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Abstract 

In order to ensure the safe operation of a VLFS, a combination of mooring, 

breakwater and other motion reducing systems is employed. In the present work, the 

transient hydroelastic response of a floating, thin elastic plate, elastically connected to 

the seabed, is examined. The plate is modelled as an Euler-Bernoulli strip, while the 

linearized shallow water equations are used for the hydrodynamic modelling. Elastic 

connectors are approximated by a series of simple spring-dashpot systems positioned 

along the strip. A higher order finite element scheme is employed for the calculation 

of the hydroelastic response of the strip-connector configuration, over the shallow 

bathymetry. After the definition of the initial-boundary value problem, its variational 

form is derived and discussed. Next, on the basis of the aforementioned formulation, 

an energy balance expression is obtained. The effect of variable bathymetry on the 

response of a two connector-strip system, is examined by means of three seabed 

profiles, featuring a flat bottom, an upslope and a downslope environment. For the flat 

bottom case, the strip response mitigating effect exerted by the employment of two 

and three elastic connectors is considered. Finally, by means of the derived energy 

balance equation, the energy exchange is monitored, providing a valuable insight into 

the transient phenomena that take place in the studied configurations. 
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1. Introduction 

In the past decades, due to the advances in marine technology, the hydroelastic 

response of Very Large Floating Structures (VLFSs) has received great scientific 

attention.  Population densification in coastal areas, along with the increasing work 

load in major ports, has led to costly land reclamation solutions in order to 

accommodate the need for commercial space, necessary for industrial growth [1]. 

Compared to expanding industrial zones inland or resulting to environmentally hostile 

and costly land reclamation solutions, the employment of VLFS as operational docks 

constitutes an attractive alternative. Pontoon type VLFSs are essentially floating 

plates of large horizontal dimensions resting on the water surface [2]. With horizontal 

dimensions stretching from tens to hundreds of meters, VLFSs provide extended floor 

span, highly desirable for various applications ranging from storage, docking and 

military operation platforms to recreational facilities and floating airport and 

helicopter bases [1, 2]. Moreover, the ability to moor the structures at safe distances 

from the shore makes them suitable for the accommodation of socially sensitive 

facilities, such as power and sewage treatment plants [1-5].  

The large length to thickness ratio of VLFSs makes elastic deformation dominant 

under ocean wave action. Hence, the extensive study and comprehension of 

hydroelastic effects is essential in the development of robust VLFSs’ design codes. 

Due to their small rigidity, pontoon type VLFSs are most commonly modelled as thin, 

elastic, floating plates of either negligible or non-negligible draft. Commonly the 

classical Kirchhoff plate theory is used for the approximation of the strip deflection 

[6-7], while some works consider higher –order [8] and non-linear strip [9] theories.  

Most tools developed for the study of hydroelastic effects employ either frequency 

domain or time-domain techniques. Frequency domain tools employ Galerkin 

schemes [7], Green function methods [10] and eigenfunction expansion approaches 

[11].  However, the treatment and analysis of transient phenomena, characterised by 

steep wave fronts, and strong nonlinearity effects, requires time domain methods. 

Analysis tools in the time domain include direct integration schemes [12-13] and 

Fourier transform techniques [14-15]. Considering long wave excitation, Sturova [16] 

developed an eigenfunction expansion technique for the calculation of the 

hydroelastic response of thin heterogeneous plates. In the same line of work, 

Papathanasiou et al [17] proposed a higher order finite element scheme for the 
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solution of the initial-boundary value hydroelastic problem of a thin plate floating 

over mildly sloped bathymetry in shallow water conditions. 

Pontoon type VLFSs are suitable for calm waters and are usually moored nearshore. 

The proximity to coastal areas and the large horizontal dimensions make variable 

bathymetry effects important. In [18] the effects of a sloping sea bed are considered, 

while a fast–multipole method is developed in [19] to account for variable 

bathymetry. Belibassakis & Athanassoulis [20] have developed a coupled mode 

method for the calculation of the hydroelastic response of a floating, thin plate over 

general bathymetry. 

In order to avoid drift off and reduce vibration effects of a VLFS, a combination of 

mooring, breakwater and other motion reducing systems is employed [1-3]. The 

choice of the response mitigating system is dictated by the allowable displacement 

values for the given configuration. Negata [21] and Seto & Ochi [22] showed that the 

motion of a floating plate surrounded by bottom-founded breakwaters is considerably 

reduced in the case of incoming long waves. Numerical studies have confirmed that 

the gravity type breakwater system is highly effective in reducing both drift forces on 

the floating structure and its hydroelastic response [23-24]. 

On the other hand, bottom-founded breakwaters have a profound environmental 

impact, as they disrupt ocean currents, and costly construction. Alternative breakwater 

systems, like the box-like floating breakwater [3], have been proposed as eco-friendly 

alternatives. The need to mitigate the hydroelastic response of floating bodies has also 

led to the development of auxiliary structural elements acting as motion reducing 

mechanisms. Such devices, attached at the free edges of the floating structure, are able 

to dissipate the incoming wave energy and achieve the necessary hydroelastic 

response mitigation. The devices range from submerged vertical or horizontal plates 

[25-26], acting as reflectors, to air cushions [27].  In order to derive the optimal 

configuration for a given structure and environmental conditions, computationally 

intensive, parametric studies must be carried out. Khabakhpasheva & Korobkin [28] 

underline the need for a simple model able to capture the effect of the motion 

reducing device on the dynamic response of the structure. In the same work, the 

response mitigating effect of an elastic spring, connecting one of the free edges of the 

floating strip to the seabed, is studied among other systems. Finally, Karmakar & 

Guedes Soares [29] study the scattering of gravity waves by a moored elastic strip, 

floating over shallow bathymetry, in the frequency domain. In [29] a thorough 
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analysis of the vertical strip deflection, bending moment, strain shear force and spatial 

distribution for moored configurations under harmonic excitation is presented. 

