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Abstract

This paper is concerned with the active fault tolerant control (FTC) problem for an Internet-based networked three-

tank system (INTTS) serving as a benchmark system for evaluating networked FTC algorithms. The INTTS has two

parts located at Tsinghua University in China and at the University of South Wales in the UK, respectively, which are

connected via Internet. With the INTTS as an experimental platform, the active FTC problem is investigated for a class

of nonlinear networked systems subject to partial actuator failures. A binary switching random sequence with a known

distribution is employed to describe the packet dropout phenomena induced by network cables with limited-capacity.

Once a specific actuator failure is detected and confirmed by a fault diagnosis unit, the control law is then reconfigured

based on the information of the detected fault. Both the stability and the H∞ disturbance attenuation performance

are guaranteed for the closed-loop system by using the remaining reliable actuators. Extensive experiments are carried

out on the active fault tolerant control problem of the INTTS with partial actuator failures and the effectiveness of the

proposed scheme is illustrated.
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I. Introduction

Manufactured by the Amira Automation Company in Germany, the Three-Tank System (TTS)

DTS 200 has been used as a benchmark system to evaluate the algorithms for the fault detection

and diagnosis (FDD) problems and the fault tolerant control (FTC) problems in the past decades.

So far, the TTS DTS 200 has been widely adopted in developing FDD and/or FTC techniques due

mainly to the facts that its nonlinear mathematical model can be precisely established and the leak-

age/sensor/actuator faults can be easily realized in the equipment manually. The profile of DTS 200
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Fig. 1. A benchmark system: DTS 200

is shown in Fig. 1 and the detailed description of this system can be found in [1, 2]. Based on this

benchmark system, much work has been done on FDD and/or FTC problems, see e.g. [3–9].

The rapid development of network technologies has recently stimulated wide applications of the

so-called networked systems (NSs). The NSs are defined as the control/sensing systems using com-

munication network cable to exchange data (instead of using ideal point-to-point wires). This kind

of systems has many advantages as compared with the traditional point-to-point systems and many

successful applications have been reported in the literature during the past ten years [10, 11]. To

better verify the networked filtering/FDD/FTC algorithms, we have modified the TTS into the so-

called Internet-based networked three-tank system (INTTS) [2]. The INTTS has been built up by

using the NetCon platform [12] that connects the TTS at Tsinghua University in China and the con-

troller/fault diagnosis unit at the University of South Wales in the UK through Internet, see Fig. 2.

Based on the INTTS, the problems of networked state estimation, fault detection and isolation as well

as fault tolerant control have been investigated [13,14]. Note that the main difficulties in dealing with

these networked analysis/design problems stem from the incomplete signal phenomena in a networked

environment, which include communication delays, packet dropouts, signal quantizations as well as

multiple packet transmissions. These phenomena hinder the direct usage of traditional FDD/FTC

algorithms on networked systems [16,17].

An FTC system is a closed-loop control system capable of maintaining its stability and desired
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Fig. 2. Setup of INTTS

performance even in the presence of faults [18]. The analytical redundancy-based FTCS can generally

be classified into two categories: the passive FTCS where controllers are designed fixedly to be robust

against a specific class of faults as well as the active FTCS where the system component failures are

reacted actively and the controller is reconfigured to accommodate the faults, see [19–21]. FTC results

for traditional systems can be found in [22, 23]. However, compared with the fruitful FDD results for

networked systems, the FTC problems in networked environments have gained relatively less research

attention and the corresponding results have been scattered [24,25].

It should be noticed that most existing FTC results for NSs have been concerned with the passive

FTC strategies. For a passive FTC strategy, the same controller is used before and after the fault

occurrence, and this may give rise to the inability for the controlled system to achieve its best perfor-

mance in the healthy case. Apparently, it would be less conservative yet more challenging to research

into the active FTC problem for NCSs than its passive counterpart. Unfortunately, to date, there have

been very few results reported for the FTC problems of NCSs especially in the practical applications.

Furthermore, as is well known, the plant and signal are inevitably simulant for numerical simulations

and, therefore, it is of more significance to consider a physical system in order to better verify and

implement the designed FTC algorithms and methods in practice.

