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Abstract—In this paper, a variant of Grey Wolf Optimizer
(GWO) that uses reinforcement learning principles combined
with neural networks to enhance the performance is proposed.
The aim is to overcome, by reinforced learning, the common chal-
lenges of setting the right parameters for the algorithm. In GWO,
a single parameter is used to control the exploration/exploitation
rate which influences the performance of the algorithm. Rather
than using a global way to change this parameter for all the
agents, we use reinforcement learning to set it on an individual
basis. The adaptation of the exploration rate for each agent
depends on the agent’s own experience and the current terrain
of the search space. In order to achieve this, an experience
repository is built based on the neural network to map a set of
agents’ states to a set of corresponding actions that specifically
influence the exploration rate. The experience repository is
updated by all the search agents to reflect experience and to
enhance the future actions continuously. The resulted algorithm
is called Experienced Grey Wolf Optimizer (EGWO) and its
performance is assessed on solving feature selection problems and
on finding optimal weights for neural networks algorithm. We use
a set of performance indicators to evaluate the efficiency of the
method. Results over various datasets demonstrate an advance
of the EGWO over the original GWO and other meta-heuristics
such as genetic algorithms and particle swarm optimization.

Index Terms—Reinforcement learning, Neural Network, Grey
Wolf Optimization, Adaptive Exploration Rate.

I. INTRODUCTION

A common challenge for learning algorithms is the efficient
setting of their parameters, which is usually done empirically,
after a number of trials. In the majority of cases, a setting of
parameters is valid for that particular problem only, and every
time the algorithm is applied, a new set of parameters has to
be initialized. The parameter values are at most sub-optimal,
as there are never sufficient trials to get the optimal values.

According to [5], learning algorithms suffer from the fol-
lowing:
• The curse of dimensionality: many algorithms need to

discretize the state space, which is impossible for control
problems with high dimensionality because the number
of discrete states is enormous.

• A large number of learning trials: most algorithms need
a large number of learning trials, specifically if the
state space size is high, so it is very difficult to apply
reinforcement learning to real world tasks.

• Finding proper parameters for the algorithms: many
algorithms work well, but only with the right parameter

setting. Searching for an appropriate parameter setting
is, therefore, crucial, in particular for time-consuming
learning processes. Thus, algorithms which work with
fewer parameters or allow a wider range of parameter
setting are preferable.

• The need of a skilled learner: since defining the re-
ward function is not enough, we must also determine
a good state space representation or a proper function
approximator, choose an appropriate algorithm and set
the parameters of the algorithm. Consequently, much
knowledge and experience are needed when dealing with
such learning.

In this paper, we focus on the automatic setting of param-
eters used by Grey Wolf Optimization (GWO) algorithm, in
particular, on the setting of a parameter that plays a significant
role in the final result: the exploration/exploitation rate. The
meta-learner employed for the automatic parameter setting
uses reinforcement learning principles [1] [2].

In the conventional reinforcement learning model, an agent
is connected to its environment via perception and action.
On each step of interaction, the agent receives as input
some indication of the current state of the environment and
chooses an action that changes the state, and the value of
this state transition is reached to the agent through a scalar
reinforcement signal [3]. When the search agent chooses an
action, it obtains a feedback for that action and uses the
feedback to update its data of state-action map. The goal is to
determine the actions that tend to increase the long-run sum
of values of the reinforcement signal [4].

In order to determine the right set of actions and, in
particular, the right action at each time step in GWO, we
propose to use neural networks. The input of the neural
network is the set of all individual action history of all the
agents, and the output is the action to be taken by a particular
agent. Which means, the action of each agent is individually
set in a reinforcement learning manner and a neural network
learns it. The methodology is explained in detail in section
III, after a brief introduction of the original GWO algorithm
in section II. The validation of the proposed parameter learning
methodology is achieved by considering two optimization
problems: feature selection and weight training in neural
networks. We perform two types of experiments, one related to
feature selection and the other related to multi-layer artificial
neural networks (ANNs) weights optimization. Experiments
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on 21 datasets are performed in section IV for feature selection
and on 10 datasets for ANNs weight training and are validated
using various metrics and statistical tests. The results indicate
a very promising performance of the proposed methodology
compared to the manual parameter setting in the original
GWO. A similar approach could be either extended to other
learning algorithms or, even more complex, generalized to
classes of similar algorithms.

II. PRELIMINARIES

Bio-inspired optimization methods are becoming common
among researchers due to their simplicity and extensibility.
GWO is a relatively new optimization algorithm inspired
by the social hierarchy and hunting behavior of the grey
wolves in nature [6]. A modified GWO (mGWO) is proposed
which employed a good balance between the exploration
and exploitation [7]. A multi-objective variant of GWO is
developed to optimize the multi-objective problems [8]. A
new binary version of GWO (BGWO) is proposed and applied
to feature selection problem [9]. In the next subsections, we
briefly explain the general principles of GWO algorithm and
the role of the parameters in the search process.

A. Grey Wolf Optimization (GWO)

GWO computationally simulates the hunting mechanism of
grey wolves. Grey wolves live in a pack with a strict hierarchy:
on the top are the alpha wolves, responsible for decision
making, followed by beta and delta wolf. The rest of the pack
are called omegas [6]. Table I shows the corresponding search
and optimization stages of the GWO steps. Naturally, the
prey location is the optimal solution and the wolves represent
potential solutions in the search space. The wolves closer to
the prey are the alpha wolves and they are the best solutions
so far. Hierarchically, the beta wolves are the second best
solutions and the delta wolves are the third-best solutions.
Their location in the search space is represented as Xα, Xβ ,
Xδ . Omegas update their position in the search space based
on their relative positions from alpha, beta and delta wolves.
Figure 1 shows the positioning of the wolves and prey and
the parameters involved in the equations used for updating the
positions of the wolves in the search space. For hunting prey,
a set of steps are to be applied as follows: prey encircling,
hunting, attack, and search again.

1) Prey encircling: the pack encircles a prey by reposition-
ing individual agents according to the prey location; as in Eq.
(1):

−→
X (t+ 1) =

−→
X p(t) +

−→
A.
−→
D, (1)

where t is the iteration,
−→
X p is the prey position,

−→
X is the

grey wolf position, the . operator indicates vector entry-wise
multiplication, and

−→
D is as defined as:

−→
D = |

−→
C .
−→
X p(t)−

−→
X (t)|, (2)

where
−→
A ,
−→
C are coefficient vectors calculated as in Eqs.

(3) and (4).

