
FINAL VERSION 1

Minimum-Variance Recursive Filtering over Sensor
Networks with Stochastic Sensor Gain Degradation:

Algorithms and Performance Analysis
Yang Liu, Zidong Wang, Xiao He and D. H. Zhou∗

Abstract—This paper is concerned with the minimum variance
filtering problem for a class of time-varying systems with both
additive and multiplicative stochastic noises through a sensor
network with a given topology. The measurements collected
via the sensor network are subject to stochastic sensor gain
degradation, and the gain degradation phenomenon for each
individual sensor occurs in a random way governed by a random
variable distributed over the interval [0, 1]. The purpose of the
addressed problem is to design a distributed filter for each sensor
such that the overall estimation error variance is minimized
at each time step via a novel recursive algorithm. By solving
a set of Riccati-like matrix equations, the parameters of the
desired filters are calculated recursively. The performance of the
designed filters is analyzed in terms of both the boundedness
and monotonicity. Specifically, sufficient conditions are obtained
under which the estimation error is exponentially bounded
in mean square. Moreover, the monotonicity property for the
error variance with respect to the sensor gain degradation is
thoroughly discussed. Numerical simulations are exploited to
illustrate the effectiveness of the proposed filtering algorithm
and the performance of the developed filter.

Index Terms—Minimum variance filtering; sensor network; re-
cursive algorithm; sensor gain; error boundedness; monotonicity.

I. INTRODUCTION

In the past decade, considerable research efforts have been
devoted to sensor networks due to their extensive applications
in many fields such as information collection, environmental
monitoring, industrial automation and intelligent buildings.
Each sensor node has wireless communication capability and
some level of intelligence for signal processing. The sensor
nodes are usually spatially distributed and coordinated to
perform some global tasks by exchanging information with the
neighboring nodes. An attractive research focus in relation to

This work was supported by the National Natural Science Foundation
of China under Grants 61490701, 61210012, 61290324, 61473163, and
61273156, Tsinghua University Initiative Scientific Research Program, and
Jiangsu Provincial Key Laboratory of E-business at Nanjing University of
Finance and Economics of China under Grant JSEB201301.

Y. Liu and X. He are with the Department of Automation, TNList, Tsinghua
University, Beijing 100084, P. R. China.

Z. Wang is with the College of Electrical Engineering and Automation,
Shandong University of Science and Technology, Qingdao 266590, P. R.
China. He is also with the Department of Computer Science, Brunel Uni-
versity London, Uxbridge, Middlesex, UB8 3PH, United Kingdom (email:
Zidong.Wang@brunel.ac.uk).

D. H. Zhou is with the College of Electrical Engineering and Automa-
tion, Shandong University of Science and Technology, Qingdao 266590,
P. R. China. He is also with the Department of Automation, TNList, Tsinghua
University, Beijing 100084, P. R. China (email: zdh@mail.tsinghua.edu.cn).

∗ Corresponding author.

sensor networks is the so-called distributed filtering problem
whose main idea is to estimate the dynamics of the target
plant based on the distributed nodes. Compared to the tradi-
tional single sensor leading to the traditional central filtering
approaches, each sensor in sensor networks estimates the states
of the dynamic process based on not only its own measurement
but also the measurements from its neighboring nodes. As
such, one of the main difficulties in the distributed filter design
problem over a sensor network with given topology is how to
take the topology information into account by tackling the
complicated couplings between the nodes.

So far, the distributed filtering problem has been gaining an
increasing research interest and a wealth of literature has been
reported in this topic [2], [6]–[8], [10], [11], [14], [15], [17],
[18], [27], [30], [32]. For example, the consensus strategy has
been applied in Distributed Kalman Filters (DKFs) [5], [12],
[22] that allow the nodes in a sensor network to track the
average of the sensor measurements based on consensus filters.
Communication complexity and packet-loss issues have been
discussed for the performance analysis for DKFs in [21]. The
optimal distributed filter has been proposed to minimize the
filtering error variance [3], [26]. In these optimal filters, the
parameters of estimators have been adjusted at each time step
to achieve the minimum mean-square estimation error based
on the received signals. The filtering algorithm guaranteeing
the desired H∞ performance has been put forward in [34].
Note that, in most of the reported results, the target plants
have been limited to the time-invariant systems, where the
filter performances (e.g. boundedness and monotonicity) have
not been investigated in a quantitative way. On the other hand,
a great number of filtering approaches have been proposed
to achieve the optimal statistical performance by means of
minimum variance. Therefore, there is a practical need to
address the distributed filtering problem for time-varying sys-
tems in sensor networks with detailed analysis on the filter
performances including minimum variance, boundedness and
monotonicity.

In many practical applications, the phenomenon of sensor
gain degradation occurs frequently in a random way. This is
particularly true for systems which experience unsteady or
abnormal working conditions [19], [20], [25], [28], [31], for
example, intermittent sensor outages, sensor aging or trans-
mission congestions in networked environments. Note that the
filtering problem for systems whose sensor gains are subject
to random degradation has received some initial research
attention [9]. Unfortunately, despite its practical significance,
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the filtering problem with stochastic sensor gain degradation
over sensor networks has not been investigated yet for time-
varying systems due mainly to the mathematical difficulties,
not to mention the case where the filter performance becomes
a concern in the design. Those filter structures and design
methods in existing literature (e.g. [4], [16], [33]) are not
directly applicable to the addressed filtering problem with
multiplicative disturbances in the minimum variance sense.
The resulting difficulties stem from the facts that: 1) it is
challenging to design an adequate filter gain structure in
order to guarantee the minimum error variance at each time
step over a sensor network if its topology is not completely
connected (i.e. sparse); 2) it is novel to examine how the
filter performance is influenced by the statistical law of the
sensor gain degradation in a mathematically rigorous way
(i.e. monotonicity); 3) it is interesting to establish sufficient
conditions under which the estimation error is exponentially
bounded in mean square; and 4) it is non-trivial to include the
statistical information on the sensor gain degradation in the
filter design. It is, therefore, the main purpose of this paper to
handle the challenges mentioned above by launching a major
study on algorithm design and performance analysis issues for
recursive filter design problems over possibly sparse sensor
networks.