In [15], an active fault tolerant control problem has been investigated for an INTTS with partial

actuator faults, where only the linear case has been considered. In our present paper, a more realistic
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nonlinear system model of INTTS is employed, based on which the active fault tolerant control problem

is thoroughly investigated. The main contributions of this paper are highlighted as follows: 1) an active

fault tolerant control problem is studied for a nonlinear networked system with partial actuator failures,

where the addressed kind of nonlinearity is more general than the usually investigated Lipschitz-type

nonlinearity; 2) a new fault isolation technique is proposed which is proven to be more efficient than

the residual contribution degree approach proposed in [2]; 3) experiments over a practical INTTS are

conducted and the proposed techniques are verified via a real networked system.

Notation. The notations used throughout this paper are fairly standard. Rn and Rn×m denote,

respectively, the n dimensional Euclidean space and the set of all n × m real matrices. P > 0

(respectively, P < 0) means that the matrix P is real, symmetric and positive definite (respectively,

negative definite). The subscript “T” denotes the matrix transpose. Pr{·} represents the occurrence

probability of the event ·, and E{y} is the mathematical expectation of a stochastic variable y. l2[0,∞)

is the space of all square-summable vector functions over [0,∞), and ∥x∥ is the standard l2 norm of

x, i.e., ∥x∥ = (xTx)1/2, and Z+ stands for the set of nonnegative integers. x(i) stands for the ith

component of vector x. In symmetric block matrices, we use “∗” to represent a term that is induced

by symmetry, Matrices, if their dimensions are not explicitly stated, are assumed to be compatible for

algebraic operations.

II. System Description and Problem Formulation

The controlled system considered in this paper is an INTTS that has been built as a benchmark

system for the evaluation of networked fault diagnosis and FTC algorithms. It connects the equipment

at Tsinghua University (Beijing, China) with that at the University of South Wales (Wales, UK)

through Internet. The whole INTTS system is composed of a TTS DTS200 [9], two NetCon equipment

used for the implementation of control and fault diagnosis algorithms as well as the Internet interface, a

networked camera used for real time on line monitoring, a PC used for downloading the algorithms and

operational observation, as well as the Internet used for data transmission. The hardware structure is

shown in Fig. 2, and the detailed description of INTTS can be found in [2].

In this paper, we are interested in investigating the active fault tolerant control problem for the

INTTS with partial actuator faults, see Fig. 3 for the block diagram. The random packet dropout

phenomena in both the forward and backward data transmission processes are taken into account.

Once an actuator fault is detected and isolated by the fault diagnosis unit comprising a fault detection

filter and a fault isolation strategy, the controller is reconfigured so as to guarantee system performance

by using the remaining reliable actuators.

After model simplification and discretization [2], the mathematical model of the TTS can be de-
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Fig. 3. Block diagram of the active fault tolerant control scheme

scribed by the following nonlinear discrete-time system:
xk+1 = Axk +Hg(xk) + Buk +Ddk,

zk = Exk,

yk = Cxk,

(1)

where xk ∈ Rnx is the state vector (water levels in the three tanks); uk ∈ Rnu is the control input

(water inflow of the three pumps); dk ∈ Rnd is the disturbance belonging to l2[0, ∞); yk ∈ Rny is

the measurement output (water heights in three tanks) and zk ∈ Rnz is the controlled output (the

weighted average of the offsets of the three water levels from the desired value). g(xk) is a vector-valued

nonlinear function satisfying the sector-bounded condition [27,28]

[g(xk)− T1xk]
T [g(xk)− T2xk] ≤ 0, ∀xk ∈ Rnx , (2)

where T1 and T2 are known real constant matrices and T = T1 − T2 is symmetric positive definite

matrices. Let x0 ∈ Rnxrepresent the known initial condition. All the system matrices are known, real,

and constant with appropriate dimensions.

Remark 1: Since the three-tank system is essentially nonlinear, the term g(xk) is preserved in the

modeling process in order to characterize the nonlinearities resulting from the unmodeled dynamics,

linearization errors, external disturbances, etc. The nonlinearity descriptions in (2), called sector-

bounded nonlinearities, are quite general that include the usual Lipschitz conditions as a special case.
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Assumption 1: The measurement matrix of system (1), C, is a matrix with full column rank.

