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Abstract 

As developers are increasingly creating more sophisticated applications, software 

systems are growing in both their complexity and size. When source code is easy 

to understand, the system can be more maintainable, which leads to reduced costs. 

Better structured code can also lead to new requirements being introduced more 

efficiently with fewer issues. However, the maintenance and evolution of systems 

can be frustrating; it is difficult for developers to keep a fixed understanding of 

the system’s structure as the structure can change during maintenance. Software 

module clustering is the process of automatically partitioning the structure of the 

system using low-level dependencies in the source code, to improve the system’s 

structure. There have been a large number of studies using the Search Based 

Software Engineering approach to solve the software module clustering problem.  

A software clustering tool, Munch, was developed and employed in this study to 

modularise a unique dataset of sequential source code software versions. The tool 

is based on Search Based Software Engineering techniques. The tool constitutes 

of a number of components that includes the clustering algorithm, and a number 

of different fitness functions and metrics that are used for measuring and assessing 

the quality of the clustering decompositions. The tool will provide a framework 

for evaluating a number of clustering techniques and strategies. The dataset used 

in this study is provided by Quantel Limited, it is from processed source code of a 

product line architecture library that has delivered numerous products. The dataset 

analysed is the persistence engine used by all products, comprising of over 0.5 

million lines of C++. It consists of 503 software versions.  

This study looks to investigate whether search-based software clustering 

approaches can help stakeholders to understand how inter-class dependencies of 

the software system change over time. It performs efficient modularisation on a 

time-series of source code relationships, taking advantage of the fact that the 

nearer the source code in time the more similar the modularisation is expected to 

be. This study introduces a seeding concept and highlights how it can be used to 

significantly reduce the runtime of the modularisation. The dataset is not treated 
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as separate modularisation problems, but instead the result of the previous 

modularisation of the graph is used to give the next graph a head start. Code 

structure and sequence is used to obtain more effective modularisation and reduce 

the runtime of the process. To evaluate the efficiency of the modularisation 

numerous experiments were conducted on the dataset. The results of the 

experiments present strong evidence to support the seeding strategy. 

To reduce the runtime further, statistical techniques for controlling the number of 

iterations of the modularisation, based on the similarities between time adjacent 

graphs, is introduced. The convergence of the heuristic search technique is 

examined and a number of stopping criterions are estimated and evaluated. 

Extensive experiments were conducted on the time-series dataset and evidence are 

presented to support the proposed techniques. In addition, this thesis investigated 

and evaluated the starting clustering arrangement of Munch’s clustering 

algorithm, and introduced and experimented with a number of starting clustering 

arrangements that includes a uniformly random clustering arrangement strategy.  

Moreover, this study investigates whether the dataset used for the modularisation 

resembles a random graph by computing the probabilities of observing certain 

connectivity. This thesis demonstrates how modularisation is not possible with 

data that resembles random graphs, and demonstrates that the dataset being used 

does not resemble a random graph except for small sections where there were 

large maintenance activities. Furthermore, it explores and shows how the random 

graph metric can be used as a tool to indicate areas of interest in the dataset, 

without the need to run the modularisation. 

Last but not least, there is a huge amount of software code that has and will be 

developed, however very little has been learnt from how the code evolves over 

time. The intention of this study is also to help developers and stakeholders to 

model the internal software and to aid in modelling development trends and 

biases, and to try and predict the occurrence of large changes and potential 

refactorings. Thus, industrial feedback of the research was obtained. This thesis 

presents work on the detection of refactoring activities, and discusses the possible 

applications of the findings of this research in industrial settings.  
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Chapter 1:  Introduction 

1.1 Overview 

Software systems that are of a certain amount of functionality and size are usually 

supplemented with non-trivial amount of complexity (Bass et al, 2003). Their 

structures are often difficult to comprehend due to the large number of modules 

and inter-relationships that exist between them. As the requirements of companies 

and institutions change, the software that supports them need to be regularly 

maintained to cope with constantly evolving requirements. Diverse artefacts such 

as classes, modules, packages and methods are another reason for this complexity, 

in addition to the changes in the structure of the software system during 

maintenance, extensions and refactorings (Bosch, 2004). 

A problem that needs to be considered by software developers is the creation of a 

structural model of the software system and maintaining the model consistent 

when changes occur during the evolution of the system. The lack of informal 

advice from system developers, and non-existent or inconsistent design 

documentations can make software maintenance a difficult task. Software 

developers usually modify the source code without thoroughly understanding its 

structure. Maintaining large software system is challenging. Occasionally, the 

system will be extensively deteriorated that an entire rebuild becomes necessary. 

Thus, illustrating the importance for developers to have access to consistent and 

up-to-date documentations of the structure of the software system. 

The evolution of a large software system is an important source for evaluating and 

enhancing the software development process. Analysing how developers change 

and maintain the source code of a software system can help management control 

the software development process, and help software architects to design flaws 

and to easier identify bugs and faults. 

In order to ease the problems mentioned above, the source code can be manually 

looked at to develop a model of the system structure. The need for portioning low 
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level components of software system into high-level abstractions was identified in 

the early days of computing. Parnas (1972) was the first to propose that certain 

information such as design decisions of a program should be hidden behind 

interfaces i.e. from all other modules. Parnas (1972) also promoted that 

procedures acting as data structures should be clustered into sets of common 

modules. 

However, poorly partitioned software is widely considered to be a source of 

problems for understanding (Constantine and Yourdon, 1979). Due to the 

complexity associated with understanding source-level components of a system 

and the large relations between the components, manual decomposition of a 

software system into meaningful subsystems can be a time-consuming process 

and thus not practical. An automated assistance was required to help understand 

the system design.  

To address this issue, fast and effective tools that automatically decompose a 

software system into a set of meaningful subsystems were developed. Automated 

tools can analyse the entities and relations in the source code and produce 

information on the structure of software systems. These tools analyse low-level 

dependencies in the source code and cluster them into meaningful subsystems. 

Software clustering is a field of research that automatically groups software 

artefacts. In order to obtain good clustering results, information on the software 

artefacts are needed. These information which can include structural data such as 

inheritance and method invocations among classes, are retrieved from the source 

code of the system. Software clusters allow developers to obtain more information 

on the system, comprehend complex software systems, recognise reusable 

components and detect faults and misplaced software. 

There are extensive work in the field of software clustering, it includes: functions 

that are clustered to modules and classes (Abd-El-Hafiz, 2000; Schwanke, 1991; 

Siff and Reps, 1999; Deursen and Kuipers, 1999), files to subsystems 

(Andreopoulos et al, 2007; Anquetil and Lethbridge, 1997), and classes to 
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packages and components (Bauer and Trifu, 2004; Etzkorn and Davis, 1997; Li 

and Tahvildari, 2006; Wierda et al, 2006). 

Graphs can be used to make the software structure of complex systems more 

comprehensible (Mancoridis and Traverso, 2002). Software structure can be 

depicted as one or more directed graphs. Graphs can be described as language-

independent, whereby components such as classes or subroutines of a system are 

represented as nodes and the inter-relationships between the components are 

represented as edges. Such graphs are referred to as Module Dependency Graph 

(MDG), refer to Section 3.2.2 for formal definition.  Many of the studies on the 

software clustering problem uses directed graphs to represent the structure of a 

software system.   

Creating an MDG of the system does not always make it easy to understand the 

system's structure; graphs could be partitioned to make them more accessible and 

easier to comprehend. Dependence information from system source code is used 

as input information. A file is considered as a module and the reference 

relationship between files is considered to be a relationship. Mancoridis et al 

(1998) were the first to use MDG as a representation of the software module 

clustering problem.  

Modularisation is the process of partitioning the structure of the software system 

into meaningful subsystems using Search Based Software Engineering techniques 

(defined on the next page), allowing developers to gain access of abstract 

information on structure and dependencies of the system. Subsystems consist of 

source code resources that provide a service to part of the system. They include 

resources such as modules, classes and other subsystems. Subsystems can be 

organised hierarchically in order to allow developers to navigate through the 

system at various levels of details. They can facilitate program understanding. 

Modularisation also makes the problem at hand easier to understand, as it reduces 

the amount of data needed by developers. Refer to Section 2.4.3 for further 

description on the process of modularisation and its use in previous studies.  
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Creating meaningful partitions of an MDG is not an easy task as the number of 

possible partitions can be very large, even for smaller systems. In addition, a small 

difference between two partitions can produce very different results (Mancoridis 

et al, 1999). A good partition of a system would produce independent subsystems 

that contain highly interdependent modules. Clustering helps developers to better 

understand the structure of complex systems by providing them with a high level 

view of the system structure.  

Search Based Software Engineering (SBSE) is a term that describes the use of 

metaheuristic algorithms (refer to Section 2.2.3.1 for the definition) in the field of 

software engineering. Search-based algorithms are used to produce solutions that 

gradually evolve to become the optimal or near-optimal solution. It was first 

introduced by Harman and Jones (2001). SBSE is becoming increasingly 

prevalent for the study and implementation of tackling complex and dynamic 

software engineering problems (Harman et al., 2012). 

Studies such as Harman and Jones (2001), Mitchell (2002) and Seng et al (2005) 

have shown that SBSE can be used to solve computational challenges in the area 

of software clustering. Previous studies that used heuristic techniques to attempt 

to solve software project scheduling, staffing and maintenance problems include 

(Chang et al., 1998; Ge and Chang, 2006; Chang et al., 2008; Alba and Chicano, 

2007; Hindi et al., 2002; Alvarez-Valdes et al., 2006; Antoniol et al., 2005; 

Gueorguiev et al., 2009). 

For various search algorithms (Michalewicz and Fogel, 2004), Search Based 

Software Engineering has been shown to be highly robust. There have been a 

large number of studies (Harman et al, 2002; Harman et al, 2005; Mancoridis and 

Traverso, 2002; Mitchell, 2002) using the Search Based Software Engineering 

approach to solve the software module-clustering problem. In previous studies, 

techniques that automatically cluster a system's MDG were introduced. They treat 

clustering as an optimisation problem, in order to find good partitions. A number 

of various heuristic search techniques, including Hill Climbing, Simulated 

Annealing and Genetic Algorithms were used to explore the large solution space 
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of all possible partitions of an MDG. These algorithms are explained in details in 

Section 2.2.3.2, Section 2.2.3.3 and Section 2.2.3.4, respectively. 

Refactoring is a common technique that can be used to improve the internal 

attributes of a system to make it easier to maintain without changing its external 

behaviour (Fowler et al, 1999; Stroggylos and Spinellis, 2007). The objective is to 

increase the design quality. Refactoring can improve maintainability, enhance 

performance and reduce the complexity of certain code units, if applied correctly. 

Unfortunately, it is not practical to refactor a software system without taking into 

account the cost and deadlines of the project. Thus, there is significant value in 

being able to predict where refactoring occurs. 

1.2 Research Outline and Motivation 

This research was motivated by a number of common problems within the 

software comprehension, software clustering, and Search Based Software 

Engineering domains. There is a huge amount of software code that has and will 

be developed, however very little has been learnt from how the code evolves over 

time. In addition, software systems need to be regularly maintained in order to 

cope with the constantly evolving requirements. These modifications can 

adversely degrade the quality of software systems. This thesis focuses on applying 

Search Based Software Engineering techniques to the software system 

maintenance problems. The aim of this study is: “To investigate whether search-

based software clustering approaches can help stakeholders to understand how 

inter-class dependencies of the software system change over time”. 

In order to fulfil the aim of the study a number of objectives are derived. The first 

and initial objective for this research is: “To conduct a thorough literature review 

in the fields of Artificial Intelligence, Software Engineering and Search Based 

Software Engineering in order to identify and address the research gaps that this 

research aims to tackle” [Objective I]. 

