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Abstract

This paper is concerned with the set-membership filtering problem for a class of time-varying systems with mixed time-delays
and communication protocols. Two kinds of well-known protocols (Round-Robin protocol and Weighted Try-Once-Discard
protocol) are considered, with which the data transmission between the sensor nodes and the filter is implemented via a shared
communication network that allows only one sensor node to send its measurement data at each transmission instant in order
to prevent the data from collisions. The transmission order of sensor nodes is orchestrated by the underlying protocol of the
network. The aim of the problem addressed is to design a set-membership filter capable of confining the state estimate of
the system to certain ellipsoidal region subject to the bounded non-Gaussian noises. Sufficient condition is first derived for
the existence of the desired filter at each time step in terms of a recursive algorithm. Then, two optimization problems are
solved by optimizing the constraint ellipsoid of the estimation error subject to the underlying protocol. Simulation results
demonstrate the effectiveness of the proposed filter design scheme.

Key words: Communication protocol; Set-membership filtering; Round-Robin protocol; Weighted Try-Once-Discard
protocol; Mixed time-delays; Non-Gaussian noises; Recursive matrix inequalities.

1 Introduction

The past decades have witnessed a surge of research
interest on networked systems due primarily to their
extensive applications in various fields including en-
vironmental monitoring, industrial automation, smart
grids and distributed/mobile communications. The key
feature of networked systems is that the connections of
system components are implemented via shared com-
munication networks. Networked systems possess many
advantages such as low cost, simple installation, reduced
system wiring and high reliability. Compared with the
traditional systems with point-to-point communica-
tion scheme, the utilization of communication network
has led to rich yet complex network-induced behaviors
(e.g. communication delays, packet dropouts and signal
quantization) and these behaviors have attracted con-
siderable research attention, see e.g. [5, 13, 20, 21, 27].

Filtering problem is a fundamental research issue in sig-
nal processing and control communities [1, 4, 10, 12, 23,
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26,28]. For linear (or nonlinear) systems with Gaussian
noises, the Kalman filtering (or extended Kalman filter)
method is always recognized as a reliable filtering ap-
proach. Nevertheless, the Kalman filter may lead to un-
satisfactory performance when the disturbances are non-
Gaussian noises. Another well-known filtering method
is the H∞ filtering approach whose aim is to guarantee
a given disturbance attenuation level on the estimation
error subject to energy-bounded noises. For convention-
al H∞ filtering method, there does not seem to be any
provision to ensure the boundedness of the estimation
error. In this regard, the so-called set-membership fil-
tering method does well as it generates a satisfactory s-
tate estimate guaranteeing that the estimation error is
confined to a bounded region in the state-space subject
to the unknown-but-bounded noises. The origination of
the set-membership filtering problem dated back to the
1960s and such a problem has gained recurring research
interest in the past decade [9, 19, 24, 25].

In most existing literature concerning the filtering prob-
lems of networked systems, it has been assumed that all
the sensor nodes could simultaneously get access to the
network to transmit signals. This assumption, however,
is generally unrealistic for networked systems since real-
world networks unavoidably suffer from limited band-
width which is likely to give rise to data collisions in case
of simultaneous multiple accesses. As such, the commu-
nication protocols are needed to orchestrate the trans-
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mission order of sensor nodes [2, 22, 29]. The widely u-
tilized protocols in industry include, but are not limit-
ed to, the Round-Robin (RR) protocol [17], the Weight
Try-Once-Discard (WTOD) protocol [7] and stochastic
communication protocol [14, 16]. Compared with those
traditional schemes without protocol scheduling, the u-
tilization of communication protocol would bring in cer-
tain fundamental challenges (or protocol-induced effect-
s) to the dynamics analysis issues. As such, it is neces-
sary to examine how the inclusion of the communication
protocol impacts on the control and filtering problems
of networked systems. So far, some preliminary result-
s have been reported on the analysis issue of networked
systems subject to communication protocols.

Among various communication protocols, the RR and
WTOD protocols are widely employed by communica-
tion and signal processing communities. The RR pro-
tocol is also known as the time-division multiple access
(TDMA) protocol or Token Ring protocol. Under the
scheduling of the RR protocol, the transmission instants
of all the sensor nodes are predetermined according to
a fixed circular order. Obviously, the RR protocol is a
periodic protocol. On the other hand, the WTOD pro-
tocol belongs to the class of quadratic protocols. Differ-
ent from the “periodic assignment” behavior of the RR
protocol, the WTOD protocol assigns the transmission
instants to certain sensor nodes according to a given
quadratic selection principle. For the purpose of char-
acterizing the scheduling behaviors caused by protocol-
s, the switched-linear-system framework has been intro-
duced in [7] for discrete-time networked systems in which
both the RR and the WTOD scheduling behaviors have
been considered. Based on the switched-linear-system
framework, the co-design problem of both the stabilizing
controller and scheduling protocol has been investigat-
ed in [15] for a class of networked control systems with
multiple distributed transmission delays.

