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Abstract 

In bio-medical domains there are many applications involving the modelling of multivariate time 

series (MTS) data. One area that has been largely overlooked so far is the particular type of time series 

where the data set consists of a large number of variables but with a small number of observations. In 

this paper we describe the development of a novel computational method based on genetic algorithms 

that bypasses the size restrictions of traditional statistical MTS methods, makes no distribution 

assumptions, and also locates the order and associated parameters as a whole step. We apply this 

method to the prediction and modelling of glaucomatous visual field deterioration. 

 

Keywords: Visual Field Deterioration, Glaucoma, Genetic Algorithms, Multivariate Time Series, 

Short Term Forecasting, Model Fitting, Vector Auto-Regressive Process. 

 

1. Introduction 

Much research has gone into the development of ways of analysing MTS data in both the statistical 

and artificial intelligence communities. Statistical MTS modelling methods include the Vector Auto-

Regressive process [18], the Vector Auto-Regressive Moving Average process [18], and other non-

linear and Bayesian approaches [6], while various Artificial Intelligence (AI) methods have been 

developed for different purposes including dependence detection in MTS of categorical data [20], 
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knowledge-based temporal abstraction [16, 22], and forecasting [5, 27]. However, one area that has 

been largely overlooked is the particular type of time series where the data set consists of a large 

number of variables but with a small number of observations. There are inherent difficulties in using 

traditional statistical techniques to model this type of MTS. 

 

Normal tension glaucoma visual field data is one such MTS. Glaucoma is the name given to a family 

of eye conditions [13]. The common trait of these conditions is a functional abnormality in the optic 

nerve, leading to loss of visual field. Ocular hypertension has been known to be a risk factor in 

glaucoma, i.e., the higher the eye pressure the higher the risk. However normal tension glaucoma is 

unusual in that those suffering from the condition have an intra-ocular eye pressure that is normal, thus 

reducing the effectiveness of tonometry [15] as a method of screening for this glaucoma variant. The 

prediction of visual field deterioration in patients who are suffering from glaucoma plays an important 

role in the management, treatment, and control of the disease progress. For example, if the 

deterioration is slowing down, it might be appropriate to reduce the medication; or if the deterioration 

is speeding up, an increase in medication might be needed or surgery might be necessary. 

 

Visual fields are where the retina is divided into a set of points, and the patient is tested to see how 

sensitive their eyesight is at each point [9]. This level of sensitivity is usually a number between 0 and 

60 decibels/log units, which is a measure of retinal sensitivity, 0 being no sensitivity and a value above 

50 being very high sensitivity. Fig. 1 shows the Central Threshold 30-2 test which is usually used for 

normal tension glaucoma where the black squares mark the blind spot. The left hand diagram shows 

how each of the 76 test points is numbered, and the right hand diagram shows how the points are 

grouped according to nerve fibre bundles where there are 16 different groups. The different shading is 

simply to make each group more distinct. Current theory [8, 12] states that deterioration of the visual 

field can be highly correlated if two points lie on the same nerve fibre bundle. The patients within the 

dataset we have access to were tested approximately every six months for between five and 22 years 

thereby producing an MTS of length between 10 and 44 (for both eyes). In [24], the visual field data 

were clearly demonstrated to be multivariate.  
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Fig. 1: The normal tension glaucoma data 

 
We have been researching into the key issues in the modelling and analysis of the short MTS for 

prediction purposes. In particular, we have been looking into statistical MTS modelling methods [11] 

since these have the desirable feature of interpretability in that it is relatively easy to understand the 

internal constructs of the model. This feature is lacking in many modern methods such as neural 

networks. However, there are difficulties in using traditional statistical methods to model short MTS 

data. In this paper we present a novel computational method based on genetic algorithms (GA) that 

can overcome these difficulties, thus extending the capabilities of statistical modelling methods, and 

we apply this method to the forecasting and modelling of normal tension glaucoma visual fields. 

 

2. Multivariate time series and the VAR process 

MTS data is widely available in different fields including medicine, economics, science, and 

engineering. An MTS is a series of observations, xi(t); [i=1,...,n; t=1,...,T], made sequentially through 

time where t indexes the different measurements made at each time point, and i indexes the number of 

variables in the time series. The vector notation (t)x is a shorthand way of referring to the whole set of 

observations made at time t, i.e., (t)x stands for the observations xi(t) where 1≤i≤n. A commonly used 

statistical method for modelling MTS is the Vector Auto-Regressive Process, usually denoted as 

VAR(p) for a model of order p, as defined in Eq. 1.  

(t)εi)(txA(t)x
p

i
i +−= ⋅

=
∑

1

 
(1)

where (t)x is the next data vector of size n (the number of variables in the model), Ai is an n×n 

coefficient matrix at time lag i, and (t)ε  is an n-dimensional zero mean noise vector at time t (usually 
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Gaussian). The value of each element in Ai is usually a bound real number. (t)xi will be assumed to 

have zero mean over the entire sample length t = 1,...,T, i.e., .0
1
∑

=

=
T

t
i(t)x   

 
The standard statistical methods for fitting a VAR process to a set of data often consist of two steps: 

order selection (determining a suitable p) and parameter estimation (calculating the matrices Ai from 

the data). Order selection is commonly performed through the use of information theory based metrics 

such as Akaike's Information Criterion (AIC) [2]. Many of these metrics will impose a restriction on 

the minimum length of a MTS (i.e., setting a lower limit for the series length T), based on the number 

of degrees of freedom of the model being estimated, namely T>np + 11. Here, n is the number of 

variables being modelled, and p is the order of the VAR process. For example, with a MTS involving 

10 variables, to find the most appropriate order of a VAR process with a maximum order of five under 

consideration, T must be at least 52 (the time series length). This restriction is unacceptable for 

modelling many short time series such as gene expression data produced by DNA array technology or 

many medical series such as visual field data. 

