
Fostering Computational Thinking skills with

a Tangible Blocks Programming Environment

Tommaso Turchi

Human Centred Design Institute

Brunel University London

United Kingdom
tommaso.turchi@brunel.ac.uk

Alessio Malizia

Human Centred Design Institute

Brunel University London

United Kingdom
alessio.malizia@brunel.ac.uk

Abstract—Computational Thinking has recently come into the

limelight as an essential skill to have for the general public and in

many disciplines outside of Computer Science; it encapsulates

those thinking skills integral to solving complex problems using a

computer, thus widely applicable in our technological society. It is

influencing how people think about the world and shaping

research across many different areas. Several public initiatives

such as the Hour of Code have succeeded in introducing it to

millions of people of all ages and backgrounds using Blocks

Programming Environments like Scratch, thanks to their ability

of lowering the barriers of programming and enhance learning. In

this paper we present our arguments for fostering Computational

Thinking skills using a Blocks Programming Environment

augmented with a Tangible User Interface, namely by exploiting

objects whose interactions with the physical environment are

mapped to digital actions performed on the system.

Keywords—Computational Thinking; Tangible User Interface;

End-User Programming

I. CONTENT AND CLAIMS

From the simple task of turning on the engine of your car to
the vastly more complicate process surrounding the
management of a flight, it is unmistakably clear how much our
society depends on software: technology surrounds every aspect
of our lives, thus computational literacy and coding are
becoming much needed skills to possess for an ever wider
audience. Moreover, since people will always strive to play a
more active role in their lives, this need is undoubtedly
becoming their wish, as evidenced by initiatives such Code.org’s
Hour of Code1: this successful global initiative involves millions
of students of different ages starting with 4-year old and aims at
introducing coding to a wide audience with different
backgrounds. This and similar initiatives – as with coding itself
– are not just about programming though: they endeavor to foster
Computational Thinking skills, namely all those thinking
abilities lying at the hearth of Computer Science, such as
problem solving, abstraction, and pattern recognition.

Wing [1] first defined Computational Thinking (CT) as a set
of thinking skills, habits, and approaches that are needed to solve
complex problems using a computer and widely applicable in
our information society. It covers far more than programming
itself, including a range of mental tools reflecting fundamental
principles and concepts of Computer Science, such as
abstracting and decomposing a problem, recognizing similar
ones and being able to generalize their solutions.

1 https://hourofcode.com

2 https://scratch.mit.edu

In and of itself, programming has proven to be an excellent
way of developing CT skills [2]; to this end, many End-User
Development (EUD) tools and techniques have been employed
with the aim of lowering programming barriers and fostering the
spread of computational literacy, often with mixed results [3].

One of if not the most well-known and effective EUD
technique for lowering programming barriers and teach how to
code is the use of Visual Languages (VLs): they at least reduce
syntactic problems by encapsulating a traditional programming
language – generally domain-specific, i.e. tailored to a given
application domain – with a graphical representation of its
instructions, often incorporating some nifty tweaks to effectively
communicate the underlying semantical rules at a glance; for
instance, the available components can be depicted by different
puzzle blocks, allowing users to combine them together to build
a program: type constraints can be communicated to the users by
using different shapes, showing whether an output is compatible
with an input, something that still requires assistive tools (e.g. a
type checker) even to experienced professional programmers.
Representing program syntax trees as compositions of visual
blocks is a recent trend in designing VLs, as witnessed by the
success of Blocks Programming Environments like Scratch2,
Blockly3, and App Inventor4, to name a few.

Since its introduction, many have attempted to define more
precisely what Computational Thinking actually means [4];
having not come to an agreement yet, the only consensus
reached so far involves the concepts of abstraction and
decomposition:

 Abstraction refers to modeling problems and systems by
capturing their essential properties, considering only the
common features while overlooking their differences, since
the latter won’t be relevant from the analysis’ point of view.
Modeling in terms of abstraction’s layers allows focusing
just on one layer at a time together with the formal relations
between its adjacent layers; moreover, moving to a higher
layer enables not having to worry about the underlying
details, thus providing with an easy and effective way of
analyzing one element from different perspectives.

 Decomposition involves thinking about problems or artifacts
(e.g. systems, processes, or algorithms) in terms of their
inner components: one can then understand, solve and
evaluate them separately, making problems easier to solve
and artifacts easier to design.

3 https://developers.google.com/blockly/

4 http://appinventor.mit.edu

https://hourofcode.com/
https://scratch.mit.edu/
https://developers.google.com/blockly/
http://appinventor.mit.edu/

As stated before, these two concepts are an integral part of
Computational Thinking as well as heavily relied on by coding;
effectively manipulating highly abstract concepts is often a
challenge for inexperienced users, who usually need to be
trained and practice these skills for quite a while before being
able to properly master them.