Due to limited bandwidth of the communication channel, data packets carrying measurement signals

or control signals could be lost during the transmission process and such phenomena can be modeled

by {
ỹk = λ1kyk,

uk = λ2kvk,
(3)

where ỹk ∈ Rny is the measurement received at the controller node and vk ∈ Rnu is the control signal

calculated in the same place before being transmitted to the plant. λ1k and λ2k are two Bernoulli dis-

tributed stochastic variables that reflect the random data dropouts occurred in the sensor-to-controller

channel and controller-to-actuator channel, respectively.

Assumption 2: The mathematical expectations

E{λ1k} = β1 and E{λ2k} = β2,

as well as the correlation coefficient ρ between λ1k and λ2k are all known scalars that can be obtained

a priori through statistical tests, see [29].

In the present work, we focus on the situation where the data transmission process may suffer from

random packet dropout and partial actuator faults. We are interested in the analysis and design

problem of an active fault-tolerant controller, which includes a fault diagnosis unit followed by a

controller reconfiguration strategy. The fault diagnosis, unit is used to detect and locate the faulty

actuator. Once an actuator fault is diagnosed, the control gain is then reconfigured to a proper one

corresponding to the faulty actuator. The plant is stabilized with certain performance achieved via

manipulating the remaining reliable actuators before the faulty actuator is repaired or replaced.

Consider a fault detection filter of the following form:{
x̃k+1 = Gx̃k +Nỹk +Mvk,

rk = Lx̃k.
(4)

where x̃k is the filter state and rk is the residual signal that indicates whether there is a fault. G, N ,

M and L are the filter parameters to be designed.

The controller is chosen as follows:

vk = KFTC ỹk, (5)

where

KFTC =

{
Kh, Fault free

Kf , Actuator faults
(6)

The control gains, in both the faulty case and the fault free case, will be designed within an H∞

framework. Furthermore, the fault tolerant controller (with respect to partial actuator faults) can be
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realized with the following strategy: when there is no fault detected, a normal H∞ control gain Kh is

utilized and, once some specific actuator faults are confirmed, the control gain is switched to Kf that

is designed according to the faulty actuators.

Assumption 3: Although fault may occur with one or more actuators, the whole system can still be

stabilized by the remaining reliable actuators.

Assumption 4: here is at most one fault that can occur at a certain time instant.

We are now in a position to state the main problems to be addressed in this paper. The purpose of

this paper is to deal with the following three interrelated problems.

Problem 1: Design an H∞ controller (6) for system (1) with gain Kf in the fault-free situation.

Problem 2: Design a fault detection filter (4) for system (1) and a fault isolation strategy to

diagnose the actuator fault.

Problem 3: Design an H∞ fault tolerant control law (6) for system (1) with gains Kf corresponding

to the controller with a specific failure actuator. Once an actuator fault is determined, the control

gain is switched to Kf .

Remark 2: Note that Problem 1 is actually a special case of Problem 3 if no fault occurs, and this

indicates that Problem 1 can be solved by solving Problem 3 with a constraint that there is no actuator

fault.

III. Main Results

In this section, the main results of this paper are obtained that include the design of a fault diagnosis

unit and a controller reconfiguration strategy.

Let Ω ⊆ {1, 2, . . . , nu} denote the set of actuators that are susceptible to fail and Ω̄ = {1, 2, . . . , nu}\Ω
represent the set of reliable actuators. Based on this, the matrix B can be decomposed as

B = Bω̄ +Bω, (7)

where Bω̄ and Bω are determined from B by setting the columns corresponding to Ω̄ and Ω as zeros,

respectively. The outputs of the faulty actuators uωk are considered to be arbitrary signals belonging

to l2[0,∞), which can be regarded as external disturbances of the system. The output of the reliable

actuators uω̄k is used for the control purpose.

A. The Fault Diagnosis Unit

A.1 The Residual Generation Filter Design

By introducing an auxiliary term, system (1) can be rewritten as
xk+1 = Axk +Hg(xk) +Buk +Ddk +Bωfk,

zk = Exk,

yk = Cxk,

(8)
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where fk ∈ Rnu is the fault signal and Bω is the same as defined in (7).

Remark 3: Note that Bωfk is employed to characterize the actuator fault. fk = 0 represents the

normal case with no fault; fk = −uk corresponds to the case that there is one or more actuator failure

faults; and fk = αuk describes partial actuator gain faults with a gain 1 + α.