 

Additionally the parameter estimation step can experience some difficulties when dealing with a short 

MTS. The standard methods for parameter estimation include Maximum Likelihood (ML) methods, the 

Yule-Walker (YW) equations method, and the Least Squares (LS) method [18]. With ML methods, 

there must be some distribution assumptions on the noise vector. If the MTS values are exclusively 

within a set interval, an appropriate continuous distribution might be difficult to find, this is the case 

with dataset that is the subject of this paper. The YW method can involve matrix inversion, which is 

computationally expensive with large matrices and can fail if the matrix is singular (especially with 

shorter time series). The LS method is often used in preference to the YW equations, but it too can 

involve matrix inversion, and can also impose the degree of freedom restriction mentioned above (this 

is involved in computing an unbiased estimator for the covariance matrix of the associated noise 

vector).  

                                                 
1There might be some small variations in the details of implementation, e.g., S-Plus imposes T>n(p+1). 
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Throughout this paper, the notation nVAR(p) will refer to an n variable VAR process of order p where 

p is an integer greater than zero; we aim to find the best nVAR(p) process for one-step ahead 

forecasting of the visual field dataset. The Noise Model will refer to an nVAR(0) process, i.e., one 

generated by noise. This model is very easy to construct and simulate, and will be used as a simple 

benchmark with which to rate other VAR processes against. A VAR process that is designed to model 

a particular MTS is expected to perform much better than the corresponding noise model, since the 

noise model simply assumes that any time series observations were totally randomly generated, with 

no structure and reliance on previous observations. 

  

In [24] an early attempt was made to cope with the challenging problems in the context of predicting 

glaucoma deterioration. This paper extends that work by presenting an improved version of the 

algorithm and by testing the method more rigorously. New operators and a seeding strategy are 

introduced and extensively tested. Additionally the models are evaluated on directional accuracy as 

well as forecast accuracy. 

 

3. The VARGA method 

This section introduces VARGA, a method for finding the order and associated parameter matrices for 

an nVAR(p) process. VARGA essentially represents a selection of possible nVAR(p) processes to fit 

the data as a set of p n×n matrices; a GA [14] based method is applied to a population of candidate 

solutions over subsequent generations to improve their suitability to fit the data being modelled. Such 

a GA can be used to find the parameters and order of a VAR process without making any of the 

assumptions outlined in Section 2. In addition, VARGA may reduce the length restriction to T>p, 

which makes it possible to model many short MTS. Note that this is the theoretical minimum length an 

MTS could be, given some constant order p.  

 

The following sections describe the VARGA method, including the representation, fitness function, 

genetic operators, and algorithms that are essential for any GA implementation. 
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3.1 Representation 

A VAR process is represented with a chromosome consisting of p n×n matrices. This is shown in 

Fig. 2. Each matrix element is a bound real number. The possible orders of each VAR process is fixed 

between one and some upper limit say MAXORDER. 

C hrom oso m e

a111  …  …
…  a1ij  …
…   …  a1nn

A 1 A 2 A m A p

... ...a211  …  …
…  a2ij  …
…   …  a2nn

am11  …  …
…  amij  …
…   …  amnn

ap11  …  …
…  apij  …
…   …  apnn

 
Fig. 2: VARGA representation 

 
This representation differs from that of a conventional GA in that each gene is a matrix, and each 

matrix has a number of elements. Within Fig. 2, the notation aijk refers to the element at the jth row 

and kth column of parameter matrix Ai. 

 

3.2 Fitness 

As with a normal GA, VARGA needs a suitable fitness function to evaluate candidate solutions to the 

problem. This fitness will rate a potential solution against a given dataset using some evaluation 

criteria. In this paper we will be searching for a VAR process that is optimised to forecast for a 

specific dataset. We will concentrate on one step ahead forecasting, although any number of steps 

could be used. The level of accuracy for VARGA (the fitness function) is defined in Eqs. 2 and 3: 

i)(txA(t)x(t)ε
p
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In Eqs. 2 and 3, )(� tε is the estimation of the noise vector, iA� is the estimation of the ith parameter 

matrix, ε is a scalar that represents the level of noise, and T0 is defined as MAXORDER+1. All other 

variables are defined above. The model with the smallestε value is deemed the most suitable model 

for forecasting since it is assumed that the best estimation for any unobserved noise vector is the zero 



7 

vector. With a GA it is traditional to maximise the fitness, hence the negative forecast error was used 

for the fitness function, i.e., ε− . 