On the other hand, it is well known that time-delays
exist widely in practice and may cause undesirable dy-
namic behaviors including oscillation and instability. In
recent years, a rich body of literature has appeared on
the control and filtering problems of networked systems
with time-delays, see e.g. [11] and the references there-
in. Unfortunately, when it comes to the set-membership
filtering problems with time-delays under communica-
tion protocols, the corresponding results have been re-
ally scattered due mainly to the difficulties in handling
the coupling issues between the set membership and the
scheduling protocols. To this end, a seemingly interest-
ing research problem that is of clear engineering insight
is to investigate the set-membership filtering problem
for the time-varying networked systems with a commu-
nication protocol (the RR protocol or WTOD protocol),
and this has motivated our present research.

Summarizing the above discussions, in this paper, we
aim to deal with the set-membership filtering problem
for the time-varying networked system with simultane-
ous presence of mixed time-delays and communication

protocol scheduling. More specifically, the objective of
this paper is to design a set-membership filter for the
networked systems with mixed time-delays subject to
the RR protocol and WTOD protocol, respectively. The
main contributions of this paper are highlighted as fol-
lows: 1) the set-membership filtering problem is, for the
first time, investigated for time-varying systems with the
protocol scheduling; 2) the influences from both the R-
R protocol and the WTOD protocol on the filter perfor-
mance are considered; and 3) the filter gain matrix is
obtained by solving a set of recursive matrix inequalities
that are solvable via standard software package.

Notations: The notation used here is fairly standard
except where otherwise stated. Rn andR

n×m denote, re-
spectively, the n dimensional Euclidean space and set of
all n×m real matrices. N (N+,N−) denotes the set of in-
tegers (nonnegative integers, negative integers). The no-
tationX ≥ Y (X > Y ), whereX and Y are real symmet-
ric matrices, means that X − Y is positive semi-definite
(positive definite). Prob{·}means the occurrence proba-
bility of the event “·”.E{x} andE{x|y}will, respectively,
denote the expectation of the stochastic variable x and
expectation of x conditional on y. 0 represents the ze-
ro matrix of compatible dimensions. The n-dimensional
identity matrix is denoted as In or simply I, if no con-
fusion is caused. The shorthand diag{· · · } stands for a
block-diagonal matrix. ‖A‖ refers to the norm of a ma-

trix A defined by ‖A‖ =
√

trace(ATA). MT represents
the transpose of M . In symmetric block matrices, “ ∗ ”
is used as an ellipsis for terms induced by symmetry.
The Kronecker delta function δ(a) is a binary function
that equals 1 if a = 0 and equals 0 otherwise. Matrices,
if they are not explicitly specified, are assumed to have
compatible dimensions.

2 Problem Formulation and Preliminaries

In this section, we first introduce some preliminaries re-
lated to the Round-Robin (RR) protocol and theWeight-
ed Try-Once-Discard (WTOD) protocol, and then de-
scribe the problem setup.

2.1 Communication Protocols

Consider a networked system with N nodes labeled as
{1, 2, · · · , N}. In this system, all the nodes transmit their
data via a shared communication network in which only
one node is allowed to get access to the network at each
transmission instant for the purpose of preventing the
data from collisions. Let ξ(k) ∈ {1, 2, · · · , N} be the se-
lected node obtaining access to the communication net-
work at time instant k. The value of ξ(k) is determined
by the communication protocol of the network.

1) The Round-Robin (RR) Protocol:

Under the scheduling of the RR protocol, the value of
ξ(k) satisfies ξ(k+N) = ξ(k) for all k ∈ N

+ and ξ(k) =
k for k ∈ {1, 2, · · · , N}. In other words, ξ(k) can be
calculated as:

ξ(k) = mod(k − 1, N) + 1. (1)
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In such a protocol, the number of nodes N can be re-
garded as the period of the RR protocol. During each
period of the RR protocol, each node has access to the
communication network exactly once.