As this study looks at investigating the modularisation of the structure of software 

system and how it might help developers to gain access of abstract information on 
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structure and dependencies of the system, a tool needs to be employed. The 

intention is to use this tool to investigate Search Based Software Engineering and 

Intelligent Data Analysis techniques in order to investigate how the inter-class 

relationships of the system change over time. Thus, the second objective for this 

research is: “To implement a prototype tool (Munch) with a number of individual 

components to conduct modularisation experiments on a dataset to further 

understand the inter-class relationships of the system and to examine a number 

techniques and strategies that can be used to optimise the modularisation 

process” [Objective II]. The tool is to provide a framework for introducing and 

evaluating a number of clustering techniques. In addition, the author looks to 

include and experiment with several similarity and object-oriented metrics, and 

fitness functions to investigate the different perspectives of performing the 

clustering. 

This study looks to employ a number of search-based algorithms to cluster the 

source code dependency graphs into sub-clusters. There are many existing 

techniques that are well proven, and the choice of the clustering algorithm is 

based on the evaluation of related previous software clustering techniques. This 

study looks to use a tool named Bunch, presented by Mitchell (2002), as a 

benchmark clustering algorithm due to its graph-based approach and reliability in 

producing good clustering decomposition of software system. From the heuristic 

techniques that have been applied in previous studies, Hill Climbing is chosen to 

be applied for this work. This work does not directly aim to improve the quality of 

the clustering algorithm but mainly focuses on speeding up the time taken to 

cluster the data sources. Thus, the study focuses on one clustering algorithm, Hill 

Climbing; however other heuristic techniques were explored in the study for 

generalisability. 

A large real-world time-series (successive check-ins) dataset was provided by the 

industrial partner, Quantel Limited (Quantel, 2014). It consists of information 

about different versions of a software system over time, which is essential for 

conducting and completing this study. A check-in is a version of the software that 

compiles. It is not an official release of the software.  The terms software version 
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and check-in will be refereed to interchangeably throughout the thesis. The aim is 

for Munch to modularise this unique dataset of sequential source code check-ins. 

Since this study mainly focuses on speeding up the process of the modularisation. 

The next objective of this research project is: “To introduce and develop the 

concept of seeding to modularise the sequential source code software versions, by 

not treating the dataset as separate modularisation problems and by utilising the 

fact that the dataset is time-series” [Objective III]. Thus, this implies that 

previous results of the modularisation of a software version can be used to give 

the next software version a head start i.e. code structure and sequence is to be used 

to achieve more effective modularisation and to reduce the runtime of the process. 

The efficiency of the modularisation is evaluated by performing a number of 

experiments on the dataset. A number of techniques and statistics are introduced 

and experimented with for controlling the number of iterations of the 

modularisation process, based on the similarities between time adjacent graphs. 

The convergence of the search techniques is examined and a number of stopping 

criterion are introduced and evaluated. 

As this study looks at further understanding the structure of software system, in 

specific the inter-class dependencies and how they evolve over time, another 

objective that this thesis aims to investigate is: “To find out whether the 

modularised dataset resembles random graphs, and to see whether 

modularisation will be possible with data that resembles random graphs” 

[Objective IV]. In addition, it investigates if the random graph metric introduced 

can be used as a tool to indicate areas of interest in the dataset, without the need to 

run the modularisation, and to obtain further information on the software system 

to aid developers in understanding it. 

Refactoring is a common techniques used in transforming the software to improve 

its internal quality attributes. If applied correctly, refactoring can improve 

maintainability, enhance performance, simplify the structure of the code and make 

it easier to understand. Nonetheless, both managers and developers can be hesitant 

when it comes to using refactoring due to the amount of effort needed to make 

even a slight change in the code and also the risk of introducing new bugs. 
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Predicting the likely changes a system will undergo, based on previous 

development time, makes it possible to estimate developer effort required and to 

allocate resources appropriately. Thus, another objective is: “To apply Search 

Based Software Engineering techniques and Intelligent Data Analysis techniques 

to a large real world dataset to locate the occurrence of major changes and 

refactoring activities, and to categorise these accordingly” [Objective V]. The 

intention is that this project will model some of the internal software structure and 

thus help in developing a foundation for predicting the efforts of future software 

development. 

Last but not least, the author strives to obtain feedback on the industrial relevance 

of the research conducted. Initially, the problem is studied and analysed. 

Subsequently, candidate solutions are formulated and several investigations are 

carried out. Subsequently, the industrial applicability of obtained results is 

assessed on large scale problems. Thus, the last objective of this thesis is: “To 

obtain feedback from the developers of the dataset employed in this study, 

regarding the techniques and strategies that are introduced in this study, and to 

discuss the possible applications of the findings of this research and how they can 

be further expanded in an industrial settings” [Objective VI].  

1.3 Research Approach 

In order to evaluate the research approach adopted, a research methodology was 

needed to be selected. The research methodology and design of the research is 

described in this section. 

The methodology adopted for this research project is illustrated in Figure 1.1. It 

uses both quantitative and qualitative methods. It is vital to understand the 

problem space before employing any of the constructive concepts as it could lead 

to misleading results. This study includes an in-depth literature review of previous 

research in the areas of software clustering and Search Based Software 

Engineering. The aims and objectives of this research have been influenced by the 

direction and appointment of this study based on earlier studies. 
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A tool named Munch that integrates the data sources, clustering algorithms and 

evaluation methods was needed to be initially developed for this study. Munch is 

a rapid prototype implemented to carry out experimentations of different heuristic 

search approaches and fitness functions. Munch’s output is a hierarchical 

decomposition of the system structure, whereby closely related modules are 

grouped into clusters that are loosely connected to other clusters. The primary 

dataset of the research is a large real-world dataset developed by UK company 

Quantel Limited. Before applying the clustering tool, the required information 

needed to be extracted from the data sources and transformed into a suitable form. 

 

Figure 1.1 – An overview of the research approach 

One aspect of this research examines whether the seeding strategy is applicable to 

time-series software. That required a specific implementation of heuristic 

techniques to be applied within the Search Based Software Engineering paradigm. 

Code structure and sequence are evaluated and used to achieve effective 

modularisation and to reduce the runtime of the process. Thus, a series of SBSE 

and IDA techniques were used to modularise the given dataset. They were 

Literature review and identification 
of research objectives 

Implementation of Munch Tool 

Applying IDA and SBSE techniques 

Analysing and improving the 
techniques introduced 

Evaluating and verifying techniques 
introduced 

Research outcomes and 
conclusions 
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implemented and evaluated in an iterative process, at each iterative stage the 

techniques were analysed and improved. 

In search algorithms, there are a number of parameters that needs to be considered 

and tuned accordingly. Various experiments are conducted to measure the 

performance of the techniques introduced while changing and tuning its’ 

parameters. Experimentation is conducted on different fitness functions, starting 

points for the algorithms as well as the use of different heuristic algorithms. All 

these techniques and parameters are added to the Munch tool. 

Finally, the author obtains extensive feedback from the software developers, by 

discussing the results of the study with the senior software architect. This provides 

a different perspective of looking at the software system and will further validate 

the results of the research, and also provide feedback on the applicability of the 

research in industrial settings. 

1.4 Research Contributions 

This thesis contributes in widening and exploring the scope of analysing the 

software architecture of software system, in specific how inter-class relationships 

evolve over time, using SBSE techniques. Below are the key contributions of this 

study: 

1.4.1  Munch Tool 

One of the first contributions of this study is the implementation of a tool named 

Munch that was used to conduct modularisation experiments on the dataset to 

understand how dependency relationships of the system change over time and to 

examine a number of techniques and strategies that were presented for speeding 

up the process of modularisation. It encompasses of software clustering algorithm, 

a number of fitness functions and a number of evaluation metrics for evaluating 

the clustering decompositions. Munch was built on previous work by Mancordis 
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(1998) and Mitchell (2002) who introduced a tool named Bunch and used it for 

software clustering.   

Munch takes in an MDG as an input and produces a decomposed MDG as an 

output. It partitions the system dependencies into clusters. Munch was 

implemented in a way that it can cluster a stand-alone software systems and a 

time-series dataset (using the seeding strategy introduced in this thesis, refer to 

1.4.4). It can also be extended with ease to include further clustering algorithms, 

fitness functions, validity metrics, as well as further datasets. 

1.4.2  Large Bespoke  Software System 

From the literature review conducted, there was no previous study that applies 

modularisation and SBSE techniques on a large time-series bespoke software 

system. The dataset employed for this study consists of information about 

different versions of a software system over time. It was provided by Quantel 

Limited. The data source for this study is from processed source code of a product 

line architecture library that has delivered over 15 distinct products. It is the 

persistence engine used by all of the products, comprising of over 0.5 million 

lines of C++. 

1.4.3  Time-series dataset and AVD metric 

Due to the time-series nature of the dataset and the fact that there are only few 

days of developments between each check-in in the dataset, a metric called AVD, 

was introduced for displaying the similarity between subsequent graphs. AVD can 

provide information on the time-series dataset by determining the similarities 

between the software versions, without the need to perform modularisation or 

other longer techniques. Thus, allowing for an immense reduction in the 

computational complexity of the analysis. In addition, although this statistic does 

not provide information on where the modules are or what is related together, it 

can be used to display and possibly indicate areas of interest. This study has 

shown how this simple metric can be used to identify areas of where extension or 
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refactoring activities have occurred. Moreover, it can also be used to locate areas 

where there were no refactoring activities based on the fact that there were very 

few changes between subsequent classes. 

1.4.4  The Concept of Seeding and the Modularisation 

Process Speed Up 

The main contribution of this thesis is the introduction of the seeding concept and 

its use in speeding up the modularisation process. Since the dataset is time-series 

and that successive software versions are similar, due to the few development 

days in-between, this feature was exploited and used in the seeding concept. The 

dataset was not treated as 503 separate modularisation problems, but instead 

results of previous time slices are used to speed up the search process of the next 

time slice. In this study a number of strategies and techniques were introduced and 

used to estimate the stopping conditions of the clustering algorithm and optimise 

the Munch search algorithm, and as a result reducing the modularisation process 

considerably. This study has achieved over 500 times speed up of the 

modularisation process compared to modularising the graphs individually. 

1.4.5  Randomness of Graphs 

Another contribution for this research is the introduction of a technique to 

investigate the randomness of the dataset. In other words, whether the dataset 

employed for this study resembles a random graph or not. From the 

experimentation conducted, results have demonstrated that the Quantel dataset 

does not resemble random graphs except for the very small periods of time where 

there were large activities. Thus, the random graph metric can be used to indicate 

areas of interest in the dataset without having to run the modularisation. In 

addition, it was used to illustrate the decay of the system over time, as there is a 

slow gradual increase in the randomness of the graphs throughout the project.  
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1.4.6  Industrial Feedback (including refactoring 

detection) 

Identifying areas in the dataset that had radical changes and classifying these as 

refactoring or extension activities was one of the objectives of this study. 

However, since the dataset employed does not allow for the automated distinction 

between the two types, industrial feedback from the software architect was needed 

to help with this distinction. Detailed classifications of the classes and the check-

in comments of the dataset were provided by the developers. This allowed for the 

modularisation to be mapped back to the architecture of the system. In addition, 

discussions with the senior architect at Quantel have helped to clarify and identify 

the large changes in the number of classes in the dataset. This allowed for the 

categorisation of the major changes in the code as new functionalities or activities 

that involves refactorings.  

Another contribution to the domain knowledge in this field are the strategies and 

approaches introduced in this thesis, which can be used to allow developers and 

maintainers to gather further information on the structure of the software system. 

These are in turn utilised when designing and maintaining further development in 

the system.  

This study has shown that there is a great deal of potential in assisting 

stakeholders of system to obtain a more abstract perspective of the inter-class 

relationships of large software system. Furthering the understanding of the 

evolution of large program source code is of importance to Quantel. In addition, 

being able to predict future changes would greatly enhance their ability to allocate 

resources, and hence give them a more competitive and adaptable edge. 