In the present work, the time-domain hydroelastic response of a thin, elastic, floating 

plate, elastically connected to the sea bed, is examined. The plate is modelled as an 

Euler-Bernoulli strip, while the linearized shallow water equations are used for the 

hydrodynamic modelling. The main novelty of the present contribution, compared to 

the previous work carried out by the authors [17], lays on the inclusion of multiple 

elastic connectors in the developed shallow-water, time-domain model. The elastic 

connectors are represented by simple spring-dashpot systems distributed along the 

structure.  The present study also considers the effect of the number, arrangement, 

stiffness and damping coefficients of the connectors on the resulting transient 

hydroelastic response of the strip-connector configuration, floating over shallow 

waters. The investigation finds important applications in a number of fields, such as 

the design of mooring systems [29], the vibration reduction of a floating structure [30] 

and wave energy harvesting [31]. The numerical solution is calculated by means of a 

higher order finite element scheme.  

In Sect. 2, the initial-boundary value problem is formulated. Next, in Sect. 3 the 

variational form of the above problem is given. Subsequently, the energy balance 

expression is derived from the variational form, while the employed finite element 

scheme is briefly introduced. Finally, in Sect. 4 a series of numerical results is 

presented. In order to explore the effects of bathymetry, three seabed profiles are 

defined. Namely, a flat bottom, an upslope and a downslope environment were 

considered. For the flat bottom case, the response reducing effects of elastic strip 

configurations employing two and three connectors, are studied and compared against 

the freely floating case. Strip deflection and bending moment distributions in given 

time instances are plotted for various elastic connector parameters. Finally, the energy 

exchange within the system is monitored by means of the energy balance expression, 

providing a valuable insight into the physical phenomenon and the effectiveness of 

the studied configurations. 

2. Governing Equations 

     In this section, the hydroelastic problem of a thin, floating, strip that is elastically 

connected to the seabed, is presented. Shallow-water conditions are assumed in the 

following analysis. The general formulation of the above problem, for a freely- 
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Figure 1 A floating elastic strip with multiple elastic connectors along its length. 

floating elastic strip, has already been presented in Sturova [16] and Papathanasiou et 

al [17]. In the present contribution, the strip is assumed to be elastically connected to 

the bottom boundary, at both edges, while additional N-1 elastic connectors are 

distributed along the strip length (see Fig. 1). A Cartesian coordinate system is 

introduced. The horizontal axis x  coincides with the mean water level, while the 

vertical axis z  is pointed upwards.  The plate extends infinitely in the direction 

vertical to the page, hence allowing the treatment of the floating body configuration in 

the xz  plane. 

The upper surface elevation is denoted by ( , )x t . The thin, elastic strip of length L , 

thickness ( )x  and density 
p  is resting over a layer of water with density w . The 

fluid layer is contained in the domain : ( , )x b z        where the depth 

function is given by ( ) ( ) ( )b x h x d x  , with ( )h x  being the depth measured up to the 

mean water level and ( ) ( ) /p wd x x    the plate draft. The horizontal extent of the 

domain is decomposed into subregion 0 : 0S x L   , where the hydroelastic coupling 

takes place, and the free fluid surface subregions, 1 : ( ,0]S   and 2 :[ , ).S L    In the 

middle region 0S , the plate deflection and the free surface elevation coincide. The 

velocity potential functions, defined in each sub domain, are denoted as , 0,1,2i i 
 

respectively. Assuming a thin body, the Euler-Bernoulli beam theory can be 

employed for the approximation of the floating strip hydroelastic response.  The 

resulting system of equations, valid in   , becomes 
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   0 0

2

( ) ( ) , ,
N

tt xx xx w w t n n n t

n

m x D x g x x k c x S        


                    
(1) 

 0 0( ) 0, ,t x xb x x S                                                                                     (2)
 

 1 1 1( ) 0, ,tt x xg b x x S                                                                                      (3)
 

 2 2 2( ) 0, ,tt x xg b x x S                                                                                      (4) 

where g is the acceleration of gravity and ( ) ( )pm x x   is the plate mass per unit 

length. The Dirac function is denoted by . The flexural rigidity of the plate is 

  3 2( ) /12(1 )D x E x v   , with E  being the Young’s modulus, v  the Poisson’s ratio 

of the plate material.  Furthermore, it is assumed that / 1t L  in order to comply 

with the Kirchhoff thin plate theory. Finally, the strip is connected with the seabed, at 

nx  horizontal locations, by elastic connectors with stiffness nk , and damping 

coefficients nc  for 1,..., 1n N  , represented by simple spring-dashpot systems. 

Equation (1) accounts for the deflection of the elastic strip, according to the Kirchhoff 

plate theory assumptions, resting on a fluid layer described by the linearized shallow 

water equations. The present model incorporates inertial and flexural effects by means 

of the terms ( ) ttm x   and  xx xxD x     , respectively. The classical thin plate 

model is augmented by the hydroelastic coupling terms wg   and 0w t  , rising from 

the linearized dynamic condition at the upper surface boundary of the middle 

region 0S . 

The forcing term in the right hand side of Eq. (1) accounts for the collective restoring 

effect of the elastic connectors distributed along the strip length ( 2,...,n N ), 

excluding edge connectors. Notably, the restoring effect of the connectors positioned 

at the free edges of the strip is accounted by the imposed non-zero shear force 

boundary conditions at the strip edges and is thus not included in the aforementioned 

forcing term.  Moreover, Eq. (2) expresses mass conservation in the water region, 

under the plate, while Eqs. (3) and (4) are derived through a simple algebraic 

manipulation of the linearized shallow water equations, modelling long wave 

propagation in the free water surface subregions , 1,2iS i  . For the given subregions, 

it equivalently holds that 1 , 1,2i t ig i     , from the integration of the equation of 

motion in the respective regions.  Hence, the upper surface elevation in the halfstrips 

is directly derived from the corresponding velocity potential functions.  
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The system of Eqs. (1)-(4) is supplemented by the following conditions at infinity, 

1( , ) 0x x t     and  2( , ) 0x x t   .                                                       (5) 

implying quiescence in the far field. At the interfaces between subregions mass and 

energy conservation is assumed, yielding the following matching conditions, 

1 0(0 ) (0 , ) (0 ) (0 , )x xb t b t        and 
2 0( ) ( , ) ( ) ( , )x xb L L t b L L t        , 

1 0(0 , ) (0 , )x xt t      and 
0 2( , ) ( , )x xL t L t     . 

At the free strip edges, located at 0x    and x L , zero-moment and non-zero shear 

force conditions are imposed, 

(0) 0xxD    and 1 1(0) xxx tD k c         at 0x   , 

( ) 0xxD L    and 1 1( ) xxx N N tD L k c         at x L  . 

