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Abstract

In this study, the effect of linear and nonlinear slip boundary conditions on the flow
of a slow viscous fluid is investigated numerically. The boundary integral representation
of the transient Stokes equations is given in primitive variables form. The fundamental
solution to the steady Stokes equations is employed in the boundary element method (BEM)
formulation. The time derivative is taken to the boundary with the dual reciprocity method
and approximated by the finite difference method (FDM) until a steady-state is achieved. It
is assumed that the fluid is capable of slip, with the slip velocity expressed as a function of
shear rate at the wall. In the numerical tests, the fluid is initially assumed to be stationary;
at each time step, the velocity boundary conditions along the walls are updated as the shear
forces vary with time.
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1. Introduction

The area of micro and nanofluidics is fundamentally important due to the need of un-
derstanding the nature of fluid flow at these scales [1]. It has been demonstrated that, at
these scales, the mechanical properties at the fluid-solid interface cannot be understood by
extrapolating known properties of the bulk fluid [2]. An example of the breakdown of con-
ventional macroscopic ideas at small scales is the no-slip boundary condition between a fluid
and a solid, which is a fundamental notion in fluid mechanics [3]. Experimental [4, 5], theo-
retical [6] and numerical [7, 8] simulations at micro/nano scales have provided clear evidence
that wall slip occurs at fluid-solid interfaces, and show that the degree of boundary slip is
a function of the liquid viscosity and the shear rate. Variation in slip length arises from
the fact that, during a collision with a solid surface, a fluid molecule will transfer some of
its tangential momentum to the solid. The collision frequency is not high enough to ensure
thermodynamic equilibrium, and a certain degree of slip tangential velocity must be allowed
[9].
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Luo and Pozrikidis [10] developed a BEM formulation for studying slip flow over a spher-
ical particle in an infinite fluid and near a plane wall. In the case of a wall-bounded flow, the
numerical model was axisymmetric and thus reduced to a one-dimensional integral equation
in cylindrical coordinates. Ding and Ye [11] solved oscillatory slip Stokes flow problems by
using a system of integral equations for the surface velocity and the normal derivative of
its tangential component. The resulting integral equation for the normal derivative con-
tains singularities of the Cauchy and Hadamard (hypersingular) types. Frangi et al. [12]
employed a combined velocity-surface traction integral equation to study fluid damping in
micro-electro-mechanical systems (MEMS), which also contains Cauchy and Hadamard sin-
gularities. Nieto et al. [15] developed a BEM formulation to study linear slip flow in rotating
mixers, based on the use of the normal and tangential projections of the velocity integral
equation, resulting in a weakly-singular mixed system of integral equations for the normal
and tangential components of the surface traction. Later, their formulation was extended
to incorporate the nonlinear slip condition [16]. Myong et al. [17] investigated slip flows in
concentric rotating cylinders using a slip model defined in terms of the Langmuir adsorption
isotherm for the gas-solid surface molecular interaction, instead of the Navier accommoda-
tion coefficient. They showed that despite the conceptual difference in the two slip models,
both are in qualitative agreement with Monte Carlo simulation data in capturing the general
features of the flow field.

In comparison with linear slip flows, research on nonlinear slip flows is more limited, with
relatively few works reported in the literature. Newtonian flows with linear and nonlinear
slip boundary condition were studied analytically by Matthews and Hill [6] for simple pres-
sure driven flows. They observed that although the generalized Navier boundary condition is
highly nonlinear in terms of the assumed form of solution, the integration constants obtained
are still unique. Numerical solutions of nonlinear slip flows using Thompson and Troian’s
model are reported, where lid-driven polar cavity flow and thin film flow of a fluid between
two spheres are considered in [18] and [19]. In a recent study, Power et al. [9] studied the
effect of the Thompson and Troian’s nonlinear slip condition on Couette flows between con-
centric rotating cylinders. They showed that, by using this type of nonlinear slip condition,
it is possible to predict complex characteristics of the flow field not previously reported in
the literature.