Moreover, since the development process at Quantel comprise of subsystem or 

classes being owned by individual developers, the author hypothesises that there 

is a relationship between modularisation and how people are grouped into team 

i.e. modularisation of the dataset represent how people work together. Further 

discussions are presented in Chapter 7 and 8. 



 

14 

1.5 Thesis Outline 

The rest of the thesis is structured as follows: 

Chapter 2: Provides a literature review in the field of Search Based Software 

Engineering, software comprehension and software clustering. The literature 

review examines relevant and recent studies in the areas of research and provides 

concepts, techniques and methods that are used within this research. The main 

concerns that need to be addressed by the approaches presented in this thesis were 

addressed in this chapter. Previous approaches to the problem, both practical and 

theoretical were discussed at length. It identifies and addresses the research gaps 

that this study is addressing.  

Chapter 3: Introduces the Munch tool employed in this thesis and all of its 

individual components. It details the clustering algorithms, fitness functions and 

the metrics that are used for assessing and evaluating the results of the 

modularisation experiments. In addition, this chapter introduces and describes the 

Quantel dataset used in this study. 

Chapter 4: Introduces the seeding concept when modularising time-series of 

source code relationships. The dataset is not treated as separate modularisation 

problems; instead, results of previous time slices are used for speeding up the 

search process. This chapter aims at reducing the runtime of the modularisation 

process without undermining the accuracy of the results. This chapter presents a 

number of techniques and experiments for evaluating the modularisation process. 

Chapter 5: Extends work presented in Chapter 4 to improve the effectiveness and 

efficiency of the modularisation procedure. A statistic for controlling the number 

of iterations of the modularisation is introduced in this chapter. It aims to reduce 

the running time of the modularisation process further by estimating and 

evaluating a number of stopping criterion for the clustering algorithm. Moreover, 

it also discusses the computation and complexity issues of making a move using 

the clustering algorithm.  



 

15 

Chapter 6: Investigates and discusses three different starting clustering 

arrangements for the clustering algorithm employed in this study. It presents a 

number of experiments that are conducted to evaluate these clustering 

arrangements. The three starting positions are: uniformly random clustering 

arrangement (randomly determines the number of clusters using a probability 

model), the pseudo-random clustering arrangement (randomly generate clustering 

arrangement using deterministic algorithm) and disjoint clustering arrangement 

(the starting clustering arrangement is of each element in its own cluster). Graphs 

of the search spaces for each of the three starting points are generated and 

visualised in this chapter. 

Chapter 7: Introduces a technique for investigating whether the dataset used for 

the modularisation resembles a random graph. It illustrates how the random graph 

metric can be used as a tool to indicate areas of interest in the dataset, without the 

need to run the modularisation. It also investigates whether the probabilities of the 

dataset resembling a random graph increase as the maintenance increase and 

whether the architecture resembles more randomness throughout the life of the 

project. In addition, it discusses the possible applications of the findings of the 

research, especially the application of the findings in locating and guiding 

refactoring activities.  

Chapter 8: Provides a summary of the research findings and outlines the research 

contributions to the knowledge. It examines what has been developed and 

achieved in this research project. In addition, it outlines the limitations of this 

research and discusses potential future work directions. 
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Chapter 2:  Literature Review 

2.1 Introduction 

This chapter provides an overview of the different areas and concepts within the 

Artificial Intelligence and Software Engineering domains, in particular, applying 

Search Based Software Engineering techniques to the area of software clustering. 

It reviews previous research, and identifies and addresses the research gaps that 

this research is addressing.  

2.2 Artificial Intelligence 

2.2.1  Overview 

Intelligence can be defined as the ability to learn, reason, and solve problems; 

particularly, the ability to solve problems that are novel, act rationally and act like 

humans. Legg and Hutter (2007) present a large collection of definitions of 

intelligence. Artificial Intelligence (AI) is the intelligence than can be possessed 

or displayed in software or machines. AI is a discipline that has an elongated past 

but it is still constantly and continuously growing and adapting. AI is becoming 

progressively prevalent in our lives; it is used in various industries and fields that 

include medical diagnosis, media, finance, robotics and gaming. Simply said, the 

possible goals that scientists are pursuing in AI field is for systems to think and 

act rationally, and for systems to think and act like humans. However, there are a 

number of capabilities that computers need to possess first, these include; natural 

language processing, knowledge representation, machine learning and automated 

reasoning (Russell and Norvig, 1995). 

This thesis concentrates on understanding the search problem in specific and 

presents techniques for solving a specific problem. The next few sections outline 

approaches for representing problems to do with the search and introduce a 
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number of search algorithms that deals with searching for solutions of given 

problems. 

2.2.2  Search Problem 

Search is a central concept in the field of AI; it plays a major role in solving AI 

problems. The sequence of events that are used in solving many AI problems is 

often not known beforehand and thus a systematic exploration technique of 

alternatives need to be established (Russell and Norvig, 1995).  A search of very 

large number of possibilities is required. Search problems involve searching for 

the solution in particular solution space, which can be very large to search 

exhaustively. Thus, heuristics search algorithms (described in the next section) are 

often needed for searching through candidate solutions and finding the optimal 

solution. Thus, a specific approach to evaluate the fitness of candidate solutions is 

needed. 

In order to search for a particular solution, there need to be other potential 

solutions to be compared with. Thus, a function needs to be derived to map a 

solution to a value that rates how suitable the solution is at solving the problem. A 

change in the solution quality would reflect on the corresponding fitness. A 

method is needed to compare solutions with each other and to find the most 

optimal solution. This is fulfilled by using a fitness function (or Objective 

Function). It quantifies the worth of the solution and state the goal of the search. It 

enables the solutions to be ranked with each other. Badly designed fitness 

function will lead to poor or improper solutions (Harman and Jones, 2001). 

The assembly of all potential solutions can be reflected as a high dimensional 

space, referred to as fitness landscape or search space. Concepts of how “good” 

the solution is at each point in the search space and the distance between solutions 

exists. There are a number of techniques that can map the high dimensional space 

to a two-dimensional space (or n-dimensional space) in order to plot the 

landscape. The x and y coordinates can represent a solution, whilst the z 

coordinate (altitude) represents the fitness of that solution. 
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2.2.3  Heuristic and Metaheuristic Algorithms 

2.2.3.1 Overview 

The term heuristics refers to a wide range of problem solving approaches that can 

derive an approximate solution to a problem in a faster and more efficient way 

than a precise algorithm. Heuristic search methods can be employed to try and 

find a solution from a large number of possible solutions, e.g. NP-hard problems 

(refer to Section 2.2.7.1 for the definition of a NP-hard problem). These methods 

are usually applied to problems where exhaustive search for a precise solution is 

not practical. These types of problems usually have a wide range of solutions that 

cannot all be examined in a reasonable time, even with the current computer 

processing power. One of the most commonly studied problem is the travelling 

salesman problem. The aim is to find the shortest route visiting number of cities 

and returning to the starting point, whilst visiting the cities exactly once. Lin and 

Kernighan (1973) presented a heuristic algorithm for solving the travelling 

salesman problem. 

There are several fundamental components in algorithmic methods for solving 

problems, these include: representation of the solution, establishing the fitness 

function and controlling the constraints. These factors that would need to be 

considered before developing or applying the heuristic algorithms to the problem 

Representation is a vital aspect in the application of efficient heuristic techniques 

(Glover and Kochenberger, 2003). It is important to represent the possible 

solutions in a way that is coherent with the problem i.e. to choose the most 

appropriate representation as it represents the size of the search space of the 

problem (the range of possible solutions). Many of the heuristics algorithms 

manipulate the solutions to obtain better solutions. 

The objective function determines the quality of the potential solutions, which the 

algorithm uses to find the optimal solution. The algorithm is used to iteratively 

explore the search space until a termination criteria is met. The performance of the 
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heuristic search methods are often rated in terms of the number of fitness function 

calls. 

The aim of the various heuristic techniques is to perform and achieve an efficient 

and effective search of the solution space and to identify the most optimal solution 

from this space. Solution space refers to all of the possible solutions of a given 

problem. Search-based algorithms are often used when it is infeasible to derive the 

solution or when the complexity of the algorithm is too high. They are very 

relevant when near-optimal results would still be accepted as the solution to the 

problem. There is a wide range of heuristic techniques whose aim is to find the 

most optimum solution in the smallest number of fitness function calls (Russell 

and Norvig, 2010). Selecting the most suitable technique depends on a number of 

factors that include the quality of the solution, complexity of the search space and 

the appropriate manipulation of the search method (Birattari, 2005). 

The search algorithms can be categorised into two types of search behaviours. A 

trajectory based algorithms such as Simulated Annealing (Kirkpatrick et al, 1983) 

and Hill Climbing (Johnson et al, 1988) tracks and follows the path of one 

solution in order to find the local or global optima. The other type is a population 

based algorithms such as Genetic Algorithm (Holland, 1975) and Ant Colony 

Optimisation (Dorigo and Stützle, 2004) that disperse a population over the search 

space in order to achieve a global search. 

Search-based algorithms do not always converge on optimal solution and may 

sometimes get trapped in local optima. Local optima can either be contributed to 

the fitness function or the search algorithm. A local optimum is the point(s) in a 

subset of the search space with the best objective function evaluation.  Whereas, 

the global optimum is the point(s) in the whole search space with the best 

objective function evaluation. A number of search techniques such as Hill 

Climbing and Simulated Annealing might get “stuck” at the local optima and not 

get to the global optima. 

The Random Mutation Hill Climbing algorithm (described in Section 2.2.3.2) 

selects the best neighbouring solution. It is an example of a strong intensification 
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approach i.e. exploitation of the best solution in areas where good solutions are 

already found (Glover and Kochenberger, 2003). 

Algorithms can also be classified into two groups: deterministic and stochastic. A 

deterministic approach finds the same solution in multiple runs, with the same 

starting parameters and search space. It offers a theoretical assurance to locating 

the global or at least local optimum. Whereas, a stochastic algorithm, such as 

Simulated Annealing or Genetic Algorithm, could lead to a number of different 

solutions even with the same starting arrangements. It offers a guarantee only in 

terms of probability. Stochastic approaches are usually faster than deterministic 

approaches at locating the global optimum (Michalewicz and Fogel, 2004). 

A number of heuristic techniques do not store any information of previous 

solutions to guide the search. An example of these algorithms is the Greedy 

Algorithms. Greedy Algorithms do not consider the problem at hand as a whole, 

instead, immediate output of the local optimal solution is provided at each stage, 

with the aim of locating the global optimum. On the other hand, Tabu Search 

(Glover, 1986) utilises both short and long term memory. 

A Metaheuristic algorithm is an upper-level heuristic that is capable of solving 

almost any optimisation problem and achieves better solutions. They are designed 

to be problem independent algorithms. Metaheuristic algorithms are more 

generically designed to solve different problems than heuristic algorithms (Yang, 

2008). Metaheuristic techniques seek to solve and optimise a problem through 

iterative search. They do not need prior expert knowledge of the problem under 

analysis. Metaheuristic algorithms such as Hill Climbing, Simulated Annealing 

and Genetic Algorithm have been employed to find optimal solutions to many 

NP-complete problems (refer to Section 2.2.7.1 for the definition of a NP-

complete problem). Other algorithms include Ant Colony Optimisation (Dorigo, 

1992) and Particle Swarm Optimisation (Kennedy et al, 2001). 

Many of the metaheuristic algorithms are inspired by natural processes. The best 

adapted individual of the population form the solution representation. 

Evolutionary Algorithms are based on the theory of biological evolution. 
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Evolutionary algorithms include Genetic Algorithms, Genetic Programming and 

Evolutionary Programming. 