 

The value of ε is computed for all possible one step ahead forecasts for a given set of data, starting at 

the T0
th recorded set of observations. If the order of the VAR process in question was used, then there 

would be a total of T-p forecasts available for a pth order VAR process. Hence with a length 20 MTS, 

a VAR(1) process would be evaluated on 19 forecasts, and a VAR(5) process on 15 forecasts. It can be 

clearly seen that even if these two VAR processes had equal error at all forecast points, then the 

VAR(1) process would have 19/15 (1.267) times the forecast error of the VAR(5) process. Hence the 

fitness function would be biased for larger order models. It would be a simple step to scale the fitness 

error by the number of forecasts used to construct it, but this would still mean that smaller order 

models were evaluated on data that larger order models could not be. By setting the first point that 

forecast accuracy is evaluated on to be the T0
th observation in the MTS, all order VAR processes are 

evaluated on the same number of forecasts and the same set of data. Table 1 demonstrates this for a 

length 20 VAR(3) process with MAXORDER=5. The forecast difference (the absolute value of the 

observed minus the predicted) is summed over all of the 15 forecasts and used for the fitness (fitness = 

negative forecast error). 

Data 
Start End 

Forecast 

(MAXORDER+1-p) 3 (MAXORDER+0) 5 (MAXORDER+1) 6 
(MAXORDER+2-p) 4 (MAXORDER+1) 6 (MAXORDER+2) 7 

� � � 
(MAXORDER+14-p) 16 (MAXORDER+13) 18 (MAXORDER+14) 19 
(MAXORDER+15-p) 17 (MAXORDER+14) 19 (MAXORDER+15) 20 

 
Table 1: Example fitness function 

 
3.3 The VARGA algorithm 

The VARGA algorithm follows a standard GA, but must have enhancements to deal with matrices, 

variable length chromosomes, and length variation. The function UI(MIN,MAX) is a uniformly 

distributed random number generator that returns a whole number between the interval [MIN,MAX]. 

The algorithm is as follows (and is shown diagrammatically in Fig. 3). 
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The initial population of candidate solutions and the genetic operators in steps 4-6 and 8 of the 

VARGA algorithm are described in the following sections. 

1) Create POPULATION chromosomes of size random UI(1,MAXORDER), (the order p) 

2) Sort the population descending according to fitness (Eq. 3) 

3) For g = 1 to GENERATIONS do 

4)  CROSSOVER the populations genes to list X1, CROSSOVER the populations size (order) to list X2 

5)  MUTATE X1s and X2s genes 

6)  MUTATE X1s and X2s size (order) and add both lists back to the population 

7)  Sort the population in ascending order according to fitness (Eq. 3) 

8)  SELECT the new population (size = POPULATION) 

9) Next g 

10) The best VAR process is the chromosome from the final population with the highest fitness score (Eq. 3) 

g>Generations?

Create Initial
Population

Yes

No

Sort Population
By Fitness

g=0 Gene Crossover
Population (X1)

Order 
Crossover

Population (X2)

Gene Mutate
X1 and X2

Order Mutate
X1 and X2

Add X1 and X2
Back to 
Population

Select Best 
from

Final Population
g=g+1 Sort Population

By Fitness
Select New
Population

 
Fig. 3: VARGA algorithm 

 
3.4 The initial population 

With a GA, the initial population is usually generated randomly. With VARGA the initial population 

was seeded with the noise model. Seeding [19, 23] is where the initial population for a GA has some 

or all of its chromosomes set to some predefined representation, as opposed to an entirely random 

selection. Usually these seeds come from expert knowledge or some other fast approximate search 

method, for example hill-climbing [21].  

 

In our implementation a set of random order (within the limits) individuals whose genes are all zero 

matrices fill up half of the initial population, and the other half is randomly generated within the 

specified constraints (see Section 3.8 for the details of all of the VARGA parameters). The 

justification for this is that experimentation has found that a random VAR(p) process is likely to have 

a worse fitness when compared with the noise model for a given MTS. This is due to the accumulation 

of forecast errors through there being specified relationships where there should be none. Hence 
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starting the search from the noise model saves VARGA from trying to improve from a very poor 

starting point. Having the initial population 50% noise model and 50% random VAR(p) processes 

allows some random genes to get mixed in with the zeros of the noise model, otherwise the only 

change from a 100% noise model populated initial population would be through gene mutation. 

Crossover would simply swap zeros between matrices during the initial generations. 

 

3.5 Crossover 

Two crossover methods are used; Order Crossover, which acts on whole matrices, and Gene 

Crossover, which acts on the matrix elements. Both methods are designed to be applied to as much of 

a chromosome as possible, in order to make this stage more efficient.  

 

Order crossover is where matrices from two parents are copied to form children, in a manner similar 

to uniform crossover [26]. Each member of the current population has a chance of being selected for 

breeding (OrderCrossoverRate). The breeding subset of the population is paired up randomly 

(parents), and two children are produced from each set of parents. Two steps construct these children: 

firstly the children are initialised by making a copy of each parent and then secondly for all of the 

matrices in both children, there is a 50% chance that the two children swap a matrix for a particular 

order. If the two children are of different sizes, then this is only performed for the matrices that have a 

corresponding order. The reasoning behind this strategy is that it is assumed that a good parameter 

matrix for a given order (time lag) may not be any use if moved to a different order (time lag), i.e., it 

has been optimised for a specific purpose. The following algorithm and Fig. 4 describe this procedure: 

1) Given Two Parents P1 and P2 

2) Set MINORDER = Min(Order(P1),Order(P2)) 