Initially at 0t    the plate is at rest, while a free water surface disturbance, denoted 

by ( )S x , begins to propagate in subregion 2S . Thus, the conditions that complete the 

initial-boundary value problem are given as 

0 0( ,0) ( ,0) 0,t xx x x S       
 
and 1 1 10,t x S    

 2 2 20, ( ),t S x x S      . 

Using the following non-dimensional variables 1x xL , 
1L   , 

1/2 1/2t g L t , 

1/2 3/2 , for 0,1,2i ig L i    , the initial-boundary value problem under consideration 

is rewritten (after dropping tildes)  

     0 0

2

, ,( )
N

tt xx xx t n n n t

n

M x K x xx k Sx c     


                          (6) 

  0 00, ,t x xB x x S                                                                                        (7) 

 1 1 10, ,tt x xB x x S                                                                                       (8) 

 2 2 20, ,tt x xB x x S                                                                                      (9) 

where the following non-dimensional quantities are involved, 

1 1( ) ( ) wM x m x L  ,   1 1 4( ) wK x D x g L    and 
1( ) ( )B x b x L .  
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The corresponding interface conditions become 

1 0(0 )(0 ) , (0 ) 0 ,( )x xB t B t       , 
0 2( )(1 ) 1 , (1 ) 1 ,( )x xB t B t       , and        (10) 

1 0( )1 , (1 , )t t    , 
0 2( )1 , (1 , )t tt t    ,                                                             (11) 

while the non-dimensional  boundary conditions read as follows 

(0) 0xxK     and (1) 0xxK  
 
 at 0x   and                                                         (12) 

   1 1(0) 0, 0,xxx tK k t c t        and                                                                     (13)      

   1 1(1) 1, 1,xxx N N tK k t c t        at 1.x                                                            (14)                          

In the above equations   
1

n n wk k g


  and  
11/2 1/2

n n wc c g L g
 , for 

1,2,..., 1n N  , are the non-dimensional connector stiffness and damping 

coefficients. For simplicity in presentation, the hat notation is omitted in the following 

analysis. 

3. Variational Formulation 

The variational form of the previously defined transient hydroelastic problem is 

derived and discussed in the present section. For the derivation of the variational 

formulation of the problem the same standard process is followed as in Papathanasiou 

et al [17]. The reader is directed to the given work for a more detailed account. 

Concisely, it is mentioned that Eqs. (6)-(9) are multiplied by the weight functions 

2

0( )v H S , 1

0 0( )w H S  , 1

1 1( )w H S , and 1

2 2( )w H S , respectively (where H 

denotes the Sobolev spaces in the corresponding intervals). After performing 

integration by parts and adding the resulting equations, the following variational 

problem is defined, 

Find ( , )x t , 0 ( , )x t , 1( , )x t  and 2 ( , )x t
 

such that for every 2

0( )v H S , 

1

0 0( )w H S   , 1

1 1( )w H S  and 1

2 2( )w H S
  
it holds that 

1 1 1 0

0 0 1 1 2 2
0 0 0 1

tt t t tt ttMv dx v dx w dx w dx w dx    



                                        

             0 0 0 1 1 1 2 2 2( , ) ( , ) ( , ) ( , ) ( ,( , ) ) 0,ta v b w b w b q vw c v                  (15) 
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where the bilinear functionals  are given by 

1

1

( )( ) , ), (n n n

N

n

v x kv x tq 




  and                                                                               (16a) 

1

1

( , ) ( ) ( , ),t

N

n n n

n

c v v x c x t 




                                                                                    
(16b) 

and as defined in [17], 

 
1

0
( , ) xx xxa v K v v dx      ,                                                                              (16c) 

1

0 0 0 0 0
0

( , ) x xb w w B dx    ,                                                                                   (16d) 

0

1 1 1 1 1( , ) x xb w w B dx 


   ,                                                                                    (16e)  

2 2 2 2 2
1

( , ) .x x xb w w B dx 


                                                                                     (16f)   

3.1 Energy balance considerations 

Following Ref. [17] an energy balance equation is derived from the variational 

formulation Eq. (15). The above result is subsequently used in order to study the 

energy exchange between the defined subregions in the presence of non-conservative 

restoring forces.  

In order to derive the energy conservation principle, we set 
tv   , 0 0tw   , 

1 1tw  
 

and 2 2tw  
 

in Eq. (15). The substitution is valid under sufficient 

regularity assumptions for the weak solution and the definition of the weight functions 

given above. Hence, Eq. (15) is transformed into the following 

     
1 02 2 2

1 2 0 0 0
0 1

1
( , ) ( , )

2
t t t

d
M dx dx dx a b

dt
      




       

       

                          1 1 1
0

2 2 2( , ) ( , () , ) 2 ( , ) 0,
t

s sb b q c dt            
              (17) 

where, Eqs. (16a, b) take the form 

1
2

1

1 1
( , )( , ) (

2
, )

2

N

n n

n

tq
d d

k x t
dt d

q
t

   




  
   

 and                                                 (18a) 
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 
1

2

1

( , ) ( , ) ,
N

t t n t n

n

c c x t  




                                                                                  (18b) 

while, after substitution, the functionals of Eqs. (16c-f) are rewritten as in [17]. 

In Eqs. (17) and (18b) s  denotes a dummy variable. Equation (17) expresses the 

energy conservation principle for the studied system. The quantity  tE    

       
1 02 2 2

1 2 0 0 0
0 1

( , ) ( , )t t tt M dx dx dx a b      



         E   

                   1 1 1 2 2 2
0

( , ) ( , ) 2 , ,( , ) s s

t

qb b c dt                                            (19) 

i.e. the quantity in the brackets in the left-hand side of Eq. (17) should remain 

constant in time, and equal the energy provided by the  initial free surface disturbance, 

  (0)t E E  for every 0 t T  . The above energy balance equation provides a 

valuable tool in the study of the hydroelastic wave propagation in the defined strip-

connector system. When the excitation reaches the strip, the strain and kinetic energy 

of the plate will increase and eventually vanish as the wave exits the structure and a 

state of rest is reached. The study of the initial excitation energy ( (0)E ) conversion, 

as the pulse propagates in 0S , in correlation with the configuration material and 

geometry parameters, is indicative of the elastic connector effects on the strip 

response. Following that line of thought, it is interesting to examine the quantities 

appearing in the energy balance equation (19). In the free water surface subregions 

iS , 1,2i   the total energy is defined as the sum of the kinetic and potential energy of 

the water column given respectively as, 

 2
1

2

21

2
( )K t dE xt 



     and    
2

22
1

( )
1

2
P xBE dxt 



  ,  for 2S  ,                      (20) 