Define ηk =
[
xT
k x̃T

k

]T
, ζk =

[
fT
k dTk

]T
and r̃k = rk−fk. According to (3)-(5) and (8), we have

the following augmented system:{
ηk+1 = Aηk + (λk − β)Xηk + Hg(Zηk) +Bζk,

r̃k = Cηk +Dζk.
(9)

where λk := λ1kλ2k, β = E{λk} and

A =

[
A+ βBKhC 0

β(N +MKhC) G

]
,

X =

[
BKhC 0

(N +MKhC) 0

]
, H =

[
H

0

]
,

B =

[
Bω D

0 0

]
, C =

[
0 L

]
,

D =
[
−I 0

]
, Z =

[
I 0

]
. (10)

From the above manipulations, the original fault detection filter design problem can be converted into

an H∞ filter design problem. Moreover, Problem 2 can be reformulated as follows: design a fault

detection filter of the form (4) such that, for all possible packet dropouts, the augmented system (9)

is asymptotically mean-square stable [30] and the H∞ disturbance attenuation level

∞∑
k=0

E
{
∥r̃k∥2

}
≤ γ2

1

∞∑
k=0

E
{
∥ζk∥2

}
(11)

is achieved for a prescribed scalar γ1.

The following theorem is provided to solve Problem 2.

Theorem 1: Consider the INTTS (1), (3) and (5) with a given control gain Kh. For possible partial

actuator faults, a desired fault detection filter exists if there exist matrices 0 < V T = V ∈ Rnx×nx ,

0 < F T = F ∈ Rnx×nx , Ḡ ∈ Rnx×nx , N̄ ∈ Rnx×ny , M̄ ∈ Rnx×nu , L̄ ∈ Rnu×nx , as well as a scalar δ such
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that the following linear matrix inequality (LMI) holds

−I 0 0 0 0 0

∗ −V −F 0 0 Φ26

∗ ∗ −F 0 0 Φ36

∗ ∗ ∗ −V −F Φ46

∗ ∗ ∗ ∗ −F Φ56

∗ ∗ ∗ ∗ ∗ −V − δT1

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

· · ·

· · ·

L̄ 0 −I 0

Φ27 0 0 0

Φ37 0 0 0

Φ47 V H V Bω V D

Φ57 FH FBω FD

−F − δT1 −δT2 0 0

−F − δT1 −δT2 0 0

∗ −δI 0 0

∗ ∗ −γ2
1I 0

∗ ∗ ∗ −γ2
1I



< 0, (12)

where Φ26 = µV BKhC + µN̄C + µM̄KhC, Φ27 = µV BKhC + µN̄C + µM̄KhC, Φ36 = µFBKhC,

Φ37 = µFBKhC, Φ46 = V A + βV BKhC + βN̄C + βM̄KhC, Φ47 = V A + βV BKhC + βN̄C +

βM̄KhC+ Ḡ, Φ56 = FA+βFBKhC, Φ57 = FA+βFBKhC, µ =
√

β(1− β), T1 = (T T
1 T2+T T

2 T1)/2,

T2 = −(T T
1 + T T

2 )/2, and β = E {λ1kλ2k} = ρ
√

β1β2(1− β1)(1− β2) + β1β2. Furthermore, if (12) is

feasible, the gain matrices of the desired fault detection filter are given by

G = (F − V )−1Ḡ, N = (F − V )−1N̄ ,

M = (F − V )−1M̄, L = L̄. (13)

Proof: The proof can be conducted along the similar line of Theorem 1 in [31] by using the

techniques developed in [27, 28] to handle the nonlinearity, and therefore the proof is omitted for

brevity.
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A.2 Fault Detection Strategy

Having generated the residual by the fault detection filter, we consider a residual evaluation function:

Jk =

{
k∑

s=0

rTs rs

}1/2

. (14)

It can be inferred that the output of the residual evaluation function Jk is a scalar at a certain time

instant k. The occurrence of the faults can be alarmed by comparing J(k) with a prescribed threshold

Jth according to the following rule:

∆Jk,L > JL
th =⇒ fault detected,

∆Jk,L ≤ JL
th =⇒ no faults, (15)

where

∆Jk,L := Jk − Jk−L, JL
th = sup

k∈Z+, dk∈l2, fk=0
E
{
Jk − Jk−L

}
. (16)

and L is the length of a time window considered for evaluating the residual for a fault alarm.