Metaheuristics algorithms are used when exact solutions do not exist or are too 

computationally expensive. The aim is to explore the search space to locate the 

optimum solution. Several techniques to the problem exist, all performing the 

same exploration of the search space, with each having different performance 

characteristics (Michalewicz and Fogel, 2004). 

2.2.3.2 Hill Climbing 

Hill Climbing (HC) (Johnson et al, 1988), a local search algorithm, is an iterative 

search approach where the value of the solution can either increase or stay the 

same at each step. The HC algorithm traverses the space of all solutions by 

considering solutions that are adjacent to the starting point. Adjacent neighbours 

are evaluated for an increase in fitness. Algorithm 2.1 illustrates the operation of a 

HC algorithm. In this example, the current node is replaced by the best neighbour 

at each step i.e. the neighbour with the highest fitness. It returns a state that is a 

local maximum. Frequently, the starting points are selected at random. The 

termination conditions can be determined by a number of factors that include: the 

amount of computation used, user intervention and the state of the search i.e. if no 

improvement is observed (Russell and Norvig, 2003). 

Algorithm 2.1 – Hill Climbing Algorithm 

current  MAKE-NODE (INITIAL STATE of the problem)  

loop do  

neighbour  a highest-valued successor of current 

if Fitness (neighbour) ≤ Fitness (current) then 
     return STATE of current 

current  neighbour  

end if 
end loop 

 

A well-known issue with the HC algorithm is that it can get stuck at local 

maximums; Figure 2.1 illustrates how this occurs. One common solution to the 

problem of a HC algorithm getting stuck at local optima is to restart the search at 

another random point. Thus, running the algorithm a number of times and 
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selecting the best of all of the solutions. Another possible solution is to use a 

Simulated Annealing algorithm, discussed in the next section. It is similar to a HC 

algorithm and allows for a solution with a worse fitness to be accepted. 

 

 

 

 

 

 

Figure 2.1 – Hill Climb algorithm getting stuck at a local maximum 

Random Mutation Hill Climbing (RMHC) is a heuristic search algorithm that uses 

an iterative approach to find a point in the search space by maximising an 

objective function. The algorithm starts by starting at a random point in the search 

space. It randomly searches its closer neighbours until a better fitness of the 

objective function is found. The algorithm continues to search for an improvement 

from the new point. According to Droste et al (2002) RMHC algorithm is the 

most basic variant of an evolutionary algorithm. 

RMHC algorithm can have a variable performance and need an improvement in 

order to escape the local optima. This can be achieved by allowing the algorithm 

to accept worst fitness function values during its search. For Stochastic Hill 

Climbing (SHC) algorithm, the chance of accepting a solution is based on how 

bad the change is. A bad change will have smaller probability of being accepted, 

whereas a better change will be accepted more often. The Random Restart Hill 

Climbing (RRHC) is a more effective version of the RMHC. For this algorithm, 

the RMHC is run for a number of times and the best is recorded. 

global maximum 

local maximum 
value 

state 
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2.2.3.3 Simulated Annealing 

Simulated Annealing (SA) (Kirkpatrick et al, 1983) is another algorithm that 

improves on RMHC. It allows a worse solution to be accepted in order to avoid 

the local optima. The SA algorithm was inspired from the process of annealing in 

metallurgy, which involves initially heating materials to a very high temperature 

and then allowing it to slowly cool down in order to alter its physical structure. In 

SA a temperature variable, TEMP, is kept in order to simulate the heating process 

(it defines the probability of accepting a solution with a worst fitness). Initially, 

the temperature is set to a high value, allowing the temperature to gradually 

“cool” i.e. decrease whilst running the algorithm. This temperature keeps 

decreasing to reach a zero by the end of the algorithm, revealing the solutions. 

The temperature represents a probability that a given random move will be 

accepted if it lowers the current solution. This probability of a given temperature, 

TEMP, can be calculated as in Equation 2.1, where C0 is the cost before the move 

and C1 is the most after the move, 𝐾𝛽 is Boltzmann's constant, equal to 1:38 x 10-

23 joules per kelvin. 

𝑃 (
𝐶0 − 𝐶1

𝑘𝛽𝑇𝐸𝑀𝑃
) 

(2.1) 

However, for SA, many moves are needed to be made and thus progress is made 

very slowly. SA have been applied to a number of problems that include circuit 

design (Kirkpatrick et al, 1983), partitional geometric clustering (Bandyopadhyay 

et al, 2001), graph drawing (Davidson and Harel, 1996) and landscape 

characterisation and stopping criteria (Waeselynck et al, 2006). 

2.2.3.4 Genetic Algorithms 

Genetic Algorithms (GA) are powerful tools that can perform various 

optimisation problems (Michalewicz and Fogel, 2004). GAs represents a solution 

to a problem as a string, encoded as a chromosome. Each bit of a chromosome is 

referred to as a gene. A population of chromosomes represents a subset of the 

space of all possible solutions. A fitness function is needed to rate the worth of a 
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solution that a chromosome represents. It is used to rate how well a chromosome 

solves the problem at hand. Selecting a suitable fitness function is essential 

(Holland, 1975). Genetic operations such as survival of the fittest, mutation and 

crossover are then applied to the solutions in order to find the best one(s). 

Algorithm 2.2 displays the pseudo-code of a basic GA. 

Algorithm 2.2 – Basic Genetic Algorithm 

Set t = 0 
Initialise the population P0 
Evaluate initial population P0 
While t<= MAX GENERATION do 

t = t + 1 
Select Pt from Pt−1 

Crossover Pt 
Mutate Pt 
Survival Pt 

end 

Survival of the fittest selects and carries over a number of the parents and children 

(population) to the next generation. It is applied to the population to reduce the 

population size of the starting population, ensuring that chromosomes with higher 

fitness function are more likely to be retained and passed over to the next 

generation. Without the survival operator the size of the population would 

increase exponentially at each generation (iteration). The most popular method is 

called the roulette wheel, first introduced by Holland (1975). 

The crossover procedure is used to initiate ‘children’ by re-combining segments of 

chromosomes from one or more parents to create a new individual, with the aim 

of improving the fitness of all of the chromosomes in a given population. The two 

most popular types of crossover are uniform crossover (Syswerda, 1989) and one-

point crossover, first introduced by Holland (1975). Figure 2.2 and Figure 2.3 

illustrate how the two crossover techniques work. 

 

Figure 2.2 – One-point crossover 

parent 1 

parent 2 

0 0 0 0 1 0 0 0 

1 1 0 1 0 0 0 0 

0 

1 

0 0 0 0 0 0 0 0 

1 1 0 1 1 0 0 0 

1 

0 
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Figure 2.3 – Uniform crossover 

On the other hand, mutation is usually applied to the children that are resulted 

from the crossover stage. It randomly changes the value of genes of a 

chromosome, as shown in Figure 2.4. It is a genetic operator of GA that is utilised 

to maintain genetic diversity from one generation of a population to the next, 

allowing the GA to achieve a better solution than is previously possible. There are 

various types of mutation operators, these include: Flip bit (as shown in the 

example below), boundary, uniform, non-uniform and Gaussian.  

 

Figure 2.4 – Mutation operator 

2.2.4  Data Mining 

Data mining is an interdisciplinary discipline in computer science that involves 

the analysis of data from various perspectives and summarising this data into 

useful information. Data mining can make use of AI techniques and advanced 

statistical tools to detect trends and patters that might have remained unnoticed 

(Hand et al., 2001).  

Data mining is a relatively new term, however the technology behind it has 

existed for longer. Companies were able to use powerful machines to scan data 

and analyse market gaps and research. However, the rapid development in data 

capture, machine processing power, storage capabilities and analytical software 

are increasing the accuracy of knowledge discovery whilst reducing the cost down 

(Hand et al., 2001). 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Organisations and companies are amassing vast amount of data in various formats 

and databases. The patterns and relationships between this data can provide 

information, which can be converted into knowledge about previous patterns and 

future trends. There are two main forms of data analysis techniques that can 

provide a better understanding of large data, they are classification and prediction. 

Classification model can predict categorical functions (the membership for data 

instances) whereas prediction models can predict valued function. 

2.2.5  Classification 

From the machine learning and statistics field, classification is the identification 

of which set of categories a new observation belongs to. Classification can be 

supervised or unsupervised learning. Supervised learning involves the inference of 

a function from labelled data. It involves learning from a training set of existing 

identifiable observations. Unsupervised learning attempts to locate hidden 

structure in unlabelled data. It encompasses numerous techniques, most being 

based on data mining methods, that aims to summarise and clarify crucial aspects 

of the data, these include; clustering, Hidden Markov Models (Comon and Jutten, 

2010) or Blind Signal Separation (Manning and Schütze, 1999). This research 

project only focuses on clustering (or unsupervised classification); presented in 

the next section.  

2.2.6  Clustering 

Clustering is the process of differentiating groups inside a given set of objects. 

The resulting groups are assigned so that objects that are with each subset are 

more closely related to each other than objects that are assigned in different 

subsets. There is a wide range of reasons on why to cluster, these include; it is 

very useful within data analysis to know which objects are highly related to other 

objects; it is less complex to model; and it may also provide insight into unknown 

properties of some of the objects. 
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A vital aspect of the clustering process is the concept of degree of similarity (or 

dissimilarity) between objects. The measure used for clustering the set of objects 

can be any metric function. There is a wide range of measures that are available, 

such as: Euclidean distance, Minkowski distance, Hamming distance, etc. In 

addition, there is a large collection of clustering algorithms that are available in 

the literature (refer to Section 2.2.3.1). 

Data clustering is the process of arranging objects into a number of sets according 

to similarity or proximity of some defined distance measure, as mentioned above. 

Each set shares some common traits and will be referred to as a cluster. An 

ultimate problem in cluster analysis is that given a collection of objects, how can 

we recognise and group similar objects together while differentiating those that 

are dissimilar? Identifying those collections has a wide number of applications 

that include module organisation in software engineering. However, determining 

the number of clusters is often difficult and it requires a method for locating the 

number of clusters and their contents. 

There are two main popular techniques of clustering algorithms: partitional and 

hierarchical clustering. Within each of these techniques exists various subtypes 

and numerous algorithms for obtaining the clusters. Partitional clustering involves 

the direct decomposition of the dataset into a set of disjoint of clusters, and then 

evaluates these clusters by certain criterion. Partitional clustering algorithms are 

usually iterative and converge to a local optimum. Commonly used clustering 

methods include K-means (Lloyds, 1982) and K-Medoids (Kaufman and 

Rousseeuw, 1990). On the other hand, hierarchical clustering entails the 

hierarchical decomposition of the data using set criterion. It is performed by either 

splitting larger clusters into smaller ones or merging smaller clusters into larger 

ones. There are two types of hierarchical clustering: Agglomerative (bottom-up) 

and divisive (top-down) methods. 

Bottom-up clustering algorithm begins with all entities in different clusters and, at 

every iteration, it merges the two most similar clusters together until there is only 

one cluster subsists. On the other hand, for top-down clustering algorithm, all 
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observations start in a single cluster, and splits are executed repeatedly down the 

hierarchy until each element is in its own singleton cluster.  

Clustering techniques are widely used in a variety of research disciplines. Some 

examples of the uses of clustering include: data mining (Pham et al, 2004), image 

analysis and segmentation (Rommelse, 2004), ecology (Petchey and Gaston, 

2002), and biology and gene expression data (Reinke, 2002). 

2.2.7  Computation 

2.2.7.1 Overview and Computational Complexity 

To gain an in depth understanding of the benefits and the limitations of applying 

search algorithms to software engineering problems, it is important to 

complement any experimental research with theoretical investigations. 