In this paper, the minimum variance filtering problem is
addressed for a class of time-varying systems through sensor
networks with stochastic sensor gain degradation. The gain
degradation is allowed to be different for individual sensor.
The topology of the sensor network is represented by a
directed graph. The minimum-variance distributed filter is de-
signed at each time step using a novel recursive algorithm. The
corresponding filtering performances are then analyzed with
respect to the boundedness and the monotonicity. Sufficient
conditions are obtained under which the estimation error is
exponentially bounded in mean square, and the monotonicity
property for the error variance with respect to the sensor gain
degradation is discussed in the case where all the sensor gains
are subject to degradation with the same possibility. Some
simulation examples are employed to show the effectiveness
of the proposed filtering scheme. The main contributions of
the paper are outlined as follows: 1) a distributed filter
is designed that minimizes the filtering error variance in
the presence of stochastic sensor gain degradation; 2) the
developed filter caters for time-varying systems in sensor
networks, and the algorithm is recursive and thus applicable
for online computation; and 3) the estimation performance is
investigated, including the analysis of the boundedness and
monotonicity of the filtering error dynamics.

Notations. The notation used in the paper is fairly standard
except where otherwise stated. Rn and Rn×m denote, respec-
tively, the n-dimensional Euclidean space and the set of all
n×m real matrices. The superscript “T” denotes the transpose
and the notation X ≥ Y (respectively, X > Y ) where X
and Y are symmetric matrices, means that X − Y is positive
semidefinite (respectively, positive definite). I is the identity
matrix with compatible dimension. M† ∈ Rn×m denotes the
Moore-Penrose pseudo inverse of M ∈ Rm×n. E{x} stands
for the expectation of the stochastic variable x. ∥A∥ denotes

the spectral norm of matrix A, and ∥x∥ refers to the Euclidean
norm of vector x. diag{· · · } stands for a block-diagonal
matrix. diagn{⋆} and vecn{•} are employed to represent a
block-diagonal matrix and a row vector, respectively, whose
entries are all ⋆ and •.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a sensor network whose topology is represented
by a directed graph G = (V, E ,A) of order n with the set
of nodes V = {1, 2, . . . , n}, set of edges E ⊆ V × V , and
a weighted adjacency matrix A = [aij ] with nonnegative
adjacency elements aij . An edge of G is denoted by (i, j). The
adjacency elements associated with the edges of the graph are
positive, i.e., aij > 0 ⇐⇒ (i, j) ∈ E . Moreover, we assume
aii = 1 for all i ∈ V . The set of neighbors of node i plus
the node itself are denoted by Ni = {j ∈ V : aij > 0}. A
communication graph G is said to be completely connected if
for any i, j ∈ V , (i, j) ∈ E .

Consider the following class of linear discrete time-varying
systems

x(k + 1) =
[
A(k) + θ(k)Ã(k)

]
x(k) + w(k), (1)

where x(k) ∈ Rnx is the state; A(k) and Ã(k) are known ma-
trices with appropriate dimensions; w(k) ∈ Rnx is the additive
white noise with E {w(k)} = 0 and E

{
w(k)wT (k)

}
= S(k).

θ(k) ∈ R is the multiplicative noise with E {θ(k)} = 0 and
E
{
θ2(k)

}
= ξ(k). E{x(0)} and E{x(0)xT (0)} are assumed

to be known.
For every sensor node i (i = 1, 2, . . . , n), the measurement

is described by

yi(k) = λi(k)Ci(k)x(k) + vi(k), (2)

where yi(k) ∈ Rny is the measurement of the ith node;
Ci(k)s are known matrices with appropriate dimensions for
all i = 1, 2, . . . , n; vi(k) ∈ Rny is the additive white noise
of the ith node with E {vi(k)} = 0 and E

{
vi(k)v

T
i (k)

}
=

Vi(k) > 0. λi(k), representing the sensor gain degradation
in the ith node, is a random variable distributed over the
interval [ai, bi] (0 ≤ ai ≤ bi ≤ 1) with E {λi(k)} = mi(k)
and Var {λi(k)} = li(k), where mi(k) and li(k) are known
scalars. θ(k), w(k), λi(k) and vi(k) are all mutually indepen-
dent.

Let x̂i(k) ∈ Rnx denote the state estimate of the target plant
from the ith node. In this paper, the filter to be designed is of
the following structure for sensor node i:

x̂i(k + 1) =A(k)x̂i(k) +
∑
j∈Ni

Hij(k)aij

×
[
yj(k)−mj(k)Cj(k)x̂j(k)

]
, (3)

where the matrices Hij(k) are parameters to be determined.
The initial values is x̂i(0) = E{x(0)} for all 1 ≤ i ≤ n. Note
that the proposed structure (3) reflects how the sensor nodes
communicate with their neighbors via Ni so as to guarantee
the unbiased estimation. The unbiasedness can be proven by
mathematical induction as follows.
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Firstly, one can verify that the unbiasedness assertion is
true for k = 0 according to x̂i(0) = E{x(0)} for all i ∈ V .
Secondly we assume that it is true for the integers from 0 to k
and all the j ∈ V . Letting x̃i(k) = x(k)− x̂i(k), we have the
following system that governs the filtering error dynamics:

x̃i(k + 1) =A(k)x̃i(k)−
∑
j∈Ni

Hij(k)aijmj(k)Cj(k)x̃j(k)

−
∑
j∈Ni

Hij(k)aijvj(k) +

{
θ(k)Ã(k)

−
∑
j∈Ni

Hij(k)aij [λj(k)−mj(k)]Cj(k)

}
x(k)

+ w(k), (4)

for i = 1, 2, . . . , n. Then for any i ∈ V , it follows from (4)
that

E{x̃i(k + 1)} =A(k)E{x̃i(k)} −
∑
j∈Ni

Hij(k)aijmj(k)Cj(k)

× E{x̃j(k)} −
∑
j∈Ni

Hij(k)aijE{vj(k)}

+

{
E{θ(k)}Ã(k)−

∑
j∈Ni

Hij(k)aij

× [E{λj(k)} −mj(k)]Cj(k)

}
E{x(k)}

+ E{w(k)}.