3) Child1 = P1, Child2 = P2 

4) For i = 1 to MINORDER 

5)  If UI(0,1) = 1 then Swap Matrix i of Child1 and Matrix i of Child2 

6) Next i 

 
Where Min(x,y) returns the smaller number between x and y and Order(z) returns the order of the VAR 

process represented by chromosome z. 
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4Two Random Parents are Selected, P1 and P2
4Child 1 = P1 and Child 2 = p2
4There is a 50% chance that (a,d) are swapped,

(b,e) are swapped and (c,f) are swapped
between Child 1 and Child 2

4In this case only (b,e) are Swapped
Parent 2

Parent 1

a b c

d e f h i

Child 2
No chance of 

being Swapped

Child 1

a e c

d b f h i
 

Fig. 4: Order crossover 
 
Gene crossover is very similar to order crossover. However matrix elements are swapped, and not 

whole matrices. If one of the parents is longer than the other then there is a 50% chance that this 

crossover will be offset by the difference in size. For example if parent one is of order three and parent 

two of order five, either elements from matrices 1, 2, and 3 would be uniformly crossed over from 

both parents, or 1, 2, and 3 of parent one with 3, 4, and 5 of parent two. The procedure is shown in 

Fig. 5 and described in the algorithm that follows. Within this algorithm Childx(i,j,k) is the matrix 

element aijk of child number x and the rest of the terms are defined above. 

1) Given Two Parents P1 and P2 

2) If Order(P1) > Order(P2) then 

3)  Child2 = P1, Child1 = P2 

4) Else 

5)  Child2 = P2, Child2 = P1 

6) End if 

7) MINORDER = Order(Child1) 

8) Offset = (Order(Child2) – MINORDER) × UI(0,1) 

9) For i = 1 to MINORDER 

10)  For j = 1 to n 

11)   For k = 1 to n 

12)    If UI(0,1) = 1 then 

13)     Temp = Child1(i,j,k) 

14)     Child1(i,j,k) = Child2(i+Offset,j,k) 

15)     Child2(i+offset,j,k) = Temp 

16)    End if 

17)   Next k 

18)  Next j 

19) Next i 

Again each parent has a chance of producing offspring in this way where the chance of a member of 

the population being chosen for gene crossover is GeneCrossoverRate. 
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Parent 1 Child 1

Child 2

4Two Random Parents
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4Child 1 = P1, Child 2 = p2
450% Chance that either the Front 3

or Last 3 Matrices of Child 2 are
Crossed Over with Child 1

4In This Case it is the Front Matrices
4Crossover is Uniform

Parent 2
Not Swapped

This Time

 
Fig. 5: Gene crossover 

 
3.6 Mutation 

Two mutation operators are presented. The first mutates the genes, and the second mutates whole 

matrices, either deleting or adding one. 

 

Gene Mutation. When an individual is deemed to gene mutate (steps 6 and 7 in the VARGA 

algorithm), each element of each matrix (denoted aijk as in Section 3.1) is given a chance to mutate 

(GeneMutationRate). If a matrix element mutates, then it is changed according to a random Gaussian 

distribution. Eq. 4 defines this more formally. In this equation, a check is made for each possible 

matrix element that UR(0.0,1.0) is less than the gene mutation rate parameter (GeneMutationRate). 

The two conditions check that the mutation has not allowed an element to deviate from the limits. 

onRateGeneMutati).,.where UR(
,n][ j,k,MAXORDER][i

),N(aa ijkijk

<
∈∈∀

=

0100
11

σ
 

(4)

If aijk < MINGENE then aijk = MINGENE  

and If aijk > MAXGENE then aijk = MAXGENE 

The function UR(MIN,MAX) is a uniformly distributed random number generator that returns a real 

number between the interval [MIN,MAX] (inclusive). MINGENE and MAXGENE are application 

dependant, and are the minimum and maximum values a gene can take; the sum of these two 

parameters is usually zero. The standard deviation σ should be chosen so that it is sufficiently small 

enough so not to cause a mutation to always exceed these two boundaries. 
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Order Mutation is responsible for altering the size of a chromosome. Each chromosome (at the 

appropriate stage in the algorithm (steps 8 and 9)) has a chance of undergoing order mutation 

(OrderMutationRate). If it does, then there is a 50% chance that either it increases or decreases in size.  

W=UI(1,2) Order=MAXORDER?

Order=1?

W=1?
Chromosome

+

Yes

Yes

No

No

Yes

No

(Add) (Delete)

Chromosome

0

 

Additions and deletions are always performed

on the highest order matrix. Any new matrix

that is added consists of zeros, thus ensuring

that the fitness of an individual does not change

when its order increases. The order of an 

individual is not allowed to exceed the

specified limits. This procedure is shown in

Fig. 6. 

 

Fig. 6: Order mutation 

3.7 Selection 

The selection operator is the ranked survival described in [4]. This is the same as the Roulette Wheel 

technique, but the chromosomes rank is used, rather than its fitness. This is because the problem is a 

minimisation problem; hence the Roulette Wheel [14] would favour the worst in a population rather 

than the best. The chance of surviving is equal to a chromosomes fitness divided by the sum of the 

populations fitness. Thus a large forecast error would give a high probability of survival and a low 

forecast error would given a small chance of surviving � which is exactly the opposite of what is 

needed, therefore we base survival on rank. Equal ranking is not dealt with, as it will be very unlikely 

since the fitness is real. Elitism [19] is also used, which is the process of selecting a predefined number 

of the best chromosomes for survival, before the rest of the next population is selected. 