TABLE I
CORRESPONDENCE BETWEEN GWO STAGES AND SPACE SEARCH

GWO Stage Interpretation
Prey encircling: adapt wolves posi-
tion in the search space around the
prey in any random position

Update solution positions in the
search space around the current op-
timum

Hunting: adapt wolves positions
based on the position of alpha,
beta, delta wolves

Update solution position based
on the position of the best so-
lutions, considering hierarchically
three levels

Attack: move to a position between
current position and the prey

Update solution position so that it
gets closer to the current optimum
by moving towards the optimum

Search: exploration of the search
space by diverging the wolves from
each other for more prey so that
they will converge again for an-
other attack

Exploration of the search space
by allowing solution to investigate
new areas in order to find a better
optimum
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Fig. 1. GWO in the search space positioning (adapted from [6])

−→
A = 2a.−→r1 − a, (3)

−→
C = 2−→r2 , (4)

where a is linearly diminished over the course of iterations
controlling exploration and exploitation, and −→r1 , −→r2 are ran-
dom vectors in the range of [0, 1]. The value of a is the same
for all wolves. These equations indicate that a wolf can update
its position in the search space around the prey in any random
location.

2) Hunting: is performed by the whole pack based on the
information coming from the alpha, beta, and delta wolves
which are expected to know the prey location, as given in Eq.
(5):

−→
X (t+ 1) =

−→
X1 +

−→
X2 +

−→
X3

3
, (5)

where
−→
X1,
−→
X2,
−→
X3 are defined as in Eqs. (6), (7), and (8)

respectively.

−→
X1 = |

−→
Xα −

−→
A1.
−→
Dα|, (6)

−→
X2 = |

−→
Xβ −

−→
A2.
−→
Dβ |, (7)
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−→
X3 = |

−→
Xδ −

−→
A3.
−→
Dδ|, (8)

where
−→
Xα,

−→
Xβ ,

−→
Xδ are the first three best solutions at a

given iteration t,
−→
A1,
−→
A2,
−→
A3 are defined as in Eq. (3), and

−→
Dα,−→

Dβ ,
−→
Dδ are defined using Eqs. (9), (10), and (11) respectively.

−→
Dα = |

−→
C1.
−→
Xα −

−→
X |, (9)

−→
Dβ = |

−→
C2.
−→
Xβ −

−→
X |, (10)

−→
Dδ = |

−→
C3.
−→
Xδ −

−→
X |, (11)

where
−→
C1,
−→
C2, and

−→
C3 are defined as in Eq. (4).

This is interpreted by the fact that alpha, beta and delta
wolves know best the position of the prey and all the other
wolves adapt their positions base on the position of these
wolves.

3) Attacking stage: the agents approach the prey, which is
achieved by decrementing the exploration rate a. Parameter a
is linearly updated in each iteration to range from 2 to 0 as in
Eq. (12):

a = 2− t 2

MaxIter
, (12)

where t is the iteration number and MaxIter is the total
number of iteration allowed for the optimization. According to
[6], exploration and exploitation are guaranteed by the adaptive
values of a allowing GWO to transit smoothly between
exploration and exploitation while half of the iterations are
dedicated to the exploration and the other half is assigned to
exploitation. This stage is interpreted as wolves moving or
changing their position to any random position between their
current and the prey positions.

4) Search for prey: wolves diverge from each other to
search for prey. This behavior is modeled by setting large
values for parameter a to allow for exploration of the search
space. Hence, the wolves diverge from each other to better
explore the search space and then converge again to attack
when they find a better prey. Any wolf can find a better prey
(optimum). If they get closer to the prey, they will become
the new alphas and the other wolves will be split into beta,
delta and omega according to their distance from the prey.
Parameter a gives random weights to the prey and shows the
impact of the prey in characterizing the separation of wolves
as in the Eqs. (1) and (2). That helps GWO to demonstrate a
more random behavior, favoring exploration and local optima
evasion. It is worth mentioning that a provides random values
at all times keeping in mind the aim to accentuate exploration
not only at the beginning of the optimization process but until
its end.

GWO is described in Algorithm 1.

Algorithm 1: Grey wolf optimization (GWO)
Input: Number of grey wolves (n), maximum iterations
(MaxIter).
Result: The optimal wolf position and its fitness.

1) Initialize a population of n grey wolves positions
randomly.

2) Find α, β, and δ as the first three best solutions based
on their fitness values.
while t ≤ MaxIter do

foreach Wolfi ∈ pack do
Update current wolf’s position according to Eq.
(5).

end
- Update a, A, and C as in Eqs. (2) and (3).
- Evaluate the positions of individual wolves.
- Update α, β, and δ positions as in Eqs. (9), (10),
and (11).

end
3) Select the optimal grey wolf position.

B. Feed-forward artificial neural networks (ANNs)

ANNs are a family of models inspired by biological neural
networks. They are represented as systems of interconnected
neurons that exchange messages between each other. The
neural connections have numeric weights that can be tuned
based on experience, making neural nets adaptive to inputs
and capable of learning [10]. The primary building block of a
neural network is the neuron which has a set of weights. ANN
weights are attached to the inputs and an internal nonlinear
function maps the input of the neuron to the output given the
transfer function as follows:

Oi = f(wTi .x+ bi), (13)

where oi is the output of neuron i, f is the activation
function attached to neuron i, wi is a vector of weights
attached to neuron i, x is the input vector of neuron i,
and bi is a bias scalar value. Each neural network possesses
knowledge that is contained in the connections weights values.
Changing the knowledge stored in the network as a function of
experience implies a learning rule for modifying the values of
the weights. Hence, the most challenging problem in using
the ANN models is to choose the appropriate weight bias
adaptation method [10]. Usually, gradient descent method is
used to adapt neural network weights based on the following
formula:

wt+1
kj = wtkj − η

∂E

∂wkj
, (14)

where wtkj is the weight linking neuron k to neuron j at time
t, and E is suitable error function that computes the deviation
between the targeted and the actual output.

According to the availability of training data, neural models
can be to be passive or online. In passive neural models, the
neural model is trained using the whole dataset at once while
in the case of online models, the data points are not presented
as a whole but it is given one at a time [10].
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III. THE PROPOSED EXPERIENCED GREY WOLF
OPTIMIZER (EGWO)

Intensification and diversification are two key components
of any meta-heuristic algorithm [11]. Intensification or ex-
ploitation, uses the available local information to generate bet-
ter solutions. Diversification or exploration explores the search
space to generate diverse solutions. The balance between
exploration and exploitation controls the search behavior of a
given optimizer. Excess exploitation makes the optimization
process to converge quickly, but it may lead to premature
convergence. Excess exploitation increases the probability of
finding the global optimum, but often slows down the process
with a much lower convergence rate. Therefore, resolving the
trade-off between exploration and exploitation is a must to
ensure fast global convergence of the optimization process
[12]. In almost all modern swarm intelligence optimizers,
the exploration rate is adapted throughout the optimization
iterations in some predetermined manner to allow for further
exploration at some iterations, commonly, at the beginning of
the optimization process, and to allow for extra exploitation
at some iterations, commonly, at the end of the optimization
process. Some optimizers use exploration rate that is linearly
inverse proportional to the iteration number. The original
GWO linearly decrements the exploration rate as optimization
progresses:

ExpRate = 2− (t) ∗ (2/T ), (15)

where t is the current iteration, T is the total number of iter-
ations, and ExpRate is the rate of exploration. Although this
formula proves efficient for solving numerous optimization
problems, it still possesses the following drawbacks:

1) Stagnation: once the optimizer approaches the end of
the optimization process, it becomes difficult to escape the
local optima and find better solutions because its exploration
capability becomes very limited.