2) The Weighted Try-Once-Discard (WTOD) Protocol:

WTOD protocol is a dynamical protocol in which the
value of ξ(k) is determined by the following selection
principle:

ξ(k) , arg max
1≤i≤N

(yi(k)− y∗i (k))
T
Qi (yi(k)− y∗i (k))

(2)
where y∗i (k) represents the last transmitted signal before
time instant k of node i and Qi (i ∈ {1, 2, · · · , N}) is
a known positive definite matrix denoting the weight
matrix of the i-th node.

Define y(k) , [yT1 (k) y
T
2 (k) · · · yTN (k)]T and y∗(k) ,

[(y∗1(k))
T

(y∗2(k))
T

· · · (y∗N(k))
T ]T . The selection princi-

ple (2) could be rewritten as

ξ(k) = arg max
1≤i≤N

(y(k)− y∗(k))T Q̄i (y(k)− y∗(k))

(3)

where Q̄ = diag
{

Q1, Q2, · · · , QN

}

, Q̄i = Q̄Φi, Φi =

diag
{

δ(i − 1)I, δ(i − 2)I, · · · , δ(i − N)I
}

(1 ≤ i ≤ N)
and δ(·) ∈ {0, 1} is the Kronecker delta function.
2.2 Problem Formulation

Fig. 1. Filtering problem for a networked system subject to
a communication protocol

Consider a filtering problem for a networked system
shown in Fig. 1. In this framework, the signal transmis-
sion between the remote filter and the sensors of the
plant is implemented through a communication network.

In the following, let us introduce the plant and the com-
munication network in a mathematical way. The plan-
t under consideration is a discrete time-varying system
with mixed time-delays of the form:


























x(k + 1) =A(k)x(k) + E(k)x(k − τ1)

+ F (k)

τ2
∑

i=1

µix(k − i) +B(k)ω(k)

y(k) =C(k)x(k) +D(k)ν(k)

x(i) =ψ1(i), −max{τ1, τ2} ≤ i ≤ 0

(4)

where x(k) ∈ R
nx and y(k) ∈ R

ny denote, respective-
ly, the state vector and the measurement output be-
fore transmitted through the communication network.
The parametersA(k), E(k), F (k), B(k), C(k) andD(k)
are real-valued time-varying matrices of appropriate di-
mensions. µi (1 ≤ i ≤ τ2), τ1 and τ2 are known pos-
itive integers. ω(k) ∈ R

nω and ν(k) ∈ R
nν represent

the process and measurement noises, respectively. ψ1(i)
(i = −max{τ1, τ2},−max{τ1, τ2}+1, · · · , 0) are the ini-
tial conditions.

Assumption 1 The noise sequences ω(k) and ν(k) are
confined to the following ellipsoidal sets:

{

Wk ,
{

ω(k) : ωT (k)S−1(k)ω(k) ≤ 1
}

Vk ,
{

ν(k) : νT (k)R−1(k)ν(k) ≤ 1
} (5)

where S(k) andR(k) are known positive definite matrices
with compatible dimensions.

Remark 1 As is well known, in practical engineering,
disturbance noises are known to be non-Gaussian due to
man-made electromagnetic interference and other natu-
ral sources, see, e.g. [8]. As such, most conventional filter-
ing approaches, such as the well-known Kalman filtering,
are no longer applicable to the filtering problems subjec-
t to non-Gaussian noises. In this paper, the process and
measurement noises are assumed to be unknown, bound-
ed, deterministic but reside within certain ellipsoidal set-
s. Matrices S(k) and R(k) can be regarded as “special”
upper-bounds on the amplitude of the noises.

We are now ready to introduce the signal transmission
of the measurement output. Without loss of generality,
it is assumed that sensors of the system are grouped into
N sensor nodes according to their spatial distribution.
As such, for technical analysis, the measurement output
before transmitted can be rewritten as

y(k) =
[

yT1 (k) y
T
2 (k) · · · yTN(k)

]T

where yi(k) (i ∈ {1, 2, · · · , N}) is the measurement of
the i-th sensor node before transmitted.

The communication between the sensors and the remote
filter is scheduled by certain communication protocol. In
this paper, we aim to study the set-membership filtering
problem subject to two different kinds of communica-
tion protocols, namely, the RR protocol and the WTOD
protocol. For the sake of examining the influence of com-
munication protocols, let ξ(k) ∈ {1, 2, · · · , N} be the s-
elected sensor node obtaining access to the communica-
tion network at time instant k. As shown in subsection
2.1, ξ(k) ∈ {1, 2, · · · , N} is a switching function depen-
dent on the underlying protocol scheduling. The value
of ξ(k) is determined according to (1) in the case of RR
scheduling and (3) in the case of WTOD scheduling.

