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Although the traditional CVaR-based portfolio methods are successfully used
in practice, the size of a portfolio with thousands of assets makes optimizing
them difficult, if not impossible to solve. In this article we introduce a large
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1. Introduction

Risk measure is a core research content for financial econometrics and
plays an important role in the fields of portfolio investment decision, finan-
cial asset pricing and financial risk management. The classical mean-variance
model proposed by Markowitz (1952) is very popular for its simplicity. In
the context of the Markowitz (1952), an optimal set of weights is one in
which the portfolio minimizes investment risk with an acceptable expected
return. Here the variance of portfolio return is taken as a risk. To solve
the Markowitz’s model, it is necessary to calculate the variance-covariance
matrix of all assets. The computational burden depends on the size of port-
folio and a large portfolio makes optimizing them difficult, if not impossible
to solve. In addition, the variance may not be an appropriate risk mea-
sure if the difference of variation of returns on upside and downside needs
to be considered. Downside risk, including value at risk (VaR), condition-
al value at risk (CVaR), and Expected Shortfall (ES), is the financial risk
associated with losses. Until now, VaR is a widely used risk measure and
becomes a standard tool of risk management. VaR has also been successfully
applied to construct mean-VaR model for portfolio selection, see Alexander
and Baptista (2002), Consigli (2002), and Chuang et al. (2014) for more de-
tails. However, VaR provides non handle on the potential size of the losses
beyond the VaR threshold. As an alternative risk measure, CVaR has su-
perior properties in many respects. A big advantage of CVaR over VaR in
the portfolio context is the preservation of convexity, which makes the global
optimal solutions are always available, see Rockafellar and Uryasev (2000,
2002), and Quaranta and Zaffaroni (2008) for more details.

In many portfolio selection models, including mean-variance, mean-VaR
and mean-CVaR, two commonly used optimization methods are quadratic
programming and large-scale linear programming, and they are very compli-
cated and time consuming, see Roman et al. (2007) and Li et al. (2012) for
more details. From a decision making perspective, the optimal portfolio can
be achieved by maximizing a specified expected utility defined by the famil-
iar Lebesgue integral. Instead of Lebesgue integral, a pessimistic decision
criterion in Bassett et al. (2004) can be created by using Choquet integral,
permitting the probability weights associated with the least favorable out-
comes to be accentuated. Then, in contrast to Markowitz’s mean-variance
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portfolio allocation implemented by solving least-squares mean regression
problems, this pessimistic portfolio is constructed through a standard quan-
tile regression (QR) technique. QR not only simplifies the numerical opti-
mization but also provides a united framework for further promotion since it
allows direct modeling of the tails of a distribution rather than the average
values, please refer to Xu et al. (2015). Under the framework of pessimistic
portfolio, the minimum CVaR-based portfolio selection model is investigat-
ed by Laurini (2007) and compared with Markowitz’s mean-variance model.
The empirical results show that the CVaR-based portfolios constructed using
pessimistic portfolio methodology outperform both Ibovespa benchmark and
optimal portfolio made using mean-variance model in terms of tail risk. As
an alternative, a generalized regression method focused on superquantile is
proposed by Rockafellar et al. (2014) to model CVaR directly and presents
computationally tractable.

In practice, monitoring and managing a large-scale portfolio are very
costing and time-consuming. It is necessary to select an appropriate size of
financial assets to improve the efficiency of portfolio investment. Therefore,
we aim to establish a robust portfolio with less number of financial assets to
reduce trading, monitoring and research costs. Under this portfolio we intend
to control the proportion of investment to avoid extreme long and short po-
sitions. To this end, it is well-known in the literature that imposing portfolio
weight constraints leads to a small number of financial assets and superi-
or performance of efficient portfolios. No-short-sale constraints are imposed
by Jagannathan and Ma (2003) on the Markowitz’s mean-variance model to
effectively avoid the extreme and unstable asset weights. A large portfolio
selection approach is proposed by Fan et al. (2012) using gross-exposure con-
straints and can be solved through LARS-LASSO algorithm. A penalty pro-
portional to the sum of the absolute values of the portfolio weights is added
by Brodie et al. (2009) to the objective function and leads to regularization
of the optimization problem, which encourages sparse portfolio and allows
accounting for transaction costs. Optimal sparse portfolios are also consid-
ered by Fastrich et al. (2012) using regularization methods. They propose a
simple type of penalty that explicitly accounts financial information, which
can lead to the construction of portfolios with superior out-of-sample perfor-
mance and solve large portfolio selection problems. The Lq norm constrained
minimum variance portfolio is solved by the coordinate-wise algorithms pro-
posed in Yen and Yen (2013), which has several extensions with different
convex norm penalties. A unified portfolio framework incorporates Second
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order Stochastic Dominance (SSD), CVaR, and enhanced indexation, is pre-
sented by Roman et al. (2013), who find that the imposition of cardinality
constraints on the SSD-based models causes to select a much lower number
of stocks than the established index tracking models.