A.3 Fault Isolation Strategy

Consider a new vector J̃k whose ith component is given by

J̃
(i)
k :=

{
k∑

s=0

(r(i)s )2

}1/2

(17)

which is called the fault isolation residual evaluation signal. Once an actuator fault is detected, a

Weighted Residual Component Comparison (WRCC) approach is employed to locate the fault. The

main idea of the WRCC approach is explained as follows.

Let OA(β1, β2, . . . , βn) denote an ordered array with β1 < β2 < . . . < βn for a set {β1, β2, . . . , βn}.
SE

(n)
β is defined as the set of all possible ordered arrays. It is obvious that OA(β1, β2, . . . , βn) ∈ SE

(n)
β .

Note that, for an nu-dimensional fault input, J̃
(i)
k can be generated by the fault detection filter designed

in Subsection III-A.1.

At the time instant kd when the fault is detected, there is a set {J̃ (1)
kd

, J̃
(2)
kd

, . . . , J̃
(nu)
kd

}, where the nu

components of the residual evaluation signal J̃kd are its elements. For an arbitrary fault vector fk, if

one can find a set of scalars {α1, α2, . . . , αnu} such that, for any 1 < i < nu, J̄
(i)
kd

= αiJ̃
(i)
kd
, then there

exists a subset SB
(nu)

J̄
⊂ SE

(nu)

J̄
that has one-to-one mapping with the fault set {f (1)

kd
, f

(2)
kd

, . . . , f
(nu)
kd

}.
Once the scalars are determined, we can obtain an ordered array at the time instant kd and, if it

belongs to SB
(nu)

J̄
, we can isolate the fault based on the one-to-one mapping relationship.

Remark 4: In the practical fault diagnosis over the INTTS, it can be observed that the faults oc-

curring in the same position lead to the same residual form no matter how much the amplitude of the
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faults is. In view of this, we propose the aforementioned WRCC approach to isolate the possible fault.

Compared with the fault isolation method based on the residual contribution degree (RCD) proposed

in [2], this approach can utilize more information from the residual evaluation signal as opposed to

simply comparing the magnitudes of its components. Furthermore, for the subset SE
(nu)

J̄
, there are

nu! elements in total and it is generally easy to find a subset SB
(nu)

J̄
with nu elements which has a

one-to-one mapping with the fault set.

B. Fault Tolerant Controller Design

Let us now design a fault tolerant control strategy. Denoting wk =
[
uT
ωk dTk

]T
, we can rewrite

the closed-loop dynamics as{
xk+1 = Axk + (λk − β)Xxk +Hg(xk) + Bwk,

zk = Cxk,
(18)

where A = A+ βBω̄KC, X = Bω̄KC, B = [Bω D], C = E.

As pointed out in Remark 2, Problem 1 can be regarded as a special case of Problem 3 with a

constraint Ω = ∅. This indicates that, in both the faulty case and fault-free case, the control gain (6)

of a fault tolerant controller (5) can be determined by solving Problem 3. The main procedure is to

find a fault tolerant control gain Kf such that, for a specific actuator fault, the whole system (18) is

asymptotically mean-square stable [30] and the H∞ disturbance attenuation level from wk to zk

∞∑
k=0

E
{
∥zk∥2

}
≤ γ2

2

∞∑
k=0

E
{
∥wk∥2

}
(19)

is made as small as possible.

In this subsection, a performance analysis result is firstly provided for a known controller, based on

which a fault tolerant controller can be further designed.

Theorem 2: Consider the INTTS (1) and (3) with a given control law (5) and a specific actuator

faults Ω. For a given scalar γ2, the closed-loop system (18) is asymptotically mean-square stable and

a prescribed H∞ attenuation level is achieved if there are a positive definite matrix P = P T > 0 and

a scalar δ such that 

−P 0 µPX 0 0 0

∗ −P PA PH PB 0

∗ ∗ −P − δT1P −δT2 0 CT

∗ ∗ ∗ −δI 0 0

∗ ∗ ∗ ∗ −γ2
2I 0

∗ ∗ ∗ ∗ ∗ −I


< 0 (20)

holds where T1, T2, and µ are the same as defined in Theorem 1.
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Proof: Let P > 0 and consider a Lyapunov function of the following form:

Vk = xT
kPxk. (21)

In the case of wk = 0, we take the following relationship into consideration[
xk

g(xk)

]T [
T1 T2

T T
2 I

][
xk

g(xk)

]
≤ 0.

