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Abstract

In this paper, a new optimization problem is addressed for node selection that has application potentials in input/output switches for sensors
in control system design and leader determination in social networks. The purpose of the addressed problem is to develop a strategy for
selecting a subset of nodes as controlled nodes in order to minimize certain objective function consisting of the convergence speed and the
energy of control action, over a finite time-horizon. For networks with fixed controlled nodes, an upper bound of the objective function
is obtained which is shown to be convex and independent of the time-horizon. For networks with switched controlled nodes, a greedy
algorithm is proposed to reduce the computation complexity resulting from the length of the time-horizon, where the nodes selection is
carried out over divided small time-intervals. The cost gap is also analyzed between the strategy of optimizing over the whole time-horizon
and the strategy of optimizing over the small intervals. Finally, the proposed nodes selection strategy is validated through simulations and
two regions are found in which the number of optimal controlled nodes is determined.

Key words: Cooperative control; Controlled consensus; Node selection; Convex optimization.

1 Introduction

Consensus-based dynamical networks have proven to be an
effective yet flexible framework for modeling the multi-
agent information sharing problems involving cooperative
tasks with examples including wireless sensor navigation,
spacecraft formation control, mobile robot rendezvous and
unmanned aerial vehicle flocking. The last decade has wit-
nessed surged research interest on the consensus problem
and a rich body of results has been reported in the litera-
ture, see e.g. [1]- [9]. In recent years, particular research ef-
forts have been devoted to the controllability properties of
the underlying interaction network in order to provide a sys-
tematic way for characterizing/designing useful interaction
models, see [10]- [20] for some representative results. For
example, Rahmani et al. [18] have shown how the symmetry
structure of the network, characterized in terms of its au-
tomorphism group, is directly related to the controllability
of the corresponding multi-agent system. In [19], Egerstedt
et al. have discussed the relationship between the network
structure and the controllability properties in single-leader
consensus networks, and have also summarized some recent
problems/results appearing in the past five years.
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In parallel with the controllability problem of multi-agent
systems, the nodes selection problem has been a research
focus over the past few years due to the fact that a suitable
selection of the nodes would have a major impact on the
effectiveness of adopting control technologies in real-world
applications. For example, in the area of control system de-
sign, it is vitally important to select appropriate input/output
sensors so as to maintain the desired control performances.
In social networks, needless to say, selecting the right lead-
ers is the key to ensure efficient spreading of the informa-
tion to the whole network. The nodes selection problem has
been recently studied for leader-follower systems and many
results have appeared. In [21], Porfiri et al. have proposed a
node-to-node pinning control strategy to optimize the control
performance, where the control input is added on a switched
node each time. In [22], by using an H2 norm of the system,
Patterson et al. have examined the effect of the leader selec-
tion on the coherence of the network which characterizes the
level of agreement of the nodes if the external disturbances
exist. In [23], Kawashima et al. have investigated the leader
selection problem by using the manipulability index to mea-
sure the influence of leaders’ inputs on the network centroid.
Specifically, Andrew et al. [26] have studied leader selec-
tion in order to minimize convergence errors experienced by
the follower agents, and Lin et al. [27] have looked into the
leaders selection problem by minimizing the mean-square
deviation from consensus in stochastically forced networks.

In this paper, we consider a class of cooperative tracking
problem [28–31] with aim to select a subset of nodes (re-
ferred to as the controlled nodes) to be injected into the con-
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trol inputs so as to drive the remaining nodes to reach the
desired consensus. Our attention is focused on how to select
the controlled nodes in order to optimize some network per-
formances. It is worth mentioning that the controlled nodes
in the proposed system are affected by their adjacent nodes
while the states of the leader nodes in the leader-follower
system are fixed at the beginning. In most of the existing lit-
erature, the network performance index has been either the
convergence speed or the network robustness against noises.
Different from the existing literature, we propose a new net-
work performance index described by a quadratic function
that takes both the convergence speed and the energy of
the control actions. Such a new index is motivated by the
classical LQR problem that minimizes a cost function ac-
counting for the trade-off between the undesired deviation
and the energy incurred by the control action. In addition,
we set a constraint on the number of the controlled nodes in
order to take the resource limitation into consideration. Ac-
cordingly, we formulate the nodes selection problem as an
optimization one that seeks a set of binary values indicating
whether a node is selected to be the controlled node. In the
case of selecting fixed nodes, we aim to select a set of nodes
by minimizing the network performance index with an in-
equality constraint of the number of selected nodes. In the
case of selecting switched nodes, we aim to select a set of
nodes at each time step by minimizing the network perfor-
mance index with the nodes number constraint at each time
step and the constraint of using frequency of each node.