Next, let us denote the measurement output after trans-
mitted through the network by

ȳ(k) ,
[

ȳT1 (k) ȳ
T
2 (k) · · · ȳTN(k)

]T
∈ R

ny .

The initial state of ȳ(k) is assumed to be ȳ(j) = ψ2 for
j < 0 where ψ2 is a known vector. The updating rule of
ȳi(k) (k ∈ N

+, i ∈ {1, 2, · · · , N}) is set to be

ȳi(k) =

{

yi(k), if i = ξ(k)

ȳi(k − 1), otherwise.
(6)

According to the updating rule (6), it can be seen that
{

ȳ(k) = Φξ(k)y(k) +
(

Iny
− Φξ(k)

)

ȳ(k − 1)

ȳ(j) = ψ2, j < 0.
(7)

Denoting x̄(k) ,
[

xT (k) ȳT (k − 1)
]T

and ω̄(k) ,
[

ωT (k) νT (k)
]T

, the time-varying system (4) with a

protocol scheduling can be reformulated as follows:
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





























x̄(k + 1) =A(k)x̄(k) + E(k)x̄(k − τ1)

+ F(k)

τ2
∑

i=1

µix̄(k − i) + B(k)ω̄(k)

ȳ(k) = C(k)x̄(k) +D(k)ω̄(k)

x̃(i) = ψ̄(i), −max{τ1, τ2} ≤ i ≤ 0

(8)

where ψ̄(i) =
[

ψT
1 (i) ψ

T
2 (i)

]T
and

A(k) =





A(k) 0

Φξ(k)C(k) I − Φξ(k)



 , F(k) =





F (k) 0

0 0



 ,

E(k) =





E(k) 0

0 0



 , B(k) =





B(k) 0

0 Φξ(k)D(k)



 ,

C(k) =
[

Φξ(k)C(k) I − Φξ(k)

]

,D(k) =
[

0 Φξ(k)D(k)
]

.

2.3 Time-varying Filter

In this paper, a filter based on the signal ȳ(k) is con-
sidered for the augmented system (8) with mixed time-
delays, which is of the form:


















x̂(k + 1) =A(k)x̂(k) + E(k)x(k − τ1) +K(k)ȳ(k)

+ F(k)

τ2
∑

i=1

µix̂(k − i)−K(k)C(k)x̂(k)

x̂(i) = 0, −max{τ1, τ2} ≤ i ≤ 0
(9)

where x̂(k) ∈ R
nx+ny is the state estimate of x̄(k) and

K(k) ∈ R
(nx+ny)×ny is the filter gain to be designed.

Letting the estimation error be e(k) , x̄(k) − x̂(k), the
estimation error dynamics for the augmented system (8)
can be obtained as follows:

e(k + 1) =
(

A(k)−K(k)C(k)
)

e(k) + E(k)e(k − τ1)

+ F(k)

τ2
∑

i=1

µie(k − i) +
(

B(k)−K(k)D(k)
)

ω̄(k).

(10)

Before proceeding further, we introduce the following
definition and assumption.

Definition 1 For the time-varying system (8) with fil-
ter (9), let the sequence of the constraint matrices (el-
lipsoid matrices) P (k) ∈ R

(nx+ny)×(nx+ny) (k ∈ N
+) be

given. The filtering error e(k) is said to satisfy the P (k)-
dependent constraint if the following set of inequalities

eT (k)P−1(k)e(k) ≤ 1 (11)

hold for k ∈ N
+.

Assumption 2 The initial conditions ψ̄(i) (0 ≥ i ≥
−max{τ1, τ2}) satisfy

ψ̄T (i)P−1(i)ψ̄(i) ≤ 1 (12)

where P (i) (−max{τ1, τ2} ≤ i ≤ 0) are a known positive
definite matrices.

We are now in the position to state the problem ad-
dressed in this paper as follows. The objective of this pa-
per is to design appropriate filter parameter K(k) sub-
ject to different protocols (the RR protocol and the W-
TOD protocol). To be more specific, we are interested in
dealing with the following analysis and design problems:

Problem 1: For a given sequence of constraint matrices
P (k), establish sufficient conditions for the existence of
the filter gains under which the dynamics of the filtering
error e(k) satisfies the P (k)-dependent constraint (11)
subject to the process and measurement noises;

Problem 2: Minimize the trace of the matrix P (k) by
appropriately choosing the filter parameter K(k) satis-
fying the conditions established in Problem 1.