 
0

11

2

2
( )

1
K t dxE t 


     and   

0

11

2
( )

1

2
P xBE dxt 


  ,  for  1S .                         (21) 

Additionally, the kinetic and strain energy of the strip are given by the following 

terms, 

1
2

0

1
( )

2
K tME xt d                                                                                                (22a) 
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and   
21

0

1
( )

2
S xxE t K dx  .                                                                                 (22b) 

The total fluid energy in the subregion  
0S  is given as follows, 

 
1 2

0
0

21
( )

2
P xE t dB x  

 
  .                                                                                (23) 

The quantity of Eq. (23) consists of the kinetic fluid energy in the middle subregion 

and the potential energy due to elastic strip deflection. Furthermore, the elastic 

potential energy of the employed 1N    connectors is given by 

1

1

21
( )

2
( , )

N

n

n

nxW t k t




  ,                                                                                             (24) 

while the energy dissipation due to connector damping  is expressed as 

 
1

2

1
0

( , )( ) .
N

n n

t

n

sc x s dsC t 




                                                                                     (25) 

Integrating Eq. (19) with respect to time from 0t   to ,t T  and using the fact that 

  0tE = E , the following holds 

  0
0

T

t dt T E E ,                                                                                                     (26) 

where 0E  is the initial excitation energy, expressed as the sum of potential and 

kinetic energy of the water column, provided by the imposed free surface disturbance 

 S x   in the  right halfstrip 2S . Equation (26) is written in a more convenient form 

as,                                                             

 
2

1

2 1,
l lK P K S P

l

E E E E E W C


      
                                                           

(27) 

In Eq. (27) the following definitions are used for the time averaged energy quantities, 

https://cas.brunel.ac.uk/owa/redir.aspx?C=Av6aENRKe5CgqCYZ5m_W1D6NtIPbQeL6xUqW_brvhDgM2g1MhQ_UCA..&URL=http%3a%2f%2fdx.doi.org%2f10.1016%2fj.marstruc.2016.04.002


Published in Marine Structures, 48, 33-51. doi:10.1016/j.marstruc.2016.04.002 
 

 12 

X X
0

0

1
( )

T

E E t dt
TE

  , where subscript x  is interchanged to denote the kinetic, strain 

and potential energies in the respective subregions. Additionally, 
0

0

1
( )

T

W W t dt
TE

 
 

 

and 
0

0

1
( )

T

C C t dt
TE

  . 

3.2 Finite Element formulation  

For the numerical solution of the equivalent variational problem (Eq. 15), domain   

is discretized and the unknown fields are approximated by means of the higher order 

finite element scheme developed in [17]. The discrete approximate solutions of the 

variational problem are given as, 

6

1

( ) ( )h h

i i

i

H x t 



 

  and    
5

1

( ) ( ), 1,2.h h

j i ij

i

L x t j 


   

Substituting the above into the discretized variation problem defined by Eq. (15) 

results in a second order system of the form 0tt tu u u    M C K , where vector u  

contains the total nodal unknowns. Subsequently, a Newmark time integration scheme 

(see [17]) is employed in order to calculate the solution. 

4. Numerical Results 

In this section, a series of numerical results are presented using the physical 

parameters employed in the experiments described in Wu et al [32]. In the 

aforementioned work the length of the strip model was 10 mL  , its thickness 

0.038 m  and the material elastic modulus 103 MPaE  . Moreover, the strip 

material density was 3220  kg mp  , and thus, its draft amounted to 0.084 md    

The experiment was performed in water depth of l.1 m, using incident wave heights of 

5, 10 and 20 mm  and wave periods ranging from 0.5 to 3s, corresponding to deep and 

intermediate water depth conditions, respectively.  

In order to comply with the shallow water assumption in the present work, the above 

physical data are used for calculations with a reduced water depth of 0.25 mh   (in 

non-dimensional terms 0.025h  ), as shown in Fig. 2(1). Moreover, in order to 

illustrate the effects of variable bathymetry, two additional depth profiles, shown in  

https://cas.brunel.ac.uk/owa/redir.aspx?C=Av6aENRKe5CgqCYZ5m_W1D6NtIPbQeL6xUqW_brvhDgM2g1MhQ_UCA..&URL=http%3a%2f%2fdx.doi.org%2f10.1016%2fj.marstruc.2016.04.002
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                (1)                                (2)                          (3) 

Figure 2 (1) Flat bottom profile. (2) Upslope and (3) downslope bathymetric profiles, 

with a mean bottom slope of 1%. 

Fig. 2(2) and (3) have been considered, corresponding to an upslope and a downslope 

environment with a mean bottom slope of 1%. For the excitation  S x  an incident 

wavepacket, with central wavelength 0 4.5 m   (in non-dimensional terms 0 4.5  ) 

and small amplitude 0.0076 mA , was considered in the following analysis. The 

imposed upper surface disturbance is described by, 

 0 0( ,0) ; cos(2 / )Rx A f x x R x    ,                                                                     (28) 

where  Rf  is a symmetric envelope of bandwidth R with respect to 0x , which is the 

initial position of the wavepacket.   

In the following section, Sec.4.1, a validation of the proposed methodology will be 

presented by comparing it against the analytical solution for the time harmonic 

responses of an elastic, floating structure. Comparisons are made for a strip 

employing an elastic connector at the upwave end of the structure and floating over 

constant shallow depth. Next, the effect of multiple connectors on the elastic 

responses will be studied in the time domain. Both a constant depth (Sec.4.2) and two 

mildly sloped bottom environments (Sec.4.3) will be considered.  