It is widely recognized that the main challenge in selecting
nodes stems from the Boolean constraints which give rise to
a combinatorial optimization problem. In this paper, we in-
troduce an iterative method to relax the Boolean constraints
to a convex hull by replacing the l0 norm with the l1 norm.
The main contributions of this paper are highlighted as fol-
lows. 1) In the case when the controlled nodes are fixed, an
upper bound of the objective function is derived which is
shown to be independent of the time-horizon, and the ad-
dressed nodes selection problem is converted into a convex
optimization one that can be readily solved by some stan-
dard methods such as the interior point algorithm. 2) In the
case when the controlled nodes switch, a greedy algorithm
is exploited to solve the nodes selection problem over many
small time-intervals, thereby significantly reducing the com-
putation complexity for large-scale networks over lengthy
time-horizon. The relationships among the network parame-
ters are discussed and the cost gap of the objective function
is also examined between the original optimization strategy
and the transformed optimization strategy with the greedy
algorithm. 3) By simulations, a tradeoff is found to exist
between the convergence speed and the energy of control
actions, where the number of optimally controlled nodes is
determined under certain conditions.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the cooperative tracking problem and
analyze the stability of the networked system with extra con-
trol inputs. In Section 3, we formulate the nodes selection as
an optimization problem and propose some iterative selec-

tion algorithms in the cases when the controlled nodes are
fixed and switched. Finally, simulation examples are given
in Section 4 and some concluding remarks are given in the
end.

Notations: Rn is the n−dimensional Euclidean space. Sn

represents the set of symmetric n×n matrices. Sn
+ and Sn

++
are the sets of symmetric positive semidefinite and positive
definite matrices, respectively. When the matrix X is positive
semi-definite (positive definite), it is denoted as X � 0 (X �
0). Moreover, X � Y if X −Y is a positive semi-definite
matrix. tr(·) is the trace of a matrix. In is the n-dimensional
identity matrix. 1n is the vector with all components being
1. ρ(·) is the spectral radius of a matrix. diag(X) denotes
the diagonal matrix with it diagonal blocks being X .

2 Problem Formulation

Consider a network described as an undirected graph G =
(V,E) with V = (1,2, . . . ,n) being the set of n nodes and
the edges E ⊂V ×V representing the communication links.
Denote the set of neighbors of node i by Ni = { j : (i, j)∈E}.
Each node can exchange information with its neighbors.
The interconnection topology of the network is described
by a weighted matrix W = [wi j], where wii = 1−∑ j∈Ni wi j
and 0 < wi j < 1 if (i, j) ∈ E; otherwise, wi j = 0. Here, we
assume that the network G is connected, and W is thus an
irreducible non-negative matrix.

In the network, each node updates its state as

xi(k+1) =
n

∑
j=1

wi j · x j(k)+ l · γi(k) ·ui(k) (1)

where
ui(k) = c− xi(k). (2)

Here, xi(k) ∈Rm is the state of the ith node at the time step
k, c ∈ Rm is the desired state. Note that

0 < l < min
i
{wii}, 1≤ i≤ n

is a constant gain. If the ith node is injected into the control
input at time step k, then γi(k) = 1, which is referred to
as the controlled node; otherwise, γi(k) = 0. In the case of
selecting fixed nodes, the controlled nodes are fixed, i.e.,
γi(k) is constant for all k = 1,2, . . .. In the case of selecting
switched nodes, the controlled node switches at each time
step k. To simplify the addressed problem, we set m = 1.
However, all the results can be extended to the case m > 1
by using the Kronecker product.

By collecting all the states of the nodes, we define

x(k), [x1(k), . . . ,xn(k)]′, u(k), [u1(k), . . . ,un(k)]′,

Γ(k), diag(γ1(k), . . . ,γn(k)).
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The single node dynamics in conjunction with the control
inputs (2) can be represented as the following vector form

x(k+1) = Ŵ (k)x(k)+ cl ·Γ(k)1n, (3)

where Ŵ (k) =W − lΓ(k).

In this paper, we are interested in designing an algorithm to
determine γi(k) so that the networked system (3) achieves
the desired agreement with satisfactory performance. First,
we examine whether all the nodes converge to the desired
state c by adding the control inputs on a part of nodes.

It is worth mentioning that the reachability problem of the
cooperative tracking protocol have been studied extensively.
The following result follows from the existing results in
[18, 26, 27].

Proposition 1 Consider an undirected network consisting
of n nodes with dynamics (1). In the case of selecting fixed
nodes, the states of all the nodes converge to the desired
state if an arbitrary node is selected as the controlled node.
In the case of selecting switched nodes, the states of all the
nodes converge to the desired state if an arbitrary node is
selected as the controlled node at each time step.

Proof: Under the assumption that G is connected, W is non-
negative and irreducible. By Proposition 4.1 in [18], it is
easy to show that the dynamic system (1) achieves agreement
asymptotically in both cases of fixed and switched nodes.�

Remark 1 Note that the reachability of the cooperative
tracking protocol (3) is independent of the number of the
controlled nodes. Some existing works have shown that the
number of the controlled nodes influences the convergence
speed.

In the following, we endeavor to study the nodes selec-
tion problem by answering the following fundamental ques-
tion: if the number of controlled nodes is less than a pre-
scribed value, how to select a subset of nodes as the con-
trolled nodes so as to minimize a desired objective function?
We will approach the addressed problem in the following
two cases.