3 Main results

In this section, we shall present sufficient conditions
guaranteeing that the dynamics of the filtering error e(k)
satisfies the P (k)-dependent constraint (11). Further-
more, two recursive algorithms are proposed to obtain
the filter parameter K(k) subject to the RR protocol
and the WTOD protocol, respectively. Before proceed-
ing further, we introduce the following lemma which will
be needed for the derivation of our main results.

Lemma 1 (S-procedure [3]) Let φ0(·), φ1(·), · · · , φp(·)

be quadratic functions of the variable ς ∈ R
n : φi(ς) ,

ςTTiς (i = 0, 1, · · · , p) with T T
i = Ti. If there exist α1,

α2, · · · , αp ≥ 0 such that

T0 −

p
∑

i=1

αiTi ≤ 0, (13)

then the following is true

φ1(ς) ≤ 0, φ2(ς) ≤ 0, · · · , φp(ς) ≤ 0 ⇒ φ0(ς) ≤ 0. (14)

3.1 P (k)-Dependent Constraint Analysis

In the following theorems, sufficient conditions are estab-
lished to solve Problem 1 that aims to ensure the P (k)-
dependent constraint to be satisfied for the dynamics of
the filtering error subject to the WTOD protocol and
the RR protocol. A recursive matrix inequality approach
is developed to cater for the effects from the ellipsoidal
constraints, mixed time-delays and protocols.

1) The WTOD Protocol
Theorem 1 Consider the system (4), the WTOD pro-
tocol given by (3) and the filter (9). Let the sequence of
constraint matrices P (k) > 0 (k ∈ N

+) be given. As-
sume that there exist real valued matrices K(k), positive
scalars λi(k) and εj(k) (k ∈ N

+, 1 ≤ i ≤ N , 1 ≤ j ≤ 4)
satisfying the following recursive matrix inequality





−Θ(k) ΠT (k)

∗ −P (k + 1)



 ≤ 0 (15)

where

Θ(k) = ΓT (k)

N
∑

i=1

λi(k)
(

Q̄
(

Φi −Φξ(k)

)

)

Γ(k) + T

T = diag
{

ε̄(k), ε1(k)I, ε2(k)I, ε3(k)I, ε4(k)Ω
−1(k)

}

,

Π(k) =
[

0 ĀkL(k) E(k)L(k − τ1) F̄τ (k) B̄k

]

,
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Āk = A(k)−K(k)C(k), B̄k = B(k) −K(k)D(k),

F̄τ (k) =
[

F1 F2 · · · Fτ2

]

, Fi = µiF(k)L(k − i),

Ω(k) = diag{S(k), R(k)}, ~C(k) =
[

C(k) −I

]

,

Γ(k) =
[

~C(k)x̂(k) ~C(k)L(k) 0 0 ~D(k)
]

, ~D(k) =
[

0 D(k)
]

,

ε̄(k) = 1− ε1(k)− ε2(k)− τ2ε3(k)− 2ε4(k)

and L(k) is the factorization of P (k) = L(k)LT (k).
Then, the dynamics of (10) satisfies the P (k)-dependent
constraint with the estimator parametersK(k) (k ∈ N

+).

Proof: The proof of this theorem is performed bymathe-
matical induction. In what follows, let us first prove the
following assertion is true.

Assertion:The solution e(k) of the time-varying system
(10) satisfies

eT (k)P−1(k)e(k) ≤ 1, k ∈ N
+. (16)

The proof of the above assertion is divided into two steps,
namely, the initial step and the inductive step.

Initial step. For t = 0, it can be immediately known from
Assumption 2 that

eT (0)P−1(0)e(0) = ψT (0)P−1(0)ψ(0) ≤ 1. (17)
Inductive step. Now that the assertion is true for t = 0.
Next, given that the assertion is true for t ≤ k, we aim
to show that the same assertion is true for t = k + 1.

Since the assertion is true for t ≤ k, if follows from [6]
that there exists a vector z(i) satisfying e(i) = L(i)z(i)
with ‖z(i)‖ ≤ 1 where L(i) is a factorization of P (i) =
L(i)LT (i) for i ∈ {0, 1, · · · , k}. It remains to show that,
for t = k + 1, the solution P (k + 1) of the inequalities
(15) guarantees eT (k + 1)P−1(k + 1)e(k + 1) ≤ 1.