2) Sub-optimal selection: at the beginning of the opti-
mization process, the optimizer has very high exploration
capability but with this enhanced explorative power it may
leave promising regions to less promising ones.

3) Uniform behaviour: it is not uncommon to have the same
value for the exploration rate for all the search agents, which
forces the whole set of wolves to search in the same manner.

The remarks above motivate our research in finding a way
to adapt the exploration and to model it individually for each
search agent. We proposed to use experience as a guide for
automatically adjusting the exploration rate. The primary goal
is to find a mechanism that maps the different states of search
agents to an action set so that the long run goal or fitness
function is optimized. To reach such goal and to confront the
considerations mentioned above regarding such learning, we
defined the following components of the system:

(i) State-action map: the mapping between the states and
actions is commonly nonlinear and can be modeled using
any nonlinear mapping model e.g., neural network model.
Incremental neural networks rather than the batch version of
the neural network are more adequate, as every time the agent

obtains new data, must use it to update the neural network
model.

(ii) Action set: for each individual wolf, in order to adapt
its exploration rate, we propose a set of actions as follows:

1) Increase the exploration rate: takes place as a result of
wolf’s self-confidence and expertise. This action commonly
happens when the wolf finds itself succeeding in some con-
secutive iterations. The success at a given iteration t is defined
by the capability of the search agent to maintain a fitness at
time t that is better than its fitness at time t−1. This increases
its own confidence and hence increases its exploration rate.
Another situation that may motivate such action is that when
a successive failure occurs, the agent may need to scout in the
search space hoping to find better prey.

2) Decrease exploration rate: agent’s oscillation of fitness
may motivate such action and it reflects wrong decision taken
by the agent and hence it should be cautious in its movements.

3) Keep exploration rate: the current exploration rate is kept
static as there is no motivation for neither increase nor decrease
it.

The above three action will directly affect the exploration
rate at the next iteration as follows:

ExpRatt+1
i =


ExpRatti ∗ (1 +4)(Increase action)
ExpRatti ∗ (1−4)(Decrease action)
ExpRatti(Keep action),

(16)
where ExpRatti is the exploration rate for agent i at time t
and 4 is the change factor.

(iii) Agent state: the actions performed change the state of
a search agent and the agent is repositioned in the search space
and hence acquire a new fitness value. A history of fitnesses
of a given agent is used to control its next action so that
the agent can accumulate and make use of its past decisions.
Formally, the state increases, decreases, or keeps constant the
fitness value for a search agent over a time span of T past
successive rounds:

Stateit = [...., sign(f it−3 − f it−4), sign(f it−2 − f it−3),

sign(f it−1 − f it−2), sign(f it − f it−1)],
(17)

where Stateit is the state vector attached to a given agent i
at time t, f(t)i is the fitness function value for agent i at time
t and sign(x) is defined as:

sign(x) =


1 ifx < 0

−1 ifx > 0

0 otherwise
(18)

(iv) Feedback: when an agent leaves a region with good
fitness for a region with worse fitness, it receives a negative
feedback. On the contrary, when the search agent leaves a bad
region to a better one, it receives positive feedback. The agent’s
own fitness is an indicator of the search region around and
decides whether the agent should receive positive or negative
feedback. Such feedback can be formulated as:

Feedbackti =

{
+1 iff(agentt+1

i ) < f(agentti)

−1 iff(agentt+1
i ) ≥ f(agentti),

(19)
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where Feedbackti is the feedback for agent i at time t,
f(agentti) is the fitness of agent i at time t.

Models that map situations to actions to maximize some
reward function are commonly called reinforcement learning
models [13]. In such models, the learner is not told which
actions to take but instead discovers which actions yield to
higher reward by trying them [1]. Two distinguishing features
are commonly used to identify such models: (1) trial-and-
error search and (2) delayed reward. According to our problem
formulation, we consider a set of actions, state, feedback,
and the state-action mapping model. The state action mapping
model is a neural network with a single hidden layer. ANNs
are commonly used to map an unknown (generally nonlinear)
function and have well-established training methods [10]. The
set of previously mentioned actions increase, decrease, and
keep exploration rate are encoded into neural network nodes in
the output layer. Therefore, the network has three nodes in the
output layer corresponding to the three applicable actions, with
1 on the node indicating the action that will be applied and a
0 value on the other two nodes. The state vector described in
Eq. (17) with length T is used as input to the neural model.
So, the number of nodes in the input layer is exactly T nodes.
The hidden layer has a 2 ∗ T + 1 nodes [10].

Common to reinforcement learning, the feedback signal,
computed as in Eq. (19), is used to adapt the experience of
the model through training. The neural weights are adapted
according to the action taken and the feedback received at time
t. The weights of the neural model are adapted by rewarding or
punishing the winning node. The winning node, representing
the applied action, is rewarded by moving its current output
to be closer to 1 in the case of receiving positive feedback
through adapting its attached weights [14]. In the case of
receiving negative feedback, the node attached to the applied
action is punished by moving its output to be closer to 0
through updating its assigned weights. Eq. (20) employs the
gradient descent method to adapt the weights of the output
layer attached to the winning node given a target value of 1
or 0 in the case of positive or negative feedback:

wt+1
i = wti + ηx(di − yi)yi(1− yi), (20)

where wti is the weight for output node i at time t, x is
the input state, yi is the actual output on node i, and di is the
desired output on node i which is set either to 1 when receiving
positive feedback or 0 when receiving negative feedback. The
update is propagated to the hidden weights as follows:

wt+1
i = wti +ηxyj(1−yj)

o∑
i

wij((di−yi)yi(1−yi)), (21)

where η is the learning rate, o is the number of actions, yj
is the output of the hidden node j, yi is the output of node i,
and x is the input state. The wining node/action selection can
be formulated as follows:

Winner =
3

min
i=1
|1− oi|, (22)

where oi is the value of the output node i.

Fig. 2. The number of punishments and rewards received by all the agents
during the optimization.