Computation is the process of calculating and determining something using 

mathematical or logical models. It provides us with an indication of the time a 

computer will undertake to solve a problem, given the size of the problem. It 

allows us to compare algorithms independent of the speed of a computer. The 

running time of an algorithm can be different depending on the input; it usually 

grows with the size of the input. An algorithm might be faster on some datasets 

and not others, thus, there are three different types of runtimes; best case, average 

case and worst case. The best case is usually not very informative as it might not 

occur frequently, whereas the average case is usually difficult to determine. On 

the other hand, the worst case running time is easier to analyse and crucial in real-

time applications (Lewis and Papadimitriou, 1997). Runtime Analysis can bridge 

together the evaluation of search algorithms to how algorithms are classically 

analysed. 

The term computational complexity centres on the classification of computational 

problems based on their innate difficulty and linking those problems to each other. 

Analysing the computational complexity of a problem can estimate the resource 

needed regarding changing the size of the input. Computational complexity is of 
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importance to this study due to the size of data sources and the time it takes for the 

clustering algorithms to run. Computational complexity of some problems grows 

very fast and becomes not practical if not impossible to solve. A problem is 

solvable in polynomial time. Polynomial time can distinguish and classifies 

whether a problem is solvable or not. 

From above, the classification of problems can be based on the difficulty in 

solving them. There are a number of classes that these problems can be assigned 

to, they are: P-problem (polynomial-time) is where the number of steps that are 

required for solving it is constrained by a power (exponent by which a quantity is 

raised) of the size of the problem; NP-problem (non-deterministic polynomial-

time) is where is has a non-deterministic solution and the steps needed for 

verifying the solution is bounded by a power of the problem size; NP-hard 

problem is where an algorithm for solving it can be used to solve any NP-problem 

problem; and NP-complete problem is when it is both NP and NP-hard, there is no 

known efficient or fast approach to this problem (Bridges, 1994). 

2.2.7.2 Asymptotic Analysis 

Asymptotic analysis is an alternative to running a large number of experiments. It 

can be used to estimate the running time without actually running the experiments. 

It uses a high-level description of the algorithm without the need to implement or 

run it, it evaluates the running time independently of the hardware and software 

environment. By using the pseudo-code the number of steps can be counted in 

terms of primitive operations. Primitive operations are the basic computations that 

are performed by an algorithm. Thus, time complexity refers to the number of 

steps needed to solve a problem of input size n. The resultant formulae are 

referred as T(n) where n is the size of the input. In order to perform asymptotic 

analysis, the worst-case number of primitive operations executed as T(n) should 

be found. If more than one input is present we might have T(n,m) where n and m 

are the input sizes. T(n) can be used to compute a property called Big-O. 

The asymptotic analysis of an algorithm determines the running time in Big-O 

(O(n)) notation. Big-O notation is used to rank functions according to their growth 
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rates. Given two functions f(n) and g(n), f(n) is O(g(n)) if there are positive 

constants c and n0 such that f(n)  cg(n) for n  n0.This indicates that the growth 

rate of f(n) is not more than the growth rate of g(n), f(n) grows less than g(n). Big-

O notation provides an upper-bound on the growth rate of a function. 

2.3 Software Engineering 

2.3.1  Overview 

The engineering field has always been growing and expanding, taking in many 

new disciples along the way. The latest of these is the discipline of Software 

Engineering. Software Engineering is defined by the Institute of Electrical and 

Electronics Engineers (IEEE) (1990) as: (1) The application of systematic, 

disciplined, quantifiable approach to the development, operation, and maintenance 

of software; that is, the application of engineering to software. (2) The study of 

approaches in (1). 

Since software is nowadays used in everything from medical apparatus to 

airplanes to financial information, faulty software can have substantial impact on 

our lives. Software engineering does not only revolve around implementing code, 

it is instead a well-articulated lifecycle. It is initiated well before the software is 

designed and it continues long afterwards. Software systems can be designed and 

maintained through a structured software development lifecycle. 

There are various software engineering problems such as software testing, module 

clustering, systems integration, software maintenance and evolution of legacy 

systems. In addition, there are a wide range of studies in the field of software 

engineering. 

2.3.2  Software Project Management and Maintenance 

Software project management is a large field that has many subtopics. 

Considering the wide range of software engineering problems, this research is 
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focused on analysing the maintenance and evolution of software systems. The 

maintenance and evolution of a system are important stages of any software 

system lifecycle. Harman et al (2009) has recognised several unresolved problems 

in software projects that include poor estimates and poor integration of various 

processes. These are caused by various factors that include: changing 

requirements by either clients or stakeholders, the iteration cycles in the 

development process, the high novelty and complexity of the system, the slow 

adaptability to the rapidly changing underlying technology, the inattention to the 

robustness in planning, and the undependability of the scheduling and allocation 

of resources with the development process of the software project. 

Estimating the cost of software is critical for the success of software projects. 

Currently, there are no accurate cost estimation systems and it still continues to be 

one of the unsolved challenges in Software Engineering (Sheppard, 2007). 

Estimation techniques still remain inaccurate and have a factor of high costs. 

However, differences in estimated and actual cost do not have to imply poor 

estimation techniques. It is beneficial for decision makers to gain insight into the 

effects caused by the uncertainties of cost estimation (Gueorguiev et al., 2009). 

Software projects require a large amount of management effort. Management 

activities such as planning, scheduling and monitoring are usually conducted by 

project managers to achieve the required objectives and to satisfy any encountered 

constraints. These activities justify the need for automated tools for finding the 

most optimal solutions. These tools can be used for difficult tasks such as project 

scheduling, resource allocation and cost estimation, as there is a vast amount of 

solutions to be searched without an automated assistance. 

Maintenance is often attributed to be the most expensive phase of the software 

development lifecycle. Maintenance of systems is under intense research interest 

and providing insights into our understanding of this software aspect is very 

useful. It is difficult to determine the amount of resources spent on software 

maintenance, as companies are secretive about showing their weaknesses (Lano, 

1993). In the development of industrial software, it is well-known that 75% of the 
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total cost of software system development is spent on software maintenance and 

evolution stages (Pressman, 1982). 

Although, the presence of documentations is considered extremely useful, they are 

likely to be neglected (Parnas, 1994). One of the reasons behind this neglect is the 

focus on short term goals (Lethbridge et al., 2003). Documentation is widely 

considered to reduce the cost of software maintenance and is necessary to ease 

maintenance activities. They serve as additional information for providing 

abstraction. 

2.3.3  Software Architecture 

The software architecture serves as a high level structure of the software system. 

It provides a framework for the development of such systems. The stability of 

large software systems, with high degree of complexity, can be controlled by 

developers with the help of efficient software architecture. 

According to Zuse (1991) complexity relates to the difficulty level encountered by 

developers in understanding the software system. High level of complexity causes 

maintenance problems. High complexity in software system can be caused by 

various reasons such as the problem’s difficulty, the flexibility of the software 

system or the large amount of coupling between the artefacts (Darcy and Kemerer, 

2002). Software comprehension is considered to be a vital activity of the software 

maintenance process (Koenemann and Robertson, 1991). 

To maintain quality of the software architecture a number of approaches are 

available for observing and monitoring it. Integrated Development Environments 

(IDEs) can assist stakeholders in the creation of high quality design and provide 

information on the software architecture. The use of revision control is another 

approach that can be used for the management of changes in software systems.  

Abstraction of software systems is a key goal in software architecture 

development. Developers can gain insight into software systems by the 

decomposition of these systems into modules (Courses and Surveys, 2002). The 
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software architecture can display the structure and decomposition of the system 

into modules/components and relationships between these modules/components. 

Classification and modularisation (refer to Section 2.4.3) are used for obtaining 

larger controlled structures from smaller unstructured components. There are 

several levels of abstraction that includes classes, methods, packages and files. At 

an abstract level, the term artefact is introduced to express the generalisation of 

the software system features. Section 2.3.5 presents a more detailed analysis of the 

software clustering problem. 

2.3.4  Software Evolution 

Recently, researchers started performing clustering research based on the 

evolution of the software system. Few studies such as (Andritsos and Tzerpos, 

2005; Wierda et al, 2006) integrate their data sources into their clustering 

approaches. Examining the development process of software systems is a growing 

area of research. Software system evolution is documented by its release history 

or by recording changes to the source files during the system’s development 

process. Revision control system such as CVS and Git is used for storing these 

changes to the source code. It is usually the developer’s decision to commit 

changes made to the source code. There are tools (Burch and Diehl, 2008; Burch 

et al, 2005; Gall, 2003; Gall, 1999) that can visualise the committed data for it to 

be used to comprehend the software system and detect weaknesses in the 

architecture. 

2.3.5  Software Clustering 

Software clustering refers to the classification of the artefacts of a software system 

into partitions, according to measures of similarity (Tzerpos and Holt, 2000). The 

partitions are referred to as clusters. Clustering identifies artefacts that are similar 

and abstracts them into clusters of similar attributes. Software module clustering 

can provide assistance in the comprehension of software (Di-Lucca, 2002; 

Kanellopoulos and Tjortjis, 2004). Software abstraction can help stakeholders to 
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identify vulnerable areas when changes are made to the software for maintenance 

or testing purposes (Burd and Munro, 1998). 

Parnas (1972) has voiced some of the basic principles for good object-oriented 

design. He expressed the view to fuse low-level system attributes into modules; 

the concept of clustering and abstracting to unite artefacts into groups. Booch 

(1994) stresses the significance to use abstraction to assemble structures that are 

similar into related groups, and the importance of encapsulation to execute 

information hiding. Moreover, he emphasises the importance of clustering in 

achieving good system design, high cohesion and low coupling. Cohesion can be 

defined as the degree to which the elements of a system such as classes, modules 

or components function together as an operating unit; whereas coupling indicates 

the degree of inter-dependence between two or more classes, modules or 

components. Coupling and Cohesion metrics are explained in more details in 

Section 2.4.4. 

One of the goals of this study is to derive the structure of the software 

architecture. The aim is to provide developers and software architects with 

sufficient understanding of the dependency relationships of the system, and to try 

to locate the occurrence of major changes and refactoring activities in the software 

system. 

Brooks (1999) stated that in order to comprehend completed software, developers 

would need to construct a top-level hierarchy and continuously look at lower 

levels until reaching the program code. Another concept is the bottom-up 

approach, it also improves comprehension of software by clustering lines of code 

into larger chunks (Shneiderman and Mayer, 1979). A study by Koenemann and 

Robertson (1991) explores both methods and found that developers mainly use a 

top-down approach and only turn to bottoms-up approach when they fail to 

understand specific areas of the system. 

There are numerous proposed techniques in the literature that partition the 

structure of software system into subsystems. These techniques determine the 

clusters using various ways such as heuristic rules (Schwanke, 1991), clustering 
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metrics (Anquetil, 2000; Hutchens and Basili, 1985; Lindig and Snelting, 1997) or 

source code component similarity (Muller et al, 1993). The problem of automated 

clustering was tackled in (Schwanke and Plato, 1989) by introducing the Shared 

Neighbours’ technique. This technique was incorporated with the heuristics of low 

coupling and high cohesion to find the common patterns in software systems. 

Schwanke (1991) improved on these techniques by refining the partitioning of the 

software system by identifying and classifying components that are placed in the 

wrong subsystem and moving them into the correct one, providing a better 

modularity. 

There are a range of algorithms that are specifically designed for clustering 

software objects using feature based data models and these include (Andritsos and 

Tzerpos, 2005; Anquetil et al, 1999; Kuhn et al, 2005; Voinea and Telea, 2006). 

Andritsos and Tzerpos (2005) introduced a clustering approach named LIMBO 

that minimises the information loss of the feature vector at every step of the 

clustering approach. Tzerpos and Holt (2000), introduced a tool called ACDC, 

which uses a graph based approach, to search for subsystem trends in dependency 

graphs. Other clustering studies that use graph data models include: (Beyer and 

Noack, 2005; Chiricota et al, 2003; Maletic and Marcus, 2001; Muller and Uhl, 

1990; Rayside et al, 2000). 