Case 1. For the case of selecting fixed nodes, we formulate
the problem as follows:

(P0) : min
Γ

J(Γ) =
T

∑
k=0

(
p||x(k)||22 +(1− p)||u(k)||22

)
s.t. γi ∈ {0,1}, i = 1, . . . ,n,

tr(Γ)≤ q,
0≤ p≤ 1,

where the objective function is composed by two terms, the
first quadratic term x(k)′x(k) quantifies the energy consumed
by the control action, and the second term quantifies the

convergence speed. The reason why we choose this objec-
tive function is simply to consider the tradeoff between the
convergence speed and the energy of the control actions in
practice. Here, p is the weighting factor and the number of
controlled nodes is limited to be less than q > 0. The diag-
onal matrix Γ is the optimization variable whose diagonal
elements are binary γi’s, i = 1,2, . . . ,n.

Case 2. In real-time applications, a node might be used for
a finite number of times only because of the limited energy
or the communication fault. Therefore, it is necessary to
discuss the problem of selecting switched controlled nodes,
which can be formulated as follows:

(P1) : min
Γ(k)

J(Γ(k)) =
NT

∑
k=0

(
p||x(k)||22 +(1− p)||u(k)||22

)
s.t. γi(k) ∈ {0,1}, i = 1, . . . ,n,

NT

∑
k=0

γi(k)≤ ri,

tr(Γ(k))≤ q,
0≤ p≤ 1,

where each node can be used for less than ri times, see the
second constraint above. Throughout the remainder of this
paper, we denote the minimum value of J by J? when Γ(k)
is chosen (among all stabilizing controlled nodes) to yield
the best achievable performance.

Notice that, due to the Boolean constraints of γi(k)’s, P0 and
P1 are actually combinatorial optimization problems which
would require intractable search to obtain the solutions. Over
the last decades, a variety of methods have been developed
to solve the related combinatorial optimization problem. In
this paper, we will introduce an iterative method to relax the
Boolean constraints by using the reweighted l1 norm.

3 Main results
As can be seen from Proposition 1, to achieve desired agree-
ment, the selection of the controlled nodes is not unique.
Choosing an optimal node set with minimum number of
nodes among all the possibilities is crucial to the minimiza-
tion of the objective function. In the following, we will show
that the problem P0 and P1 can be relaxed to a convex op-
timization problem. In the case of selecting fixed nodes,
we will derive an upper bound for the objective function
which is independent of the time-horizon T . In the case of
selecting switched nodes, we will use a method similar to
the greedy algorithm to reduce the computation complexity,
which solves the optimization problem over each of certain
small time-intervals.
3.1 Fixed nodes selection problem
In this case, the controlled nodes are fixed during the whole
time horizon and the selection matrix Γ is time-invariant.

Letting u(k) = c1n− x(k), we obtain

u(k+1) = (W − lΓ)u(k) (4)
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and, by iteration, we have

u(k) = (W − lΓ)ku(0),

and then

∞

∑
k=0

u(k)′u(k) = u(0)′
∞

∑
k=0

(Ŵ k)′Ŵ ku(0)

= u(0)′(In−Ŵ 2)−1u(0).

Since

(In−Ŵ 2)−1 =
1
2
(In +Ŵ )−1 +

1
2
(In−Ŵ )−1,

then we have

∞

∑
k=0

u(k)′u(k) =
1
2

u(0)′[(In +Ŵ )−1 +(In−Ŵ )−1]u(0). (5)

Here, the quadratic function u(k)′u(k) is convex because the
inverse of a positive definite matrix is a convex function of
the matrix (See Exercise 3.18, [34]). Now, we proceed to
investigate the quadratic function x(k)′x(k). According to
Proposition 4.1 in [18], it is easy to show that−In ≺ Ŵ ≺ In.
By recursion, we have

x(k) = Ŵ kx(0)+ l
k−1

∑
i=0

Ŵ i
Γc1n,

= Ŵ kx(0)+ l(In−Ŵ k)(In−Ŵ )−1
Γc1n,

= Ŵ kx(0)+ c(In−Ŵ k)1n,

where the last equality follows from the fact that

lΓ1n = (W −Ŵ )1n = (In−Ŵ )1n.

Then, we have

T

∑
k=0

p||x(k)||22 +(1− p)||u(k)||22

=
T

∑
k=0

p||Ŵ kx(0)+ c(In−Ŵ k)1n||22

+
1
2
(1− p)u(0)′[(In +Ŵ )−1 +(In−Ŵ )−1]u(0).

Next, we provide an upper bound for
T
∑

k=0
||x(k)||22, which is

proved to be convex.

Theorem 1 Consider the minimization problem

min
Γ

T

∑
k=0
||Ŵ kx(0)+ c(In−Ŵ k)1n||22

s.t. γi ∈ {0,1}, i = 1, . . . ,n. (6)

The suboptimal solution of (6) can be obtained by solving
the following problem

min
Γ

1
2

x(0)′[(In +Ŵ )−1 +(In−Ŵ )−1]x(0)

s.t. γi ∈ {0,1}, i = 1, . . . ,n (7)

where the objective function in (7) is the upper bound of the
objective function in (6).