Fig. 3. Flow chart describing the state change of ANN actions

The main assumption to propose such a training model
is that the state-action mapping applies a static unknown
function to be estimated in a trial and error manner, but if
such mapping is not static or changes slightly, the system
tends to take random actions and no experience is acquired.
Such a training manner is very natural when the trainability
is lost in case of fast changing environment [15]. Figure 2
depicts the total number of punishments and rewards acquired
by all search agents during the optimization process. We
can remark from the figure that as optimization progresses
the experience of the search agents is enhanced and hence
the number of correct actions (rewards), increases, while the
number of wrong actions (punishments) decreases. This proves
the capability of the proposed strategy to converge to optimal
state-action map and hence to optimally timed parameters. The
proposed algorithm is called Experienced Grey Wolf Optimizer
(EGWO), and is formally given in Algorithm 2. Figure 3
outlines the flow of state change as a response to actions
produced by the neural network.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section summarizes the results from applying the
proposed experienced GWO on two main applications namely
feature selection and neural network weight updatation. The
two subsections contain the results and the analysis for each
application. We use a set of qualitative measures in order to
analyze the results obtained by the methods we apply. The
first three metrics give a measure of the mean, best, and worst
expected performance of the algorithms. The fourth measure
is adopted to show the ability of the optimizer to converge to
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Algorithm 2: Experienced Grey wolf optimization
(EGWO)

Input: Number of grey wolves (n), maximum iterations
(MaxIter), state vector (T ), exploration change factor 4.
Result: The optimal wolf position and its fitness.

1) Randomly initialize a population of n wolves.
2) Initialize a set of n values ai representing the

exploration rate attached to each wolf.
3) Find α, β, and δ solutions based on fitness values.
4) Initialize the state-action neural network to random

values.
5) t=0

while t ≤ MaxIter do
foreach Wolfi ∈ pack do

- Update wolf’s current position according to Eq.
(5).
- Calculate the Feedbackti according to Eq. 19.
- Update the state-action neural network given
Actiont−1, statet−1 and Feedbackt according to
Eqs. (20) and (21).
- Update Wolfi state vector according to Eq.
(17).
- Update the exploration parameter ai attached to
Wolfi as in Eq. (16).

end
- Update A and C as in Eqs. (2) and (3).
- Evaluate the positions of individual wolves.
- Update α, β, and δ positions as in Eqs. (9), (10),
and (11).
t=t+1

end
6) Select the optimal grey wolf position.

the same optimal solution. The fifth and sixth metrics show the
accuracy of the classification. The seventh and eighth metrics
are a measure of the size of the selected features set (we expect
a low number of features and a high accuracy). The last three
metrics are used for directly comparing two algorithms and
show whether the difference between them is significant or
not.

1) Mean fitness: is an average value of all the solutions
in the final sets obtained by an optimizer in a number of
individual runs [16].

2) Best fitness: is the best solution found by an optimizer
in all the final sets resulted from a number of individual runs
[16].

3) Worst fitness: is the worst solution found by an optimizer
in all the final sets resulted from a number of individual runs
[16].

4) Standard deviation (Std): is used to ensure that the
optimizer convergences to the same optimal and ensures
repeatability of the results. It is computed over all the sets
of final solutions obtained by an optimizer in a number of
individual runs [17].

5) Classifier mean square error (CMSE): is a measure of
classifier’s average performance on the test data. It is averaged
over all final sets in all the independent runs [18].

6) Root mean square error (RMSE): measures the root
average squared error of the difference between actual output
and the predicted one. It is averaged over all final sets in all
the independent runs [18].

7) Average selected feature: represents the average size of
the selected features subset. The average is computed for each
final set of solutions in multiple individual runs.

8) Average Fisher score: evaluates a feature subset such
that in the data space spanned by the selected features, the
distances between data points in different classes are as large
as possible, while the distances between data points in the
same class are as small as possible [19]. Fisher score in this
work is calculated for individual features given the class labels;
as follows:

Fj =

∑c
k=1 nk(µjk − µj)2

(σj)2
, (23)

where Fj is the Fisher index for feature j, µj and (σj)2

are the mean and std of the whole dataset, nk is the size of
class k, and µjk is the mean of class k. The Fisher for a set
of features is defined as:

Ftot =
1

S

S∑
i=1

Fi, (24)

where S is the number of selected features. The average
Fisher score over a set of N runs is defined as:

Fishr − score =
1

N

N∑
i=1

F itot, (25)

F itot is the Fisher score computed for selected feature set on
run i.

9) Wilcoxon rank sum test: is a nonparametric test for
significance assessment. The test assigns rank to all the scores
considered as one group and then sums the ranks of each group
[20]. The test statistic relays on calculating W as in Eq. (26):

W =

N∑
i=1

sgn(x2,i − x1,i).Ri), (26)

where x2,i, x1,i is the best fitness obtained from second and
first optimizers on run i, Ri is the rank of difference between
x2,iandx1,i and sgn(x) is the standard sign function.

10) T-test: measures the statistical significance and decides
whether or not the difference between the average vaalues of
two sample groups reflects the real difference in the population
(set) the groups were sampled from[21], as in Eq. (27):

t =
x̄− µ0

S√
n

(27)

where µ0 is the mean of the t-distribution and S√
n

is its std.
11) Average run time: fis the time (in seconds) required

by an optimization algorithm for a number of different runs.
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A. EGWO applied for feature selection

Finding a feature combination that maximizes a given clas-
sifier performance is a challenging problem. A dataset with k
features has 2k different possible choices. The wrapper-based
method for feature selection is a very common and reasonably
efficient approach but it comes with a huge processing cost
as the classifier must be evaluated at each selected feature
combination [22]. The main characteristic of the wrapper-
based method is the use of the classifier as a guide to feature
selection procedure [23]. The classifier adopted in this study is
K-nearest neighbor (KNN) [24]. KNN is a supervised learning
algorithm that classifies an unknown sample instance based on
the majority of the K-nearest neighbor category. According to
the direct formulation of wrapper-based approach for feature
selection, the evaluation criteria (the fitness to optimize) is
formulated as:

Fitness(D) = αEM (D) + β
|M |
| N |

, (28)

where EM (D) is the error rate for the classifier of condition
feature set D, M is the size of selected feature subset, and
N is the total number of features. α∈[0, 1] and β = 1− α
are constants which control the importance of classification
accuracy and feature reduction. Any possible combination
of features D can be evaluated and hence this function is
continuously defined on the whole feature space with each
component of the vector D in the range [0, 1] and such fitness
function is generally non-differentiable.

The search methods employed in the study are the proposed
EGWO, GWO, particle swarm optimization (PSO) [25], and
genetic algorithms (GA) [26].

1) Initialization: Four initialization methods are adopted
in our study differing from one another with respect to the
following aspects:
• Population diversity: the ability of an optimizer to pro-

duce variants of the given initial population is a valuable
property.

• Closeness to expected optimal solution: the capability to
efficiently search the space for the optimal solution is a
must for a successful optimizer. Hence, it is intended to
force the initial search agents to be apart from or close
to the expected optimal solution.

• Resemblance to forward and backward selection: each of
these has its own strengths and weaknesses, and hence
we would like to assess the initialization impact on the
feature selection process.