Then, considering the facts that w(k), θ(k), x̃i(k), and vi(k)
are all zero-mean, and E{λj(k)} = mj(k), it can be concluded
that E{x̃i(k+1)} = 0 for any i ∈ V . That concludes the proof.

For notational simplicity, we define

x̃(k) = vecTn{x̃T
i (k)}, x̄(k) = vecTn{xT (k)},

M̄(k) = diagn{mi(k)I}, H(k) = [Hij(k)]n×n,

C̄(k) = diagn{Ci(k)}, Ā(k) = diagn{A(k)},
w̄(k) = vecTn{wT (k)}, v̄(k) = vecTn{vTi (k)},
Â(k) = diagn{Ã(k)}, Ti = diag{ai1I, . . . , ainI},
Λ̄(k) = diagn{λi(k)I}, Ei = diag{0, . . . , 0︸ ︷︷ ︸

i−1

, I, 0, . . . , 0︸ ︷︷ ︸
n−i

},

and then (4) can be rewritten in the following form:

x̃(k + 1) =

[
Ā(k)−

n∑
i=1

EiH(k)TiM̄(k)C̄(k)

]
x̃(k)

+

{
θ(k)Â(k)−

n∑
i=1

EiH(k)Ti

×
[
Λ̄(k)− M̄(k)

]
C̄(k)

}
x̄(k)

−
n∑

i=1

EiH(k)Tiv̄(k) + w̄(k). (5)

Defining the error covariance at the kth time step as

P (k) = E
{
x̃(k)x̃T (k)

}
, (6)

the goal of this paper can be stated as designing a filter of the
form (3) for system (1)-(2) so that the filtering error covariance
P (k + 1) is minimized at each time step k.

Remark 1: In the proposed filter, each sensor node esti-
mates the system states based on the local measurement and
measurements of its neighboring sensors. The structure of the
filter is set so as to achieve the unbiased estimation at each
node. The statistics exploited in the filter (i.e., mi(k) for all
i ∈ V) are scalars known a priori, which facilitates the filter
implementation. It is noted that, considering the complicated
interconnections between the sensor nodes, there are various
filter structures that can be adopted to achieve unbiased
distributed state estimation and the proposed structure (3) is
among them.

III. MAIN RESULTS

A. Filter Design

In this subsection, a set of recursive Riccati-like matrix
equations is derived to calculate the filter parameters Hij(k) in
(3) in order to minimize the error variance for system (1). The
following theorem gives the parameterizations of the desired
filter gains in the two cases that the network is completely or
not completely connected.

For presentation convenience, we denote

Ω(0) := E
{
x(0)xT (0)

}
, (7)

Ω(k) := E
{
x(k)xT (k)

}
, (8)

Ω̄(k) := E
{
x̄(k)x̄T (k)

}
= [Ω(k)]n×n , (9)

U(k) := E
{[

Λ̄(k)− M̄(k)
]
C̄(k)x̄(k)x̄T (k)C̄T (k)

×
[
Λ̄(k)− M̄(k)

]T}
= diagn

{
li(k)Ci(k)Ω(k)C

T
i (k)

}
, (10)

W (k) := E
{
w̄(k)w̄T (k)

}
= [S(k)]n×n , (11)

V (k) := E
{
v̄(k)v̄T (k)

}
= diagn{Vi(k)}, (12)

Y (k) := M̄(k)C̄(k)P (k)C̄T (k)M̄T (k) + V (k) + U(k),
(13)

Z(k) := M̄(k)C̄(k)P (k)ĀT (k), (14)

H(k) := ZT (k)Y −1(k) = [Hij(k)]n×n . (15)

Theorem 1: The following statements are true:
a). If the sensor network topology is completely connected,

then the parameters of filter (3) achieving the minimum
filtering error variance are given by:

Hij(k) = Hij(k)a
−1
ij , (16)

and P (k) is calculated as:

P (k + 1) =− ZT (k)Y −1(k)Z(k) + Ā(k)P (k)ĀT (k)

+ ξ(k)Â(k)Ω̄(k)ÂT (k) +W (k). (17)

b). If the sensor network topology is not completely con-
nected, a practical solution for the parameters of filter
(3) is given by:

Hij(k) =

{
Hij(k)a

−1
ij , if aij ̸= 0,

0, if aij = 0,
(18)
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and P (k) obeys the following recursion:

P (k + 1) =

[
n∑

i=1

EiH(k)Ti − ZT (k)Y −1(k)

]
Y (k)

×

[
n∑

i=1

EiH(k)Ti − ZT (k)Y −1(k)

]T

− ZT (k)Y −1(k)Z(k) + Ā(k)P (k)ĀT (k)

+ ξ(k)Â(k)Ω̄(k)ÂT (k) +W (k). (19)

Proof: a). It follows from the definition (6) and the
notations (7)-(15) that

P (k + 1) =

[
Ā(k)−

n∑
i=1

EiH(k)TiM̄(k)C̄(k)

]
P (k)

×

[
Ā(k)−

n∑
i=1

EiH(k)TiM̄(k)C̄(k)