For notational simplicity, we first denote z̄τ (k) ,
[

zT (k − 1) zT (k − 2) · · · zT (k − τ2)
]T

and η(k) ,
[

1 zT (k) zT (k − τ1) z̄
T
τ (k) ω̄

T (k)
]T

. Then, we have

e(k + 1) = Π(k)η(k) (18)

and therefore

eT (k + 1)P−1(k + 1)e(k + 1)− 1

= ηT (k)
(

ΠT (k)P−1(k + 1)Π(k)

− diag{1, 0, 0, 0, 0}
)

η(k). (19)
On the other hand, it can be obtained from Assumption
1 and the selection principle of the WTOD that






















‖z(k)‖2 ≤ 1, ‖z(k − τ1)‖
2 ≤ 1, ‖z̄τ (k)‖

2 ≤ τ2,

ω̄T (k)diag{S−1(k), R−1(k)}ω̄(k) ≤ 2,
(

y(k)− ȳ(k − 1)
)T
Q̄
(

Φi − Φξ(k)

)

×
(

y(k)− ȳ(k − 1)
)

≤ 0, i = 1, 2, · · · , N

(20)

which can be rearranged by means of η(k) as follows:






























ηT (k)diag{−1, I, 0, 0, 0}η(k)≤ 0,

ηT (k)diag{−1, 0, I, 0, 0}η(k)≤ 0,

ηT (k)diag{−τ2, 0, 0, I, 0}η(k) ≤ 0,

ηT (k)diag
{

− 2, 0, 0, 0,Ω−1(k)
}

η(k) ≤ 0,

ηT (k)ΓT (k)Q̄
(

Φi − Φξ(k)

)

Γ(k)η(k) ≤ 0

(21)

On the other hand, it can be seen from the S-procedure
(Lemma 1) that if there exist positive scalars ε1(k),
ε2(k), ε3(k), ε4(k) and λi(k) (i = 1, 2, · · · , N) such that

ΠT (k)P−1(k + 1)Π(k)− diag{1, 0, 0, 0, 0}

− ΓT (k)

N
∑

i=1

λi(k)
(

Q̄
(

Φi − Φξ(k)

)

)

Γ(k)

− ε1(k)diag{−1, I, 0, 0, 0}− ε2(k)diag{−1, 0, I, 0, 0}

− ε3(k)diag{−τ2, 0, 0, I, 0}

− ε4(k)diag
{

− 2, 0, 0, 0,Ω−1(k)
}

≤ 0, (22)

then the inequality eT (k+1)P−1(k+1)e(k+1)− 1 ≤ 0
can be guaranteed by the inequalities (21). The inequal-
ity (22) can be written in the following compact form:

ΠT (k)P−1(k + 1)Π(k)− T

− ΓT (k)

N
∑

i=1

λi(k)
(

Q̄
(

Φi − Φξ(k)

)

)

Γ(k) ≤ 0. (23)

According to the definition of Θ(k), (23) is rewritten as

ΠT (k)P−1(k + 1)Π(k)−Θ(k) ≤ 0. (24)

By using the Schur complement lemma, we have
[

−Θ(k) ΠT (k)

∗ −P (k + 1)

]

≤ 0. (25)

Thus, it can be obtained from (15) that the inequality
eT (k+1)P−1(k+1)e(k+1)− 1 ≤ 0 is satisfied. Hence,
by the induction, it can be concluded that the assertion
is true for k ∈ N

+, which means that the dynamics of the
time-varying system (10) satisfies the P (k)-dependent
constraint with the filter gain K(k).

2) The RR Protocol
Theorem 2 Consider the system (4), the RR protocol
given by (1) and the filter (9). Let the sequence of con-
straint matrices P (k) > 0 (k ∈ N

+) be given. If there
exist real valued matrices K(k), positive scalars εj(k)
(k ∈ N

+, j ∈ {1, 2, 3, 4}) satisfying




−Θ̄(k) ΠT (k)

∗ −P (k + 1)



 ≤ 0 (26)

where

Θ̄(k) = diag
{

ε̄(k), ε1(k)I, ε2(k)I, ε3(k)I, ε4(k)Ω
−1(k)

}

with other corresponding matrices defined in Theorem 1,
then the dynamics of (10) satisfies the P (k)-dependent
constraint with the estimator parametersK(k) (k ∈ N

+).

Proof: The proof is similar to that of Theorem 1 and is
therefore omitted for the conciseness.