Proof: Since ρ(Ŵ )< 1, it is easy to obtain

T

∑
k=0

x(0)′(Ŵ k)′Ŵ kx(0)<
∞

∑
k=0

x(0)′(Ŵ k)′Ŵ kx(0)

= x(0)′(In−Ŵ 2)−1x(0). (8)

It follows from Ŵ 2 � Ŵ that

T

∑
k=0

(In−Ŵ k)2 = (1+T )In−2
T

∑
k=0

Ŵ k +
T

∑
k=0

Ŵ 2k

� (1+T )In− (In +Ŵ +Ŵ 2 + . . .+Ŵ T ).

Furthermore, it is easy to see

1
′
n(W − lΓ)1n = 1

′
n1n−1

′
n(lΓ)1n.

Noticing that Γ is a nonnegative diagonal matrix, we have

1
′
n(W − lΓ)21n = 1

′
n1n +1

′
n(l

2
Γ

2−2lΓ)1n

> 1
′
n1n−1

′
n(2lΓ)1n,

and

1
′
n(W − lΓ)31n = 1

′
n1n−1

′
n(3lΓ)1n +1

′
n(3l2

Γ
2− l3

Γ
3)1n

> 1
′
n1n−1

′
n(3lΓ)1n.

By induction method, we deduce that

1
′
n(W − lΓ)k1n > 1

′
n1n−1

′
n(klΓ)1n.

Using all the previous arguments and 1′nΓ1n = q, we obtain

1
′
n

T

∑
k=0

(In−Ŵ k)21n < 1
′
n(lΓ+2lΓ+ . . .+ lT Γ)1n

=
1
2

lqT (T +1). (9)

Moreover, by using the elementary inequality (α
1
2 x −

α−
1
2 y)(α

1
2 x−α−

1
2 y)′ ≥ 0 where x and y are row vectors

with compatible dimensions, we have

x(0)′Ŵ k(In−Ŵ k)1n +1
′
n(In−Ŵ k)′(Ŵ k)′x(0)

≤ αx(0)′Ŵ k(Ŵ k)′x(0)+α
−11

′
n(In−Ŵ k)21n. (10)
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It follows from (8), (9) and (10) that

T

∑
k=0
||Ŵ kx(0)+ c(In−Ŵ k)1n||22

< (1+ cα)x(0)′(In−Ŵ 2)−1x(0)

+
1
2

l(c2 + cα
−1)T (T +1). (11)

Note that the optimization variables are γi’s. For any given c,
α > 0, T > 0, 0 < l < mini{wii}, the following optimization
problem

min
Γ

(1+ cα)x(0)′(In−Ŵ 2)−1x(0)+
1
2

l(c2 + cα
−1)T (T +1)

s.t. γi ∈ {0,1}, i = 1, . . . ,n (12)

is equivalent to the problem (7). Both problems have identi-
cal feasible sets despite the different forms. As a result, the
objective function in (6) has an upper bound, which is the
right-hand side of (11). �

By Theorem 1, we obtain the following relaxation of (P0):

(P2) : min
Γ

px(0)′[(In +Ŵ )−1 +(In−Ŵ )−1]x(0)

+(1− p)u(0)′[(In +Ŵ )−1 +(In−Ŵ )−1]u(0)
s.t. tr(Γ)≤ q,

γi ≥
∥∥1−||(Ŵ )i||1

∥∥
0, i = 1, · · · ,n,

where || · ||0 (called the l0 norm) of a scalar is 0 if the scalar
is 0 (it is 1 otherwise), (Ŵ )i denotes the ith column of the
matrix Ŵ .

Remark 2 The main improvement of formulation (P2) over
(P0) is that, instead of

T

∑
k=0

p||x(k)||22 +(1− p)||u(k)||22,

the objective function in (P2) is independent of the time-
horizon and also shows the explicit relation with the γis.
Moreover, each term of the objective function is a matrix
fractional function with the form

f (x,Y ) = xTY−1x,

which is convex on dom f = Rn×Sn
++ (See, Example 3.4,

[34]). However, the problem P2 is still a combinatorial prob-
lem because the constraint on γi contains the l0 norm. In
recent years, some heuristic methods have been proposed
to replace l0 norm by other norms like l1 norm. Note that
(In +Ŵ )−1 and (In−Ŵ )−1 are positive definite matrices.
Thus, we can relax the problem P2 to a convex optimiza-
tion problem using the reweighted l1 norm, which will be
discussed in the next subsection.

Remark 3 Note that here we only discuss the nodes se-
lection problem for fixed network topology. To the best of
our knowledge, the studies for the nodes selection in a dy-
namical network topology are less. Recently, the work [25]
considers a special random network, and discusses the ran-
dom variables with known and unknown distribution, respec-
tively. The challenge of analyzing the dynamic case mainly
comes from the computation complexity, particularly in a
large-scale network. If the controlled nodes set varies over
time, then selecting the controlled nodes set for each topol-
ogy in order to optimizing the objective function is equiva-
lent to solving a series of static optimization problem. When
compared with solving the optimization problem, it might
be more feasible to use some heuristic methods to select
the optimal nodes. In the future work, we will consider the
nodes selection problem for some special dynamical network
topology.