4.1 Validation against analytic solution for harmonic responses in constant depth 

For the case of thin, floating, elastic structures, in shallow water conditions and 

constant depth, the following ‘shallow-wave equation of a freely floating board’ 

derived by Stoker [33, Sec. 10.13, Eq. 10.13.74],  

 
 

 
 

6 2

2 2 2

6 2
1 0

d x d x
KB M B x ,

dx dx

 
                                           (29a) 
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 
 2

2

d xiB
x

dx





  ,                                                                                              (29b) 

is used. The above model refers to the linear harmonic responses of the structure. In 

the above expressions 2B   is the frequency parameter. The non-dimensional 

frequency L / g  is used, where   is the angular frequency. Variables 

   ,x x    denote the complex amplitudes of the potential and the flexural 

deflection in the middle region 
0S  ,  

      0 , Re expx t x i t    ,           , Re expx t x i t    .                        (30) 

The dispersion relation of Eq. (29a) is    

 6 2 2 2 21n nB K B M B      ,                                                                               (31) 

and its roots  0 1 2n ,n , ,  , the hydroelastic wavenumbers, are symmetrically 

distributed on the complex plane.  The first root 0  , is real and positive while roots 

1 2,   have opposite real parts and equal positive imaginary parts. The solution of 

Eqs. (29) a-b is given by (see also Belibassakis & Athanassoulis [ 20, Sec5.3 ]): 

     
2

0

exp exp .
n

n n n n

n

x i x i x    




                                                                  (32) 

Similarly, in the free water surface subregions , 1,2iS i  , the harmonic solution of  

Eqs. (3) and (4) is given by 

   1 1 2 2 2exp( ), exp( ) exp( )w w wx i x x i x R i x          ,                                 (33) 

where   i x  denote the corresponding complex wave potentials,   is the 

transmission coefficient of waves in 1S  and R is the reflection coefficient of waves 

backscattered in  2S , respectively. The wavenumbers w

i  in the water subregions iS  

, 1,2i   are provided by the asymptotic form of the water-wave dispersion relation in 

shallow conditions 

/ ,i i ik B     1,2.i                                                                                               (34) 

Finally, the coefficients n , n  of Eq.(32), are easily determined from the boundary 

conditions Eqs. (12-14 ), at 0x   and 1x  . These boundary conditions are expressed 

in terms of   x  through Eq. (29b), in conjunction with the following end 

conditions 

https://cas.brunel.ac.uk/owa/redir.aspx?C=Av6aENRKe5CgqCYZ5m_W1D6NtIPbQeL6xUqW_brvhDgM2g1MhQ_UCA..&URL=http%3a%2f%2fdx.doi.org%2f10.1016%2fj.marstruc.2016.04.002
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Figure 3 Harmonic responses of a thin elastic plate in constant depth and shallow 

water conditions, with an elastic connector of stiffness k  located at 1x  . The 

analytical solution is represented by solid lines, while the FEM solution is denoted by 

diamonds ( 0k  ), stars ( 0.01k  ), circles ( 0.1k  ), and squares ( 1k  ). 

 1 2 2 20, at 0, and 2 exp , at 1w w w wd d
i x i i i x

dx dx

 
             .           (35) 

They provide the matching of the complex wave potential  x  at the interfaces 

between the tree subregions.  

In order to calculate the harmonic responses of the hydroelastic system by the 

proposed time-domain method a very broad ramp function Rf , containing a multiple 

number of wavelengths, is used. A comparison against the analytical solution is 

presented in Fig. 3 for a frequency parameter 0 117.  , corresponding to depth 

0.025B   and central wavelength 0.45 m  (non-dimensional 0.045  ), and thus 

ensuring shallow wave conditions. 

More specifically, in Fig.3 the harmonic responses of the freely floating board with 

an elastic connector located at its right end, at 1x  , are shown. Results are 

calculated by the analytical solution of Stoker’s model and by the presented FEM for 

a various connector stiffness coefficients k  and zero damping are plotted. These 

stiffness values include the freely floating case, corresponding to 0k   , with 

https://cas.brunel.ac.uk/owa/redir.aspx?C=Av6aENRKe5CgqCYZ5m_W1D6NtIPbQeL6xUqW_brvhDgM2g1MhQ_UCA..&URL=http%3a%2f%2fdx.doi.org%2f10.1016%2fj.marstruc.2016.04.002


Published in Marine Structures, 48, 33-51. doi:10.1016/j.marstruc.2016.04.002 
 

 16 

increasing 0.01, 0.1k  , and 1 as shown in the figure. The proposed method 

solutions are found to be in good agreement with the analytical solution, for all values 

of the examined connector stiffness. The small deviations are attributed to the 

approximation of the harmonic response of the structure by means of the presented 

transient methodology.  

Furthermore, in Fig. 3, it can be seen that for a very stiff connector ( 1k  ), the elastic 

deflection of the structure at the upwave connected end almost vanishes. The above 

fact leads to the conclusion that the wave induced vibration of the elastic structure, in 

the vicinity of the elastic connector, becomes weaker (and eventually vanishes) with 

increasing connector stiffness. We note here that this finding is in contradiction with 

the results reported by Cunbao et al (2007, Figs.13-15), although the latter studies are 

not directly comparable since they refer to intermediate and deep water conditions. 

4.2 Constant depth environment  

The constant depth profile, illustrated in Fig 2(1) is initially examined. The horizontal 

domain is appropriately truncated, and the present system is integrated up to the time 

ensuring that no reflections from the computational domain boundaries are 

backscattered, contaminating the numerical solution ( 76T  ). For the calculation of 

the plate response, 200 hydroelastic elements were employed, along with 8000 

timesteps. Initially, the freely floating strip response is examined. A series of 

snapshots, showing the propagation of the initial disturbance, is presented in Fig. 4, 

for the freely floating case, i.e. 0, 1,2,..., 1n nk c n N    . For illustration purposes 

the non-dimensional upper surface elevation is plotted ten times larger in the given 

figure. The initial excitation (Eq. 28) with     2

0expRf x x x  , where  =11.5 

and 0 9.3x  , modeling a narrow band pulse,  is used in the calculations. The pulse is 

split into two waveforms traveling in opposite directions at constant speed (Fig. 4b). 

As the two waveforms are not dispersive, their forms remain unaltered while 

traversing the water region 2S . In Fig. 4(c) the waveform propagating towards the 

negative x  axis, is seen to approach the free edge of the elastic strip at 1x  . 