Remark 2 Sufficient conditions are provided in Theo-
rem 1 and Theorem 2, respectively, under which the esti-
mation error dynamics (10) satisfies the required P (k)-
dependent constraint subject to the well-known WTOD
protocol and RR protocol. The main idea of the set-
membership filter is to design the time-varying filter pa-
rameter K(k) via the transmitted measurement output
such that the estimation error is confined to the given
ellipsoidal set at each time step. Obviously, the P (k)-
dependent constraint (11) is equivalent to the quadratic
error-bounded constraint e(k)eT (k) ≤ P (k).
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3.2 Design of Filter Gains Minimizing the Ellipsoids
Subject to WTOD and RR Protocols

In this subsection, two optimization problems are solved
that would help the design of the optimal filter gains.

Corollary 1 Consider the dynamic system (4), the W-
TOD protocol given by (3) and the time-varying filter (9).
The ellipsoid constraint P (k) on the estimation error is
minimized (in the sense of the matrix trace) if there exist
real-valued matrix K(k), positive scalars λi(k) (k ∈ N

+,
i ∈ {1, 2, · · · , N}) and εj(k) (k ∈ N

+, j ∈ {1, 2, 3, 4})
solving the following optimization problem:

min
P (k+1),K(k),~λ(k),~ε(k)

tr{P (k + 1)} (27)

subject to (15), where

~λ(k) = {λi(k)}i∈{1,2,··· ,N} , ~ε(k) = {εi(k)}i∈{1,2,3,4} .

Corollary 2 For the dynamic system (4) subject to the
RR protocol (1), the ellipsoid constraint P (k) on the es-
timation error is minimized (in the sense of the matrix
trace) if there exist real-valued matrix K(k) and positive
scalars εj(k) (k ∈ N

+, j ∈ {1, 2, 3, 4}) solving the fol-
lowing optimization problem:

min
P (k+1),K(k),~ε(k)

tr{P (k + 1)} (28)

subject to (26), where ~ε(k) := {εi(k)}i∈{1,2,3,4}.

By means of Corollaries 1-2, we can summarize the
Protocol-Based Set-Membership Filter Design (PB-
SMFD) algorithm as follows.

Algorithm PBSMFD:
Step 1. Initialization: Set k = 0 and give the initial

constraint matrices P (t) satisfying Assumption 2
for t ∈ {−max{τ1, τ2},−max{τ1, τ2}+ 1, · · · , 0}.

Step 2. Calculate matrix factorizations L(t) according to
P (t) = L(t)LT (t) for k − τ2 ≤ t ≤ k and t = k − τ1.

Step 3. Solve the corresponding optimization problem
according to the utilized scheduling protocol of the
network. If the network is scheduled under the
WTOD protocol, solve the optimization problem
(27) subject to (15). Otherwise, solve the
optimization problem (28) subject to (26). Then,
the filter parameter K(k) and positive matrices
P (k + 1) are obtained according to the solution of
the optimization problem.

Step 4. Set k = k + 1 and go to Step 2.

Remark 3 So far, we have discussed the set-membership
filtering problems for a class of discrete time-varying
systems with mixed time-delays subject to two kinds
of communication protocols (the RR protocol and the
WTOD protocol). It can be observed from Algorithm
PBSMFD that, in the filter design procedure, all the
important factors contributing to the system complexity
are reflected in the main results which include 1) the
time-varying system parameters; 2) the delay sizes; 3)
the estimation accuracy (characterized by P (k)); 4) the
noise information (characterized by Wk and Vk); and
5) the information about the utilized communication
protocol (determined by (1) or (3)).

4 ILLUSTRATIVE EXAMPLES

In this section, two numerical examples are present-
ed to illustrate the effectiveness of the proposed set-
membership filter design scheme for system (4) subject
to the RR protocol and WTOD protocol, respectively.

Example 1: Consider a discrete-time delayed system
(4) with the following system parameters:

A(k) =
[

0.75+0.35 sin(0.4k) 0.02+0.01 cos(0.2k)
0.03 0.75+0.39 sin(0.4k)

]

,

B(k) =
[

0.64
0

]

, E(k) =
[

0.2 0
0 0.2

]

, D(k) =
[

0
−0.4

]

,

C(k) =
[

0.65 −0.3
−0.55 0.40

]

, F (k) =
[

0.1 0
0 0.1

]

,

τ1 = 1, τ2 = 2, µ1 = µ2 = 0.2.
The sensors of this system are grouped into 2 sensor
nodes. The weight matrices of the WTOD protocol
is taken to be Q1 = 0.6 and Q2 = 1.2. The bound-
ed noises are assumed to be ω(k) = 0.9 sin(k) and
ν(k) = 0.9 cos(k), respectively. Obviously, the matrices
S(k) and R(k) could be chosen as S(k) = R(k) = 0.81I.
Also, select the initial state and constraint matrices

as follows: ψ(l) = [4 4 1 1]T , P (l) = diag{16, 16, 1, 1}

(l = −max{τ1, τ2},−max{τ1, τ2}+ 1, · · · , 0).