For a positive scalar δ, we have

∆Vk = E{Vk+1} − Vk = E
{
xT
k+1Pxk+1

}
− xT

kPxk

≤

[
xk

g(xk)

]T

×

{[
ATPA+ µ2X TPX − P ATPH

∗ HTPH

]

−

[
δT1 δT2

∗ δI

][
P 0

0 I

]}
×

[
xk

g(xk)

]

:=

[
xk

g(xk)

]T

Ψ

[
xk

g(xk)

]
. (22)

From Schur Complement Lemma, Ψ < 0 is equivalent to
−P 0

√
(1− β)βPX 0

∗ −P PA PH

∗ ∗ −P − δT1 −δT2

∗ ∗ ∗ −δI

 < 0. (23)

It follows from (20) that (23) holds, i.e., ∆Vk < 0. Therefore, it can be confirmed that the closed-loop

system (18) is asymptotically mean-square stable [30].

Let us now consider the H∞ disturbance rejection attenuation performance. In the zero initial state

situation, for any wk ̸= 0, we can obtain ∆Vk + E
{
zTk zk

}
− γ2

2E
{
wT

k wk

}
< 0. Summing up this

inequality from 0 to ∞ with respect to k yields

∞∑
k=0

E
{
|zk|2

}
< γ2

2

∞∑
k=0

E
{
|wk|2

}
− E {V∞}+ E {V0} ,

which implies that (19) is true and the proof is now complete.

Theorem 2 provides a fault tolerant controller analysis result for a given controller. The design

procedure of the fault tolerant controller is outlined in the following theorem.
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Theorem 3: Consider the INTTS (1) with network-induced packet dropouts (3). For a given scalar

γ2, in case that the actuators in Ω fail, there exists a control law (5) such that the closed-loop system

(18) is asymptotically mean-square stable and the prescribed H∞ disturbance attenuation level (19)

is fulfilled if there exist matrices X = XT > 0, K̄ and a scalar δ satisfying

−X 0 µBω̄K̄

∗ −X AX + βBω̄K̄

∗ ∗ −X − δXT1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

· · ·

· · ·

0 0 0 0

H Bω D 0

−δXT2 0 0 XET

−δI 0 0 0

∗ −γ2
2I 0 0

∗ 0 −γ2
2I 0

∗ ∗ ∗ −I


< 0, (24)

where µ is defined in Theorem 1. Moreover, if (24) holds, the desired control law can be obtained from

the following equation:

K = K̄X−1C†. (25)

where C† is the left inverse matrix of C.
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Proof: From the definitions of A, X , B and C, (20) can be rewritten as

−P 0 µPBω̄KC

∗ −P PA+ PβBω̄KC

∗ ∗ −P − δT1P

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

· · ·

· · ·

0 0 0 0

PH PBω PD 0

−δT2 0 0 ET

−δI 0 0 0

∗ −γ2
2I 0 0

∗ ∗ −γ2
2I 0

∗ ∗ ∗ −I


< 0. (26)

Defining X = P−1 and performing the congruence transformation to (26) by diag {X, X, X, I, I, I},
we obtain (24) by introducing a new matrix variable K̄ = KCX. This is equivalent to (20). According

to Theorem 2, the closed-loop system (18) is asymptotically mean-square stable and also satisfies (19).

If (23) is solvable, from the full column property of C and X, we can obtain the control law from (25)

and this concludes the proof.

Remark 5: Although the condition in Theorem 3 guaranteeing the existence of a satisfactory fault

tolerant controller is a nonlinear matrix inequality in terms of the product of δ and X, we could first fix

the variable δ and solve the optimization problem by using the interior-point methods, then decrease

δ and repeat the optimization procedure until we achieve a minimum disturbance attenuation level γ.

Algorithm 1: The whole active fault tolerant control algorithm can be implemented for INTTS

according to the following steps:

Step 1: System Modeling.

Setup the mathematical model of the INTTS, determine system parameters and choose proper

parameters of the sector-bounded nonlinearity.