]T

+

[
n∑

i=1

EiH(k)Ti

]
V (k)

[
n∑

i=1

EiH(k)Ti

]T

+

[
n∑

i=1

EiH(k)Ti

]
U(k)

[
n∑

i=1

EiH(k)Ti

]T

+ ξ(k)Â(k)Ω̄(k)ÂT (k) +W (k). (20)

Moreover, Ω(k) can be recursively calculated as follows:

Ω(k + 1) = E
{
x(k + 1)xT (k + 1)

}
= E

{{[
A(k) + θ(k)Ã(k)

]
x(k) + w(k)

}
×
{[

A(k) + θ(k)Ã(k)
]
x(k) + w(k)

}T
}

= A(k)Ω(k)AT (k) + ξ(k)Ã(k)Ω(k)ÃT (k)

+ S(k). (21)

From (20), it follows that

P (k + 1) =

[
n∑

i=1

EiH(k)Ti

]
Y (k)

[
n∑

i=1

EiH(k)Ti

]T

− ZT (k)

[
n∑

i=1

EiH(k)Ti

]T

−

[
n∑

i=1

EiH(k)Ti

]
× Z(k) + ξ(k)Â(k)Ω̄(k)ÂT (k)

+ Ā(k)P (k)ĀT (k) +W (k). (22)

Since Y (k) = Y T (k) > 0, (22) can be rewritten as

P (k + 1) =

[
n∑

i=1

EiH(k)Ti − ZT (k)Y −1(k)

]
Y (k)

×

[
n∑

i=1

EiH(k)Ti − ZT (k)Y −1(k)

]T

− ZT (k)Y −1(k)Z(k) + Ā(k)P (k)ĀT (k)

+ ξ(k)Â(k)Ω̄(k)ÂT (k) +W (k). (23)

In view of (15), it is obvious that P (k+1) is minimized if
and only if

n∑
i=1

EiH(k)Ti = H(k). (24)

To this end, it can be easily seen that, if the network topology
is completely connected, then the minimum variance of the
filtering error is achieved when H(k) is calculated as in (16),
which guarantees

[Hi1(k), . . . , Hin(k)] = [Hi1(k), . . . ,Hin(k)]T
−1
i .

Furthermore, base on (6), the initial value of P is given by

P (0) = E
{
x̃(0)x̃T (0)

}
=

[
Ω(0)− E {x(0)}E

{
xT (0)

}]
n×n

,

and then P (k) can be updated according to (17).
b). In the case that the sensor network topology is not

completely connected, it is easily seen that Ti is not invertible
for all the i ∈ V , and therefore the condition (24) no longer
holds because of the sparse topology. For such a circumstance,
an alternative yet effective way for designing the filter gains
is to calculate H(k) as (18). In doing so, it can be guaranteed
that

[Hi1(k), . . . , Hin(k)] = [Hi1(k), . . . ,Hin(k)]T
†
i , (25)

where T †
i is the Moore-Penrose pseudo inverse of Ti. More-

over, in this case, it is straightforward to see that P (k) can be
recursively determined as (19). This ends the proof.

Remark 2: The filter parameters Hij(k) are calculated at
each time step to minimize the filtering error covariance. It is
worth mentioning that some statistics of the stochastic sensor
gain degradations and noises, the network topology, the state
transition matrix, and the measurement matrices are required
to determine P (k) and Hij(k). To update P (k) and Hij(k) at
each node, it is not necessary to request global measurements
from all the sensors. Thus, P (k) and Hij(k) can be updated
at each node and the proposed algorithm is applicable in
distributed sensor networks. It should also be noted that the
filter designed in Part b) of Theorem 1 is obtained without
assuming the complete connectedness of the network topology,
and the proposed filter is applicable in a sparse sensor network.

In the next subsection, we proceed to deal with the perfor-
mance evaluation problem of the filter developed in Theorem
1. Let us first discuss the boundedness of the estimation error
at each time step.

B. Boundedness

For the dynamics analysis of the estimation error, we
will need the following two widely used concepts for the
boundedness of stochastic processes [1], [29].

Definition 1: The stochastic process ζ(k) is said to be ex-
ponentially bounded in mean square if there are real numbers
η > 0, ν > 0 and 0 < ϑ < 1 such that

E
{
∥ζ(k)∥2

}
≤ η∥ζ(0)∥2ϑk + ν (26)

holds for every k > 0.
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Definition 2: The stochastic process ζ(k) is said to be
bounded with probability one if

sup
k≥0

∥ζ(k)∥ < ∞ (27)

is true with probability one.
For the boundedness of the estimation error, we first es-

tablish sufficient conditions under which the estimation error
is exponentially bounded in mean square, and then generalize
the results to the case of boundedness with probability one.
For this purpose, as in [24], we make the following two
assumptions.

Assumption 1: There are positive real numbers
ā1, ā2, c̄, c, ω̄, ξ̄, l̄, m̄,m, w̄, w, v, v̄ > 0 such that the
following bounds on various matrices are fulfilled for every
1 ≤ i ≤ n and k ≥ 0:

∥A(k)∥ ≤ ā1,
∥∥∥Â(k)∥∥∥ ≤ ā2, c ≤ ∥Ci(k)∥ ≤ c̄,

tr
{
Ω̄(k)

}
≤ ω̄, ξ(k) ≤ ξ̄, mI ≤ M̄(k) ≤ m̄I,

li(k) ≤ l̄, wI ≤ W (k) ≤ w̄I, vI ≤ V (k) ≤ v̄I. (28)

Moreover, the following inequality holds:

ā1

(
1 +

nm̄2c̄2

m2c2

)
< 1. (29)

Assumption 2: There exists a positive real number ϵ > 0
such that the initial estimation error satisfies

∥x̃(0)∥ ≤ ϵ. (30)

Theorem 2: Consider the time-varying system (1)-(2) with
the minimum-variance filter given in (3) whose parameters are
provided in Theorem 1. Under Assumption 1, the estimation
error given by (4) is exponentially bounded in mean square.