Subsequently, after wave impact, the propagation of the hydroelastic pulse is plotted 

in Figs. 4(d)-4(h). The incident wave is partially reflected, backpropagating in the 

right subregion 2S ,  
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Figure 4 Snapshots of the wavepacket propagation in domain   for the case of a 

constant depth profile (1). Note that for illustration purposes the non-dimensional 

free-surface elevation and the plate deflection are multiplied by 10. 

and partially transmitted in the left subregion 1S , as seen in  Fig. 4(h). The structure 

eventually approaches a state of rest in Fig. 4(i). Next, the effect of the employed 

elastic connectors on the hydroelastic response of the strip is investigated for the same 

environment and incident wave. In the following analysis two and three elastic 

connector-strip configurations with , ,n nk k c c   where 1,2n   for the former case 

and 1,2,3n   for the later, are considered. In Fig. 5 the deflection of a strip featuring 

two elastic connectors positioned at the free ends ( 0x   and 1x  ), is plotted for an 

extended range of characteristic non-dimensional stiffness values  1 0.1 0.01k  , 

and zero damping, i.e.
 

0c  . Calculated results are compared against the freely 

floating case response.  The deflection of the elastic strip for different elastic 

connector stiffness values is shown at three distinct instances in time, representing the 

phases of wave entry in the middle subregion 0S , the hydroelastic pulse propagation 

and the transmission into the downwave subregion S1. The non-dimensional bending 

moment distributions along the elastic strip are also presented for the same time 

instances. 
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Figure 5 Non-dimensional strip deflection (left subplots) and bending 

moment b xxM K , (right subplots) distribution for several connector stiffness values 

and zero damping. Two connector configuration for bathymetric profile (1).     

  

Figure 6 Same as Fig. 5 for the three connector-strip configuration.     
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It is observed that during the wave entry phase, increasing the connector stiffness, 

reduces the deflection, and increases the bending moment values in the vicinity of the 

strip end ( 1x  ), as indicated by the dashed areas in the Figs. 5(a) and 5(a´). 

Compared to the freely floating response at the given moment in time ( 50t  ), setting 

0.01k  , 0.1 and 1k   reduces the maximum absolute strip deflection by 22.8%, 

34.8% and 35.5%, respectively. On the other hand, the calculated maximum absolute 

bending moments substantially increase with increasing connector stiffness, at the 

vicinity of the free edge, reaching an intensification of over 200% for k=1. This can 

be attributed to the local restriction imposed on the elastic motion of the strip by the 

connector at 1x  . Next, in the  hydroelastic pulse propagation phase, examined in 

Figs. 5(b) and 5(b´), the maximum deflection reductions achieved by the employment 

of  the edge connectors reaches 0.25%, 3% and 4.85% for 0.01k  ,0.1 and 1k    

respectively.  The calculated, maximum bending moment at 55t  , also appears 

reduced by 0.4%, 5% and 8.2% for the corresponding stiffness coefficient values. 

During the wave transmission phase, increasing connector stiffness results in larger 

moduli of deflections and bending moments, in the vicinity of the downwave end of 

the structure, as indicated by the dashed areas in Figs 5(c) and 5(c´). Particularly, for 

0.01k  , 0.1 and 1k   maximum absolute deflection increases by 4.31%, 13.45% 

and 15.9%, respectively.    

The imposed restriction on strip deflection is magnified with increasing connector 

stiffness, causing the flexural response of the strip to intensify locally at the strip 

edges during wave impact and hydroelastic pulse transmission. The latter has a 

profound effect on both the flexural deflection of the structure and the induced 

bending moment profiles. Examining the overall responses in time, the maximum 

absolute deflection was significantly reduced (by 29.26 %) for 0.1k   while the 

maximum absolute bending moment of the elastic strip is increased by 35.4 %, 

compared to the freely floating case. The overall maximum absolute deflection was 

also effectively mitigated by setting 0.01k   (22.36%) and 1k   (27.49%). However, 

increasing connector stiffness led to magnification of the maximum absolute bending 

moment, by 0.21%, 35.4% and 62.47 % for increasing stiffness coefficients. The 

previous observation suggests that deflection mitigation through connector stiffening 

might lead to undesirable, excessive stresses due to flexural motion.  

In Fig. 6 a system with three elastic connectors is examined. The previous 

configuration is enhanced by a third connector, positioned at the middle of the elastic 
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strip ( 0.5x  ). At wave entry, shown in Fig. 6(a), the deflection appears to be 

reduced by 35.5% for 1k  , compared to the freely floating case, while bending 

moment intensification is observed in Fig. 6(a´) in the vicinity of the strip upwave 

edge (depicted once again by the dashed area) . In Fig. 6(b) (at 55t  ) the strip 

deflection, once again compared with the freely floating case, increases by 1.1%, 

11%, and 30.1%,  for 0.01k  , 0.1  and 1k  , respectively. At the same instance, the 

calculated maximum absolute bending moment also appears to be magnified, as 

shown in 6(b´). This is attributed to the overstiffening of the system due to the 

presence of the middle elastic connector. The kink in bending moment distribution 

observed in Fig. 6(b´) for k=1, at the middle of the floating strip, is indicative of the 

induced, excessive local stresses due to bending, attributed to the imposed restriction 

on deflection. At 58t  , (Fig. 6c) the deflection almost vanishes for 1k  , showing a 

reduction of 29% compared to the freely floating case. Maximum overall deflection 

reduction (over time) is achieved for 0.01k   (by 22.32 %) when compared with the 

free strip response. On the other hand, overall maximum, absolute bending moment is 

increased by 180%, 35% and 2% for stiffness coefficients 1,0.1k   and 0.01k  . 

Hence it is deduced that the intensity of flexural effects, i.e. induced maximum 

bending moment values, rise with increasing connector stiffness for both examined 

configurations when compared with the freely floating case. 

Next, the combined stiffness and damping effects of the elastic connectors on the 

hydroelastic response of the studied system, in constant depth, are studied. To this 

purpose, the resulting maximum absolute deflection and maximum absolute bending 

moment values are calculated. The same set of damping coefficients 

 c 1,0.1,0.01,0  and an extended interval of stiffness coefficient values 0 10k   

are used. Notably, the above interval selection includes the values of interest for 

practical applications. In Figs. 7 and 8 the maximum absolute deflection and the 

maximum absolute bending moment distributions are presented for both examined 

configurations featuring two and three connectors. As expected, the calculated 

maximum absolute deflection corresponds to the undamped case, i.e. 0c  ,  and 

small stiffness coefficient values (Figs.7 a, b). 
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Figure 7 Semi-log plot of the maximum absolute deflection: (a) two edge connectors, 

(b) three connectors. 