In this study, transient Stokes flow in different geometries with linear and nonlinear
slip boundary conditions is numerically investigated using the Dual Reciprocity Boundary
Element Method (DRBEM). The DRBEM for time-dependent Stokes flows was originally
developed by Power and Partridge [20], considering standard no-slip boundary conditions.
The technique gives rise to a system of first-order ordinary differential equations which is
solved here by the Finite Difference Method (FDM). The method is initially applied to
the pressure-driven flow in a channel, for which analytical solutions are available, and then
extended to study flow past a step and flow in a square cavity.

2. Governing Equations

Fluid flow at micro and nano scales is characterized by very low values of the Reynolds
number. In these cases, the non-linear convective terms in the Navier-Stokes equations can
be neglected. The transient Stokes system of equations can be written in dimensionless form
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as [21]
∂ui

∂t
= −

∂p

∂xi

+
∂2ui

∂xj∂xj

∂ui

∂xi

= 0

(1)

where ui and p are the components of the fluid velocity and pressure, respectively. The above
equations are normalized by a characteristic length scale L and a characteristic velocity scale
U , respectively. At micro-scale conditions, L is of the order of 100µm while U is of the order
of 1mm/s. Eq. (1) is supplemented by the initial conditions u(x1, x2, 0) = u0(x1, x2) and by
velocity and surface force boundary conditions.

The Navier slip boundary condition states that the relative tangential fluid velocity, uf
t ,

with respect to the tangential wall velocity, Uw
t , is proportional to the tangential projection

of the local shear rate [3], [13, 14, 15],

uf
t − Uw

t = Lsγ̇t (2)

where Ls is the slip length, which represents the hypothetical distance at the wall needed
to satisfy the no-slip condition [1]. The variable γ̇t is the local shear rate projection in the
tangential direction defined as

γ̇t =
(∂ui

∂xj

+
∂uj

∂xi

)

njsi =
(∂ut

∂n
+

∂un

∂s

)

(3)

where ni and si are the i− th component of the normal and tangential vectors to a boundary
surface showing the outward and the counter-clockwise direction, respectively.

The slip length, Ls, can be either linear or nonlinear. The nonlinear slip length also
depends on the tangential shear rate at the solid surface, given as [16]

Ls =
b0

√

(1− β γ̇t)n
(4)

where β = 1/γ̇c, γ̇c is the critical shear rate, b0 is the slip length in the case of linear slip
condition, and n is an index which depends on the cohesive property at the interface. The
nonlinear slip boundary condition is obtained by substituting Eq. (4) in Eq. (2). The
constant slip length and the no-slip condition are the limiting cases of Eq. (4) [16]. The first
one refers to the condition when γ̇c → ∞ (β → 0) for finite values of b0, corresponding to the
limit Ls → b0 (constant slip length). On the other hand, the limiting case when n → ∞, for
finite values of γ̇c and b0, corresponds to Ls → 0, resulting in the classical no-slip condition.

3. Boundary Element Formulation
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The Stokes velocity field has the following direct integral representation formulae for an
arbitrary point x in a closed domain Ω bounded by a closed surface Γ [21]:

c(x)uk(x)−

∫

Γ

Kkj(x,y) uj(y)dΓy +

∫

Γ

uk
j (x,y) tj(y)dΓy =

∫

Ω

uk
j (x,y) gj(y)dΩy (5)

where tj are the components of the surface traction, gj =
∂uj

∂t
, and c(x) =

1

2
for a point

located on a smooth part of the boundary and 1 when the point is on the domain. For any

boundary point c(x) =
θ

2π
where θ is the internal angle at the considered point in radians.

The fundamental velocity and traction for two-dimensional problems are given by [21]

uj
i (x,y) = −

1

4π

[

ln
(1

r

)

δij +
(xi − yi)(xj − yj)

r2

]

Kij(x,y) = −
1

π

(xi − yi)(xj − yj)(xk − yk)nk(y)

r4

(6)

in which r = |x − y| is the distance between the source point x and the field point y, and
δij is the Kronecker delta.