In this article, we propose a new method for large portfolio selection prob-
lems by imposing weight constraints on the standard CVaR-based portfolio
selection model. As demonstrated later, our method is easy to implement
via penalized quantile regression techniques. It intends to pick up a reason-
able number of assets to construct a robust portfolio without too extreme
positions, which has important implications for practical portfolio selection.
For illustration, we apply the new method to construct optimal portfolios
with assets selected from the constituent stocks in the Shanghai and Shen-
zhen 300 indices and Shanghai Stock Exchange Composite index of China.
The empirical results show that our method outperforms some conventional
methods for large portfolio selection in terms of VaR, CVaR, or Sharpe ratio.

The rest of the paper is organized as follows. In Section 2 we introduce
the asset selection framework of large CVaR-based portfolio selection prob-
lem and present the regularization approaches for minimum CVaR portfolios
in detail. In Section 3 we propose a procedure to solve the problem using
penalized quantile regression tools. Our method is applied to real data anal-
ysis and its performance is compared with some conventional approaches in
Section 4. We conclude in Section 5.

2. Regularization approaches for minimum CVaR-based portfolio

In this section, we introduce regularization approaches in the optimization
of CVaR-based portfolio. we discuss the results and compare it with those
traditional method.

2.1. CVaR risk measure of a portfolio

CVaR is a risk measure to evaluate the market risk or credit risk of a
portfolio. CVaR is an extension of VaR and defined as the average value of
a loss over a certain threshold (VaR). For a portfolio return variable Y with
distribution function F , the CVaR of Y at confidence level 100(1 − τ)% or
quantile level τ ∈ (0, 1) can be defined as

CV aRτ = E[−Y | − Y ≥ V aRτ ], (1)
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where E[·| − Y ≥ V aRτ ] is the conditional expectation on the condition of
{−Y ≥ V aRτ}. The threshold, VaR, meets

Pr[−Y ≥ V aRτ ] = τ or V aRτ = −F−1(τ), (2)

where Pr[·] is the probability of occurrence of an event, F−1(·) is the inverse
function of the distribution function F . Further, CVaR can be expressed as

CV aRτ = −E[Y |Y ≤ −V aRτ ] = −τ−1
∫ τ

0

F−1(t)dt. (3)

From Equation (3) it can be seen that CVaR is a weighted average of a
group of VaR below the threshold depending on the quantile level τ .

2.2. Standard CVaR-based portfolio selection model

Suppose we have p assets X = (X1, X2, · · · , Xp)
′ with portfolio invest-

ment scheme β = (β1, β2, · · · , βp)′ and get a portfolio Y = X ′β. An ide-
al portfolio investment is to get the optimized portfolio weights vector β
through the reasonable allocation of financial assets and makes portfolio risk
CVaR minimization. Here, we suppress the τ subscript in the weights vec-
tor β for notational convenience in spite of β depends on the quantile level
τ for the reason that the CVaR is quantile dependent. The conventional
CVaR-based portfolio selection model is often formulated as{

min
β
CV aRτ (Y ),

s.t. 1′β = 1,
(4)

where the normalization constraint on weights is written as 1′β = 1, with
the p× 1 vector 1 = (1, 1, · · · , 1)′.

The standard CVaR-based portfolio selection model in Equation (4) is
an optimization problem and can be solved by linear programming or nons-
mooth programming, see Rockafellar and Uryasev (2000) for more details. In
practice, the integration in Equation (3) often takes discretization and the
solution depends on a scenario-based method by sampling the probability
distribution of Y . In addition, without no-short-sell constraint the CVaR-
based portfolio selection model often contains extreme positive and negative
weights, for example βi = +800%, βj = −700%. These extreme weights will
no doubt increase transaction costs.
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2.3. CVaR-based portfolio selection model with weight constraints

Inspired by Jagannathan and Ma (2003), Brodie et al. (2009), and Fan
et al. (2012), we propose a robust large CVaR-based portfolio selection model
by imposing weight constraints on the standard CVaR-based portfolio selec-
tion model. We consider a more general weight constraint

p∑
i=1

Pen(βi) ≤ s, (5)

where s is the regularization parameter, Pen(·) is a general penalty function
that allow shrinking the components in β to exactly zero. The penalty
allows simultaneous asset selection and portfolio weight estimation. We add
Equation (5) to Equation (4) and get a large CVaR-based portfolio selection
model with weight constraints as,

min
β
CV aRτ (Y ),

s.t. 1′β = 1,
p∑
i=1

Pen(βi) ≤ s.

(6)

It is clear that the optimal portfolio result depends on the value of s. Gen-
erally, weaker constraint induced by the greater value of s, will lead to select

more assets. When s = +∞, the constraint
p∑
i=1

Pen(βi) ≤ +∞ does not work

and it degenerates into the standard CVaR-based portfolio selection model.
Thus, the large CVaR-based portfolio selection model with weight constraints
is a general one including the standard CVaR-based portfolio selection model
as a special case when s = +∞.