3.2 Sub-optimal nodes selection algorithm

For a large-scale network, the Boolean combinatorial prob-
lem P2 becomes computationally infeasible since one has to
check all possible results for nodes selection satisfying the
constraints. In this subsection, we further relax the problem
P2 to a convex optimization problem, where the solutions
are computationally feasible though suboptimal. We use the
technique proposed in [35] to replace the l0 norm with the l1
norm. To avoid the main drawback that the larger numbers
in l1 are penalized much more than those in l0, we replace
the l0 norm by a weighted l1 norm which is similar to the
work [36]. Using all the previous results, we propose an al-
gorithm to solve the suboptimal problem P′2 relaxed by the
problem P2. The algorithm consists of four steps as follows.

Algorithm 1 The suboptimal nodes selection algo-
rithm: fixed controlled nodes

1: Initialization: z = 0, fi(0) = 1 f or i = 1, . . . ,n.
2: Solve the weighted l1 minimization problem:

(P′2) : min
Γ

px(0)′[(In +Ŵ )−1 +(In−Ŵ )−1]x(0)

+(1− p)u(0)′[(In +Ŵ )−1 +(In−Ŵ )−1]u(0)
s.t. tr(Γ)≤ q,

γi(z)≥ fi(z)(1−||(Ŵ )i||1), i = 1, · · · ,n.

Let the solution be γ1(z), . . . ,γn(z).
3: Update the weights:

fi(z+1) = 1
γi(z)+δ

, δ > 0.
4: Terminate if either z reaches a specified maximum num-

ber of iterations zmax or the solution has converged. Oth-
erwise, increase z and return to step 2.

Since the matrix (In+Ŵ ) and (In−Ŵ ) are nonsingular sym-
metric, the procedure to compute its inverse use O( 1

3 n3) op-
erations without exploiting structure. In problem P

′
2, the ob-

jective function can be computed using O( 2
3 n3 +2n2 +2n)
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operations and the constraint of γi(z), i = 1, ...,n can be eval-
uated using O(n2) operations. Totally, computing Algorithm
1 requires O(n3z) operations. In large-scale networks, the
computation complexity could be further reduced by exploit-
ing structure of the underlying matrix Ŵ , see [34].

Remark 4 In some real-world applications, we do not re-
ally require a very accurate solution because we need to
obtain the threshold of γi and make it binary. Usually the
problem takes less number of reweightings for the solution
to converge. Since a function is convex if and only if its epi-
graph is a convex set [34], we can represent the problem
P′2 as a series of linear matrix inequalities (LMIs), which
can be solved by many methods, for example, interior point
and steepest descent method. Specifically, when the network
scale is large, by using the alternating direction method
of multipliers, the problem P′2 can be decomposed into a
sequence of separate minimization problems which can be
solved in parallel.

3.3 Switched nodes selection problem

As discussed above, we have relaxed the fixed nodes selec-
tion problem as a suboptimal convex optimization problem.
In practice, node faults and communication disruptions occur
frequently, and this motivates us to investigate the switched
nodes selection problem, where the controlled nodes are
switched at each time step.

Similar to the analysis for fixed nodes selection, we rewrite
the cost function to be minimized as

x(k)T x(k)+u(k)T u(k)

= x(k)T x(k)+(c1n− x(k))T (c1n− x(k))

= (c1n)
T (c1n)+2x(k)T x(k)−2(c1n)

T x(k)

= (c1n)
T (c1n)−2u(k)T x(k).

By induction, we have

x(k) =W kx(0)+ l
k−1

∑
i=0

W k−1−i
Γ(i)u(i). (13)

Obviously, when Γ(k) = I, we have

x?(k) =W kx?(0)+ l
k−1

∑
i=0

W k−1−iu?(i). (14)

Given the initial states, x?(k) can be obtained by iterative
method.

Set x(0) = x?(0). Using (13) and (14) yields

u(k)T x(k)

= (c1n− x(k))T x(k)

= [c1n− x?(k)− l
k−1

∑
i=0

W k−1−i
Γ(i)u(i)+ l

k−1

∑
i=0

W k−1−iu?(i)]T

· [x?(k)− l
k−1

∑
i=0

W k−1−iu?(i)+ l
k−1

∑
i=0

W k−1−i
Γ(i)u(i)]

= u?(k)T x?(k)+∆u(k−1)T (u?(k)− x?(k))

−∆u(k−1)T
∆u(k−1)

where

∆u(k−1) = l
k−1

∑
i=0

W k−1−i
Γ(i)u(i)− l

k−1

∑
i=0

W k−1−iu?(i).

Define

Ŵ (k−1) = [W k−1,W k−2, · · · , I],
Γ̃(k−1) = diag(Γ(0),Γ(1), · · · ,Γ(k−1)),

ũ(k−1) = [u(0)T ,u(1)T , · · · ,u(k−1)T ]T ,

ũ?(k−1) = [u?(0)T ,u?(1)T , · · · ,u?(k−1)T ]T

and we have

∆u(k−1)= lŴ (k−1)Γ̃(k−1)ũ(k−1)−lŴ (k−1)ũ?(k−1).

Using all the previous arguments, we rewrite the cost func-
tion as

x(k)T x(k)+u(k)T u(k)

= nc2−2u?(k)T x?(k)−2∆u(k−1)T (c1n−2x?(k))

+2∆u(k−1)T
∆u(k−1).