It is noted that for large stiffness coefficient values, the maximum absolute deflection 

is practically independent of the studied damping parameter values. Additionally, it is 

observed in Fig.7 (a) and (b), that the optimal damping parameter, minimizing the 

maximum absolute deflection, is generally dependent on the stiffness of the 
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connectors. In the overdamped case ( 1c  ) the above correlation appears weaker. 

Thus, it is deduced that it is possible to achieve minimization of the flexural 

deflections of a given configuration, for certain stiffness and damping coefficients 

( 0.01c   and 210k    in the considered examples), by means of the proposed 

methodology. 

For the same example, in Fig. 8, it is shown that the maximum (absolute) bending  

moment, calculated for the three-connector configuration ( Fig. 8b) is larger than the 

obtained value for the two-connector strip configuration, examined in Fig. 8 (a). The 

above is attributed to the system overstiffening due to the presence of the added 

middle connector.  

Furthermore, as the stiffness coefficients k , become very large, the maximum 

calculated (absolute) bending moment seizes to depend on the damping coefficient. 

This phenomenon is illustrated by the plateau areas depicted in both Fig. 8 (a) and (b).   

Finally, the observable points of inflection in Figs. 7 and 8, noted by the circled areas, 

are associated with abrupt changes in the location of the maxima values along the 

strip.  

In order to gain a better understanding of the energy exchange between subregions, 

during the hydroelastic pulse excitation and propagation, the various terms composing 

the total energy of the system are studied. An illustration of the energy balance, 

expressed by Eq. (19), is shown in Fig. 9 for the case of a two-connector 

configuration, with 0.01k c  . The total energy of the system, including the 

dissipated energy due to connector damping effects, is denoted by the solid black line, 

and remains constant in time.  The energy of the water column in subdomain 2S  

decreases after the moment of wave impact. After the excitation of the floating strip, 

the hydroelastic pulse begins to propagate in the middle region. Concurrently, the sum 

of the strain, kinetic and potential energy of the strip increases until a state of rest is 

reached and the quantities vanish after the full transmission of the pulse into the left 

halfstrip. Although the elastic connector energy ( )W t  vanishes, the dissipated energy 

due to connector damping, represented by quantity ( )C t , remains constant in time 

after the strip reaches a state of rest once again. Hence, the total connector 

energy ( ) 2 ( )W t C t , increases after wave impact and remains constant after wave 

transmission into 1S .  Finally, as the wave train enters the left half strip, the sum of  
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Figure 8 Semi-log plot of the maximum absolute bending moment: (a) two edge 

connectors, (b) three connectors. 
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Figure 9 The energy balance for a two connector configuration with 0.01k c   

the kinetic and potential energy of the water column in this region increases until full 

wave transmission in 2S  is achieved.  

Next, a correlation between the energy quantities, defined in Sect. 3.1, and the elastic 

connector parameters is examined for the studied thin, elastic strip, employing two 

and three connectors and floating over the constant depth profile (1). It is noted here 

that the minimisation of the strip kinetic energy is particularly interesting for the 

design of hydroelastic response mitigating devices and systems. In addition, structural 

safety and robust design would be translated in strip strain energy minimisation, while 

efficient wave energy harvest into dissipative energy maximisation. To this aim, the 

correlation between the energy quantities and the elastic connector parameters is 

further investigated in Figs. 10 and 11, for the defined strip-connector configurations. 

In Figs 10(a) and 11(a) the elastic spring energy averaged in time, W  is examined for 

a range of spring coefficient values.  As expected, when the connector stiffness is 

small, less elastic energy is stored, while on the other hand, as the system is over 

stiffened the strip deflection is restricted, resulting again in smaller potential energy 

sums. Additionally, the elastic spring energy is found to increase with decreasing 

damping parameters in both cases. Naturally, increasing the damping parameter  
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Figure 10 Semi-log plot of the averaged energy quantities for the two-connector case. 

Connector parameters (a) elastic W and (b) dampingC . Elastic strip energy 

parameters (c) kinetic energy
KE , (d) strain energy

 SE  and (e) potential energy
 PE . 
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 Figure 11 Same as Fig 10 for the three connector-strip configuration. 

results in a larger restoring force term which minimizes deflection. Finally, the near 

resonance conditions concerning the entire system for a given elastic strip are 

dependent on both connector stiffness and damping coefficients and is clearly 

depicted by the maxima of the W -curves concerning the elastic connector energy. 

The damping energy is associated with the oscillatory speed of the strip (see Eq. 25). 
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In both cases, featuring two and three connectors, overstiffening results in vanishing 

damping energy, regardless of the damping parameter. The previous fact is 

straightforward, since in the presented 1-D hydroelastic system, the intensification of 

the restoring force on the strip results in energy reflection back in the free surface 

region. This fact essentially leads to less energy sums being transmitted into the 

middle subregion 
0S  . Additionally, it is observed in Figs 10(b) and 11(b) that for a 

given configuration and connector stiffness parameter, there exist specific values of 

the damping coefficient for which dissipated energy is maximized. This is expected to 

have an important effect on the kinetic energy of the elastic strip 
KE .  The kinetic 

energy is presented in 10 (c) and 11(c) for a combination of stiffness and damping 

coefficients for the two and three connector configuration, respectively. Maximum 

kinetic energy is obtained when the restoring force is minimal, hence for 0c   and 

410k   . Since the kinetic energy of the strip is also a function of oscillatory motion 

speed (see Eq. 22a), minimization is achieved for the damping parameter values 

maximizing energy dissipation, as previously described.  

The averaged strain energy
SE , which expresses the amount of flexural deformation 

undergone by the strip (defined by Eq.29b), is examined in Figs 10(d) and 11(d). It is 

observed that in both cases the minimum strain energy is obtained for damping 

coefficient value 0.01c  . This is expected since the maximum absolute bending 

moment, as seen in Figs. 7(a) and (b), was also minimized for 0.01c   in both 

examined strip-connector configurations. Notably, the strain energy of the strip, in 

both cases, becomes larger with increasing stiffness coefficients which correlates with 

previous observations for the bending moment, illustrated in Fig 8. Finally, the total 

energy 
PE  in the middle subregion is depicted in 10(e) and 11(e). Since the elastic 

strip deflection is generally very small, the energy sum expressed by 
PE

 
is dominated 

by the kinetic  energy of the water column in the middle region ( 0S  ) and resembles 

the kinetic strip energy plotted in Figs. 10(c) and 11(c).  