In order to approximate the domain integral on the right-hand side of Eq. (5), the Dual
Reciprocity idea is used [22]. The time derivative is expanded as

gj(x) =
∂uj

∂t
=

N
∑

m=1

f(x,ym) αm
l (t) δjl (7)

where f(x,ym) are known functions depending only on geometry, αm are time dependent
unknown coefficients and ym, m = 1, 2, ..., N , are N fixed collocation points.

Thus, the domain integral on the right-hand side of Eq. (5) can be written as

∫

Ω

uk
j (x,y) gj(y)dΩy =

N
∑

m=1

α
m
l

∫

Ω

uk
j (x,y) f(x,y

m) δjldΩy. (8)

Applying Green’s formula to the above equation yields

∫

Ω

uk
j (x,y) gj(y)dΩy =

N
∑

m=1

α
m
l

[

ul
k(x, z

m)−

∫

Γ

Kkj(x,y) û
l
j(y, z

m) dΓy

+

∫

Γ

uk
j (x,y) t̂

l
j(y, z

m) dΓy

]

(9)

where ûl
j and t̂lj are the particular displacements and tractions defined as

ûl
j =

1

15

[4

3
δlj −

∂r

∂xl

∂r

∂xj

]

r3

t̂lj =
2

15

[3

2

∂r

∂xj

nl +
3

2

∂r

∂xl

nj +
∂r

∂n

(3

2
δlj −

∂r

∂xl

∂r

∂xj

)]

r2

(10)
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After substituting Eq. (9) into Eq. (5), the BEM is used to discretize the boundary
integral equation (5) by dividing the surface Γ of the problem into smaller elements as [21]

c(x)uk(x)−
NE
∑

n=1

∫

Γn

Kkj(x,y) uj(y)dΓy +
NE
∑

n=1

∫

Γn

uk
j (x,y) tj(y)dΓy =

N
∑

m=1

α
m
l

[

ĉkj(x) u
l
j(x, z

m)−

NE
∑

n=1

∫

Γn

Kkj(x,y) û
l
j(y, z

m) dΓy

+
NE
∑

n=1

∫

Γn

uk
j (x,y) t̂

l
j(y, z

m) dΓy

]

(11)

where NE is the number of elements.
When Eq. (11) is applied at all collocation points, the set of equations produced can be

written in matrix-vector form as

H U −G T = (H Û −G T̂ )α (12)

where U and T are velocity and traction vectors at each nodal point, respectively. H and Û
are (2N × 2N), G is (2N × 3N) and T̂ is (3N × 2N) matrices in which N is the number of
boundary nodes. Û and T̂ are constructed by taking ûl

j and t̂lj as columns.
The α vector can be obtained by inverting Eq. (7) so that Eq. (12) can be written as

H U −G T = (H Û −G T̂ )F−1U̇ . (13)

in which F is a (2N ×2N) matrix containing the coordinate functions, f(x,ym), as columns
evaluated at each boundary point.

The time derivative is approximated by a central difference scheme

H U (m+1) −G T (m+1) = (H Û −G T̂ )F−1U
(m+1) − U (m−1)

2∆t
(14)

In order to calculate U (2) (when m = 1), two initial conditions are required. Thus, the
equation is solved first using a forward difference scheme to calculate U (1) by setting the
values of U (0). Then, Eq. (14) is solved step by step for m ≥ 1.

Rearranging Eq. (14) yields

H̃ Um+1 −G Tm+1 = d. (15)

where S = (H Û −G T̂ )F−1, H̃ =
(

H −
S

2∆t

)

and d = −
S

2∆t
U (m−1).
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Then, the boundary conditions are inserted into Eq. (15). When the boundary conditions
are no-slip the corresponding columns of H̃ and G are interchanged so that the known values
are transposed to the right-hand side and the unknown values are collected on the left-hand
side of the equation. On the other hand, when the boundary conditions are slip, the columns
of the matrices are arranged using the slip condition

uf
i − Uw

i = Ls ti (16)

as follows
H̃ (Ls ti + Uw

i )−G ti = d

(Ls H̃ −G) ti = d− H̃ Uw
i

(17)

Finally, the system can be written in the form

A x = b (18)

and solved for the unknowns x = ti, then ui’s are calculated using Eq. (16).