Proof: Denoting

Ǎ(k) = Ā(k)−
n∑

i=1

EiH(k)TiM̄(k)C̄(k),

then (5) can be written as

x̃(k + 1) = Ǎ(k)x̃(k) + r(k) + s(k), (31)

where

r(k) =

{
θ(k)Â(k)−

n∑
i=1

EiH(k)Ti

[
Λ̄(k)− M̄(k)

]
× C̄(k)

}
x̄(k),

s(k) =−
n∑

i=1

EiH(k)Tiv̄(k) + w̄(k). (32)

Based on (15), it follows easily from ∥Ā(k)∥ ≤ ā1 and
c ≤ ∥C̄(k)∥ ≤ c̄ that

∥H(k)∥ =
∥∥∥Ā(k)P (k)C̄T (k)M̄T (k)[M̄(k)C̄(k)P (k)C̄T (k)

× M̄T (k) + V (k) + U(k)]−1
∥∥∥

<
ā1m̄c̄

m2c2
:= h̄. (33)

According to the fact that
∥∥∥∥ n∑
i=1

EiH(k)Ti

∥∥∥∥ ≤ n ∥H(k)∥, we

have∥∥Ǎ(k)∥∥ ≤
∥∥Ā(k)

∥∥+

∥∥∥∥∥
n∑

i=1

EiH(k)Ti

∥∥∥∥∥∥∥M̄(k)C̄(k)
∥∥

≤
∥∥Ā(k)

∥∥+ ∥H(k)∥
∥∥M̄(k)C̄(k)

∥∥
< ā1 + nh̄m̄c̄ := ā. (34)

Based on (29) and (33), it can be seen that ā < 1.
Denoting L(k) = diagn {li(k)I}, it is obvious that L(k) <

l̄I . Furthermore, we have∥∥∥∥E{{
θ(k)Â(k)−

n∑
i=1

EiH(k)Ti

[
Λ̄(k)− M̄(k)

]
C̄(k)

}

×
{
θ(k)Â(k)−

n∑
i=1

EiH(k)Ti

[
Λ̄(k)− M̄(k)

]
C̄(k)

}T}∥∥∥∥
=

∥∥∥∥∥ξ(k)Â(k)ÂT (k) +

[
n∑

i=1

EiH(k)Ti

] [
L(k)C̄(k)C̄T (k)

]
×

[
n∑

i=1

EiH(k)Ti

]T
∥∥∥∥∥∥

≤
∥∥∥ξ(k)Â(k)ÂT (k)

∥∥∥+ n2 ∥H(k)∥2
∥∥L(k)C̄(k)C̄T (k)

∥∥
<ξ̄ā22 + n2h̄2 l̄c̄2. (35)

Thus, it is clear that

E
{
rT (k)r(k)

}
<

(
ξ̄ā22 + n2h̄2 l̄c̄2

)
ω̄2 := r̄2, (36)

and the bounds of s(k) can be calculated as follows:

E
{
sT (k)s(k)

}
=E

{
v̄T (k)

[
n∑

i=1

EiH(k)Ti

]T [
n∑

i=1

EiH(k)Ti

]
v̄(k)

+ w̄T (k)w̄(k)

}
<E

{
n2h̄2v̄T (k)v̄(k) + w̄T (k)w̄(k)

}
=E

{
tr
{
n2h̄2v̄(k)v̄T (k) + w̄(k)w̄T (k)

}}
≤n3nyh̄

2v̄ + nnxw̄ := s̄2. (37)

E
{
s(k)sT (k)

}
≥ E

{
w̄(k)w̄T (k)

}
= W (k) ≥ wI := s2I.

(38)

From (31), it follows that

P (k + 1) = Ǎ(k)P (k)ǍT (k) + Ř(k) + Š(k), (39)

where

Ř(k) = E
{
r(k)rT (k)

}
, Š(k) = E

{
s(k)sT (k)

}
.

It is straightforward to see that Ř(k) ≤ r̄2I and s2I ≤ Š(k) ≤
s̄2I .

Consider the following iterative matrix equation with re-
spect to Π(k):

Π(k + 1) =Ǎ(k)Π(k)ǍT (k) +

[
n∑

i=1

EiH(k)Ti

]
V (k)
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×

[
n∑

i=1

EiH(k)Ti

]T

+W (k). (40)

with initial condition

Π(0) =

[
n∑

i=1

EiH(0)Ti

]
V (0)

[
n∑

i=1

EiH(0)Ti

]T

+W (0).

With the definition of Š(k), (40) can be rewritten as:

Π(k + 1) = Ǎ(k)Π(k)ǍT (k) + Š(k). (41)

Then it follows directly that

∥Π(k + 1)∥ ≤ ∥Π(k)∥
∥∥Ǎ(k)∥∥2 + ∥∥Š(k)∥∥ ≤ ā2 ∥Π(k)∥+ s̄2.

(42)
By iteration, we have

∥Π(k)∥ ≤ ā2k ∥Π(0)∥+ s̄2
k−1∑
i=0

ā2i. (43)

Since 0 < ā < 1, we arrive at

∥Π(k)∥ < ∥Π(0)∥+ s̄2
∞∑
i=0

ā2i = ∥Π(0)∥+ s̄2

1− ā2
. (44)

Furthermore, since Π(k) is positive definite for all k, it is
straightforward to see that

∥Π(k + 1)∥ ≥
∥∥Š(k)∥∥ ≥ s2. (45)

Based on (44) and (45), it can be concluded that there are
positive real numbers π, π̄ > 0 such that the inequality πI ≤
Π(k) ≤ π̄I holds for every k ≥ 0.