Figure 4 shows the initial wolves positions using four
initialization methods and the details about these techniques
are as follows:

i) Small initialization: search agents are initialized with a
small number of randomly selected features. Therefore, if the
number of agents is less than the number of features, we will
see that each search agent will have a single dimension with
value 1. Of course, the optimizer will search for feature(s)
to be set to 1 to enhance the fitness function value as in the
standard forward selection of features. This method is expected
to test the global search ability of an optimizer as the initial

search agents’ positions are commonly away from the expected
optimum. Therefore, the optimizer has to use global search
operators to derive better solutions.

ii) Mixed initialization: half of the search agents are
initialized using the small initialization and the other half
are initialized using the large initialization method with more
random features. Some search agents are close to the expected
optimal solution and the other search agents are away from it.
Hence, it provides much more diversity of the population as
the search agents are expected to be far from each other. This
method takes both the merits of small and large initialization
[27].

iii) Uniform initialization: each feature has the same
probability of being selected. This method is the most common
initialization where the agents are randomly placed in the
search space.

iv) MRMR initialization: the minimum redundancy max-
imum relevance (MRMR) combines two criteria for feature
selection [28] namely relevance with the target class and
redundancy to other features. In order to define MRMR, we
will use the mutual dependence between two random variables
X and Y given as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x; y)log
p(x; y)

p(x)p(y)
, (29)

where p(x; y) is joint probability distribution of x and
Y , p(x) and p(y) are the marginal probability distribution
functions of X and Y .

For our feature selection problem, let Fi and Fj be two
features from the set F of N features and c the class label. The
maximum relevance method selects the top M best features
based on their mutual dependence with class c:

max
F

1

N

∑
Fi∈F

I(Fi; c), (30)

These top M features may not be the best M features as
there might be correlations among them. Thus, the redundancy
is removed using the minimum redundancy criterion:

min
F

1

N2

∑
Fi,Fj∈F

I(Fi;Fj), (31)

The MRMR initialization combines both these objectives.
Iteratively, if M −1 features are selected in the set SM−1, the
M − th feature is selected by maximizing the single variable
relevance minus redundancy:

max
Fi∈F−SM−1

(I(Fi; c)−
1

M − 1

∑
Fj∈SM−1

I(Fi;Fj)), (32)

Using the concept of mutual information, the MRMR
method selects variables that have the highest relevance with
the target class and minimally redundant as well, i.e. dissimilar
to each other. MRMR is normalized along the feature set as:

P di =
MRMRi

maxdj=1MRMRj
, (33)
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TABLE II
DATASETS DESCRIPTION

Data No. Dataset No. Features No. instances
1 Breastcancer 9 699
2 BreastEW 30 569
3 Clean1 166 476
4 Clean2 166 6598
5 CongressEW 16 435
6 Exactly 13 1000
7 Exactly2 13 1000
8 HeartEW 13 270
9 IonosphereEW 34 351
10 KrvskpEW 36 3196
11 Lymphography 18 148
12 M-of-n 13 1000
13 PenglungEW 325 073
14 Semeion 265 1593
15 SonarEW 60 208
16 SpectEW 22 267
17 Tic-tac-toe 9 958
18 Vote 16 300
19 WaveformEW 40 5000
20 WineEW 13 178
21 Zoo 16 101

where Pi is the search agent position in dimension d,
MRMRi is the MRMR value for feature i, and d is the
problem dimension.

MRMR is used to initialize one search agent and the rest of
search agents are set at random positions in the search space.

Small Mixed
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 0 0
0 0 0 1 0 0 1




1 0 0 0 0 1 1
0 1 0 0 0 1 1
0 0 0 1 0 1 1
0 0 1 0 0 1 1
0 0 0 1 1 0 0
0 0 0 0 0 1 1


Uniform MRMR


0 0 1 0 1 1 1
1 1 0 0 0 0 0
0 0 1 0 0 0 1
1 1 1 1 1 1 1
0 0 0 0 1 0 0
0 1 1 1 0 1 0




0.8 0 0 1 0 0 1
0.1 1 0 1 0 1 1
0 1 1 0 0 1 0

0.1 0 1 1 1 0 0
0 1 1 0 1 1 0
0 0 0 0 1 0 1


Fig. 4. Sample initial wolves positions using different initialization with 9
search agents and 6 dimensions

2) Datasets: 21 datasets in Table II from the UCI machine
learning repository [29] are used for tests and comparisons.
The datasets are selected to ensure a large variety regarding
the number of features and the number of instances. Each
dataset is divided randomly into 3 different equal parts for
validation, training, and testing using cross-validation. Each
experiment iwith each algorithm s repeated 30 times to ensure
the stability and the statistical significance of the results.

3) Parameter settings: The global and optimizer-specific
parameter settings are outlined in Table III. All the parameters

TABLE III
PARAMETER SETTINGS FOR EXPERIMENTS

Parameter Value(s)
No of search agents 8

No of iterations 70
Problem dimension Number of features

Search domain [0 1]
No. runs of each optimizer 30
α in the fitness function 0.99
β in the fitness function 0.01

∆ for changing the exploration rate 0.1
η learning rate for neural network 0.2
T the length of state vector 5
Crossover Fraction in GA 0.8

Inertia factor of PSO 0.1
Individual-best acceleration factor of PSO 0.1

are set either according to domain-specific knowledge as the
α, β parameters of the fitness function, or based on a trial
and error methodology on small simulations, or from previous
experiments reported in the literature in the case of the rest
parameters.

4) Results and Discussions: Figure 5-a shows the statistical
indicators computed for GWO, EGWO, PSO and GA using
the uniform initialization method. We can observe that the
performance of EGWO is superior to that of GWO in the
average performance. We can also see that the std of EGWO
is comparable to that of GWO, which ensures repeatability of
results and convergence to the same optimum. The enhanced
performance of EGWO is due to the fact that the search
agents learn the ill-promising regions of the search space
and jump out of these regions to more promising regions.
That is possible at all stages, not only at the beginning of
search process due to the way in which the exploration rate
parameter ai is controlled. Since every search agent has its
own exploration parameter, the diversity of behavior is assured
and hence tolerates for stagnation particularly in the end stages
of optimization. Individual agents in the EGWO swarm can
still increase the exploration rate even in the latter stages of the
optimization process, allowing for escaping local minima and
premature convergence. In the standard GWO, the exploration
rate is linearly decreased during the search process, allowing
for a large exploration at the beginning and more local search
towards the end. The same conclusion can be derived from the
results obtained using small, mix, and MRMR initialization
methods in Figures 5-b, 5-c and 5-d, when EGWO performs
better in average than the other methods. Small initialization
forces the search agents to be initialized away from the
expected optimal solution and the agents are forced to keep
diversity. Hence, it adds difficulty to the optimizer to escape
from such situation. EGWO has an advantage again here as it
adapts its exploration rate based on (what has learned from)
experience rather than using a formula that does it iteratively
and ignoring previous performance and can quickly adapt its
exploration rate to approach the global optima while leaving
the non-promising regions. Figure 6 outlines snapshot of the
exploration rates for 5 agents where we can see the difference
in such rate between the different agents which motivates the
global fitness function to reach the optimum.
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(a) Uniform initialization (b) Small initialization

(c) Mix initialization (d) MRMR initialization
Fig. 5. Box-plot of fitness values for the different initializations

Fig. 6. Five agents with their exploration rates and the global fitness value

When using a mixed initialization, all optimizers performs
better than using small initialization and uniform initialization
which can be interpreted by the variability of the initial posi-
tion in the search space, some search agents being initialized
close to the expected optimal solution. We can remark that the
EGWO still performs better. Figure 7 shows the behavior of
a single search agent where we can see that the search agent
adapts its own exploration in response to its own fitness and
such behavior allows the search agent to keep its exploration
capability even at the end stages of the optimization, trying to
find better promising regions.