4. Results and Discussion

Quadratic boundary elements and linear radial basis functions, f = 1 + r, are used in
the DRM formulation. Solutions are presented at steady-state in which the pre-assigned
tolerance is taken as

max
m=1,N+L

|um+1 − um| ≤ 10−7 (19)

where N and L are the number of boundary and internal nodes, respectively.

4.1. Flow in a horizontal channel

The simple problem of flow in a horizontal channel shown in Fig (1) is investigated
for linear and nonlinear slip boundary conditions. The linear slip boundary condition is
considered for two slip length values, Ls = 0.25 and 0.5, while the channel length varies
from L = 2 to 10. The nonlinear slip boundary condition is applied by taking n = 1,
0 < β ≤ 0.4 and L = 2.

The analytical solution of the linear and nonlinear slip problem in dimensional form is
given respectively as [15]

u1 =
h2

2µ

∆P

L

[

1−
(y

h

)2]

+
h

µ

∆P

L
Ls (20)

u1 =
h2

2µ

∆P

L

[

1−
(y

h

)2]

+
h

µ

∆P

L

b0
√

(1− 2β)n
(21)
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where L is the channel length, 2h = 2 is the channel height, ∆P = P0 − PL = 1 is the
imposed pressure difference, µ = 1 is the dynamic viscosity and Ls is the slip length. The
velocity reduces to no-slip when the slip length is dropped to zero.

The boundary conditions are specified in Fig. (1). The value of t2 at the horizontal walls
is given by the pressure p, which varies linearly between its given values at the inlet and
outlet.

Fig. (2) shows the results for Ls = 0.25 and 0.5 when the channel length is L = 2 and 10.
For L = 2, 50 boundary elements are used in the discretization of the boundary. Since the
channel is short, the horizontal boundaries are divided into 15 elements while the vertical
boundaries are divided into 10 elements. The time step is taken as ∆t = 0.1. As the channel
length increases to 10, more boundary elements are needed. Thus, 70 boundary elements
are used in the discretization. The horizontal boundaries are divided into 25 elements while
the same number of elements are used for the vertical boundaries. It is also observed that
a smaller time step is needed with an increase in the channel length. Thus, the time step
∆t is reduced to 0.05. Note that, for the values adopted, the velocity u1, at the horizontal

boundaries (y = −h, h) can be calculated as u1 =
Ls

L
. It is clear from Fig. (2) that the

numerical values are in excellent agreement with the analytical ones
Fig. (3) presents the transient behaviour of the flow for various time levels when Ls = 0.25

and 0.5 with L = 10, respectively. It can be seen that the flow becomes steady in a short
period of time.

Table (1) presents the maximum and minimum values of the computed velocity with
linear slip at different time levels for Ls = 0.25 and 0.5 when the length of the channel is
L = 10. These values occur at the channel centre and at the wall, respectively. One can
see that convergence is obtained after 50 iterations. The results are in very good agreement
with the exact solution at steady-state. One can see from Table (1) that for Ls = 0.25 and
0.5, the errors for the maximum and minimum velocities are 10−7 and 10−6, respectively.

Fig. (4) shows the velocity profiles for various nonlinear slip length values when the
channel length is L = 2 and b0 = 0.5. Fig. (5) shows a comparison of these velocity profiles
with the analytical solution. Tables (2) and (3) present the maximum and minimum values
of the computed and exact velocities for several nonlinear slip values 0 < β ≤ 0.4 when
the channel length is L = 2 and b0 = 0.5. Again, these values occur at the channel centre
and at the wall, respectively. The BEM solutions are in good agreement with the above
steady-state analytical solution.