Other studies that employed software clustering techniques into software projects 

include: (Andritsos and Tzerpos, 2003; Maletic and Marcus, 2001; Mancoridis et 

al, 1999; Mitchell and Mancoridis, 2001; Shtern and Tzerpos, 2004; Tzerpos and 

R. C. Holt, 2000; Vanya et al, 2008; Wen and Tzerpos, 2004; Mitchell and 

Mancoridis, 2001; Mitchell and Mancoridis, 2007; Wu et al, 2005; Beyer and 

Noack, 2005; Beck, 2009). 

Considerable differences in size and connectivity can generate different 

landscapes of the search space, indicating the need for a robust search technique. 

Heuristic techniques (discussed in Section 2.2.3) have already replaced traditional 

clustering techniques such as hierarchical when solving the software module 

clustering problem. This will be explained further in Section 2.4. 
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2.3.6  Refactoring 

The design of software system is usually not prepared for the new requirements 

that emerge through its lifecycle; a vital concern that needs to be considered 

during the evolution of the system is the enhancement of the quality of the 

software system design. Large non-trivial software systems have ever-changing 

requirements. They evolve over time and have many releases; these releases 

address and resolve new requirements as well as improve any technological issues 

that these systems may have. The structure of the software system needs to be 

updated when new requirements are introduced during the lifecycle of these 

systems. 

The firm schedules and deadlines in real-life software development can cause 

different people to change and maintain the system. Inappropriate changes to the 

system can cause structure degradation and increases the complexity of the 

software system. This in turns leads to a rise in maintenance costs. Thus, an 

important process in the evolution of software systems is the continuous 

restructurings of the code. 

Fowler et al (1999) defines refactoring as “the process of changing a software 

system in such a way that it does not alter the external behaviour of the code yet 

improves its internal structure. It is a disciplined way to clean up code that 

minimizes the chances of introducing bugs”. Refactoring is a way to enhance the 

design structure of software systems. Initial work into refactoring was first 

conducted by Opdyke in his PhD thesis (Opdyke, 1992). He used object-oriented 

C++ as the basis for using refactoring to enhance the design of code. Software 

developments methodologies such as Extreme Programming (XP) (Beck, 1999) 

and Test Driven Development (TDD) rely on refactoring to improve the software 

quality and keep the structure of the code easy to maintain. 

Refactoring has now become an important process with developers alternating 

between introducing new functionalities and refactoring the code in order to 

improve the clarity of the structure. Developers first have to identify the sections 
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in the code that are impacting on the system’s maintainability and apply the fitting 

refactorings in order to remove “bad-smells” (Brown et al, 1998). 

There were a large number of studies in the field of refactoring; however there is 

limited research in the field of detecting refactorings. Deursen and Moonen (2001) 

have presented the difference test code and production code refactoring. They 

have described a set of bad smells in test code and the refactorings that are needed 

to remove these smells. On the other hand, Xing and Stroulia (2006) illustrated 

the detection of refactoring activities by analysing the evolution of the system at 

the design stage. Seng et al (2006) proposed a search-based approach for 

refactoring the structure of software systems. Xu et al (2004) has presented a 

clustering based technique for restructuring the program at the functional level, 

focusing on automating the identification of badly structured or low cohesive 

functions. Weißgerber and Diehl (2006) work also presents techniques for 

refactoring prediction from source code changes. 

Seng et al (2006) employed a Genetic Algorithm to identify refactorings for 

software system. Sequences of refactoring activities (transformations to be made 

to the system design, for example the movement of a method from one class to 

another) were evolved. A number of metrics that includes coupling and cohesion 

were used to evaluate the fitness of the results. Harman and Tratt in (2007) 

extended this approach with a multi-objective HC technique. 

Other studies that use partitional and hierarchical clustering techniques for 

refactoring detection include: (Czibula and Serban, 2006; Czibula and Serban, 

2008a; Czibula and Serban, 2008b). The authors conduct an experimental 

evaluation of the clustering algorithms for refactoring open-source and real 

software systems.  
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2.4 Search Based Software Engineering 

2.4.1  Overview 

There has been significant amount of effort to automate tasks in the software 

development phase. The automation of these tasks can dramatically reduce the 

development costs as it requires fewer resources. A large number of techniques 

were proposed for automating the software engineering process. A trivial way of 

finding the optimal clustering is by using an exhaustive search of all potential 

clustering. However, obtaining the optimal clustering is an NP-hard problem 

(Mitchell, 2002). Moreover, as the number of modules in the system increases, the 

number of possible solutions radically increases. Thus, exhaustive search 

approaches for obtaining the optimal solutions to clustering are impractical. 

As mentioned in Section 2.2.7.1, the computation complexity to achieve optimal 

or accurate solution may vary for some problems. Thus, instead an approximate or 

near-optimal solution can be found. Search algorithms are among those that have 

gained successful and promising results. They are called search-based techniques 

as they explore and navigate the search space of all possible solutions. However, 

in order to be able to apply these search techniques to software engineering 

problems, the problems need to be re-formulated to search problems. Miller and 

Spooner (1976) were one of the first to use search-based techniques to solve a 

software engineering problem. 

2.4.2  Search Based Software Engineering 

Search Based Software Engineering (SBSE) concerns the application of 

techniques from metaheuristic search, evolutionary computation and operations 

research to solve problems in software engineering (Harman and Jones, 2001). It 

is based on the concept of reformulating software engineering problems as search 

problems, allowing search techniques to solve these problems and benefits from 

the advantages offered by these techniques. SBSE is a term which was first coined 

by Harman and Jones (2001). 
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Three aspects are used for formulating software engineering problems as search-

based optimisation problems, they are: representation, fitness function and choice 

of search-based technique. Search algorithms require an appropriate fitness 

function for distinguishing between the solutions for finding the optimal ones. The 

fitness function should aim to estimate how good a solution is even if it does not 

solve the problem. The search algorithm guides the fitness function into searching 

for better solutions, although finding the most optimal solution is not guaranteed. 

Refer to Section 2.2.2 for further details on the search problem. 

Over the last number of years SBSE has become a widely vibrant research area 

for solving software engineering problems. In 2009, Harman et al performed an 

extensive review of the application of search-based approaches to software 

engineering problems. The review comprises of challenges throughout the 

software engineering lifecycle, including requirement selection, cost estimation, 

software system scheduling and testing. Search algorithms have been applied to 

many software engineering problems: requirement analysis (Bagnall et al, 2001), 

project planning and cost estimation (Aguilar-Ruiz et al, 2001; Antoniol et al, 

2004; Burgess and Lefley, 2001; Kirsopp, 2002), testing (Baresel et al, 2002; 

Harman et al, 2004; McMinn et al, 2006), maintenance (Bouktif et al, 2006; 

O’Keeffe and O’Cinneide, 2006; Seng et al, 2006) and quality assessment 

(Bouktif et al, 2006; Khoshgoftaar et al, 2004). 

2.4.3  Modularisation using metaheuristic algorithms 

The clustering algorithm task is to create a cluster landscape of the software 

system by distributing the artefacts based on their similarities. Most clustering 

algorithms distribute the clusters hierarchically; low-level artefacts are arranged 

and organised into subsystems (Mitchell, 2002). Subsystems can then be clustered 

based on their similarities to create another level of abstraction i.e. new larger 

subsystems, until it can possibly end up with only one cluster containing all 

subsystems. This approach can help stakeholders to understand the structure of the 

software system, and to analyse and revise the system at different levels of 

abstraction. However, one disadvantage to this technique is that some software 



 

40 

systems evolve quicker than others and as such several parts of the system may 

progress into higher abstraction levels, whilst other are still at a lower subsystem 

level.  

Previous studies indicate that metaheuristic techniques have shown to be good at 

delivering near-optimal solutions for complex problems within reasonable amount 

of time, making them ideal for search-based optimisation (Harman, 2010). The 

human effort is shifted to guiding the automated search instead of performing the 

search. These techniques model a problem in terms of an objective function and 

use a search technique to minimise or maximise that function. Modularisation is 

another term used to describe the grouping of common functionality into 

components. It also aims to produce meaningful abstractions that manage the 

complexity of the model. Figure 2.5 displays the modularisation graph of a small 

software system called Mtunis (a simple operating system used for educational 

purposes). 

A wide range of metaheuristic techniques could be applied in SBSE. Genetic 

Algorithms (GA), first introduced by (Holland, 1975) is one of the most 

commonly used search-based algorithms in SBSE (Harman, 2007). Other 

metaheuristic techniques include Genetic Programming (GP) (Smith, 1980), 

Evolution Strategies (ES) (Schwefel, 1981), Hill Climbing (Johnson et al, 1988), 

Simulated Annealing (Kirkpatrick et al, 1983), Tabu Search (TS) (Glover, 1986), 

Ant Colony Optimisation (ACO) (Dorigo, 1992), and Particle Swarm 

Optimisation (PSO) (Kennedy and Eberhart, 1995).  

Clustering techniques has now become more used in software understanding, 

evolution and maintenance of software (Di-Lucca, 2002; Maletic and Marcus, 

2001; Jahnke, 2004; Lung, 1998), in particular, the work involving Mancoridis et 

al (1998) and Mitchell (2000). They make use of clustering techniques to identify 

and group subsystem within the software modules in order to aid software re-

engineering. Moreover, Tzerpos and Holt (2000) introduced a clustering algorithm 

to locate clusters that are observed in the decompositions of large software 

systems that were manually prepared by their software architects.  
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Figure 2.5 – Modularisation graph of Mtunis 

Mancoridis et al (1998) introduced a collection of algorithms to automatically 

recover the modular structure of the software system from its source code. 

Clustering is treated as an optimisation problem. Software modularisation is 

achieved by constructing a Module Dependency Graph (refer to Section 3.2.2 for 

definition) of the source code. Software objects are represented as nodes which 

are connected by dependencies (edges) (Doval et al, 1999; Mancoridis et al, 

1999). In order to obtain the required information for software clustering, an 

analysis of the underlying software is initially needed. 

The objective function is maximised based on the inter and intra connectivity 

between the software components. In other words, it optimises the decomposition 

of the software to reach low coupling between different clusters and high cohesion 
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of objects from the same cluster; an established concept of good software design 

(Stevens et al, 1974). A clustering tool Bunch was developed for the recovery and 

maintenance of the software system structures. The tool incorporates user-directed 

and incremental software structure partitioning. An overview of the tools that can 

be used for this purpose is presented in (Antoniol, 2003). Three clustering 

algorithms (Exhaustive, Hill Climbing and Genetic Algorithm) were implemented 

in (Mitchell, 2002). These clustering algorithms maximise the objective function. 

The term Modularisation Quality was introduced to describe the quality of the 

solution. Two objective functions were introduced: BasicMQ and TurboMQ. 

2.4.4  Evaluation and Quality Metrics 

In order to determine the quality of the clustering technique, the quality of the 

outputted decompositions need to be assessed. These outputted decompositions 

can be assessed through a number of criteria that involves the use of one or more 

numerical metrics. Structural quality metrics concentrate on particular parts of the 

system and provide numerical outline of those parts. Software metrics can provide 

basic measurement for estimating the quality of clustering results of the software. 

According to Schneidewind (1992) a metric is a subjective function f: S  R that 

transforms a set of attributes, S, into a relational system R. It measures certain 

software qualities by looking at the attributes of artefacts. It interprets the quality 

of the software attribute and conveys these measured attributes into an equivalent 

scale. 

There are a number of different internal quality metrics that can be employed for 

measuring the quality of the decomposition. Examples include: size and number 

of clusters, high stability of the clustering arrangement, and heuristic 

measurements such as coupling and cohesion. Some of these metrics do not 

independently measure the quality of the decomposition, whereas others such as 

cohesion and coupling metrics can be used as independent quality evaluation. 