Thus, we can address the optimization problem P1 as fol-
lows:

(P3) : min
Γ̃(k−1)
ũ(k−1)

NT

∑
k=0

nc2−2u?(k)T x?(k)

−2∆u(k−1)T (c1n−2x?(k))

+2∆u(k−1)T
∆u(k−1)

s.t. tr(Γ(k))≤ q,
γi(k) ∈ {0,1}, i = 1, · · · ,n,
NT

∑
k=1

γi(k)≤ ri,

u(k+1) = (W − lΓ(k))u(k).

Obviously, with the window size NT increasing, the num-
ber of optimization variables grows rapidly at the rate of
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(O(N2T 2)). A heuristic method is to solve the optimization
problem during each time interval T which is similar to
the greedy algorithm. This way, the solution is an approx-
imation to the original problem, but the cost function with
the constraints can be reformulated to a convex minimiza-
tion problem by replacing the l0 norm with the l1 norm,
and the computation complexity is largely reduced. In this
subsection, we divide the whole time-horizon into several
time-intervals [1,T ], [T +1,2T ], · · · , [(N−1)T +1,NT ]. Let
Γ(k) be the node selection matrix. During each time interval,
given the previous states x(k−1) and Γ(k−1), the subop-
timal minimization problem over Γ(k) of the cost function
can be solved by using the following algorithm.

Algorithm 2 The suboptimal nodes selection algo-
rithm: switched controlled nodes

1: s = 0;
2: Initialization: z = 0, fi(0) = 1 f or i = 1, · · · ,n;
3: Solve the weighted l1 minimization problem:

(P′3) : min
Γ̃(k−1)
ũ(k−1)

(s+1)T

∑
k=sT+1

nc2−2u?(k)T x?(k)+2||∆u(k−1)||22

−2∆u(k−1)T (2x?(k)− c1n)

s.t. tr(Γ(k))≤ q
γ

z
i (k)≥ fi(z)(1−||(W − lΓ(k))i||1),
(s+1)T

∑
k=sT+1

γ
z
i (k)≤ ri/N,

u(k+1) = (W − lΓ(k))u(k).
Let the solutions be γ

z
1(k),γ

z
2(k), . . . ,γ

z
n(k).

4: Update the weights:
fi(z+1) = 1

γ
z
i (k)+ε

, ε > 0;
5: Terminate if either z reaches a specified maximum num-

ber of iterations zmax or the solution has converged. Oth-
erwise, increase z and return to step 2.

6: s = s+1;
7: Terminate if s = N−1;

Remark 5 Recall that the objective function in P′3 includes
the quadratic function ||∆u(k)||22. It can be computed using
O(2n3+4n2) operations.Thus the objective function over the
window size T requires O(n3T 2) operations. The constraint
of γ

z
i (k), i= 1, ...,n can be evaluated using O(n2) operations.

Hence, the complexity of Algorithm 2 is O(n3T 2N2).

Using Algorithm 2, we can obtain a suboptimal solution to
minimize the objective function. Subsequently, a question is
how to measure the gap of J(Γ(k)) between the P′3 and P3
problems. To answer this question, we first introduce two
strategies. Let us denote S1 the strategy for optimal nodes
selection given by P3 in [1,NT ]. Let JS1(k) = p||xS1(k)||22 +
(1− p)||uS1(k)||22 be the cost function at time k given by the

strategy S1. We use the greedy algorithm to solve problem
(P′3) from time 1 to time T and then solve it again for time
T +1 to 2T and so on. Again, denote S2 the nodes selection
strategy in [1,NT ] given by the greedy method with JS2(k)
being the corresponding cost matrix.

Theorem 2 The gap of strategy S2 with respect to S1 satis-
fies the following inequality:

NT

∑
k=1

tr(JS2(k))−
NT

∑
k=1

tr(JS1(k))≤ (N−1)
ρβ

θ

where

ρ = inf{h > 0|JS2(iT )� (1+h)JS1(iT ), i = 1, · · · ,N−1},
β = sup{tr(JS1(k))|k = T +1, · · · ,NT},
θ = sup{h > 0|ρ(pl2

Γ(k)c1(c1)′Γ(k)−δ I)−2δ I
� h(ρJS1(k)+2δ I)},k = T +1, . . . ,NT,

δ = sup{h > 0|plα−1||(W − lΓ(k))x(k)x(k)′(W − lΓ(k))′||2
≤ h,k = T +1, . . . ,NT.}

Proof: Similar to [36], let us define a third nodes selection
strategy S3 as:

S3[1,T ] = S2[1,T ],
S3[T +1,2T ] = S1[T +1,2T ].

By the definition of the three strategies, we know that, from
time 1 to T , S2 is the optimal strategy and therefore,

T

∑
k=1

tr(JS3(k)) =
T

∑
k=1

tr(JS2(k))≤
T

∑
k=1

tr(JS1(k)).

From time T +1 to time 2T , the strategy S2 is the optimal
for initial condition JS2(T ), and the strategy S3 has the same
initial condition as S2, i.e., JS2(T ) = JS3(T ). Therefore,

2T

∑
k=T+1

tr(JS3(k))≥
2T

∑
k=T+1

tr(JS2(k)).

