifications, (5) can
be represented as [12], [17]

In,L( f n(x))≈
L−1

∑
q=L−n

(−1)L−1−qCn−1
L−1−q ∑

Nn
q

(Il1 ⊗ Il2 ⊗ ...⊗ Iln),

(6)
where C stands for the binomial coefficient, i.e. Cn

k =
n!/k!(n−k)!. Since Il j is the single dimensional approximate
of integral function over normal distribution, (6) can be
rewritten as

In,L( f )≈
L−1

∑
q=L−n

(−1)L−1−qCn−1
L−1−q ∑

Nn
q

∑
qs1∈Xl1

∑
qs2∈Xl2

... ∑
qsn∈Xln

f (qs1 ,qs2 , ...,qsn)ws1ws2 ...wsn ,
(7)

where Xl j is the set of quadrature points for the single
dimensional quadrature rule Il j , [qs1 ,qs2 , ...,qsn ]

T is a sparse-
grid quadrature point i.e. qs j ∈ Xl j and ws j is the weight

associated with qs j . Fig 1 shows the generation of sparse
quadrature pints for a 2 dimensional system with accuracy
level L = 3.

Fig. 1. Generation of sparse-grid Gauss-Hermite points for n = 2, L = 3

B. Dimension adaptive sparse-grid Gauss-Hermite filter

To incur minimum computational burden and maximum
integral approximation accuracy, the proposed algorithm
adaptively detect dimensions with comparatively lower non-
linearity and approximates them with less number of points.
This depends on the selection of an admissible index set
given a predefined error bound and amount of work involved
[17]. From this index set, the corresponding points and
weights are calculated.

An index set of dimension n can be defined as In = {λ :
λ = (l1 l2 · · · ln), li ∈ Z+}, where Z+ is a set of positive
integers. Now, an index set is said to be admissible, if it
satisfies

λ − e j ∈ In ∀ λ ∈ In,1≤ j ≤ n,λ j > 1, (8)

where e j is the jth column of a unit vector and λ ∈ In, the
indices. The original sparse-grid construction is reformulated
using this admissible index set and hence, relation (5) can
be rewritten as

In,L f n(x) = ∑
λ∈In

(4λ1 ⊗ ...⊗4λn) f n(x). (9)

The main aim of the algorithm is to create an admissible
index set ideally so that the accuracy in approximation can
be enhanced according to a predefined tolerance level. This
gives way for the introduction of gλ , the local error indicator,
which takes care of the error criteria, defined as [17]

gλ = max{ψ |4λ f |
|41 f |

,(1−ψ)
ϖ1

ϖλ

}, (10)

where ψ ∈ [0,1] is called the error weighting parameter
and ϖλ defines the number of function evaluations or the



work involved. Usually, ϖ1 is taken as unity. This parameter
helps in reaching a trade-off between small error and high
computational work.

The functioning of the proposed algorithm starts from
I1

n = (1, ...,1), where I1
n is the first element of the index

set In. Then more indices are added successively in such
a way that the concerned index set remains admissible and a
large error reduction is possibly achieved. The index with the
largest error indicator is added to the admissible set and it’s
forward neighbours are scanned for new admissible indices
by computing their error indicators. Forward neighbourhood
of an index λ can be defined as {λ + e j,1 6 j 6 n}, for a
maximum number of n indices. The sum of all differential
integrals calculated within the admissible set In, constitutes
the value of the total integral. An index is added to the ad-
missible set immediately after calculating it’s error indicator,
without even evaluating the error in it’s forward neighbour.

Now we go for a partition of the current index set In
into active index set A and old index set O, which are
disjoint in nature. A contains those index sets whose error
indicators have been calculated and the error indicators of it’s
forward neighbours have not been examined yet, whereas,
the old index set, O, holds all other indices of In which are
not included in A. The error estimate in the approximation
process is given by the global error estimate, η . It represents
the sum of error indicators present in the active index set A
and can be defined as

η = ∑
Ii
n∈A

gλ . (11)

where Ii
n is an ith vector representing an index from the index

set In.
For every iterative step of the algorithm, the index set with

the largest error indicator is selected from the active index
set and transferred to the old index set and its corresponding
error is subtracted from the global error, η . In the meantime,
the error indicator of the forward neighbours of that partic-
ular index is calculated and transferred to the active index
set. For controlling the integration process, a threshold value
(TOL) for the error is predefined. Whenever the global error
estimate falls below this threshold value, the computation is
ceased and the integral value is returned.