The large CVaR-based portfolio selection model with weight constraints
has an equivalent form min

β
CV aRτ (Y ) + λ

p∑
i=1

Pen(βi),

s.t. 1′β = 1,
(7)

where λ is a penalty parameter corresponding to s. The penalty term:

λ
p∑
i=1

Pen(βi) mainly prevents some extreme portfolio weights, and encour-

ages shrinkage in estimation to construct sparse portfolios.
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Many penalty forms have emerged in the literature, such as LASSO or L1-
norm penalty (Tibshirani (1996)), SCAD penalty (Softly Clipped Absolute
Deviation, Fan and Li (2001)), Adaptive LASSO (Zou (2006)) and elastic net
constraint (Zou and Hastie (2005)). Each penalty form renders a portfolio
selection scheme. This paper focuses on SCAD penalty since it has an oracle
properties. The SCAD penalty is formulated as follows,

λ
p∑
i=1

Pen(βi) =
p∑
i=1

{λ|βi| · I(|βi| ≤ λ)

+
−β2

i +2αλ|βi|−λ2
2(α−1) · I(λ < |βi| ≤ αλ) + (α+1)λ2

2
· I(αλ < |βi|)

}
,

(8)
where I(·) is an indicator function that takes on the value one whenever its
argument is true and zero otherwise; α(α > 2) is a tuning parameter. It
is well known that SCAD is continuous and singular at the origin. SCAD
penalizes large coefficients equally and has no bias. By taking advantage of
the SCAD penalty, our aim is to provide an efficient method of constructing
a sparse and stable portfolio from a large financial assets.

3. Algorithm for CVaR-based portfolio selection

In this section, we provide a algorithm for CVaR-based portfolio selection.

3.1. Estimation of an optimal portfolio

For a portfolio return Y , assume that EY = µ exists. By deducing from
the Theorem 2 in Bassett et al. (2004), we have

CV aRτ = τ−1 min
ξ
Eρτ (Y − ξ)− µ, (9)

where ξ is the τth quantile of Y , and ρτ (u) = u(τ − I(u < 0)) is the check
function defined in Koenker and Bassett (1978). Equation (9) bridges the
gap between CVaR risk measure and objective function of quantile regression,
and can be used to estimate CVaR and implement portfolio selection.

For a portfolio Y = X ′β composed of p assetsX = (X1, X2, · · · , Xp)
′ with

portfolio weights β = (β1, β2, · · · , βp)′, we have X ′β = X1 −
p∑
j=2

(X1 −Xj)βj

under the constraint: 1′β = 1. Using the derived relationship in Equation
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(9), we convert the optimizing problem of Equation (7) to a penalized quantile
regression problem,

min
β,ξ

Eρτ (X1 −
p∑
j=2

X̃jβj − ξ) + λ

p∑
i=1

Pen(βi), (10)

where X̃j = X1 − Xj(j = 2, 3, · · · , p). This is a standard penalized linear
quantile regression since X1 denotes response, X̃2, X̃3, · · · , X̃p are predictors,
and ξ denotes a constant. Note that the factor τ in Equation (9) can be
absorbed into the Lagrange multiplier λ, and the term µ can be neglect-
ed since the mean is a given constant. We first solve the coefficients β̃ =
(β2, β3, · · · , βp)′ by penalized quantile regression analysis, and then get the
optimal weights β through the relationship: β = (1−β2−β3−· · ·−βp, β̃′)′ =
(1−β2−β3−· · ·−βp, β2, · · · , βp)′. Since the penalized quantile regression ap-
proach has the ability of handling millions of variables, our portfolio method
can be applied to large portfolio selection. In addition, our method is a ro-
bustness one because it is not necessary to specify a particular distribution
in quantile regression analysis.

The objective function in Equation (10) is composed of the loss function:

Eρτ (X1 −
p∑
j=2

X̃jβj − ξ) and the penalty term: λ
p∑
i=1

Pen(βi). After solving

the optimal portfolio weights β, we substitute β into the loss function and
get the minimum CVaR risk of an optimal portfolio through Equation (9).
Penalized quantile regression methods, such as L1-norm quantile regression
of Li and Zhu (2008), are often used to solve this problem. In this paper, we
employ the SCAD penalty and the quantile regression approach of Wu and
Liu (2009).

3.2. Selection of tuning parameters

To implement our method mentioned above, we need to choose two-
dimensional tuning parameter θ ≡ (λ, α)′ in the SCAD penalty. The first
component λ corresponds to the regularization parameter that drives the
relevance of the SCAD penalty, which must be nonnegative. The second
component α corresponds to quadratic spline function with knots for the S-
CAD penalty, which must be greater than two. In practice, we could search
the best pair (λ, α) over the two-dimensional grids using some criteria, such
as cross-validation and information criterion. To this end, we use the mod-
ified Bayesian Information Criterion (BIC) introduced by Lv et al. (2014)
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and Lee et al. (2014) as follows,

θ̂ = arg min
θ
BIC(θ)

= arg min
θ

ln

(
n∑
i=1

ρτ (xi,1 −
p∑
j=2

x̃i,jβ̂j,θ − ξ̂θ)

)
+ df · lnn

2n
· ln p,

(11)

where x1,1, x2,1, · · · , xn,1 is a random sample of X1, x̃1,j, x̃2,j, · · · , x̃n,j is a
random sample of X̃j for j = 2, 3, · · · , p, and df is the effective dimension of
fitting model. Additionally, df = |E| indicates the number of points in the set
E with E = {j : β̂j,θ 6= 0, 2 ≤ j ≤ p}. The performance of selection criterion
in Equation (11) is illustrated promising via some simulated examples and a
real data analysis.