Step 2: Residual Generation Filter design.

Design a residual generation filter in the form of (4) using Theorem 1.

Step 3: H∞ Controller Design.

Calculate the parameters of the controllers in the form of (5) by using Theorem 3. Both the controller

for fault free case and the faulty case are designed.
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Step 4: Determine Threshold Jth. Based on the output of the residual evaluation signal, determine

a proper time length L in (16) and a threshold for the sake of detect the fault, using the logic

(15). Equation (16) is a theoretical formula of a threshold, however, in practice, we use Monte Carlo

experiments to get a best threshold.

Step 5: Alarm the Fault. By comparing the output Jk of the residual evaluation function and the

predefined threshold Jth, one can alarm the fault and get the fault detected time kd, which is defined

as the first time Jk exceeds Jth.

Step 6: Isolate the Fault. By using the WRCC approach, one can isolate the fault.

Step 7: Reconfigure the Control Law. Use the fault information provided by the fault diagnosis

unit, reconfigure the controller to the H∞ control law a prior designed without the failure actuator.

IV. experimental results

To illustrate the effectiveness of the proposed methodology, in this section, we conducted two exper-

iments on the INTTS. Parameters of TTS can be found in [1] and the packet dropout property of the

Internet can be obtained from experiments, see [2] for details. Different from [2], in our experiments,

data packets over communication network with delays larger than one step are discarded and only

missing effects are considered.

In a real TTS, there are two pumps supplying water for Tank 1 and Tank 2. Three sensors are

equipped for measuring the water levels in Tank 1, Tank 2, and Tank 3, respectively. Consider that

the nominal water inflow is u1 = 3× 10−5(m3/s), u2 = 2× 10−5(m3/s), then the equilibrium point of

TTS is h1 = 0.318(m), h2 = 0.151(m), h3 = 0.231(m). The states of the system are water heights of

Tanks 1 ∼ 3; the inputs are inflows of pumps 1 ∼ 2; the measurements are the same as the system

states since C = I; and the controlled outputs are the deviations of the real water levels from their

setpoints. Choosing a sampling time Ts = 1(s), the simplified mathematical model (1) is obtained

after the discretization treatment. This model is in incremental form and its parameters are given as

follows:

A =


0.9889 0.0001 0.0110

0.0001 0.9774 0.0119

0.0110 0.0119 0.9770

 , B = D =


64.5993 0.0015

0.0015 64.2236

0.3604 0.3909

 ,

C = I3, H = I3, E = [0.3 0.6 0.1] .

Based on some preliminary experiments, we have the nonlinearity term g(xk) bounded by (2) with

the following parameters:

T1 = 1× 10−5 × I3 and T1 = 1.5× 10−5 × I3,
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from which we can get

T1 = 1.5× 10−10 × I3 and T2 = −1.25× 10−5 × I3.

For the packet dropout phenomenon, we get β1 = β2 = 0.9 and ρ = 1 from some tests, and therefore

we have β = 0.9. For a fault-free system (Ω = ∅), we set δ = 1 and use Theorem 3 to obtain an

sub-optimal H∞ disturbance attenuation level γh = 65.6611 with the following control gain

Kh =

[
−0.0160 −0.0012 −0.0387

−0.0005 −0.0163 0.0163

]
.

Assume that at most one pump may fail during the simulation. Again, using Theorem 3, we can

obtain the following fault tolerant control gains with respect to the failures of Pump 1 and Pump 2:

Kf1 =

[
0 0 0

−0.0086 −0.0169 −0.0032

]
,

Kf2 =

[
−0.0170 −0.0336 −0.0062

0 0 0

]
.

Also, the corresponding H∞ disturbance attenuation levels are calculated as γf1 = 72.0335 and γf2 =

88.1046. It can be seen that both of them are larger than γh.

As for the fault detection filter, Theorem 1 is utilized to obtain the following gain matrices with a

sub-optimal H∞ attenuation level γfilter = 1.0014:

G =


−0.1261 −0.0977 −0.9216

−0.1390 −0.1271 1.7613

−0.0068 −0.0069 0.8752

 ,

N = 1011 ×


−1.8548 −0.3760 −4.2223

−0.2729 1.2104 −2.7377

−0.0158 0.0061 −0.0459

 ,

M = 1013 ×


−1.1547 −0.1477

−0.3836 −0.7682

−0.0100 0.0044

 ,

L = 10−3 ×

[
0.0013 −0.0002 0.3009

0.0002 0.0007 0.3156

]
.