Coupling and cohesion are important metrics that are widely used to assess the 

quality of a system design. A system with low inter-module coupling and high 
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intra-module cohesion reflects a well-designed system by the standards of 

structured design (Yourdon and Constantine, 1979). Cohesion and coupling is 

vital for the decomposition and the modularisation of software systems. The 

hierarchical decomposition should produce a high quality structure that is judged 

by these metrics. Coupling indicates the strength between two artefacts. High 

coupling affects the reusability and understandability of the artefacts. Whereas, 

cohesion refers to the internal coherence within the artefact. Low cohesion could 

be caused by the implementation of different (multiple) functionalities in an 

artefacts. This can also affect the understanability and reusability of the artefact. 

Coupling and cohesion has been used in previous studies to assess the quality of 

system hierarchy generation approaches. Coupling and Cohesion were the basis 

for measuring the quality of the Bunch modularisation tool (Mitchell, 2002). 

Anquetil and Laval (2011) have described how cohesion and coupling that is 

measured at class level decrease through several refactoring activities of the 

project. Counsell et al in (2006) has described how the cohesion ratings of 

software has a small difference when compared between two developers that are 

grouped by experience.  

There are various approaches to measuring coupling, for example Chidamber and 

Kemerer (1994) introduced the metric Coupling Between Objects (CBO) (refer to 

Section 3.3.8 for details) that measures coupling between classes in their object-

oriented suite. Fenton and Melton (1990) illustrated how coupling at several levels 

(for example, control flow and variable dependencies) can be calculated based on 

the different connectivity of the modules. The coupling could range from no 

coupling (best) to content coupling (worst). 

There are various similarity measurements that were used in previous research for 

computing the similarity of clustering arrangement, effectively they are rather 

similar. Tzerpos and Holt (1999) defines a metric for evaluating the similarity of 

two decompositions of a software system by calculating the distances of the two 

partitions of the same set of resources, for solving the software clustering 

problem. It uses the Move and Join operations that are needed for mapping the 

two decompositions. The metric was then further optimised and normalised by 



 

44 

Wen and Tzerpos (2004) to produce a new metric called MoJoFM. Wen and 

Tzerpos (2004) state that similarity measures are used to compare two software 

decompositions in terms of the nodes of the dependency graph, edges of the 

dependency graph or both. Other similarity metrics include: EdgeSim and MeCl 

developed by Mitchell and Mancoridis (2001) and EdgeMoJo developed by Wen 

and Tzerpos (2004). Maqbool and Babri (2007) present and evaluate several 

metrics for computing the similarities of two software clustering outputs. 

There are clear similarities between the software metric and the fitness function 

and these are presented in Harman and Clark (2004). Harman and Clark (2004) 

have also motivated the idea of including different metrics into the fitness 

function. Other work that have included metric values into the fitness function 

include Mitchell (2002), Seng et al. (2005) and Jiang et al. (2007). Mitchell 

(2002) was based on cohesion and coupling measurements. Seng et al (2005) 

included cohesion, coupling and bottleneck metrics into the fitness function. Jiang 

et al (2007) have also introduced software metrics to guide the search. 

The evaluation of the results of the clustering process can also be referred to as 

cluster validation. There are two main types of evaluation techniques; internal and 

external evaluation. Internal evaluation techniques concerns evaluating the 

clustering results based on the data that was clustered, it assesses the clustering 

algorithm’s quality based on an internal criterion. Some of these techniques are 

Davies-Bouldin index (Davies and Bouldin, 1979), Dunn index (Dunn, 1974) and 

Silhouette coefficient (Rousseeuw, 1987). 

In contrast, external evaluation techniques evaluate the clustering results based on 

information that are not used for clustering such as external reference 

decompositions and class labels. Some of these methods include Rand measure 

(Rand, 1971), Jaccard Index (Jaccard, 1901) and Fowlkes–Mallows index 

(Fowlkes and Mallows, 1983). 

Reference decomposition, an external assessment method, uses a consensus as a 

benchmark to the clustering results to measure the similarity between the 

algorithms and the decisions made by the developers. A distance or similarity 



 

45 

metric is needed to measure the two decompositions. Similarity of the results of 

decompositions (assuming they are in acknowledged hierarchy) permits the 

accuracy of the algorithm to be estimated. Mitchell and Mancoridis (2001) 

suggested the use of aggregated appointments of repeats runs of the clustering 

algorithm in the absence of an expert benchmark. 

However, this form of testing has been widely applied in software clustering. The 

number of clusters is not fixed when modularising, and thus thinking about the 

accuracy on a cluster by cluster basis is not possible. Most similarity 

measurements regard the assignments made by the algorithm as pair-wise 

relations, calculating the score over the sets of all pairs of elements (Hall, 2013). 

2.4.5  Graph Clustering 

2.4.5.1 Graph Overview 

Let G = (V, E) be a graph, consisting of a collection of vertices (or vertex set), V 

and a collection of edges (or edge set), E. The vertices indicate the objects that are 

being modelled (will be referred to as nodes), whereas the edges correspond to the 

relationship between the vertices. An edge can be defined as an unordered 

sequence {u, v} ∈ E that indicate u and v are directly connected. As an example, 

V={1,2,3,4,5} and E={{1,2},{1,3},{3,5},{2,5},{5,4}}. Figure 2.6 illustrates a 

graphical representation for this example. 

 

Figure 2.6 – An example of a graph 

1 

3 

2 

5 

4 



 

46 

Graphs can either be undirected or directed. Undirected graphs means that if u is 

directly connected to v then v is directly connected to u; an edge is seen as a pair 

of vertices. Whereas, for directed graphs, when the edge (u, v) is present, the 

reverse edge (u, v) does not need to be present. For this, edges are denoted by the 

ordered pair (u, v) with u, v ∈ V. 

2.4.5.2 Representing Software as a Graph 

Software can be modelled using numerous representations. Many graphical 

models including graphs using the concept of connectivity between entities to 

presents the system components. Graphs are very versatile. 

For the model types studied for this work, the node graph represents an entity and 

the edges between them represents some form of a relation. This thesis focuses on 

one graph-based representation, the Module Dependency Graph (MDG). In the 

MDG, a text file, every line represents a dependency with an artefact and a 

destination artefact (refer to Section 3.2.2 for further details). 

2.4.5.3 Graph Clustering 

Graph clustering can be defined as the grouping of the vertices of the graph into 

clusters, such that there are many edges within each clusters and fewer between 

the clusters. Clustering will generally be denoted with the symbol C. The clusters 

within the clustering will be denoted Ci. Clustering graph G is the partitioning of 

V into k sets or clusters (C1, C2,….Ck). Clustering G would result into induced 

near-cliques that are loosely inter-connected. 

A weighted graph refers to a graph in which each branch (connecting the vertices) 

has a numerical weight. If G is a weighted graph, a good clustering, would result 

in Ci containing a high edge weight sum, whilst keeping the sum of weights of 

edges in G between graphs relatively low.   

As mentioned above, graph clustering involves finding a decomposition of the 

vertex set into subsets that are highly intra-connected but loosely inter-connected. 

Good clustering involves the partitioning of the graphs into clusters with high 
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density. Graph clustering is a common and a natural problem to consider. It is not 

straightforward to determine the goodness of clustering a graph. Familiar graph 

problems include clique finding and colouring. As an example, clustering a graph 

may produce two very good and natural clusters, but with one of the clustering 

arrangement containing many more clusters than the other. Determining which of 

the two clustering arrangement produced is better, without prior knowledge of the 

context of the graph, can be difficult. 

The graph clustering problem has a computational complexity of NP-hard, with 

the number of solutions to cluster increasing exponentially with the number of 

nodes in the system. Thus, Mitchell (2002) expressed a number of aspects that 

needed to be measured whilst designing the representation of the artefacts. The 

granularity of the system, the level of the clustering, is one of the impelling 

factors that need to be considered i.e. whether to apply the clustering at method, 

class, file or package level. Another aspect which is of relevance is the weight of 

the connection strength between two artefacts i.e. which attributes are of more 

importance. 

2.4.5.4 Applications of Graph Clustering 

There are countless practical applications of graph clustering. Clustering can be 

applied to various modelled systems and for many purposes that include 

bioinformatics, computational vision and data management. 

A growing area of application for graph clustering is bioinformatics (Enright et al, 

2002; Przulj et al, 2004). There is a wide range of applications of graph theory to 

biological analysis, some of these are described in (Przulj, 2002; Barabási and 

Albert, 1999). Graph theory was applied to protein complex prediction problems 

(Altaf-Ul-Amin et al, 2003; Bader and Hogue, 2003; Hu and Han, 2003). In 

(Aksoy and Haralick, 1999), clustering was used to improve image grouping and 

retrieval within a database. Clustering has also been applied to image 

segmentation (Faugeras, 1983; Good, 1977; Wu and Leahy, 1993). Moreover, one 

of the most basic and direct application of graph clustering is graph colouring 

(Johnson and Trick, 1996; Mihaila, 1995).  
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Software organisation is another field that graph clustering can be directly applied 

to. Simply, software components can be modelled as vectors and their similarities 

as edges. Software modularisation is a field on the rise. Mancordis et al (1998) 

was first to apply clustering to software organisation. They used techniques such 

as Exhaustive search, HC and GA for partitioning the system. In Mancoridis et al. 

(1998) the software system is presented as a directed graph G = (V,E). V, set of 

nodes, represents the artefacts in the system, and E represents the relationship 

between the artefacts. The goal of the software clustering tool is to partition the 

graph into a set of meaningful subsystems. There are various methods for scoring 

the clustering of a graph. The scoring is rather subjective. Without a solid 

benchmark, the experimental performance would be less meaningful. 

2.5 Research Outline 

As discussed in the sections above, a wide range of clustering approaches have 

been introduced and studied in the field of AI, SE and SBSE. After a 

comprehensive study of these studies, especially in the module clustering and 

cost/effort prediction, it is concluded that it is a continuously expanding field of 

domain that has many already studied fields but at the same time there are many 

un-researched directions. There are still many problems in software engineering 

that have not been tackled using metaheuristics.  

The overall aim of the study is to offer help to stakeholders of software systems in 

arriving at optimal structure of their systems in the least amount of time taken. 

There is an emphasis on the development of the software clustering framework 

which applied heuristic techniques when guiding the search process. This study 

focuses on understanding the inter-class relationships of large time-series systems 

in software engineering using metaheuristic techniques. Metaheuristic algorithms 

have been widely applied to both clustering and modularisation problems. 

Software changes during maintenance and evolution of systems can have a ripple 

effect (Bennett, 1996), thus good modularisation of software can lead to systems 

that are easier to understand, develop and maintain. 
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Current research still demonstrates that there is a lack of flexibility in effectively 

dealing with large dynamic software projects such as the need to allocate the 

appropriate number of staff during the various stages of the project. Previous 

studies on scheduling and staffing of software projects have shown that it is 

possible to optimise the schedule of a project and to accurately estimate the effort 

of individuals. However, the project teams is allocated according to a prearranged 

optimised project schedule, which will no longer to be deemed optimised since 

the skills and availabilities of staff will most likely be different than the 

information used when initially scheduling the project. These issues are 

investigated and are presented in Chapter 7. 

To summarise, there are still unsolved areas in this field. Thus, there is the need to 

perform further analysis of large and complex time-series software projects in 

order to solve the challenges concerning them. This study intends to show how the 

application of the modularisation tool presented in this thesis can help 

stakeholders of the software system to identify how the system can deteriorate 

over time. Accordingly, refactoring activates can be planned with the intention of 

improving the software system quality. To the author’s knowledge, there was no 

study that focuses on using SBSE techniques to cluster large time-series software 

system for analysing the dependency relationships of the software system and 

locating the occurrence of extension or refactoring activities, and classifying these 

accordingly. 

2.6 Summary 

This chapter summarised background information in the area of AI, SE and SBSE. 