4.3 Sloping Bottom Profiles (b) and (c) 

Variable bathymetric effects, as previously mentioned, are an important consideration 

in nearshore and coastal marine structure design. The proposed computational tool, 

able to account for a variable seabed, could be found useful in the study of 
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bathymetric effects on the hydroelastic response of a floating strip with elastic 

connectors. In this section, numerical results are presented and discussed for the two 

variable seabed profiles corresponding to an upslope (b) and a downslope (c) 

environment (see Fig 2).  

More specifically, in Figs. 12 and 13, the strip responses and bending moment 

distributions for the two connector-strip configuration are plotted at three distinct time 

instances for profiles (b) and (c) respectively. Curves corresponding to various 

connector stiffness parameter values are presented, while zero damping effects were 

considered. In accordance with previous observations, (see Fig. 5) it is established 

that increasing connector stiffness, results in larger maximum absolute bending 

moment values. The above leads to increased normal stresses induced by flexural 

motion but an overall reduced hydroelastic response compared to the freely floating 

case, for both profiles of variable bathymetry.  

In the case of the upslope environment, it is observed in Fig. 12(a) that at the wave 

entry phase 48t  , the maximum absolute strip deflection appears reduced by 19.24%, 

54.5% and 55 % for 0.01k  , 0.1 and 0.1 respectively, compared to the freely 

floating case. Marginal response reduction is achieved at 50t   (Fig. 12b), reaching 

0.12%, 1.95% and 3.34 % for 0.01k  , 0.1 when compared to the freely floating 

case. At wave exit, the maximum absolute strip deflection is only slightly reduced by 

1.1 % for 0.01k   while it increases by 3.85% and 8 % for  0.1k  and 1k  . The 

overall (over time) maximum absolute deflection is reduced by 22.36% 29.45% and 

28.23% for 0.01,0.1k  and 1. In Fig. 12(c) absolute maximum deflection increased 

by 3.85% and 8%  for  0.1, 1k  , while marginal reduction of 1.19% is achieved for 

0.01.k   The above findings are in agreement with previous observations for the 

constant depth case (see Fig 5).  

The corresponding bending moment distributions, presented in Fig 12 (a´)-(c´), 

exhibit intensification of flexural effects in the vicinity of the strip edges during wave 

entry and exit (denoted by the dashed areas), which was also observed in the constant 

depth case.  However, maximum absolute bending moment intensification is reduced 

compared to the constant depth profile calculations, reaching 48.2% and 93.7% for 

0.1k  and 1 at wave entry, while a slight decrease of 0.39 % compared to the freely 

floating case in bathymetric profile (2) is achieved for 0.01k  . At wave propagation 

stage 50t  , maximum absolute bending is slightly increased by 1.16 %, 2.32% and 

1.15% for increasing stiffness. This can be attributed to the fact that the propagating  
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Figure 12 Non-dimensional strip deflection (left subplots) and bending 

moment b xxM K , (right subplots) distribution for several connector stiffness values 

and zero damping. Two connector-strip configuration for bathymetric profile (2).     

 

Figure 13 Same as in Fig.12 but for the downslope environment (3). 
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pulse becomes steeper with decreasing depth (profile b), causing an intensification of 

flexural effects. During wave exit bending moment intensification is observed, with 

maximum increase reaching 66% for 1k   compared to the freely floating case. 

Finally, the hydroelastic responses of the two connector-strip configuration floating 

over the downslope bathymetric profile (c) are examined in Fig. 13. Overall 

maximum strip deflection is once again reduced by 22.35 %, 29.08 and 27.68% for 

increasing connector stiffness values. Moreover, bending moment intensification is 

observed at the vicinity of employed connectors at wave entry and transmission. 

Hence, bathymetric effects appear to have minimal impact on the hydroelastic 

response of the examined configurations.  

Increasing the connector damping parameter while keeping the stiffness value 

constant was also found to reduce the strip elastic motion. Examining the bending 

moment distributions for the varying damping analysis it was observed that bending 

moment is magnified in the vicinity of the free edges during wave entry and exit. This 

were the case for both considered profiles. Hence, the inclusion of dampers in the 

elastic connector design might have an undesirable intensification effect in the 

induced stresses on the strip. In conclusion, the design of an efficient elastic connector 

configuration constitutes a multi-parametric optimization problem. The proposed 

methodology is able to provide useful information concerning the vibration reduction 

of the structure and support the design of efficient mooring systems. 

 

5.  Conclusions 

The time-domain hydroelastic response of a thin, floating strip, elastically connected 

to the seabed, is examined in the present work. Based on the variational formulation 

of the initial-boundary value problem in shallow water conditions, an energy balance 

equation is derived, while a higher-order finite element scheme is implemented for the 

numerical solution. Results for various strip-connector configurations of interest, 

illustrating the response reducing effects of the employed connectors, are presented. 

In addition to the flat bottom case, two variable bathymetric profiles (an upslope and a 

downslope environment) were studied. Numerical results were obtained for the cases 

of two strip-connector configurations. The first configuration employs two elastic 

connectors, positioned at the free strip ends, while the second features an additional 

connector located at the middle of the structure.  The study of the aforementioned 

configurations reveals that response mitigation is possible through the increase of 
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connector number and stiffness. However, deflection mitigation through connector 

stiffening is associated with excessive maximum bending moment values, at the 

vicinity of the connector locations along the strip. Hence, overstiffening can be 

correlated with undesirable bending induced local stresses. Moreover, optimal 

damping coefficient for the minimization of the maximum absolute defection and 

bending moment is found to be generally depended on connector stiffness. In 

conclusion, the design of an efficient elastic connector-strip configuration constitutes 

a multi-parametric optimization problem. The proposed methodology is able to 

provide useful information concerning the vibration reduction of the structure and 

support the design of efficient motion mitigating systems. Future research will focus 

on the treatment of the 3D problem and intermediate water depth effects. Finally, the 

investigation of weak nonlinearity is of equal importance. An initial investigation in 

the latter direction has been presented in Karperaki et al [35]. 
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