4.2. Backward-facing step

As a second test problem, a backward-facing step flow is considered for several slip
length values, Ls, from 0 to 0.75. The boundary conditions are given in Fig. (6). Linear
slip boundary conditions are inserted at the bottom and top walls of the channel, as well as
downstream of the step. At the inlet of the channel a parabolic velocity profile is imposed
as boundary condition, and at the outlet a developed flow is considered. Discretization of
the channel is more refined from x = 0 to x = 4. Overall, 224 boundary elements are used
with time step ∆t = 0.001.
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Fig. (7) presents the flow downstream of the step up to the outlet for ∆t = 0.005, 0.003, 0.001
and 0.0008. The mentioned convergence criteria is reached after 122, 80, 50 and 30 time steps,
respectively.

The transient behaviour of the flow is shown in Fig. (8) at different sections of the
channel from downstream of the step up to the outlet for slip length Ls = 0.5. It is observed
that the flow reaches steady-state in a short time. Fig. (9) presents the velocity profiles
at the midplane and outlet of the channel for different time steps. It can be seen that at
steady-state, the flow is fully developed and preserves its parabolic shape up to the outlet.

Fig. (10) shows the horizontal velocity profiles at different sections of the channel from
inlet to centerline for no-slip and several slip length values at steady-state. It is observed that
at the inlet, the parabolic shape is preserved and it is shifted to the right depending on the
slip length value. It is also observed that after the step, the parabolic behaviour is distorted
up to the centerline. Furthermore, the effect of the slip condition is more pronounced at the
upper wall of the channel due to the step being placed at its left bottom corner.

4.3. Lid-driven cavity flow

The lid-driven cavity flow is considered as the third problem. Boundary conditions can be
seen in Fig. (11). The upper wall of the cavity is moving to the right with constant velocity,
while the lower wall is either moving in the same (S = 1) or in the opposite (S = −1)
directions. Linear slip boundary condition is applied on the vertical and horizontal walls of
the cavity.

In order to validate the formulation, different boundary conditions are initially considered.
Fig. (12a) shows the solution when both the left and right walls of the cavity move up with
velocity u2 = 1, while Fig. (12b) shows the solution when the left wall moves down with
velocity u2 = −1 and the right wall moves up with velocity u2 = 1, with the bottom and
top walls are stationary. These solutions are in good agreement with those presented in Fig.
4-(a),(c) of Kelmanson and Lonsdale [23]. Fig. (12c) presents the solution when the upper
and lower walls move in the same direction, S = 1 (in this case the top wall of the cavity
moves to the right with velocity u1 = 2), while Fig. (12d) presents the solution when the
upper and lower walls move in opposite directions, S = −1, with the vertical walls stationary.
These solutions are in good agreement with the ones presented in Fig. 2-(d),(f) of Gaskell
et al. [24].

The effect of the number of boundary elements is tested in Fig. (13) for the case S = 1.
The boundary of the cavity is discretized into 120, 160, 320 and 360 elements, respectively.
The time step is taken as ∆t = 0.005. It was noted that more boundary elements are
needed with the same time step value when the horizontal walls are moving in the opposite
directions, i.e. S = −1.

Flow in the cavity for the cases S = 1 and S = −1 with 0 ≤ Ls ≤ 1 are presented
in Figs. (14) and (15), respectively. When the horizontal walls of the cavity move in the
same direction, S = 1, the velocity field has two main circulations. The upper one is in the
clockwise direction and the lower one is in the counter clockwise direction. It is observed that
as the slip length value increases to 1, the main circulation cells move through the corners
of the cavity. When the walls of the cavity are moving in opposite directions, S = −1,
there is one main circulation cell which is in the clockwise direction and its center has an
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elliptical shape. As the slip length value increases the elliptical shape in the center of the
cavity becomes circular and the streamlines become parallel to the walls.