We can observe very good results using the MRMR ini-
tialization for all the algorithms. The good performance can

Fig. 7. Single agent with its exploration rate, its fitness and the global fitness

be explained by the fact that the initial population already
contains a nearly optimal solution and the optimizer is required
only to enhance such solution. All these methods include a
mechanism by which the solutions in the swarm tend to follow
the best solution found so far. But, there are still situations in
which the nearly optimal solution can be far away from the
global optimum, requiring again very good explorations of the
search space. This is why the exploration ability of EGWO
brings it again in advantage compared to the other methods,
not only regarding the accuracy of the convergence but also
the size of the selected features, EGWO being able to detect
the smallest number of relevant features for most of the test
cases.

Tables IV-VII show the performance on the test data in
terms of classification accuracy, the average size of the selected
features set and the average Fisher score. For the uniform
initialization where the initial population is very random,
EGWO still obtains the smallest features set for about 77%
of the datasets, with the best classification accuracy for 72%
of the datasets and best Fisher score for over 66% of the data
while for the remaining datasets still obtains very good results.
For the small initialization, EGWO still dominates the other
methods in over 50% of the datasets. Results are better in the
case of mixed initialization and MRMR initialization. EGWO
obtains the smallest number of features for over 76% of the
datasets, the best accuracy for over 57% of the datasets, and
the best Fisher score for over 50% of the tests.

Regarding the running time (results in Table VIII), EGWO
and GWO perform slower than PSO and GA for the majority
of the datasets, but the difference is not really high in all
cases. The extra time is consumed in the continual training of
the neural network model and the retrieval of action decision.
Such increase in time consumption in comparison to enhanced
optimization seems to be tolerable in many applications. This
could be possibly improved by applying only reinforcement
learning at quantized optimization steps. Regarding the added
storage cost for the proposed algorithm, the ANN weights
could be stored and the short history per wolf could also be
kept. The neural model in the current implementation is stored
as two matrices with sizes T × (2T + 1) and (2T + 1) × 3.
The wolf’s short history is a vector of length T .

Significance tests have the role of comparing two optimizers
in order to find a statistically significant difference between
them. Table IX shows the results of T-test and Wilcoxon’s
test calculated on the different initialization methods for all
the four optimizers. We are interested in the performance of
EGWO against the other algorithms, thus we report all the
comparisons with EGWO only. EGWO performs better than
GWO, PSO and GA as per T-test results at a significance
level of 5% when using uniform and MRMR methods while
less importance value is observed when using the small and
mixed initializations. This confirms that the learning of the
adaptation rate in EGWO really helps the optimization process,
regardless of the initial position of the agents, whether close
to an optimum or random over the search space. We can also
observe that the proposed EGWO has significant advance over
PSO and GA using Wilcoxon and T-test at a significance level
of 5% regardless of the used initialization method.
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TABLE IV
AVERAGE CMSE, SELECTED FEATURE, AND FISHER SCORE USING UNIFORM INITIALIZATION

CMSE Selected feature Fisher score
Data No. EGWO GWO PSO GA EGWO GWO PSO GA EGWO GWO PSO GA

1 0.040 0.040 0.046 0.037 0.457 0.442 0.443 0.439 0.685 0.676 0.590 0.651
2 0.058 0.068 0.065 0.067 0.326 0.344 0.340 0.352 0.255 0.210 0.214 0.242
3 0.226 0.240 0.249 0.239 0.235 0.281 0.283 0.293 0.085 0.006 0.075 0.046
4 0.045 0.046 0.042 0.048 0.278 0.345 0.349 0.363 0.005 0.005 0.005 0.046
5 0.060 0.062 0.053 0.069 0.201 0.222 0.222 0.225 0.160 0.161 0.189 0.122
6 0.302 0.264 0.264 0.268 0.376 0.470 0.476 0.475 0.001 0.001 0.014 0.001
7 0.253 0.243 0.238 0.250 0.239 0.137 0.145 0.129 0.061 0.001 0.069 0.057
8 0.236 0.233 0.226 0.236 0.470 0.427 0.429 0.426 0.088 0.081 0.010 0.100
9 0.151 0.155 0.153 0.155 0.222 0.240 0.241 0.246 0.048 0.020 0.041 0.029
10 0.054 0.087 0.090 0.092 0.281 0.324 0.330 0.321 0.018 0.018 0.012 0.010
11 0.272 0.273 0.275 0.276 0.272 0.272 0.273 0.277 0.120 0.088 0.107 0.011
12 0.064 0.068 0.065 0.077 0.427 0.479 0.474 0.489 0.027 0.029 0.026 0.006
13 0.294 0.327 0.331 0.336 0.157 0.188 0.194 0.181 0.121 0.143 0.108 0.117
14 0.042 0.043 0.048 0.047 0.232 0.288 0.290 0.291 0.006 0.006 0.005 0.003
15 0.312 0.298 0.298 0.298 0.289 0.276 0.284 0.273 0.024 0.013 0.003 0.015
16 0.193 0.203 0.197 0.196 0.293 0.237 0.237 0.256 0.018 0.016 0.016 0.017
17 0.255 0.255 0.258 0.263 0.580 0.617 0.625 0.626 0.059 0.050 0.057 0.024
18 0.070 0.081 0.083 0.071 0.208 0.229 0.234 0.235 0.140 0.136 0.092 0.157
19 0.208 0.220 0.218 0.221 0.367 0.386 0.389 0.389 0.218 0.120 0.201 0.068
20 0.065 0.062 0.060 0.067 0.342 0.373 0.381 0.392 0.474 0.461 0.454 0.428
21 0.158 0.153 0.143 0.159 0.292 0.322 0.328 0.334 12.576 11.377 11.282 11.294

TABLE V
AVERAGE CMSE, SELECTED FEATURE, AND FISHER SCORE USING SMALL INITIALIZATION

CMSE Selected feature Fisher score
Data No. EGWO GWO PSO GA EGWO GWO PSO GA EGWO GWO PSO GA