4. Simulation studies

In this section, we demonstrate the robustness and superiority of the
proposed method through Monte Carlo simulations. We also present cases
of CVaR-based portfolio that can not be efficiently solved by other method
but can be tackled by the proposed one.

4.1. Simulation data

The classical three-factor model of Fama and French (1993) is often used
to predict stock returns. Let the excessive return Xi(i = 1, 2, · · · , p) be
determined by a three-factor model. We combine them and rewrite the Fama-
French three-factor model in the matrix form

X
p×T

= B
p×3

f
3×T

+ ε
p×T

(12)

where p is the number of assets, T is the time length of observations; B is
the factor loading coefficient matrix, f is the three factors matrix, ε is an
error matrix. Throughout this simulation, we assume that E(ε|f) = 0 and
cov(ε|f) = diag(σ2

1, σ
2
2, · · · , σ2

N).
To generate the T -period returns of p assets, we use the parameters,

µB, ΣB, µf and Σf , specified in Talbe 1 of Fan et al. (2012). The whole
simulation process is described as follow 4 steps:
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• Step 1: generate B and f . First, the factor loadings in B are drawn
from the trivariate normal distribution N(µB,ΣB) with the parameters

µB =

 0.7828
0.5180
0.4100

 , ΣB =

 0.02914 0.02387 0.01018
0.02387 0.05395 −0.00696
0.01018 −0.00696 0.08685

 .

Second, the returns of the three factors over T periods in f are randomly
generated from another trivariate normal distribution N(µf ,Σf ) with the
parameters

µf =

 0.02355
0.01298
0.02071

 , Σf =

 1.2507 −0.0350 −0.2042
−0.0350 0.3156 −0.0023
−0.2042 −0.0023 0.1930

 .

• Step 2: generate random error. For each i(i = 1, 2, · · · , p), the levels of
εi in ε are generated from the gamma distribution with the shape parameter
3.3586 and the scale parameter 0.1876.
• Step 3: generate T -period returns of X through Equation (12).
• Step 4: repeat the above three steps 999 times.

4.2. Comparison results

In the mean-CVaR portfolio, a commonly used method is the scenario-
based one provided by Rockafellar and Uryasev (2000). They design a auxil-
iary function to solve the mean-CVaR portfolio and deduce that minimum of
CVaR can be optimized through optimization of the auxiliary function with
respect to the weights and VaR. The scenario-based method (Scen-CVaR)
can be implemented via the ‘fPortfolio’ package in R3.2.0, and we specify
the parameter by constraints=‘Short’ to allow short sale. We compare it
with our proposed CVaR-based portfolio model with SCAD penalty (SCAD-
CVaR), and use the equal weights portfolio (EWP) model as a benchmark.
All numerical calculations are carried out on an AMD FX(tm)-8350 (Eight-
core 4.0 GMHz) processors with 32 GB RAM.

We consider different combination of T and p and report the comparison
results in Table 1 and Table 2 for T > p and T < p respectively. Due to
the limited space, the optimal values of tuning parameter θ is not presented
here, and we only report the performance of SCAD-CVaR at τ = 0.05 since
the results are very similar at the other quantiles.
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As seen from Table 1, the computation time of Scen-CVaR method main-
ly depends on the time length of observations T and increaments significantly
with T increasing. We find that the Scen-CVaR method is failed to solve the
mean-CVaR portfolio due to the limited memory if T is equal to or larger
than 15120. While in this case, the proposed SCAD-CVaR method still work-
s efficiently. Both of the Scen-CVaR method and the SCAD-CVaR method
are superior to the EWP method in terms of the value of CVaR, and the
SCAD-CVaR method has the best performance.

The main reason behind the failure of Scen-CVaR method is that we must
solve a large scale optimization problem when a large amount of scenarios is
necessary. Actually, the auxiliary function is a convex function of the weights,
which cause the solution of the mean-CVaR portfolio be a typical convex
optimization problem. However, it is difficult or impossible to determine the
joint density function ofX in the auxiliary function. Instead, we approximate
the joint density function by using the empirical distribution function of X
based on the available scenarios. Therefore, the practical solution depends
on the scenario-based method by sampling the probability distribution of
X, which may yield a large scale optimization problem in the case of large
number of observations in X.