According to (41), we obtain

ǍT (k)Π−1(k + 1)Ǎ(k)−Π−1(k)

=−
{
Π(k) + Π(k)ǍT (k)Š−1(k)Ǎ(k)Π(k)

}−1

=−
{
ǍT (k)Š−1(k)Ǎ(k)Π(k) + I

}−1
Π−1(k)

<−
(
ā2π̄

s2
+ 1

)−1

Π−1(k). (46)

Defining α =
(
ā2π̄/s2 + 1

)−1
, µ =

(
r̄2 + s̄2

)
/π, and

Vk (x̃(k)) = x̃(k)TΠ−1(k)x̃(k), we obtain from (31) that

E {Vk+1(x̃(k + 1))|x̃(k)} − Vk(x̃(k))

=E
{[

Ǎ(k)x̃(k) + r(k) + s(k)
]T

Π−1(k + 1)

×
[
Ǎ(k)x̃(k) + r(k) + s(k)

]}
− x̃T (k)Π−1(k)x̃(k)

=− x̃T (k)
{
ǍT (k)Š−1(k)Ǎ(k)Π(k) + I

}−1
Π−1(k)x̃(k)

+ E
{
rT (k)Π−1(k + 1)r(k) + sT (k)Π−1(k + 1)s(k)

}
<− αVk(x̃(k)) + µ, (47)

which gives rise to

E
{
∥x̃(k)∥2

}
≤ π̄

π
∥x̃(0)∥2 (1−α)k+µπ̄

k−1∑
i=0

(1− α)i. (48)

Noticing 0 < α < 1 and µ, π̄ > 0, it follows that

E
{
∥x̃(k)∥2

}
≤ π̄

π
∥x̃(0)∥2 (1− α)k + µπ̄

∞∑
i=0

(1− α)i

=
π̄

π
∥x̃(0)∥2 (1− α)k +

µπ̄

α
. (49)

Therefore, the stochastic process x̃(k) is exponentially
bounded in mean square and the proof is complete.

Under Assumption 2, i.e., the initial filtering error is
bounded, we have ∥x̃(0)∥2 < ϵ < ∞. Then, it follows from
(30) and (49) that the stochastic process x̃(k) is bounded with
probability 1. In this case, the following corollary is easily
accessible.

Corollary 1: Consider the time-varying system (1)-(2) with
the minimum-variance filter given in (3) whose parameters
are provided in Theorem 1. Under Assumptions 1-2, the
estimation error given by (4) is bounded with probability 1.

Remark 3: The main proof of Theorem 2 provides a con-
structive way to quantify the error bound in (26). Furthermore,
in practical systems, because of the energy constraints, it is
reasonable to assume that the noise variances and the spectral
norms of transfer matrix and measurement matrix are bounded.

Remark 4: Compared with the results in [24], the bound
obtained in Theorem 2 is obviously dependent on the stochas-
tic sensor gain degradation and the network topology, which
results from the efforts we make on dealing with the stochastic
and distributed nature of the system. Therefore, Theorem 2
offers a more applicable error bound to systems over sensor
networks with stochastic sensor gain degradations. The con-
sideration of the distributed measurements and the verifiable
condition (29) constitute the main differences between our
boundedness analysis and those in [13], [24].

C. Monotonicity
In this part we aim to discuss the relationship between the

filtering performance and the sensor gain degradation. For
demonstration purpose, we assume that all λi(k) have the
same statistics, i.e., M̄(k) = m(k)I . We utilize tr {P (k)}
as a standard criterion to measure the filtering performance.

In the following theorem, the influence from m(k) to
tr {P (k + 1)} is clearly revealed.

Theorem 3: tr {P (k + 1)} is nonincreasing when m(k)
increases.

Proof: Denote Fi = diag {fi1I, . . . , finI} where

fij =

{
0, if aij ̸= 0,
1, if aij = 0.

Based on our assumption in Section II, we have aii = 1 and
therefore I − Fi is positive semidefinite and has at least one
positive eigenvalue for all 1 ≤ i ≤ n.

From the definitions of Ei, Ti, Fi and Theorem 1, it is clear
that

n∑
i=1

EiH(k)Ti −H(k) = −
n∑

i=1

EiH(k)Fi, (50)

and then it follows from (23) and (50) that

P (k + 1) =

[
n∑

i=1

EiH(k)Fi

]
Y (k)

 n∑
j=1

EjH(k)Fj

T

−

[
n∑

i=1

Ei

]
ZT (k)Y −1(k)Z(k)

 n∑
j=1

Ej

T
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+ Ā(k)P (k)ĀT (k) + ξ(k)Â(k)Ω̄(k)ÂT (k)

+W (k)

=
n∑

i=1

n∑
j=1

EiH(k)FiY (k)FT
j HT (k)ET

j

−
n∑

i=1

n∑
j=1

EiZ
T (k)Y −1(k)Z(k)ET

j + Ā(k)

× P (k)ĀT (k) + ξ(k)Â(k)Ω̄(k)ÂT (k) +W (k).
(51)

To simplify (51), we notice that, when i ̸= j, the fol-
lowing facts are true: tr

{
EiH(k)FiY (k)FT

j HT (k)ET
j

}
=

0, tr
{
EiZ

T (k)Y −1(k)Z(k)ET
j

}
= 0. Then, we have

tr {P (k + 1)} = tr

{
n∑

i=1

EiH(k)FiY (k)FT
i HT (k)−

n∑
i=1

Ei

× ZT (k)Y −1(k)Z(k) + Ā(k)P (k)ĀT (k)

+ ξ(k)Â(k)Ω̄(k)ÂT (k) +W (k)

}
. (52)

Furthermore, it follows from (52) that

∂tr {P (k + 1)}
∂m(k)

=
∂

∂m(k)
tr

{ n∑
i=1

EiH(k)FiY (k)FT
i HT (k)

−
n∑

i=1

EiZ
T (k)Y −1(k)Z(k)

}
=

∂

∂m(k)

n∑
i=1

tr

{
EiZ

T (k)Y −1(k)

×
[
FiY (k)FT

i − Y (k)
]
Y −1(k)Z(k)

}
.