 

3.8 VARGA parameters 

Table 2 details the parameters for the implementation of VARGA presented within this paper. These 

parameters were found to be the best set through many experiments. For example, the minimum and 

maximum gene values were chosen from experience with the Yule-Walker equations: analysis of many 

resultant parameter matrices using the visual field data showed that nearly all of the elements fell 
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within the range detailed in table 2; experience with GAs has shown a large population is needed for 

crossover operators to be effective and the standard deviation for the gene mutation operator was 

selected so that a mutation is likely to cause only a small perturbation around the genes value. 

Parameter Meaning Value 
POPULATION The size of the population 100 
GENERATIONS The number of generations the algorithm is run for 1000 
ELITISM The number of the fittest individuals guaranteed survival 1 
OrderCrossoverRate The chance of a chromosome being chosen for Order Crossover 0.500 
GeneCrossoverRate The chance of a chromosome being chosen for Gene Crossover 1.000 
OrderMutationRate The chance of a chromosome having its order mutate 0.050 
GeneMutationRate The chance of a chromosomes gene mutating 0.005 
MINGENE The minimum value a gene can take -1.250 
MAXGENE The maximum value a gene can take 1.250 
MAXORDER The maximum possible order of a VAR process 5 
σ  The standard deviation for Eq. 4 0.700 
 

Table 2: VARGA parameters 
 
3.9 Population dynamics 

The population grows through the application of genetic operators as in Fig. 7. In this figure, the node 

at the top of the tree (Population) represents the starting size of the population. Two sets of children 

are produced through the application of order crossover and gene crossover. The mutation operators 

are then applied, order and then gene, to these children, where order mutation is applied after gene 

mutation. The population will increase by a proportion equal to 

OrderCrossoverRate+GeneCrossoverRate. The two mutation rates will not affect the increase in the 

population, since they are only applied to the children. Note that the selection operator reduces the 

population back to the size it was before any of the operators were applied. 

Order
Mutation

Order
Crossover

Gene
Mutation

Order
Mutation

Gene
Crossover

Gene
Mutation

Population

 
Fig. 7: VARGA population growth though operators 

 
4. Evaluation 

The proposed algorithm is evaluated against the Yule-Walker equations as implemented by S-Plus 

(version 2000) and the noise model. The evaluation will consist of three criteria. The first is the one 

step ahead forecast accuracy of the methods, where the fitness function described in Section 3.2 is 
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used to evaluate all of the methods. The second evaluates the methods based on the Weighted-Kappa 

[3] metric. This metric indicates a level of agreement between observed and predicted values within an 

experiment, where the level of agreement is in terms of a positive change, negative change or no 

change in deterioration. The last evaluation is on the operators that make up VARGA itself. The 

intention is to demonstrate the effectiveness of these operators. The earlier work on VARGA 

presented in [24] dealt solely with nerve fibre bundle number 5 for 28 patients. In this paper, another 

nerve fibre bundle (number 12 � see Fig. 1) has been chosen to evaluate the methods. The reason for 

this choice is to show that our methods are not just suited to a specific MTS, and that nerve fibre 

bundle 12 is high dimensional and in a position that is often affected with glaucoma first.  

 

4.1 Forecast accuracy 

S-Plus has an easy-to-use function [1] for finding the best-fit VAR(p) process for a given dataset, 

based on the solution of what is called the Yule-Walker Equations. Each patient's visual field results 

give a model that is rated according to Eq. 3. Since S-Plus uses �Whittles Recursion� [28], a limit on 

the minimum length T of a time series with n variables is constrained by Eq. 5.  

)n(pT 1+>  (5)

The records of 280 patients have been made available by Moorfields Eye Hospital in London (UK), 

however for S-Plus to implement a VAR(0) process (the noise model), the number of tests per patient 

must be at least 10. This follows from Eq. 5, where p=0 (the order) and n=9 (the number of variables). 

This length restriction cuts the number of usable patient records down to 82. These 82 patients were 

reduced in numbers again, this time for another set of reasons. As in [24], S-Plus rejected (could not 

provide a result for) many of the time series due to matrix inversion problems and numerical 

instability. As a result, only 34 patients� visual field records were usable. 

 

VARGA, the noise model and the Yule-Walker equations were then run on each of the 34 patients. 

With the VARGA results, these were performed ten times, and then the average is taken (GAs are 

stochastic and so the intention is to show the general performance over several runs of VARGA hence 

removing the chance of a single experiment producing a fluke result). The forecast accuracy of the 
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Yule-Walker equations and the noise model was evaluated in the same way as with VARGA, i.e., using 

the negative forecast error as detailed in Section 3.2. Patients are identified by a number between 0 

and 81, even though only 34 patients are used in the experiments. The experimental results are split 

into two groups, which are described below. Average forecast error (within Fig. 8 and Fig. 10) is the 

value obtained by dividing the forecast error by the number of forecast points. This is defined in Eq. 6. 

)MAXORDER(
Error Forecast Average

−
=

Tn
ε  (6)

 
Where ε  is the total forecast errors defined in Eq. 3, n is the number of variables in the MTS, i.e., 9, 

and T is the length of an MTS for a patient. Note that the lower the average forecast error, the better 

and that the errors are for a one step ahead forecast. 