Using the given algorithms and Matlab software
(YALMIP 3.0), the set of solutions to the optimization
problem (27) subject to (15) in Corollary 1 and the op-
timization problem (28) subject to (26) in Corollary 2
can be obtained, respectively. The simulation results are
shown in Figs. 2-4. Figs. 2-3 depict the state respons-
es and their estimations under the WTOD scheduling
and RR scheduling. Fig. 4 plots the responses of the
estimation error e(k) with respect to the WTOD and
RR protocols. All the simulation results confirm that
the estimation performance is well achieved and the
proposed PBSMFD algorithm is indeed effective.
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x̂1(k) (WTOD protocol)

x̂1(k) (RR protocol)

Fig. 2. The state trajectories of x1(k) and x̂1(k) under the
WTOD and RR protocols

Example 2: In this example, we consider a networked-
based test rig which consists of a plant (DC servo sys-
tem) and a remote controller. The plant and the con-
troller are connected via a communication network. The
networked induced delay of such a communication net-
work is 3. Based on the results in [30], the DC servo sys-
tem is identified to be a third-order system which can
be described as follows:

6



0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

20

25

Time (k)

S
ta
te

tr
a
je
ct
o
ri
es

o
f
x
2
(k
)
a
n
d
x̂
2
(k
)

 

 

x2(k)

x̂2(k) (WTOD protocol)

x̂2(k) (RR protocol)
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Fig. 4. Filtering errors for a networked system
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




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





x(k + 1) =
[

1.12 0.213 −0.333
1 0 0
0 1 0

]

x(k) +
[

0.8
0
0

]

ω(k)

+
[

−0.2193 0.0219 0.0844
0.2177 −0.0032 −0.0662
0.1298 −0.0087 −0.0381

]

x(k − 3)

y(k) =
[

1 0 0
0 1 0

]

x(k) +
[

0
0.8

]

ν(k)

The sensors of this system are grouped into 2 sensor
nodes and the weight matrices of the WTOD proto-
col is set to be Q1 = 0.8 and Q2 = 1.2. The process
and measurement noise sequences are assumed to be
ω(k) = 0.5 cos(0.2k) and ν(k) = 0.5 sin(0.2k) (k ∈ N

+),
respectively. Hence, the matrices S(k) and R(k) could
be selected as S(k) = R(k) = 0.25I. The initial state
and constraint matrices are chosen as follows: ψ(l) =

[2 2 2 1 1]T and P (l) = diag{4, 4, 4, 1, 1} (l = −1, 0).

Based on the given algorithms and Matlab software
(YALMIP 3.0), the set of solutions to the optimization
problem (27) subject to (15) in Corollary 1 and the
optimization problem (28) subject to (26) in Corollary
2 are obtained, respectively. The simulation results are
shown in Figs. 5-8. Figs. 5-7 depict the state responses
and their estimations under the WTOD scheduling and
RR scheduling. Fig. 8 plots the responses of e(k) with
respect to the WTOD and RR protocols.
5 CONCLUSION

In this paper, the set-membership filtering problem has
been investigated for a class of time-varying system with
mixed-time-delays subject to the communication proto-
col scheduling. For the purpose of preventing the da-
ta from collisions, only one sensor node is permitted
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Fig. 5. The state trajectories of x1(k) and x̂1(k) under the
WTOD and RR protocols
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Fig. 6. The state trajectories of x2(k) and x̂2(k) under the
WTOD and RR protocols
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Fig. 7. The state trajectories of x3(k) and x̂3(k) under the
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Fig. 8. Filtering errors for the networked-based test rig
to get access to the shared network at each transmis-
sion instant. The transmission order of nodes is orches-
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trated by the communication protocol of the network.
Two kinds of protocols (namely, the RR protocol and
the WTOD protocol) have been studied respectively. A
time-varying filter has been designed to obtain the es-
timate of the plant subject to the non-Gaussian noises
and protocol scheduling. Sufficient conditions have been
derived for the designed filter to satisfy the prescribed
P (k)-dependent constraint in terms of recursive matrix
inequalities. Within the established theoretical frame-
work, two optimization problems have been proposed by
optimizing the constraint ellipsoid of the estimation er-
ror subject to the aforementioned protocols. Finally, two
illustrative examples have been given to highlight the
effectiveness of the proposed filter design strategy.
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