In Table 2, we find that all values of CVaR obtained through the Scen-
CVaR method are negative and some of them are too strange to be trusted,
which implies that the Scen-CVaR method is also failed in the case of T < p.
It seems that it is not sufficient to approximate the joint distribution of X by
using a small number of observations when p is large. Therefore, the Scen-
CVaR method will create big errors in this case. However, the SCAD-CVaR
method can still work through variable selection of SCAD penalty and is able
to obtain smaller value of CVaR. Its computation time mainly depends on
the number of assets p.

To summarize, the SCAD-CVaR method takes a penalized quantile re-
gression as core technique, which makes it a robustness method to solve
the mean-CVaR portfolio. It does not only outperform the Scen-CVaR
method and the EWP method in terms of value of CVaR, but also can tackle
some vast portfolio selection that can not be efficiently solved by traditional
method such as the Scen-CVaR method.
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Table 1
Performance of two methods for different cases (T > p).

Cases Method
Time 90%-CVaR 99%-CVaR

Avg. S.D. Avg. S.D. Avg. S.D.
T = 252, p = 10 EWP 0.000 0.000 1.103 0.147 1.820 0.279

Scen-CVaR 0.038 0.020 0.348 0.181 0.355 0.186
SCAD-CVaR 0.121 0.025 0.310 0.126 0.344 0.176

T = 252, p = 50 EWP 0.000 0.000 1.109 0.103 1.843 0.200
Scen-CVaR 0.073 0.035 0.139 0.050 0.169 0.126
SCAD-CVaR 0.443 0.056 0.125 0.052 0.153 0.106

T = 2520, p = 10 EWP 0.000 0.000 1.109 0.109 1.885 0.168
Scen-CVaR 2.935 0.185 0.488 0.195 0.530 0.224
SCAD-CVaR 0.295 0.015 0.431 0.108 0.481 0.151

T = 2520, p = 50 EWP 0.000 0.001 1.111 0.054 1.891 0.097
Scen-CVaR 3.510 0.104 0.171 0.119 0.217 0.136
SCAD-CVaR 1.059 0.059 0.145 0.054 0.192 0.090

T = 7560, p = 10 EWP 0.000 0.000 1.146 0.129 1.962 0.213
Scen-CVaR 21.032 0.290 0.662 0.119 0.683 0.396
SCAD-CVaR 0.718 0.061 0.488 0.124 0.526 0.244

T = 7560, p = 50 EWP 0.000 0.001 1.110 0.024 1.907 0.044
Scen-CVaR 27.466 0.375 0.239 0.136 0.323 0.126
SCAD-CVaR 2.558 0.115 0.139 0.016 0.182 0.037

T = 15120, p = 10 EWP 0.000 0.000 1.153 0.129 1.950 0.222
Scen-CVaR NA NA NA NA NA NA
SCAD-CVaR 1.490 0.277 0.479 0.125 0.605 0.218

T = 15120, p = 50 EWP 0.000 0.001 1.117 0.019 1.891 0.052
Scen-CVaR NA NA NA NA NA NA
SCAD-CVaR 5.440 0.377 0.144 0.017 0.186 0.022

NOTE: 1) Scen-CVaR denotes the secnario-based method proposed by Rockafellar and

Uryasev (2000), and SCAD-CVaR is our proposed method; 2) Time denotes time cost in

seconds; 3) Avg. denotes the average value, and S.D. denotes the standard deviation; 4)

NA denotes ‘not available’ in that the computation is out of memory.
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Table 2
Performance of two methods for different cases (T < p).

Cases Method
Time 90%-CVaR 99%-CVaR

Avg. S.D. Avg. S.D. Avg. S.D.
T = 126, p = 500 EWP 0.000 0.000 1.082 0.161 1.744 0.332

Scen-CVaR 0.337 0.047 -0.384 0.081 -22.563 54.903
SCAD-CVaR 32.788 1.031 0.123 0.022 0.154 0.081

T = 126, p = 1000 EWP 0.001 0.004 1.060 0.134 1.755 0.347
Scen-CVaR 1.410 0.083 -0.380 0.073 -193.938 772.89
SCAD-CVaR 1530.889 112.078 0.114 0.028 0.133 0.099

T = 126, p = 1500 EWP 0.000 0.000 1.599 0.082 2.533 0.316
Scen-CVaR 2.140 0.170 -0.419 0.087 -10.571 13.170
SCAD-CVaR 4329.648 184.611 0.113 0.016 0.151 0.084

T = 252, p = 500 EWP 0.000 0.000 1.123 0.127 1.960 0.296
Scen-CVaR 1.142 0.192 -0.396 0.048 -17.381 21.991
SCAD-CVaR 40.772 0.792 0.128 0.010 0.146 0.040

T = 252, p = 1000 EWP 0.000 0.000 1.079 0.143 1.931 0.266
Scen-CVaR 2.852 0.089 -0.417 0.083 -11.249 10.845
SCAD-CVaR 1566.234 127.877 0.134 0.025 0.149 0.036

T = 252, p = 1500 EWP 0.000 0.000 1.525 0.153 2.761 0.321
Scen-CVaR 5.612 0.064 -0.463 0.057 -160.194 273.501
SCAD-CVaR 4865.376 201.054 0.116 0.016 0.188 0.053

NOTE: The same as in Table 1.
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5. Empirical applications

In this section, we use two practical portfolio selections to illustrate the
efficacy of our proposed method.