Furthermore, one obtains

2T

∑
k=1

tr(JS2(k))−
2T

∑
k=1

tr(JS1(k))

≤
2T

∑
k=T+1

tr(JS3(k))−
2T

∑
k=T+1

tr(JS1(k)).
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Starting at time T , the cost matrix at time T +1 is

px(T +1)x(T +1)′+(1− p)u(T +1)u(T +1)′

= (W − lΓ(T ))[px(T )x(T )′+(1− p)u(T )u(T )′](W − lΓ(T ))′

+ pl(W − lΓ(T ))x(T )(c1)′(Γ(T ))′

+ plΓ(T )c1x(T )′(W − lΓ(T ))′+ pl2
Γ(T )c1(c1)′Γ(T )

� (W − lΓ(T ))[px(T )x(T )′+(1− p)u(T )u(T )′](W − lΓ(T ))′

+ plα−1(W − lΓ(T ))x(T )x(T )′(W − lΓ(T ))′

+(pl2 + plα)Γ(T )c1(c1)′Γ(T )
� (W − lΓ(T ))[px(T )x(T )′+(1− p)u(T )u(T )′](W − lΓ(T ))′

+δ I + pl2
Γ(T )c1(c1)′Γ(T ) (15)

where the second inequality follows from the fact that
(α

1
2 x−α−

1
2 y)(α

1
2 x−α−

1
2 y)′ ≥ 0. Note that α is a pos-

itive real and x(k) will converge to a constant vector.
Thus, we can always find a sufficient large α such that
plα−1||(W − lΓ(T ))x(T )x(T )′(W − lΓ(T ))′||2 ≤ δ .

Similarly, we have

px(T +1)x(T +1)′+(1− p)u(T +1)u(T +1)′ �
(W − lΓ(T ))[px(T )x(T )′+(1− p)u(T )u(T )′](W − lΓ(T ))′

−δ I + pl2
Γ(T )c1(c1)′Γ(T ).

(16)

Using (15) and (16), we obtain

JS3(T +1)

� (W − lΓ(T ))JS3(T )(W − lΓ(T ))′+δ I + pl2c1(c1)′Γ(T )
� (1+ρ)(W − lΓ(T ))JS1(T )(W − lΓ(T ))′

+δ I + pl2c1(c1)′Γ(T )

� (1+
ρ

1+θ
)JS1(T +1). (17)

By induction, we have

JS3(T + k)� (1+
ρ

(1+θ)k )JS1(T + k), k = 1, . . . ,T,

and furthermore

tr(JS3(T + k))≤ (1+
ρ

(1+θ)k )tr(JS1(T + k)),k = 1, . . . ,T.

As a result, we have

2T

∑
k=T+1

tr(JS3(k))−
2T

∑
k=T+1

tr(JS1(k))

≤
T

∑
k=1

(1+
ρ

(1+θ)k )tr(JS1(T + k))

≤
T

∑
k=1

ρβ

(1+θ)k ≤
ρβ

θ
(18)

The proof is now complete.

Remark 6 If N = 1, then the strategy S2 is equal to the
optimal strategy S1 and the inequality is relaxed to

NT

∑
k=1

tr(JS2(k)) =
NT

∑
k=1

tr(JS1(k)).

4 Numerical examples
In this section, we evaluate the performance of the pro-
posed strategy for the nodes selection problem via simula-
tion study. We choose an undirected network with n = 10
nodes as shown in Fig. 1, which has its second largest eigen-
value λn−1(W ) = 0.9429 and maximal degree ∆ = 4. We
also choose c = [3,2]′, l = 0.1, ri = 50, i = 1,2, . . . ,n.

First, we study the selection of fixed controlled node in the
case when q= 1. Fig. 2 shows the value of objective function
J varying with the degree of controlled node over window
size T = 300. By using Algorithm 1, when p = 1, we find
that the selected node having the lowest degree (nodes 5, 7)
leads to the minimum value J?; when p = 0, we find that
the selected node having the highest degree (node 6) leads
to the minimum value J?. The heuristic reason is that the
node with higher degree can spread the information to the
whole network with faster convergence speed as quantified
by ||u(k)||22, and the node with lower degree is affected by
fewer adjacent nodes which, in turn, results in the fewer
energy of control action as quantified by ||x(k)||22.

Moreover, it is worth mentioning that nodes 2,3,10 also have
4 neighboring nodes, while the optimal controlled node is
node 6 when p = 0. It can be seen that node 6 has the maxi-
mal betweenness centrality. Here, Betweenness centrality is
an indicator of a node’s centrality in a network. It is equal
to the number of shortest paths from all nodes to all oth-
ers that pass through that node. A node with high between-
ness centrality has a large influence on the transfer of items
through the network, under the assumption that item trans-
fer follows the shortest paths (see [37]). To further study
the influence of node centrality on the performance index,
we compare the value of objective function under different
selection strategies. As Fig. 3 shows, the strategy of bcmax
approaches to the optimal one when p < 0.3, and the strat-
egy of bcmin approaches to the optimal one when p > 0.4.
The heuristic reason is that the smaller p, the term u(k)′u(k)
dominates the objective function much more. Note that the
betweenness centrality reflects the rate of transferring items
through the network. Thus, when p is relatively small, the
node with maximal betweenness centrality leads to the min-
imal J; while when p is relatively large, the node with min-
imal betweenness centrality leads to the minimal J. These
results also further show that a tradeoff exists between the
energy of control actions and the convergence speed, and
the betweenness centrality could be an index to select the
controlled node efficiently. Moreover, the proposed subop-
timal strategy is closer to the optimal one when compared
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with the other strategies, which verifies the effectiveness of
the proposed suboptimal strategy.