1 0.065 0.066 0.066 0.077 0.250 0.259 0.251 0.266 0.384 0.368 0.360 0.347
2 0.152 0.164 0.175 0.155 0.031 0.044 0.035 0.033 0.134 0.127 0.140 0.115
3 0.385 0.383 0.386 0.379 0.009 0.010 0.016 0.013 0.750 0.740 0.400 0.011
4 0.106 0.106 0.109 0.109 0.016 0.013 0.024 0.012 0.009 0.006 0.014 0.015
5 0.129 0.142 0.140 0.141 0.118 0.111 0.105 0.125 0.064 0.061 0.048 0.062
6 0.312 0.312 0.311 0.287 0.077 0.077 0.087 0.080 0.002 0.002 0.022 0.002
7 0.242 0.242 0.243 0.246 0.077 0.077 0.075 0.072 0.009 0.008 0.008 0.001
8 0.307 0.280 0.252 0.284 0.128 0.171 0.171 0.169 0.023 0.028 0.029 0.016
9 0.227 0.236 0.232 0.244 0.052 0.056 0.059 0.061 0.006 0.007 0.019 0.002
10 0.445 0.418 0.408 0.405 0.043 0.040 0.054 0.054 0.001 0.001 0.009 0.001
11 0.388 0.365 0.378 0.357 0.080 0.080 0.103 0.075 0.068 0.018 0.030 0.020
12 0.310 0.315 0.333 0.316 0.128 0.103 0.107 0.087 0.005 0.006 0.010 0.001
13 0.535 0.527 0.533 0.521 0.006 0.005 0.014 0.003 0.004 0.005 0.003 0.005
14 0.099 0.099 0.084 0.107 0.004 0.004 0.007 0.015 0.004 0.005 0.002 0.001
15 0.384 0.351 0.368 0.360 0.020 0.030 0.024 0.037 0.002 0.002 0.014 0.005
16 0.206 0.223 0.215 0.205 0.051 0.051 0.035 0.049 0.003 0.003 0.002 0.006
17 0.323 0.334 0.361 0.338 0.185 0.160 0.172 0.178 0.003 0.002 0.023 0.009
18 0.152 0.124 0.136 0.132 0.104 0.104 0.098 0.098 0.076 0.060 0.072 0.055
19 0.502 0.508 0.505 0.507 0.039 0.039 0.046 0.042 0.011 0.009 0.009 0.024
20 0.242 0.148 0.154 0.136 0.165 0.179 0.174 0.170 0.282 0.265 0.270 0.265
21 0.346 0.408 0.410 0.412 0.110 0.118 0.125 0.110 3.818 3.044 3.065 3.041

B. Multi-layer ANNs weight adaptation

Feed-forward multi-layer ANNs have been widely used as
nonlinear function approximator that maps a given input to
a given output. Commonly, the mapping function is either
classification function, when the output is in discrete form, or
regression, when the output is in continuous form. The main
challenge is to estimate the weight set for such a network
in order to achieve a proper mapping. Back propagation is
commonly used to train the weights but, since it is gradient
based, it suffers from convergence to local optima [30].
Recently, other algorithms were employed for such tasks such
as GA [31] or PSO [32]. A generic representation of such
models selects a weight set that minimizes the total error over
all training data (34):

minimizeE(W ) =
1

q ∗O

q∑
k=1

O∑
i=1

(yki − Cki )2, (34)

where q is the number of training samples, O is the number
of nodes in the output layer, yki and Cki are the actual and the
desired output of the training point k on the output node i,
and W is the vector of all neural network weights and biases.
The weight range is usually set to [0, 1] or [-1, 1] [30]. The
error function is used as a fitness function in the optimization
problem of selecting appropriate weights that minimize the
error between the predicted and the actual output. The network
structure was assumed to be static and the challenge is to select
the weight set in the range [−1, 1].
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TABLE VI
AVERAGE CMSE, SELECTED FEATURE, AND FISHER SCORE USING MIXED INITIALIZATION

CMSE Selected feature Fisher score
Data No. EGWO GWO PSO GA EGWO GWO PSO GA EGWO GWO PSO GA

1 0.042 0.042 0.039 0.036 0.457 0.543 0.544 0.549 0.681 0.746 0.742 0.751
2 0.063 0.060 0.059 0.047 0.330 0.333 0.324 0.339 0.194 0.207 0.202 0.226
3 0.212 0.235 0.242 0.234 0.246 0.255 0.248 0.257 0.005 0.005 0.007 0.01
4 0.046 0.046 0.055 0.064 0.355 0.414 0.407 0.394 0.006 0.007 0.011 0.028
5 0.071 0.055 0.072 0.070 0.250 0.222 0.224 0.226 0.167 0.158 0.153 0.155
6 0.281 0.262 0.297 0.299 0.513 0.547 0.564 0.554 0.001 0.001 0.008 0.004
7 0.250 0.256 0.261 0.263 0.436 0.436 0.433 0.428 0.001 0.001 0.004 0.009
8 0.237 0.207 0.204 0.210 0.453 0.513 0.514 0.513 0.077 0.089 0.080 0.117
9 0.144 0.149 0.140 0.151 0.222 0.258 0.264 0.254 0.033 0.022 0.025 0.031
10 0.048 0.039 0.051 0.027 0.358 0.407 0.406 0.424 0.020 0.020 0.007 0.025
11 0.275 0.282 0.282 0.283 0.284 0.370 0.363 0.370 0.110 0.101 0.086 0.114
12 0.017 0.040 0.041 0.050 0.462 0.504 0.516 0.506 0.038 0.031 0.037 0.031
13 0.282 0.323 0.320 0.322 0.142 0.175 0.177 0.165 0.144 0.135 0.128 0.137
14 0.042 0.038 0.046 0.032 0.284 0.350 0.357 0.343 0.026 0.008 0.022 0.012
15 0.281 0.282 0.297 0.282 0.265 0.302 0.310 0.288 0.042 0.016 0.015 0.031
16 0.200 0.211 0.208 0.213 0.247 0.379 0.399 0.386 0.045 0.021 0.022 0.033
17 0.253 0.259 0.267 0.269 0.679 0.753 0.773 0.759 0.010 0.006 0.009 0.004
18 0.070 0.071 0.081 0.082 0.208 0.181 0.165 0.173 0.138 0.126 0.134 0.133
19 0.218 0.224 0.215 0.216 0.533 0.544 0.543 0.573 0.141 0.135 0.118 0.123
20 0.080 0.080 0.092 0.092 0.359 0.376 0.356 0.485 0.462 0.450 0.480 0.446
21 0.114 0.125 0.119 0.137 0.292 0.319 0.302 0.323 15.528 14.580 14.565 14.593

TABLE VII
AVERAGE CMSE, SELECTED FEATURE, SIZE AND FISHER SCORE USING MRMR INITIALIZATION

CMSE Selection Size Fisher score
Data No. EGWO GWO PSO GA EGWO GWO PSO GA EGWO GWO PSO GA