In this section, we consider two cases of the actuator faults, one is the failure fault of Pump 1 and

the other one is the failure of Pump 2.

Case 1: Failure of Pump 1, Start from k = 1s, Fault occurs at k = 300s.
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Fig. 4. Packet dropout phenomenon

The experiment results are shown in Figs. 4∼6. Fig. 4 illustrates that whether the packet is missing

during the transmission from sensor to actuator via the network cable. βk = 0 means that the

data is missing and βk = 1 corresponds to successful transmission. Fig. 5 shows the fault detection

and isolation result. ∆Jk,L is the incremental real-time residual evaluation function, where we set

L = 5. We choose JL
th = 220 from Monte Carlo experiments. It can be seen from Fig. 5 that

∆J322,5 = 225.4296 > JL
th = 220, which means the failure can be detected at k = 322s by using the

logic (15). The detecting time is 22 s later after the fault occurs.

For the fault isolation, we use the WRCC approach proposed in Subsection III-A.1. For the two

possible failures that may occur in Pump 1 or Pump 2, we set the scalars as α1 = 1, α2 = 0.97.

This can be obtained from some initial experiments. At time instant k = 321s, the one-to-one map

relationship between the weighted ordered array and the possible fault set is as follows:{
OA(J̄

(1)
321, J̄

(2)
321) ⇐⇒ f

(1)
k ,

OA(J̄
(2)
321, J̄

(1)
321) ⇐⇒ f

(2)
k .

In the present experiment, we have J̄
(1)
322 = 481.0639 and J̄

(2)
322 = 471.6604. From the above relation-

ship, we can refer that the fault occurs in pump 1. The bottom figure in Fig. 5 provides the fault

detection and isolation information. The solid line stands for the true fault with 1 for failure of pump

1 and 2 for pump 2. The dashed line shows the fault detection and isolation result with 0 for no fault,

1 for failure of pump 1 and 2 for failure of pump 2.
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Fig. 5. Fault detection and isolation results in Case 1
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Fig. 6. Controlled outputs under controller Kh and KFTC in Case 1
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Fig. 7. Fault detection and isolation results in Case 2

We are now ready to make a comparison between a fixed H∞ controller Kh and a fault tolerant

controller KFTC in the faulty case. Fig. 6 demonstrates the evolutions of controlled output zk under

both fixed controller Kh (red line) and fault tolerant controller KFTC (blue line). It can be seen

that under the fixed control law Kh, when there is a failure fault with Pump 1, water levels descend

gradually with time increase and the deviation is more than 7cm after 100s. However, under the fault

tolerant controller (5), although the control performance is worse than that in the fault free case, water

levels can be controlled with an accuracy of ±1cm.

Case 2: Failure of Pump 2, Start from k = 1s, Fault occurs at k = 200s.

Experiment results are shown in Figs. 7∼8, which are similar with the results in Case 1. Fig. 7

shows the fault detection and isolation result. For the comparison between a fixed H∞ controller Kh

and a fault tolerant controller KFTC in the faulty case, Fig. 8 provides the evolutions of controlled

output zk under both fixed controller Kh (red line) and fault tolerant controller KFTC (blue line). We

can observe that under the fixed control law Kh, when there is a failure fault with Pump 2, the fault

tolerant control strategy can guarantee the scalability of the whole INTTS while the fixed controller

cannot.
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Fig. 8. Controlled outputs under controller Kh and KFTC in Case 2

V. Conclusion

INTTS is a benchmark system that can verify networked FDD/FTC algorithms. Based on the

INTTS, this paper has proposed an active fault tolerant control strategy for nonlinear networked

systems with possible actuator failures. A Bernoulli distributed stochastic sequence has been utilized

to describe the random packet dropout introduced by the limited-capacity of network transmission. A

networked fault tolerant control has been designed in an active framework, which includes the design

of a fault detection and isolation unit and a controller reconfiguration strategy. Real-time experiments

on the real INTTS have been provided and the effectiveness of the proposed technique has been verified

by two cases with actuator failure faults.
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