 

Cases where the S-Plus order is zero. Fig. 8 shows the results where the order of S-Plus and the 

noise model are equal, i.e., where S-Plus thought that the most likely model to fit the data was a zero 

order VAR Process. The total number of patients for which this is the case is 15 out of the 34. Here 

VARGA clearly does much better than the noise model in all cases, ranging from 170% to 600% 

better, with an average improvement of 327%. For all of these 15 patients, if we apply Eq. 5, we find 

that the maximum order can be 1. However S-Plus decided that a VAR(0) process was suitable, even 

though it had the option of choosing a VAR(1) process. This inappropriate choice of order is down to 

the AIC metric (used for order selection by S-Plus) failing to work adequately on a short MTS. 
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Fig. 8: Forecast error � S-Plus and noise equal 

 
Fig. 9 shows the order VARGA selected for the same patients. Note that the order is fractional in some 

cases as it has been averaged over the ten runs. Here the order is between three and five, with the 

average being about four. 
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Fig. 9: VARGA order � S-Plus and noise equal 
 
Cases where the S-Plus order is greater than zero. Fig. 10 summaries the results for those patients 

where S-Plus produced models with an order greater than zero. Here VARGA does better than S-Plus 

in 18 out of 19 cases, improving on forecasting accuracy between 200% and 450%. In the single case 

that S-Plus is better than VARGA (patient number 29), S-Plus produces an average forecast error 

about 70% of the VARGA method. 
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Fig. 10: Forecast error � S-Plus and noise not equal 

 
The order results are summarised in table 3. The order found by VARGA seems to be on average 

between 3.5 and 5, suggesting that an order of four would be most suitable for the data. S-Plus, 

however, chooses lower orders because of size restrictions and problems applying the AIC metric on 

short time series. 

Method Number of Order 
Noise 19 of 0 
S-Plus 16 of 1, 2 of 2, 1 of 3 

VARGA 1 of 3.8, 1 of 4, 1 of 4.2, 2 of 4.3, 2 of 4.4, 3 of 4.5, 2 of 4.6, 3 of 4.8, 4 of 5 
 

Table 3: Order for cases where S-Plus order ≠ 0 
 
All cases together. Table 4 summaries the forecast accuracy for all three methods on all of the 34 

patients; this shows that VARGA performs much better than the other two methods. The average 

sensitivity at each point in the visual field over all of the test results from the 34 patients is 16.907. In 
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table 4 the average forecast error per point (By Point Value) is given for the three the methods. Clearly 

VARGA is several times better than the other two methods. By Point Percentage distributes the error 

by the average sensitivity and then lists the results as a percentage. 

Measure Noise S-Plus VARGA 
By Point Value (BPV) 3.048 2.475 1.144 

By Point Percentage (BPV / 16.907)×100% 18.028% 14.639% 6.766% 
 

Table 4: Average forecast error by point 
 
4.2 Weighted-Kappa 

The Weighted-Kappa metric is used to rate agreement between the classification decisions made by 

two or more observers. In this case the two observers are the recorded visual field test results and the 

predicted results from a VAR process. The classification from each observer for each point )(txi  is 

divided into three states as in table 5. Within this table, direction of change refers to the shorthand 

description for whether the change is worsening the condition (-), not altering at all (0) or improving 

(+). This classification is based on the change between a point measured at two successive tests, i.e., 

the direction of change. 

Direction of Change Definition 
Deterioration (-) Ω−<−− )1()( txtx ii  
No change (0) Ω≤−− )1()( txtx ii  

Improvement (+) Ω>−− )1()( txtx ii  
 

Table 5: Visual field change classification 
 
The constantΩ  gives a margin of error for defining equality, since the visual fields are treated as real 

numbers (they are integers ranging between 0 and 60). This makes it very unlikly that any pair of 

observed and predicted points will be equal. In this paper we have choosen .5.0=Ω  A 3×3 table of 

counts is constructed for each forecast where each table element is referred to as Countij. Rows are 

indexed according to the predicted category and columns by the observed category. The same number 

of one step ahead forecasts are performed as with the VARGA fitness function, but the differences 

between forecasts are considered, i.e., the direction of change. This results in a total of 

∑∑
= =

=−−
2

0

2

0

)1MAXORDER(
i j

ijCountTn possible classifications.  
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Once this table has been completed, the Weighted-Kappa value can be computed using the procedure 

detailed in [3]. This metric was evaluated only for the Yule-Walker equations and VARGA since the 

noise model will simply classify any prediction as remaining the same; its forecast is always zero. 

Hence the noise model will have a very low Weighted-Kappa and thus not much use in comparison. 

Table 6 is the suggested interpretation of Kappa values to indicate the strength of agreement between 

two observers [3], which we use as an approximate interpretation for Weighted-Kappa. Although the 

Weighted-Kappa values are normally higher than those of Kappa, here we are interested in the 

assessment of the agreement strength between two methods according to their respective categories. 

Kappa (K) Agreement Strength 
2.00 ≤≤ K  Poor 
4.02.0 ≤< K  Fair 
6.04.0 ≤< K  Moderate 
8.06.0 ≤< K  Good 
0.18.0 ≤< K  Very Good 

 
Table 6: The Kappa guideline 

 
Weighted-Kappa results 

Tables 7 and 8 show the results of the evaluation of the Weighted-Kappa metric run on the 34 patients 

for S-Plus and VARGA. Table 7 shows how the 34 sets of results per method can be divided into 

strength categories according to table 6. Table 8 shows summary statistics over all of the runs. S-Plus 

is listed twice, once for when the selected order was zero, and then again for results where the 

corresponding order was not zero (i.e., not the noise model). 