Visual blocks are a natural fit for visualizing different
components and their relationships (decomposition); they are
also particularly suited to easily move between different
abstraction layers, allowing a set of blocks to be clustered as one
when shifting to a higher level of analysis (abstraction). Thus,
they allow users to shift from a problem representation to
another by manipulating the same metaphor, unlocking different
perspectives of the same process and easing the
conceptualization of the many components’ roles and structure.

Moreover, they allow to spot similarities and foster the
repurposing of known solutions to different problems by
identifying similar structures; promoting components' reuse
helps identifying common features to problems in different
contexts, practicing in quickly solving new problems based on
previously solved ones (i.e. generalization [5]).

Another way of aiding users in understanding those abstract
concepts often involved by coding and hence foster their CT
skills stems from the constructivist theory of Jean Piaget [6],
describing how human capabilities evolve during the first years
of life: at ages 7 to 11 children are in what he called concrete
operational stage; they can think logically in terms of objects,
but have difficulty replacing them with symbols: they can solve
problems in a logical fashion, but are typically not able to think
abstractly or hypothetically. The following formal operational
stage enables them to replace objects with symbols, generalizing
and manipulating abstract concepts by using proportional
reasoning and deriving cause-effect relationships. The shift from
concrete to formal operational should occur by age 12, but a
famous study [7] found that most College freshmen in physics
courses are still in the concrete operational phase, thus being
incapable of grasping abstract concepts not firmly embedded in
their concrete experience.

That being the case, we argue that exploiting our innate
dexterity for objects’ manipulation in the physical world could
be an effective way of aiding concrete operational thinkers to
grasp abstract concepts involved by coding, thus fostering their
Computational Thinking skills.

Physical manipulation sits at the core of a new digital
interaction paradigm designed with the aim of providing users
with an easy to use interface [8] that can be used even by
inexperienced people: this paradigm is known as Tangible User
Interfaces [9]. Employing it in a Blocks Programming
Environment – thus pairing it up with a well-known technique
aiming at lowering programming barriers and allowing end users
to program – could foster their CT skills by supporting them with
a concrete representation of the abstract concepts involved.

Summarizing, we believe that exploiting the benefits of a
tangible interaction in conjunction with visual blocks will
leverage on human’s natural ability of manipulating objects in
the real world, aiding end users in grasping highly abstract
concepts while fostering their Computational Thinking skills.

II. RELEVANCE

This work is relevant to the scope of the conference given
the recent focus of the entire area over fostering Computational
Thinking skills [10] and the new research community arisen
around Blocks Programming Environments [11].

III. PRESENTATION

Fig. 1. An example of a workflow being assembled using TAPAS.

In a recent study [12] we introduced TAPAS (TAngible
Programmable Augmented Surface), a Blocks Programming
Environment that allows users to develop simple workflows by
assembling different services together using the movements of
their smartphones, as depicted in figure 1. The interaction is
carried out using tangible objects and the digital blocks are
projected over the surface, making it fun and easy to use.

TAPAS will be showcased as a fully-working installation
during the conference, allowing anyone to use their smartphones
to interact with the system by using a Web application.

REFERENCES

[1] J. M. Wing, ‘Computational thinking’, Commun ACM, vol. 49, no. 3, p.
33, Mar. 2006.

[2] G. Orr, ‘Computational thinking through programming and algorithmic
art.’, SIGGRAPH Talks 2009, pp. 1–1, 2009.

[3] D. Weintrop, ‘Blocks, text, and the space between: The role of
representations in novice programming environments’, presented at the
Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE
Symposium on, 2015.

[4] C. Selby and J. Woollard, ‘Computational thinking: the developing
definition’, 2013.

[5] P. Curzon, M. Dorling, T. Ng, C. Selby, and J. Woollard, ‘Developing
computational thinking in the classroom: a framework’, 2014.

[6] J. Piaget and B. Inhelder, The psychology of the child. 1969.

[7] K. A. Williams and A. Cavallo, Reasoning Ability, Meaningful Learning,
and Students' Understanding of Physics Concepts. Journal of College
Science Teaching, 1995.

[8] A. Bellucci, A. Malizia, P. Díaz, and I. Aedo, ‘Don't touch me’, New
York, New York, USA, 2010, p. 391.

[9] H. Ishii and B. Ullmer, ‘Tangible bits’, presented at the the SIGCHI
Conference, New York, New York, USA, 1997, pp. 234–241.

[10] ‘Foreword VL/HCC 2015’, 2015 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pp. vii–viii, 2015.

[11] ‘Foreword’, presented at the Blocks and Beyond Workshop (Blocks and
Beyond), 2015 IEEE, 2015.

[12] T. Turchi, A. Malizia, and A. Dix, ‘Fostering the adoption of Pervasive
Displays in public spaces using tangible End-User Programming’,
presented at the 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2015, pp. 37–45.