III. SIMULATION RESULTS

A. Estimation of multiple superimposed sinusoids

In this problem, we estimate the amplitude and frequency
of multiple superimposed sinusoids. Such problems practi-
cally appear in many fields like communication systems [18],
power systems [11], [19] etc.

We consider, the number of sinusoids as three, then the
state variable will be x = [ f1, f2, f3,a1,a2,a3], where fi and
ai are the frequency and amplitude of ith sinusoid. The state
is considered to be following random walk model, hence the
discrete state space equation will be

xk = I6xk−1 +wk, (12)

where I6 is a six dimensional unit matrix and wk is process
noise which is added to compensate the uncertainty appeared
in sinusoids. The process noise is normally distributed with
zero mean and covariance Q = diag([σ2

f σ2
f σ2

f σ2
a σ2

a σ2
a ])

where σ f and σa are standard deviations for frequency and
amplitude.

The measurement equation is [11]

yk =

[
∑

3
j=1 a j,kcos(2π f j,kkT )

∑
3
j=1 a j,ksin(2π f j,kkT )

]
+ vk,

where vk is Gaussian noise with zero mean and covariance
R = diag([σ2

n σ2
n ]) with σn being the standard deviation

for measurement noise. T is the sampling time which is
considered as 0.1667 ms.

The initial truth and estimates are considered as [200 1000
2000 5 4 3]T and [150 900 1800 4 4 2]T . The initial error
covariance and noise covariances, are considered as σ2

f =

151µHz2/ms2, σ2
a = 80µV 2/ms2, σ2

n = 0.09V 2, and P0|0 =
diag([202 202 202 0.05 0.05 0.05]).

For simulation purposes, we use 3-point GHF and 3rd-
degree of accuracy level is considered for SGHF (i.e. L = 3).
For ASGHF, the simulation is performed by considering the
error weighting parameters as 0.6 and 0.5, while tolerance
as 0.53 and 0.6655 for process and measurement equations
respectively.
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Fig. 2. ERR plot for (a) frequency in Hz (b) amplitude in volt.

The states are estimated for 500 steps and the results
are averaged over 2000 Monte Carlo runs. At each step, a
combined error parameter (ERR) is evaluated for frequency
and amplitude, which is defined as

ERRk =

√
MSE1,k +MSE2,k +MSE3,k

3
, (13)

where, for M number of Monte Carlo runs, MSEi,k is

MSEi,k =
1
M

M

∑
j=1

(xi,k, j− x̂i,k, j)
2. (14)



Filters Relative comp. time
GHF 1
SGHF 0.17
ASGHF 0.056

TABLE I
RELATIVE COMPUTATIONAL TIME FOR VARIOUS FILTERS

The ERR for frequency and amplitude are plotted in Fig
2 using the proposed ASGHF, the SGHF and the GHF. The
ERR is similar for all the filters and hence it could be con-
cluded that the accuracy of the proposed algorithm is similar
to the conventional GHF and SGHF. On the other hand, from
the Table I, it could be concluded that the computational
burden for the proposed ASGHF is almost 3 times less than
the SGHF and 18 times less than the conventional GHF. Due
to a similar accuracy at much reduced computational cost, the
proposed filter can replace the conventional Gauss-Hermite
quadrature based filters.

IV. CONCLUSIONS

A dimension adaptive recursive algorithm for nonlin-
ear filtering based on sparse-grid Gauss-Hermite filter is
proposed in this work. It make use of adaptive tensor
products which helps in identifying dimensions with less
nonlinearity and allocating fewer number of support points
for its approximation. This framework helps in maintain-
ing similar accuracy levels when compared to SGHF, with
significant reduction in computational load. Apart from the
accuracy level L, threshold value for error tolerance and error
weighting parameters help in fine tuning the filter for high
accuracies, while keeping a check on the computational load.
Simulation results show that the accuracy of the proposed
method is similar to GHF and SGHF, at the expense of very
small computational cost. Thus, this filtering method can be
considered as an alternative to GHF and SGHF.
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