5.1. Real examples

We consider the construction of optimal sparse and stable portfolios with
assets selected from the constituent stocks in two stock indices of China: the
Shanghai and Shenzhen 300 (HS300) index and the Shanghai Stock Exchange
Composite (SSEC) index.

The data comes from GTA data service center, CITIC Index Co., Ltd.
website and Finance Google website. We use daily observations of the con-
stituent stocks and calculate their returns using difference of logarithms, i.e.,
rt = 100 × (ln pricet − ln pricet−1), where pricet is the closing stock price.
The sample period spans from Aug 14, 2012 to Dec 18, 2015 for HS300 and
from Jan 6, 2009 to May 5, 2016 for SSEC. Note that the 300 constituent
stocks in HS300 are always changing in the sample period since the sample
is adjusted every half year but the number of adjusted sample stocks is un-
certain. We intersect those stocks and ultimately keep p = 227 constituent
stocks for HS300. As the SSEC situation is similar to the case of HS300, we
perform the same procedure to get p = 834 constituent stocks for SSEC.

To show the performance of our method, we consider two cases: n > p
and n < p. In the case of HS300, one sample runs from Aug 14, 2012 to Dec
18, 2015 with the total sample size 835 for n > p, while another sample runs
from Mar 24, 2015 to Dec 18, 2015 with the total sample size 185 for n < p.
In the case of SSEC, we take the sample period from Jan 6, 2009 to May 5,
2016 with sample size 1812 for n > p and from Nov 4, 2013 to May 5, 2016
with sample size 612 for n < p.

5.2. Portfolio analysis

5.2.1. n > p case

We implement the CVaR-based portfolio selection model with weight con-
straints using SCAD penalized quantile regression at three quantiles τ =
0.01, 0.05, 0.10. The optimal values of (λ, α) and its corresponding BICs are
reported in Table 3. It is clear that the values of α at different quantile are
very close to 3.7, which is recommended by Fan and Li (2001). The solution
paths and the optimal weights are shown from Fig. 1 to Fig. 3 for HS300 and
Fig. 4 to Fig. 6 for SSEC. Take Fig. 1 as an example, it shows the solution
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path of the portfolio weights and the value of penalty parameter determined
by the modified BIC criterion. As seen from panel (a) of Fig. 1, the number
of selected financial assets is gradually increasing with λ decreasing. When
λ is 68.1 corresponding to the smallest BIC value, the optimal portfolio are
constructed with 18 assets selected, and the weights are presented in panel
(b) of Fig. 1. From the barplot in panel (b), there is no extreme weights,
and the maximum weights of the portfolio is 0.3697 while the minimum is
0.0005. The other two figures show the similar results at quantiles 0.05 and
0.1 to the result at quantile 0.01 in Fig. 1. These results imply that our
method tends to select less assets for the optimal portfolio and is able to
avoid generating extreme weights in practice. In the next step, we will show
the effects of risk allocation using our method.

Table 3
The optimal results of parameter selection (n > p)

τ
HS300 SSEC

λ α BIC λ α BIC
0.01 0.09 3.72 6.1661 0.11 3.73 7.7280
0.05 0.08 3.74 6.3098 0.14 3.69 7.1589
0.10 0.10 3.69 5.9506 0.13 3.71 7.3755

For comparison, we also consider mean-variance (mean-var) model of
Markowitz (1952), minimum variance (min-var) model, L1-norm constraint
on the variance-based portfolio selection method (L1-var) of Fan et al. (2012),
and still use the equal weights portfolio (EWP) model as a benchmark. We
compare the performance of the optimal portfolios constructed by our CVaR-
based portfolio model with SCAD penalty (SCAD-CVaR) at three quantiles
τ = 0.01, 0.05, 0.10 with those four methods.

Table 4 reports the description of weights and the change of positions for
the optimal portfolio. We find that the traditional portfolio procedure tends
to select more stocks to construct a portfolio, while the new portfolio method
using shrinkage techniques tends to use a small amount of stocks, which is
very useful to reduce the cost of supervision and transaction. These findings
are very similar to those of Fan et al. (2012). In addition, our sparse portfolio
is stable without extreme positive and negative weights compared with those
conventional portfolio methods like mean-variance model, minimum variance
model, and etc. As expected, all of the methods will spend more time to
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optimize a large portfolio selection like SSEC. In terms of time cost, our
method spends a lot of time since we tune parameters: λ and α by using
grids search approach.