(53)

With (13), (14) and (53), we have

∂tr {P (k + 1)}
∂m(k)

=
n∑

i=1

tr

{
2C̄(k)P (k)ĀT (k)EiZ

T (k)

× Y −1(k)
[
FiY (k)FT

i − Y (k)
]
Y −1(k)

− 2C̄(k)P (k)C̄T (k)M̄T (k)Y −1(k)

{
[Fi

× Y (k)FT
i − Y (k)]Y −1(k)Z(k)EiZ

T (k)

+ Z(k)EiZ
T (k)Y −1(k)[FiY (k)FT

i

− Y (k)]

}
Y −1(k) + 2C̄(k)P (k)C̄T (k)

× M̄T (k)
[
FT
i Y −1(k)Z(k)EiZ

T (k)

× Y −1(k)Fi − Y −1(k)Z(k)Ei

× ZT (k)Y −1(k)
]}

. (54)

When m(k) > 0, we obtain

∂tr {P (k + 1)}
∂m(k)

=
n∑

i=1

1

m(k)
tr

{
2Z(k)EiZ

T (k)Y −1(k)

×
[
FiY (k)FT

i − Y (k)
]
Y −1(k)− 2M̄(k)

× C̄(k)P (k)C̄T (k)M̄T (k)Y −1(k)

{
Fi

× Y (k)FT
i Y −1(k)Z(k)EiZ

T (k) + Z(k)

× EiZ
T (k)Y −1(k)FiY (k)FT

i

}
Y −1(k)

+ 2M̄(k)C̄(k)P (k)C̄T (k)M̄T (k)FT
i

× Y −1(k)Z(k)EiZ
T (k)Y −1(k)Fi

+ 2M̄(k)C̄(k)P (k)C̄T (k)M̄T (k)

× Y −1(k)Z(k)EiZ
T (k)Y −1(k)

}
.

Using the well-known matrix identity tr {Γ∆} = tr {∆Γ},
where Γ and ∆ are appropriately dimensioned, we have

∂tr {P (k + 1)}
∂m(k)

=

n∑
i=1

2

m(k)
tr

{
Y −1(k)Z(k)EiZ

T (k)

× Y −1(k)

{
−

[
I − FiY (k)FT

i Y −1(k)
]

×
[
Y (k)− M̄(k)C̄(k)P (k)C̄T (k)

× M̄T (k)
][
I − FiY (k)FT

i Y −1(k)
]T

− Fi

[
Y (k)− M̄(k)C̄(k)P (k)C̄T (k)

× M̄T (k)
]
Fi + FiY (k)FT

i Y −1(k)[Y (k)

− M̄(k)C̄(k)P (k)C̄T (k)M̄T (k)
]
Y −1(k)

× FT
i Y (k)Fi

}}
. (55)

Based on the fact that eig(ΞΨ) = eig(ΨΞ), where Ξ
and Ψ are square matrices with the same dimension and
eig(·) denotes the eigenvalues of a matrix, we have that
eig(Y −1(k)FiY (k)) = eig(Fi). Therefore, the eigenvalues of
Y −1(k)FiY (k) − I are all either 0 or -1. Also notice that
Y (k) − M̄(k)C̄(k)P (k)C̄T (k)M̄T (k) = U(k) + V (k) > 0.
Then it follows from (55) that,

∂tr {P (k + 1)}
∂m(k)

≤
n∑

i=1

2

m(k)
tr

{
Y −1(k)Z(k)EiZ

T (k)

× Y −1(k)

{
−
[
I − FiY (k)FT

i Y −1(k)
]

×
[
Y (k)− M̄(k)C̄(k)P (k)C̄T (k)

× M̄T (k)
][
I − FiY (k)FT

i Y −1(k)
]T}}

.

(56)

Denote

Xi(k) =−
[
I − FiY (k)FT

i Y −1(k)
][
Y (k)− M̄(k)C̄(k)

× P (k)C̄T (k)M̄T (k)
][
I − FiY (k)FT

i Y −1(k)
]T

.

It is obvious that Xi(k) ≤ 0. So there exists a matrix Xi(k)
such that Xi(k) = −Xi(k)X T

i (k) based on the eigenvalue
decomposition of Xi(k), and (56) can be written as
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∂tr {P (k + 1)}
∂m(k)

≤ −
n∑

i=1

2

m(k)
tr
{
Y −1(k)Z(k)EiZ

T (k)

× Y −1(k)Xi(k)X T
i (k)

}
= −

n∑
i=1

2

m(k)
tr
{
X T

i (k)Y −1(k)Z(k)Ei

× ZT (k)Y −1(k)Xi(k)
}
. (57)

Noticing that the trace of a symmetric positive semidefinite
matrix is always nonnegative, for all m(k) ∈ (0, 1), we have

∂tr {P (k + 1)}
∂m(k)

≤ 0, (58)

which means that tr {P (k + 1)} is nonincreasing as m(k)
increases. The proof of this theorem is now complete.

Remark 5: The finding in Theorem 3 is in accordance with
the intuition. Actually, the increase of m(k) can be interpreted
that the sensor or the communication channel is under a
better working condition. Theorem 3 shows that the filtering
performance gets improved when more information about the
measurements is received at each sensor node.

To further illustrate the engineering significance of Theorem
3, let us now look at the two interesting extreme cases of
Fi = I and Fi = 0.