1 0.042 0.042 0.039 0.036 0.457 0.543 0.544 0.549 0.681 0.746 0.742 0.751
2 0.063 0.060 0.059 0.047 0.330 0.333 0.324 0.339 0.194 0.207 0.202 0.226
3 0.212 0.235 0.242 0.234 0.246 0.255 0.248 0.257 0.007 0.005 0.007 0.001
4 0.046 0.046 0.055 0.064 0.355 0.414 0.407 0.394 0.006 0.007 0.011 0.028
5 0.071 0.055 0.072 0.070 0.250 0.222 0.224 0.226 0.167 0.158 0.153 0.155
6 0.281 0.262 0.297 0.299 0.513 0.547 0.564 0.554 0.001 0.001 0.008 0.004
7 0.250 0.256 0.261 0.263 0.436 0.436 0.433 0.428 0.001 0.001 0.004 0.009
8 0.237 0.207 0.204 0.210 0.453 0.513 0.514 0.513 0.097 0.089 0.080 0.117
9 0.144 0.149 0.140 0.151 0.222 0.258 0.264 0.254 0.033 0.02 0.025 0.031
10 0.048 0.039 0.051 0.027 0.358 0.407 0.406 0.424 0.026 0.020 0.007 0.025
11 0.275 0.282 0.282 0.283 0.284 0.370 0.363 0.370 0.110 0.101 0.086 0.114
12 0.017 0.040 0.041 0.050 0.462 0.504 0.516 0.506 0.031 0.031 0.037 0.031
13 0.282 0.323 0.320 0.322 0.142 0.175 0.177 0.165 0.144 0.135 0.128 0.137
14 0.042 0.038 0.046 0.032 0.284 0.350 0.357 0.343 0.006 0.008 0.022 0.012
15 0.281 0.282 0.297 0.282 0.265 0.302 0.310 0.288 0.042 0.016 0.015 0.031
16 0.200 0.211 0.208 0.213 0.247 0.379 0.399 0.386 0.045 0.021 0.022 0.033
17 0.253 0.259 0.267 0.269 0.679 0.753 0.773 0.759 0.010 0.006 0.009 0.004
18 0.070 0.071 0.081 0.082 0.208 0.181 0.165 0.173 0.138 0.126 0.134 0.133
19 0.218 0.224 0.215 0.216 0.533 0.544 0.543 0.573 0.141 0.135 0.118 0.123
20 0.080 0.080 0.092 0.092 0.359 0.376 0.356 0.385 0.462 0.450 0.480 0.446
21 0.114 0.125 0.119 0.137 0.292 0.319 0.302 0.323 12.528 14.580 14.565 14.593

GWO has been successfully applied for training multi-layer
ANNs for classification and regression problems [33]. In the
tests performed in [33], GWO dominates all the other methods
used for comparison (GA, PSO, ant colony optimization, evo-
lution strategies, and population-based incremental learning)
for the regression tests and is only dominated by the GA for
three of the classification tests. This motivates our work to
trying to get even better results with our improved EGWO.
In this study, a 2 layered feed-forward ANN is used for
regression problems. Ten datasets given in Table X are used
for experiments. Each individual dataset is divided following a
k-fold cross validation manner, with k=10 and the experiments
repeated 30 times. In the k-fold cross validation, kth fold is
used as testing data and the remaining data is used for training.

1) Results and Discussion: Table XI presents the results
of the statistical measures for all the datasets. We can observe
that the EGWO has better fitness function value, which proves
the capability of the model to converge to better optima.
The enhanced performance can be interpreted by the fact
that the EGWO can exploit agents’ own experience to adapt
the exploration rate per search agent. The exploration rate
control helps the optimizer to quickly jump to more promising
regions especially in complex search space. The results in
Table XII show that both GWO and EGWO have comparable
std which ensures the repeatability of results regardless of
the random factors used. From the performance on the test
data, we can observe that EGWO has better performance than
GWO. The small difference in the running time is because
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TABLE VIII
AVERAGE RUNNING TIME IN SECONDS FOR ALL INITIALIZATION METHODS

Data No. EGWO GWO PSO GA
1 11.521 11.394 14.228 9.541
2 12.322 11.844 9.554 7.014
3 44.652 44.737 44.021 42.424
4 1100.702 1076.420 1075.793 1076.158
5 9.640 9.670 9.744 4.540
6 14.699 13.413 13.498 13.342
7 14.063 13.016 13.438 12.143
8 8.871 8.798 8.083 4.524
9 10.094 10.032 12.053 8.601
10 79.255 80.230 83.375 84.586
11 8.826 8.367 5.460 11.342
12 14.784 15.245 15.906 12.387
13 54.400 54.147 49.889 53.090
14 134.523 130.479 133.261 133.105
15 9.950 9.705 11.493 10.903
16 9.097 8.877 13.155 8.105
17 14.385 14.142 18.379 13.480
18 8.795 8.611 5.514 13.762
19 220.967 210.184 209.562 213.813
20 8.927 8.669 4.632 14.005
21 9.083 8.875 4.864 8.657

TABLE IX
WILCOXON AND T-TEST FOR ALL INITIALIZATION METHODS

Initializer Optimizer 1 Optimizer 2 Wilcoxon T-test
Uniform GWO EGWO 0.100 0.049
Uniform PSO EGWO 0.050 0.040
Uniform GA EGWO 0.049 0.042

Small GWO EGWO 0.082 0.052
Small PSO EGWO 0.05 0.05
Small GA EGWO 0.047 0.048
Mixed GWO EGWO 0.100 0.097
Mixed PSO EGWO 0.049 0.07
Mixed GA EGWO 0.048 0.05

MRMR GWO EGWO 0.077 0.030
MRMR PSO EGWO 0.048 0.037
MRMR GA EGWO 0.049 0.034

EGWO employs a more complex methodology, but even so,
the difference is not really sensitive.

V. CONCLUSION AND FUTURE WORK

In this work, a variant of grey wolf optimizer that learns
the exploration rate in an individual manner for each agent
(wolf) is proposed. The experienced GWO (EGWO) uses
reinforcement learning principles to learn the actions that
should be taken at different states of the optimization and

TABLE X
DATASET USED FOR REGRESSION

Data No. Dataset No. Features No. instances
1 CASP 9 45730
2 CBM 17 11934
3 CCPP 4 47840
4 ENB2012 Y1 8 768
5 ENB2012 Y2 8 768
6 Housing 13 506
7 Relation Network 22 53413
8 Slump test 10 103
9 Yacht hydrodynamics 6 308
10 forest Fire 12 517

in various regions of the search space. A neural network
model was used to hold the experience information. The
proposed EGWO is compared with the original GWO, PSO,
and GA on two main optimization applications: feature se-
lection and ANN weight adaptation. Results were assessed
in both applications using a set of performance indicators.
We observe a significant improvement in the performance of
EGWO while compared to the other methods. EGWO can
adapt quickly to different search space terrains and can avoid
premature convergence. Besides, the initialization of the search
agents positions at the beginning of the optimization process
plays a role in the performance of EGWO, with uniform
and MRMR initialization providing more variability in the
search agents, helping the experienced model to be easily
trained. Our methodology is more of a proof of concept that
an automatic rather than manual (via trial and error) setting
of the parameters of learning algorithms is more efficient, and
can be generalized to other similar algorithms, thus helping
with the tedious task of always finding the right parameter
configuration for a particular application.
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