The means, standard deviations, and other characteristics of these port-
folios are recorded and presented in Table 5 where VaR and CVaR are
calculated at 90% and 99%confidence level. As far as standard deviation
is concerned, the optimal value determined by SCAD-CVaR method is rel-
atively large, and relative small determined by the methods of mean-var,
the min-var, and the L1-var due to variance-based optimization objectives.
However, the Sharpe ratios of the SCAD-CVaR method are larger than those
from conventional methods. When it comes to the VaR and CVaR risk, the
SCAD-CVaR is also superior to the other methods. The empirical results
indicate that both the HS300 portfolio and the SSEC portfolio can be effec-
tively tracked through less stocks selected by our proposed portfolio method.
In fact, the core technique in our method is a shrinkage and selection ap-
proach in statistics, which can select some relevant variables to enhance the
prediction accuracy and interpretability of the statistical model.

(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 1 Portfolio weights solution paths and the optimal portfolio weights
for HS300 at τ = 0.01 in n > p case.

16



(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 2 Portfolio weights solution paths and the optimal portfolio weights
for HS300 at τ = 0.05 in n > p case.

(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 3 Portfolio weights solution paths and the optimal portfolio weights
for HS300 at τ = 0.10 in n > p case.
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(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 4 Portfolio weights solution paths and the optimal portfolio weights
for SSEC at τ = 0.01 in n > p case.

(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 5 Portfolio weights solution paths and the optimal portfolio weights
for SSEC at τ = 0.05 in n > p case.
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(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 6 Portfolio weights solution paths and the optimal portfolio weights
for SSEC at τ = 0.10 in n > p case.

Table 4
Descriptions of optimal portfolios (n > p)

Indices Method τ MaxW MinW #Long #Short #Out Time
HS300 EWP —— 0.004 0.004 227 0 0 0.00

mean-var —— 0.331 0 206 0 21 0.25
min-var —— 0.297 0 206 0 21 0.20
L1-var —— 0.318 -0.076 13 9 205 1.25
SCAD-CVaR 0.01 0.269 -0.064 27 21 179 7.04

0.05 0.296 -0.077 31 23 173 7.58
0.10 0.268 -0.067 26 14 187 7.97

SSEC EWP —— 0.001 0.001 834 0 0 0.00
mean-var —— 0.157 0 808 0 26 9.17
min-var —— 0.153 0 808 0 26 9.11
L1-var —— 0.226 -0.052 23 15 796 26.41
SCAD-CVaR 0.01 0.100 -0.060 29 67 738 1526.30

0.05 0.074 -0.059 20 45 769 1459.76
0.10 0.074 -0.050 26 52 756 1482.04

NOTE: 1) MaxW=Max. weight, MinW=Min. weight; 2) #Long=No. of long positions,
#Short=No. of short positions, #Out=No. of assets outside of the optimal portfolio; 3)
Time denotes time cost in seconds.
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Table 5
Returns and risks of optimal portfolios (n > p)

Indices Method τ Mean SD
90% 99%

Sharpe ratio
VaR CVaR VaR CVaR

HS300 EWP ——– 0.017 1.149 2.090 2.855 2.186 2.907 0.015
mean-var ——– 0.017 0.733 1.610 2.096 1.702 2.150 0.023
min-var ——– 0.019 0.742 1.431 1.786 1.434 1.866 0.026
L1-var ——– 0.019 0.958 0.898 1.572 0.988 1.617 0.019
SCAD-CVaR 0.01 0.267 2.561 0.514 1.034 0.575 1.107 0.104

0.05 0.239 2.167 0.592 1.090 0.647 1.130 0.110
0.10 0.185 1.711 0.631 1.085 0.662 1.117 0.108

SSEC EWP ——– 0.024 1.644 3.942 4.168 4.077 4.278 0.015
mean-var ——– 0.024 0.916 3.469 3.623 3.558 3.714 0.026
min-var ——– 0.009 0.910 2.458 2.935 2.501 2.992 0.009
L1-var ——– 0.015 0.738 2.005 2.522 2.128 2.567 0.020
SCAD-CVaR 0.01 0.067 0.791 1.410 2.027 1.508 2.130 0.085

0.05 0.065 0.880 1.256 1.909 1.306 1.920 0.074
0.10 0.056 0.851 1.543 1.949 1.603 2.061 0.066
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5.2.2. n < p case

In this case, we also use the SCAD-CVaR method to construct sparse and
stable portfolios at three quantiles: 0.01, 0.05, and 0.10. The optimal results
of parameter selection are reported in Table 6, while the solution paths and
the optimal weights are depicted in three figures (from Fig. 7 to Fig. 9 for
HS300, from Fig. 10 to Fig. 12 for SSEC). The results are similar to those
in the case of n > p, we only select 19 assets without extreme weights for
the optimal portfolio at 0.01 quantile. We leave out similar conclusions from
other quantile levels with aiming to save space.