Weighted-Kappa Count Agreement Strength 
S-Plus VARGA 

Poor 19 (4) 0 
Fair 6 (6) 1 

Moderate 8 (8) 7 
Good 1 (1) 18 

Very Good 0 8 
 

Table 7: Weighted-Kappa strength count results by category 
 
Table 7 shows clearly that the majority of the VARGA results strongly agree with the deterioration 

trends within the data, a total of 26 out of 34, i.e., about 76%.  
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With the S-Plus, the values in parenthesis are those results with an order greater than zero. Hence it 

can be clearly seen that there is very poor agreement when S-Plus chooses the noise model. However, 

even when comparing non-noise model results, VARGA performs better. 

Weighted-Kappa Count Summary 
Statistic S-Plus (Order=0) S-Plus (Order>0) VARGA2 

Mean 0.201 0.359 0.684 
Standard Deviation 0.222 0.173 0.153 

Median 0.091 0.380 0.741 
Minimum 0.000 0.026 0.219 
Maximum 0.616 0.616 0.857 

 
Table 8: Weighted-Kappa strength count results by value 

 
Table 8 shows clearly that the VARGA one step ahead forecasts on average give a good level of 

agreement with the observed visual fields. The S-Plus results (order=0) are very poor, suggesting very 

little agreement with the original data�s trends. However the S-Plus results (excluding the results 

where the order is zero) are much better, again showing that the noise model is the poorer choice given 

a selection of orders. On the other hand, the results for VARGA have a higher average for the 

Weighted-Kappa metric (almost twice as good as the average results for S-Plus), and have a lower 

standard deviation, indicating a more stable set of results. VARGA would therefore be the better 

choice based on this metric because its forecasts agree strongly with the trends in the original data. 

 

4.3 Operator experiments 

The final experiment was to see how effective the various operators are. There are four operators 

defined in VARGA, and it would be useful to see if some of them can be replaced by combinations of 

the others. An extensive experiment was designed, executed, and analysed towards this end. VARGA 

was executed a total of ten times with each different combination of operators on a number of patients. 

With the four operators Gene Mutation, Order Mutation, Gene Crossover, and Order Crossover, there 

are a total of sixteen possible combinations. However the case where all of the operators are zero is 

ignored, because VARGA would simply just run selection on each population, and not add or change 

any individuals, thus not increasing the fitness count. An experiment Run is identified by a binary digit 

                                                 
2The VARGA results were averaged over the ten runs, and then summary statistics taken from these patient 
averages. 
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indicating whether an operator rate has a value as defined in table 2 (if the digit is one) or is zero. For 

example, 0101 (or Run 5) has operator rates GeneMutationRate=0%, OrderMutationRate=5%, 

GeneCrossoverRate=0% and OrderCrossoverRate=50%. The experiments were performed on a total 

of eight patients for a total number of 100,000 fitness function calls. Setting a limit on the fitness 

function calls is a fairer way of ensuring all of the experiments are fairly matched since each 

combination of operators result in a different number of offspring being generated. Fixing the number 

of generations would simply bias the experiments towards the ones that use the most number of 

operators. Only eight patients (~10% of the total number available) were chosen since each experiment 

is repeated ten times; hence it would take a very long time to complete if all the patients had been 

selected. Therefore there are 15 sets of operator experiments for 8 patients by 10 repeats per patient 

which gives 15×8×10=1200 experiments. 

 

The results for these experiments have been summarised in table 9. The generations average has been 

listed as an indication of their typical values under the different operator combinations. The algorithm 

is terminated when the number of fitness function evaluations exceeds 100,000 calls. Gen. refers to the 

number of generations that correspond to 100,000 function evaluations; the figures displayed are 

averages over the 1200 experiments.  

 

When looking at the results of these experiments it is immediately clear that the inclusion of Gene 

mutation improves the fitness from approximately -350.000±164.000 to -180.000±175.000, changes 

the Order from 3.0±1.4 to 4.0±0.7, and the Weighted Kappa from 0.006±0.020 to 0.550±0.240. For 

example, when this operator is not included in these experiments (Runs 1..7) the fitness is very similar 

(in fact almost equal to the average of the corresponding noise models). This is because the initial 

populations were set to a selection of random order VAR processes where each matrix element was 

either zero (the noise model) or a random value within the gene element limits (50% chance of one or 

the other). This demonstrates that a random individual is nearly always worse than the noise model, 

since the final best individual is the noise model or very similar to it. The fitness is unlikely to increase 

beyond this point because selection ensures a zero element population before the operators (that are 
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applied) can make any useful changes. Once this zero-element-individual state is achieved (or very 

close to it), a change is impossible in most cases. Order mutation may remove a matrix, which in these 

cases would not change fitness. If it adds a matrix then it is a zeroed matrix: again resulting in no 

fitness change. Both crossover operators merely arrange genes around, and do not alter their values.  

 

It is also interesting that the standard deviation of the order parameter in run 12 and 13 drops 

dramatically from 0.9 (runs 8 to 11) and 0.7 (runs 14 and 15) to 0.112 and 0.191 respectively. This 

could be because of the results of combining the Order mutation and Gene crossover operators; the 

latter selects a consistent order, and the former a good fitness, hence the combination tries to select 

both a consistent order and good fitness. 