In Fig. (16), the effect of the slip length value (0 ≤ Ls ≤ 1) on the vertical and horizontal
velocity profiles along the centerline of the cavity are presented for both cases. It is observed
that the magnitude of the vertical and horizontal velocity decreases with an increase in slip
length value. For the case S = −1 the magnitude of the vertical velocity is greater than the
one for S = 1, and the decrease with respect to the slip length value is more pronounced.

5. Conclusions

In this study, transient slip Stokes flow in different geometries is numerically investigated
using DRBEM. The time derivative is approximated by the FDM. Linear and nonlinear slip
boundary conditions are applied. For the channel flow problem, comparisons are made with
analytical solutions for both linear and nonlinear slip boundary conditions. For the step
flow problem, it is observed that the flow is fully developed at the mid-plane and has the
same parabolic behaviour up to the outlet. In the cavity problem, it is observed that more
boundary elements are needed when the walls of the cavity are moving in opposite directions,
but the time step value can be kept the same. It is also observed that the effect of the slip
length value on the velocity profiles is more pronounced in this case. The time step value is
selected depending on the geometry of the problem. Due to the implicit nature of the time
integration scheme, quite large time steps can be taken.
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Figure 1: Geometry of Problem 1
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Figure 2: Comparison of the velocity profiles at the centerline of the channel when L = 2 (first row) and
L = 10 (second row)
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Figure 3: Transient behaviour of velocity profiles at the inlet, centerline and outlet of the channel with
L = 10 for Ls = 0.25 (first row) and Ls = 0.5 (second row).
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Table 1: Maximum and minimum values of computed velocity at different time levels for L = 10

Time Step Ls = 0.25 Ls = 0.5
Max Value Min Value Max Value Min Value

3 .0811364 .0240827 .1107291 .0479862
5 .0771529 .0247043 .1059491 .0490092
15 .0750109 .0249984 .1002880 .0499520
50 .0750000 .0249999 .1000000 .0499999

Exact Solution .0750000 .0250000 .1000000 .0500000

Error .0000000 .0000001 .0000000 .0000001
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Figure 4: Velocity profiles at the centerline for several nonlinear slip length values when L = 2 and b0 = 0.5
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Figure 5: Comparison of the velocity profiles at the centerline of the channel for several non-linear slip length
when L = 2 and b0 = 0.5
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Table 2: Maximum values of computed and exact velocity and error at steady-state for several nonlinear slip
length value when L = 2 and b0 = 0.5

β Computed Solution Exact Solution Error

0.1 .5295085 .5295084 .0000001
0.2 .5727487 .5727486 .0000001
0.3 .6452848 .6452847 .0000001
0.4 .8090171 .8090169 .0000002

Table 3: Minimum values of computed and exact velocity and error at steady-state for several nonlinear slip
length value when L = 2 and b0 = 0.5

β Computed Solution Exact Solution Error

0.1 .2795084 .2795084 .0000000
0.2 .3227485 .3227486 .0000001
0.3 .3952846 .3952847 .0000001
0.4 .5590169 .5590169 .0000000
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Figure 6: Geometry of Problem 2
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Figure 7: Steady-state solution for different time-step values for Ls = 0.5.
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Figure 8: Transient velocity profiles at x = 0.171, x = 0.4, x = 4 and x = 8, respectively, Ls = 0.5.
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Figure 9: Comparison of transient behaviour of the flow at the midplane and outlet for Ls = 0.5.
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Figure 10: Velocity profiles at x = −1, x = 0.171, x = 0.4 and x = 4, respectively, for no-slip and various
linear slip length values.
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Figure 11: Geometry of Problem 3
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Figure 12: Validation of the DRBEM formulation
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Figure 13: Effect of the number of boundary elements when S = 1 and Ls = 1
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Figure 14: Upper and lower walls moving in the same direction, S = 1
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Figure 15: Upper and lower walls moving in opposite directions, S = −1
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Figure 16: Velocity profiles along the centerline for slip length values 0 ≤ Ls ≤ 1
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