Table 6
The optimal results of parameter selection (n < p)

τ
HS300 SSEC

λ α BIC λ α BIC
0.01 0.11 3.65 6.5886 0.18 3.70 7.5000
0.05 0.11 3.68 6.5776 0.19 3.76 7.5350
0.10 0.12 3.76 6.4847 0.19 3.73 7.6658

Here, we only compare the SCAD-CVaR method with the EWP method
and the L1-var method since the mean-var and the min-var methods are in-
valid for the case of n < p. Table 7 reports the description of weights and
the change of positions for the optimal portfolio for n < p case. The result-
s indicate that both L1-var method and SCAD-CVaR method are valid to
select small amount of stocks for an optimal portfolio and have a similar dis-
tribution of weights. In fact, the L1-var method can provide sparse portfolio
through LASSO mean regression of Tibshirani (1996). It is able to effectively
disperse variance risk. Different from the L1-var method, our SCAD-CVaR
method brings sparsity through penalized quantile regression, which mainly
focuses on tail risk. The SCAD-CVaR method can implement risk diversifi-
cation by only using a small amount of stocks. As far as computation time
be concerned, the n < p case will cost more time than the n > p case when
we compare Table 7 with Table 4.

The compared performances are reported in Table 8 and are similar to
those in Table 5. Although the SCAD-CVaR method is not the best one in
terms of standard deviation, it outperforms the other two methods in terms
of VaR, CVaR, or Sharpe ratio.
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(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 7 Portfolio weights solution paths and the optimal portfolio weights
for HS300 at τ = 0.01 in n < p case.

(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 8 Portfolio weights solution paths and the optimal portfolio weights
for HS300 at τ = 0.05 in n < p case.
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(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 9 Portfolio weights solution paths and the optimal portfolio weights
for HS300 at τ = 0.10 in n < p case.

(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 10 Portfolio weights solution paths and the optimal portfolio weights
for SSEC at τ = 0.01 in n < p case.
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(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 11 Portfolio weights solution paths and the optimal portfolio weights
for SSEC at τ = 0.05 in n < p case.

(a) Portfolio weights solution paths and
BIC-based assets selection.

(b) Optimal portfolio weights.

Fig. 12 Portfolio weights solution paths and the optimal portfolio weights
for SSEC at τ = 0.10 in n < p case.
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Table 7
Descriptions of optimal portfolios (n < p)

Indices Method τ MaxW MinW #Long #Short #Out Time
HS300 EWP —— 0.004 0.004 227 0 0 0.00

L1-var —— 0.230 -0.064 24 18 185 9.08
SCAD-CVaR 0.01 0.252 -0.136 22 26 179 24.80

0.05 0.253 -0.13 21 26 180 24.64
0.10 0.251 -0.104 20 22 185 22.48

SSEC EWP —— 0.001 0.001 834 0 0 0.00
L1-var —— 0.188 -0.018 32 16 786 83.18
SCAD-CVaR 0.01 0.166 -0.036 38 34 762 4285.77

0.05 0.156 -0.025 45 49 740 4141.57
0.10 0.145 -0.027 46 43 745 4020.99

NOTE: 1) MaxW=Max. weight, MinW=Min. weight; 2) #Long=No. of long positions,
#Short=No. of short positions, #Out=No. of assets outside of the optimal portfolio; 3)
Time denotes time cost in seconds.

Table 8
Returns and risks of optimal portfolios (n < p)

Indices Method τ Mean SD
90% 99%

Sharpe ratio
VaR CVaR VaR CVaR

HS300 EWP —— 0.061 1.293 2.572 2.863 2.677 2.915 0.047
L1-var —— 0.050 0.979 1.605 1.711 1.613 1.736 0.051
SCAD-CVaR 0.01 0.219 1.520 0.888 1.203 0.932 1.230 0.144

0.05 0.184 1.279 0.654 1.223 0.717 1.280 0.144
0.10 0.177 0.981 0.608 1.153 0.642 1.269 0.180

SSEC EWP —— 0.031 2.284 4.267 6.755 4.389 6.853 0.013
L1-var —— 0.080 0.824 1.665 2.495 1.736 2.596 0.097
SCAD-CVaR 0.01 0.133 0.879 1.459 1.933 1.578 2.062 0.152

0.05 0.131 0.831 1.237 1.876 1.334 1.952 0.157
0.10 0.125 0.823 1.361 1.901 1.430 1.930 0.151
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6. Conclusion

In this paper, we propose the large CVaR-based portfolio selection model
with weight constraints by imposing the weight constraints on the standard
CVaR-based portfolio selection model. This new model is a general one
that includes the standard CVaR-based portfolio selection model as a special
case. We implement the method using penalized quantile regression tools.
Our method can be used to construct sparse and stable optimal portfolios
selected from large financial assets.

To illustrate the efficacy of our method, we carry out empirical analysis
of HS300 and SSEC indices respectively, and then compare the performance
of our method for optimal portfolios construction on the constituent stocks
to some conventional methods. At least three conclusions can be drawn from
the empirical results. First, our large CVaR-based portfolio selection model
with weight constraints can always pick out a small amount of financial assets
to form a portfolio no matter in the case of n > p or n < p. Second, the
final sparse portfolio is stable without extreme positive and negative weights.
Third, our method is superior to those conventional methods, including EWP,
mean-var, min-var, and L1-var mthods, in terms of VaR, CVaR, or Sharpe
ratio.
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