Operators Fitness Order Weighted Kappa 
Run Gen. Mean SD Mean SD Mean SD 

0001 (1) 1979 -350.236 164.591 3.1 1.343 0.004 0.010 
0010 (2) 999 -348.178 163.949 3.1 1.478 0.004 0.020 
0011 (3) 665 -348.112 163.570 3.1 1.322 0.011 0.045 
0100 (4) 19982 -350.236 164.591 2.8 1.303 0.004 0.010 
0101 (5) 1978 -350.236 164.591 3.2 1.420 0.004 0.010 
0110 (6) 999 -346.198 162.427 2.9 1.389 0.008 0.021 
0111 (7) 664 -348.304 163.638 3.2 1.406 0.006 0.016 
1000 (8) 1322 -194.298 181.108 4.0 0.981 0.517 0.221 
1001 (9) 1979 -183.067 179.185 3.6 0.919 0.565 0.241 
1010 (10) 999 -181.923 184.869 3.2 0.906 0.560 0.246 
1011 (11) 664 -173.251 179.076 3.7 0.941 0.589 0.259 
1100 (12) 1066 -193.859 179.828 5.0 0.112 0.510 0.219 
1101 (13) 1978 -169.234 174.577 5.0 0.191 0.595 0.242 
1110 (14) 999 -169.746 174.301 4.0 0.787 0.609 0.245 
1111 (15) 664 -166.865 174.621 4.5 0.693 0.613 0.244 

 
Table 9: Operator experiment results 

 
It can be clearly seen that all of the operators acting together are more effective than any other 

combination. It is worth noting that the best case (Run=15) and the worst (non-noise model) case 

(Run=8) differ by about 16.4%, the Weighted-Kappa values differ by about 18.4%. These are the two 

cases where either all of the operators are used, or just the gene mutation operator is used. The order 

column demonstrates a level of agreement between those experiments that have a low forecast error, 

being between 3 and 5. The standard deviation for the order reduces very significantly, by about 

29.4%, between experiment 8 and experiment 15, which indicates that a more consistent order 

selection can be achieved when more of the genetic operators are used together. Finally, it would be 
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fair to conclude from the observations about the runs 1..7 and from the runs 8..15 that the gene 

mutation operator is the most powerful operator, but it will work even better when combined with the 

other operators. 

 

4.4 Discussion 

The following summarises the observations and conclusions draw from the experiments in this paper. 

 

For short MTS, conventional methods for order determination can be unreliable, e.g., the AIC metric. 

Parameter estimation methods can also fall down, i.e., matrix inversion errors and numerical 

instability. 

 

Although the performance of the Yule-Walker equations is better when the time series is long; 

VARGA still gives a better set of results for 33 cases out of 34. Further, for those applications 

involving a short MTS such as the glaucoma visual field data, the Yule-Walker equations (in S-Plus) 

either cannot model them to a sufficiently high degree of accuracy or cannot model them at all. 

 

VARGA�s superior performance might be explained in part by the fact that approximately 60% of the 

resulting parameter matrices are zero. VARGA assumes that any relationships between variables are 

zero until proved otherwise, i.e., when a zero changes through mutation and the corresponding fitness 

improves. The standard statistical methods assume that there is some degree of relationship between 

all variables at all time lags, which appears to be counter-intuitive. 

 

VARGA could have performed so well on the visual field data because of the association between the 

results of the tests. If a patient has a certain level of visual field deterioration, then the results of the 

next test would be expected to be similar if not worse, hence the suitability of modelling the data as an 

MTS. 

 

 



23 

5. Concluding remarks 

Model selection is arguably the most important and most difficult aspect of model building, and yet is 

the one where there is least help [7, 10]. This situation is even worse for modelling short MTS data. In 

this paper we have presented a method for learning a Vector Auto-Regressive process from such a 

MTS. This is achieved through a real valued matrix based representation and appropriate crossover 

and mutation operators for a GA. The results clearly show that the VARGA model provides a better 

method for fitting a VAR process to a short MTS than the conventional statistical methods. 

 

There are many real-world applications involving the modelling of short MTS, especially in 

bio-medical domains. Our proposed method has been applied to the effective prediction of 

glaucomatous visual field deterioration and we have obtained a good understanding of the genetic 

operators used in the method. Future work will concentrate on the development of more efficient 

algorithms and their application to other bio-medical problems. One such modelling approach that is 

currently being studied is the decomposition of high-dimensional short length MTS into a series of 

smaller dimensional MTS, where there are strong relationships between members of the same 

sub-group but weak relationships between members of different sub-groups. We have had some 

promising results with visual field data, simulated data, and chemical process data [25]; the intension 

is to apply VARGA to these decomposed groups and then evaluate the accuracy of the resultant 

forecasts.  

 

With the advent of DNA microarray and chip technologies, gene expression can be explored on the 

�genome scale� [17]. Much of the research in gene expression data analysis has been on the 

application of clustering algorithms, visualisation methods, and Boolean networks. However many of 

the gene expression data collected are essentially short and high-dimensional MTS. We will apply the 

VARGA methodology with the aforementioned variable grouping technique to the analysis of gene 

expression data, especially in the virology domain. 
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