Next, let us investigate the relationship between the mini-
mum value J? and the weight value p for various values of
q. In Fig. 4, each point corresponds to a minimum value
J? for a fixed p under the constraint tr(Γ) = q. Obviously,
for an arbitrary q, the minimum value J? increases as the
increasing p. Notice that the convergence speed quantified
by ||u(k)||22 dominates the objective function when p is rel-
atively small, while ||x(k)||22 dominates the objective func-
tion when p is relatively large. As we can observe, when
p < 0.2, the larger q leads to the smaller J? for a fixed p,
which implies that much more nodes selected as the con-
trolled nodes result in faster convergence speed. Conversely,
when p> 0.4, the smaller q leads to the smaller J? for a fixed
p, which implies that the fewer nodes selected as the con-
trolled nodes results in the fewer energy of control actions.
Based on these results, we suggest that there exists two crit-
ical values for p, the lower bound p̌ and the upper bound p̂,
which depends on the node dynamics and network topology.
To solve the problem P0, when p≤ p̌, the minimum value J?
can be achieved by selecting q optimal nodes, that is to say,
the constraint tr(Γ)≤ q can be reduced to tr(Γ) = q. When
p≥ p̂, the minimum value J? can be achieved by selecting
a single optimal node, that is to say, the constraint tr(Γ)≤ q
can be reduced to tr(Γ) = 1. However, when p̌ < p < p̂, the
optimal solutions for the number of controlled nodes are not
explicit, which can only be obtained by solving the problem
P0.

It can be seen from Fig. 5 that the gap of the minimum value
J? between two strategies varies with q over the window size
T = 4000. In the case when the controlled nodes are fixed,
the gap of J? between the proposed suboptimal strategy and
the optimal one decreases as the increasing q (dotted green
line). Specifically, when q is above a critical value, the gap
is close to zero. Similarly, in the case when the controlled
nodes switch, the gap between the strategy of optimizing
over the whole time horizon and one of optimizing over the
small intervals is investigated, which converges to zero as
well. Aiming at the above results, the following heuristic
analysis are provided. First, let us define the settling time
when all the nodes reach desired consensus, denoted by
ks. For an arbitrary q, when k ≥ ks, the value of objective
function equals to npc′c. Thus, the gap accumulates during
the time horizon k< ks. Intuitively, the smaller ks, the smaller
gap. Recall that the larger q leads to the smaller ks, which
has been shown in Fig. 2. On the other side, as q increases,
the probability of selecting those optimal controlled nodes
increases as well, which also leads to the gap converging to
zero.

5 Conclusions

In this paper, we have considered the selection problem of
controlled nodes with the goal of minimizing the objective
function that caters both the energy of control actions and the
convergence speed. We have addressed the nodes selection
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Fig. 1. The network topology
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Fig. 2. The value of objective function lg(J) varies as the degree
of controlled node. Here, the value of J is calculated by adding
all the values of x(k)′x(k) or u(k)′u(k) from k = 0 to k = 300. The
blue dashed line is corresponding to the energy of control action
quantified by ||x(k)||22 , i.e., p = 1; the red line is corresponding
to the convergence time quantified by ||u(k)||22, i.e., p = 0.
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Fig. 3. The value of objective function lg(J) varies as the weight
value p under different selection strategies. bcmax and bcmin: the
strategy of selecting the node with maximal and minimal between-
ness centrality; random: the strategy of selecting a node randomly;
suboptimal: the strategy with Algorithm 1.

as a combinatorial optimization problem, and further refor-
mulated it using a convex relaxation based on a reweighed
l1 approximation. In the case when the controlled nodes
are fixed, we have obtained an upper bound of the objec-
tive function in order to make the optimization independent
of time horizon, which is also shown to be convex. In the
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Fig. 5. The cost gap vs. q (p = 0.3). The blue line: the gap of J?
between the strategy of optimizing over the whole time horizon
and the strategy of optimizing over the small intervals (switched
controlled nodes); The green dotted line: the gap of J? between the
suboptimal strategy and the optimal one (fixed controlled nodes).

case when the controlled nodes switch, we have introduced
a greedy algorithm to solve the optimization problem over
many small time intervals. We have also established the re-
lationship of the network parameters and the gap of mini-
mum objective function between the strategy of optimizing
over the whole time-horizon and the strategy of optimizing
over small time intervals. In the end, the simulation results
have verified the effectiveness of the proposed strategy. It
has been shown that, when the weight value p is less than
a lower bound or greater than an upper bound, the number
of the optimal controlled nodes is determined. The gap of
the minimal objective function has also been shown to be
decreasing as the number of controlled nodes increases.
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