In case of Fi = I , each node just estimates the dynamics
based on x̂i(k + 1) = A(k)x̂i(k) (without any measurement
signals). In such a situation, the measurements yi(k) have
no effect on the filtering performance, and thus ∂P (k +
1)/∂mi(k) = 0 for all 1 ≤ i ≤ n.

In case of Fi = 0, we consider each sensor to be subject
to individual sensor gain degradation, that is, E {λi(k)} =
mi(k). The following result is easily accessible from Theorem
3, and therefore only a sketch of the proof is provided.

Corollary 2: If the sensor topology is completely connected,
then tr {P (k + 1)} is nonincreasing as mi(k) increases for all
1 ≤ i ≤ n.

Proof: When the directed graph is completely connected,
Fi = 0 for all 1 ≤ i ≤ n according to its definition. From
(53) we have:

∂tr {P (k + 1)}
∂mi(k)

= − ∂

∂mi(k)
tr
{
ZT (k)Y −1(k)Z(k)

}
= tr

{
2EiC̄(k)P (k)C̄T (k)M̄T (k)Y −1(k)

× Z(k)ZT (k)Y −1(k)− 2EiC̄(k)P (k)

× ĀT (k)ZT (k)Y −1(k)

}

= tr

{
2EiC̄(k)P (k)

[
C̄T (k)M̄T (k)Y −1(k)

× M̄(k)C̄(k)− P−1(k)
]
P (k)ĀT (k)Ā(k)

× P (k)C̄T (k)M̄T (k)Y −1(k)

}
. (59)

It follows from (13) that C̄T (k)M̄T (k)Y −1(k)M̄(k)C̄(k) <
P−1(k) and, subsequently,

∂tr {P (k + 1)}
∂mi(k)

≤ 0, (60)

which concludes the proof.
Remark 6: In the main results of this paper, a Kalman

filter with proper gain structure is designed to guarantee the
minimum error variance at each time step even if the sensor
network is not completely connected, and the statistical infor-
mation on the sensor gain degradation is explicitly reflected
in the filter design. Then, sufficient conditions are established
under which the estimation error is exponentially bounded in
mean square. Furthermore, the relationship between the filter
performance and the statistical law of the sensor gain degrada-
tion is revealed and analyzed in a mathematically rigorous way.
The matrices Ti and Fi reflect the effects of the possibly sparse
topology on the filter design and performance analysis, which
means that the topology is taken into account and the proposed
approach is applicable in distributed settings. The main dif-
ferences between our work and the decentralized multisensor
Kalman filter in [23] are threefold: 1) the consideration of
the sparse sensor network; 2) the investigation on stochastic
sensor gain degradation phenomenon, and 3) the estimation
performance analysis with respect to the boundedness and the
monotonicity.

In next section, a numerical example is provided to illustrate
our proposed filter design scheme.

IV. NUMERICAL EXAMPLE

The time-varying target plant is modeled by (1) with the
following parameters:

A(k) =

[
0.1315 + 0.0054sin(k) 0.0537

0.0201 −0.1007

]
, Ã(k) = I.

Suppose that w(k) is a zero-mean Gaussian white noise
with covariance 2.5 × 10−5I , and θ(k) uniformly distributes
over [−0.001, 0.001]. The initial value of the state x(0) is
uniformly distributed over [-0.1, 0], and therefore E {x(0)} =
[−0.05, − 0.05]T .

The sensor network is represented by a
directed graph G = (V, E ,A) with the set of
nodes V = {1, 2, 3, 4}, the set of edges E =
{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 4)},
and the adjacency elements associated with the edges of the
graph are aij = 1.

The dynamics of the sensor nodes are described by (2) with
parameters as follows:

C1(k) = [0.82, 0.62], C2(k) = [0.75, 0.80],

C3(k) = [0.74, 0.75], C4(k) = [0.75, 0.70].

The additive noises vi(k) are uncorrelated Gaussian sequences
whose covariances are 2.5 × 10−5I . λi(k) is uniformly dis-
tributed, respectively, over [0.45 + 0.1i, 0.95 + 0.1i] for
i = 1, . . . , 4.

Since the sensor network topology is not completely con-
nected, the results of Theorem 1, Part b) are adopted. At each
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Fig. 1. The estimation error and bound
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Fig. 2. The estimation error and sensor gain degradation

node, P (k) is updated with (19) and Hij(k) is determined
with (18). Fig. 1 plots the real estimation errors and the bound
calculated from Theorem 2. In Fig. 2 we assume that all the
sensor gain degradations have the same statistics, i.e., variables
λi(k) (i = 1, . . . , 4) are uniformly distributed over the same
interval with the length of 0.5. The relationship between the
accumulative estimation error variance in 50 time steps and the
value of m(k) is shown in Fig. 2. As pointed out in Theorem
3, the filtering error variance decreases when m(k) increases.

V. CONCLUSION

In this paper, the minimum variance filtering problem has
been investigated for a class of time-varying systems through
sensor networks subject to both additive/multiplicative noises
and stochastic sensor gain degradation. The gain degradation
phenomenon for each individual sensor occurs in a random
way governed by a random variable distributed over the inter-
val [0, 1]. The distributed filter has been designed recursively
by solving a set of Riccati-like matrix equations, such that
the overall estimation error variance is minimized at each
time step. The performance of the designed filters has been

analyzed in terms of both the boundedness and monotonicity.
Specifically, sufficient conditions have been obtained under
which the estimation error is exponentially bounded in mean
square. Moreover, the monotonicity property for the error
variance with respect to the sensor gain degradation has been
thoroughly discussed in the case where all the sensors are sub-
ject to gain degradation with the same probability. Numerical
simulations have been exploited to show the effectiveness of
the proposed filtering algorithm.
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[2] R. Caballero-Águila, A. Hermoso-Carazo, J. D. Jiménez-López,
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