This constitutes the main motivation and background behind the research 

presented in this thesis. The next chapter reviews the tool implemented and all of 

its individual components, and presents the main dataset used in this project.  
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Chapter 3:  Munch Tool and Datasets 

3.1 Introduction 

This chapter commences by introducing the Bunch tool, first implemented by 

Mitchell (2002). This tool forms the basis for the implementation of the tool 

employed for this research. Section 3.3 introduces the Munch tool and all of the 

components that constitutes it. It explores the clustering algorithm and the fitness 

functions implemented and describe the metrics that are used for measuring and 

assessing the quality of the clustering decompositions. Section 3.4 introduces the 

dataset used in this study and outlines the origins and the structure of this dataset. 

Lastly, Section 3.5 provides an overall evaluation of the components of the 

Munch tool. 

3.2 Bunch Tool 

3.2.1  Overview 

Bunch (Michell, 2002) is a clustering based tool that is designed to group software 

components together into modules based upon their coupling. It ensures that the 

components that are grouped together are highly cohesive with low coupling 

existing between modules. It is the most extensively used and studied search-

based modularisation technique. Bunch initially clusters files or classes into small 

modules, subsequent searches merges modules of previous searches to produce a 

layered hierarchy (Mancoridis, 1998). Bunch purely relies on the connectivity in 

the MDG (explained in the next section), however it also offers support for 

weights on the edges in MDG. It uses a heuristic search technique to optimise the 

clustering quality metric. It was developed in the Java programming language. An 

extension API is offered for the tool to integrate independently developed 

algorithms. 

Bunch uses the concept of low coupling and high cohesion between classes. The 

fitness function employed in Bunch maximises the cohesion of clusters and 
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minimises coupling between clusters. Modularisation Quality (MQ) is expressed 

as the ratio of coupling to cohesion. The MQ metric is not very different from the 

similarity metric employed in Arch (Schwanke, 1991). 

If we are to treat modularisation as a set of feature vectors, algorithms cluster 

artefacts by the similarities of their dependencies. The Bunch process initially 

starts by clustering the MDG, in each successive search the clusters of previous 

search and their inter-edges are clustered again. A new level in the hierarchy is 

produced by each search, in a bottom-up way. Bunch comes to a halt when the 

search yields a cluster by itself. Components that do not require modularisations 

are restricted from the search by Bunch, these include omnipresent and library 

modules. Omnipresent modules can be identified from their above-average edge 

count (Mitchell, 2002). 

As mentioned earlier, Bunch uses a metric to estimate and assess the quality of the 

current clustering. Bunch provides three adaptations of the metric used for 

classifying the edges. BasicMQ is a very basic implementation of the low 

coupling and high cohesion, with high computational complexity. TurboMQ is an 

updated version of the BasicMQ. ITurboMQ is the fastest metric, as it uses 

incremental computation. 

Three clustering algorithms were implemented in Bunch, they are: an Exhaustive 

search algorithm, a HC algorithm and a GA. The Exhaustive search algorithm was 

not practical with large number of modules due to its computational complexity. 

The GA yielded results of unstable quality using varying runtime. On the other 

hand, the HC algorithm produced the most stable results with most predictable 

time (Mitchell, 2002). In addition to the following publications (Doval et al, 1999; 

Mancoridis et al, 1999; Mancoridis, 1998), the PhD thesis of Mitchell (2002) 

provides an extensive description of the tool and the corresponding Java API. 

The Bunch tool is only available as binary jar files and there is no source code of 

the tool available. Thus, source code analysis and modifications is not possible on 

the Bunch tool. This prohibited the use of the Bunch tool and therefore motivated 

the creation of a tool for the analysis of the metrics and algorithms. 
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3.2.2  Module Dependency Graph (MDG) 

It is important to achieve a language independent graph from the system’s source 

code. The module-level dependencies can be extracted from the source code and 

stored in a textual representation. Static analysis tools such as Dependency Finder 

and Source Navigator can be used to extract the dependency graphs from the 

software. Other source code analysis tools include CIA, Acacia and Chava. 

An MDG is a language independent graph representation of the components and 

the relations of the source code of a software system. An MDG represents 

modules as nodes and module dependences as edges. For the formal definition, let 

MDG = (V,E) be a graph, where V is a set of the modules of a software system and 

E ∈ V × V is a set of ordered pairs (u,v) which represents the source level relations 

between modules u and v of the system (Mitchell, 2002). For source code, the 

lines of code in a system can indicate the size of the system. Also the number of 

classes or files in a system (the size of V in MDG) can also indicate the size of the 

system. Bunch identifies clusters and displays the dependency graphs that are 

within the software system. 

There are more than one way to define an MDG, refer to Mitchell (2002) for more 

details. For the definition above an edge is placed between a pair of modules when 

the module uses resources of the other module. 

3.2.3  Improvement on Bunch 

Recent studies has focused on alternative search techniques to generate better MQ 

values and improve on Bunch, for example; Mahdavi et al (2003) employed a 

multiple HC technique to locate better starting assignments for the search. On the 

other hand, Praditwong at al (2011) used a multi-objective GA approach and 

compared the results to the Bunch HC algorithm. Results produced higher MQ 

values than Bunch for the same number of fitness function calls, however at an 

increased computational cost. 



 

53 

In Harman et al (2005), the performance of the MQ fitness function and the EVM 

fitness function introduced in Tucker et al (2001) were analysed and compared. 

The fitness function were evaluated on both software system and simulated 

datasets. The case studies were each clustered with an increasing amount of noise. 

Results have shown that EVM was more tolerant to noise. 

Glorie et al (2008) evaluated Bunch in a real-world scenario; whilst Bunch 

managed to identify few useful modularisations, the dominant results were poor, 

rendering it unusable for industrial settings (Glorie et al, 2008). In contrasts, 

developers of systems reported agreement with the clustering produced by Bunch 

(Mitchell and Mancoridis, 2006; Mitchell and Mancoridis, 2008). 

3.3 Munch Tool 

3.3.1  Overview 

 
Figure 3.1 – An overview of the Munch tool 

A tool, named Munch that integrates the data sources, clustering algorithms and 

evaluation methods (including the fitness function) was developed for this study. 

It is a rapid prototype implemented to carry out experimentations of different 

heuristic search approaches and fitness functions. The design and implementation 

of the tool was guided by the aims and objective of the research. Before 

describing the design and implementation of the individual components of the 
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tool, this section provides an overview of the tool and the development 

environment utilised in this study.  

Munch’s uses an MDG of a system as input and produces a hierarchical 

decomposition of the system structure as output, whereby closely related modules 

are grouped into clusters that are loosely connected to other clusters. Munch was 

developed using the Eclipse IDE and Java programming language. The tool is not 

limited in terms of applicability, as any time-series software system could be 

applied to the tool. It works on individual data sources and large time-series 

datasets. Refer to Figure 3.1 for a simple representation of the software 

architecture of the tool. It also illustrates the pre-processing stage of the data and 

the evaluation stage of the clustering output. Table 3.1 provides a summary of the 

main differences between Munch and Bunch tools.  

Munch Bunch 

RMHC clustering algorithm Exhaustive search, HC and GA 

clustering algorithms 

EVM fitness function MQ fitness function 

Three different starting clustering 

arrangement of the MDG is used 

including a pseudo-random and a truly 

random arrangement 

A random starting clustering 

arrangement of the MDG is used 

It employs a seeding strategy for 

modularising time-series datasets 

No seeding strategy 

Better experimental framework (due to 

the move operator); one fitness function 

call per iteration 

A more detailed clustering approach 

that provides fully-automatic, semi-

automatic and manual clustering 

features 

No Graphical User Interface It comprises of a Graphical User 

Interface 

No API An API for integrating independently 

developed algorithms 

Third-party libraries are excluded from 

the search 

Omnipresent and library modules are 

excluded from the search 

Munch was applied to a number of 

open source software systems as well as 

a large commercial time-series dataset. 

Bunch was used on a variety of open 

source software systems. 

Table 3.1 – A simple comparison between Munch and Bunch 

There are various details that are recorded for each of the modularisation 

experiments to be conducted, these include: fitness function values (Sections 3.3.5 
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and 3.3.6), Weighted-Kappa (Section 3.3.7), Homogeneity and Separations metric 

(Section 3.3.8), number of fitness function calls, convergence points and the 

runtime of the algorithm. 

3.3.2  The Matrix 

A graph is often represented as a matrix (two-dimensional array), although other 

data structures can be used depending on the application. Each software version of 

the dataset (described in Section 3.4) was converted to a matrix. The matrix is 

represented as follows: If there are n nodes to represent, for an n by n matrix M, a 

non-zero value of Mij (i
th

 row, j
th

 column of M) means there is an edge between 

node i and j. The matrices produced are symmetrical. Figure 3.2 illustrates how 

the matrix is represented. As the dataset is non-weighted, Mij is either one for an 

edge or zero for no edge i.e. one for a relationship and zero for no relationship.  

0 𝑀12 𝑀13 𝑀14 ⋯ ⋯ ⋯ ⋯ ⋯ 𝑀1𝑛

𝑀21 0 𝑀12 𝑀12 ⋯ ⋯ ⋯ ⋯ ⋯ 𝑀2𝑛

𝑀31 𝑀12 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑀3𝑛

𝑀41 𝑀12 ⋮ ⋱ 𝑀4𝑛

⋮ ⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ 𝑀𝑖𝑗 ⋮

⋮ ⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋮

𝑀𝑛1 𝑀𝑛2 𝑀𝑛3 0

 

Figure 3.2 – A graphical representation of the matrix 
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3.3.3  Representing a Cluster 

A cluster will be represented as a vector C where ci=j means that object i is in 

cluster j. For example C = [1,2,3,1,2,3] (Number of clusters, k=3). Figure 3.3 

shows a graphical representation of the clustering of the example above. 

 

Figure 3.3 – A graphical representation of the clustering process 

3.3.4  Munch Clustering Algorithm 

This work follows Mancoridis et al (1998) and Mitchell (2002), who first 

introduced search-based approach to software modularisation. The clustering 

algorithm was re-implemented from available literature on Bunch’s clustering 

algorithm (Mitchell, 2002) to form a tool called Munch.  

 

Figure 3.4 – An overview of the clustering algorithm of Munch 

A heuristic algorithm is required to traverse the space of possible solutions using 

the fitness function in order to locate the best solution. It uses an MDG as an input 

Ends when no further improvement is possible 

Process iterates to find other better clustering arrangements 

Modules rearranged to find better clustering arrangements with higher fitness function 

Simple RMHC 

Generate a starting clustering arrangement of MDG  
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and produces a partition of the MDG as an output. It partitions the system into 

clusters. A cluster is a set of the modules in each partition of the clustering. The 

software module clustering problem involves finding good quality software 

modules clusters based on the relationships amongst the modules. It aims to 

produce a graph partition that minimises coupling between clusters and maximises 

cohesion within each cluster. Coupling is defined as the degree of dependence 

between different modules or classes in a system, whereas cohesion is the internal 

strength of a module or class (Sommerville, 1995). 

The clustering algorithm uses a simple RMHC approach (Michalewicz and Fogel, 

2004) to guide the search. It is a simple, easy to implement technique that has 

proven to be useful and robust in terms of modularisation. It was chosen for this 

study as it has performed best in reported recent studies. It has outperformed other 

algorithms in terms of both quality of the solutions and execution time 

(Praditwong, 2011). 

Algorithm 3.1 – Munch Clustering Algorithm 

MUNCH(ITER,M) 
Input:  

ITER  the number of iterations (runs) 
M  an MDG 
 1) Let C be a random (or specified - for seeded)  
    clustering arrangement 
 2) Let F = Fitness Function (See Section 3.3.7) 
 3) For i = 1 to ITER (number of iterations) 

 4)    Choose two random clusters X and Y (X≠Y) 
 5)    Move a random variable from cluster X to Y 
 6)    Let F’= Fitness Function 
 7)    If F’ is worse than F Then 
 8)       Undo move 
 9)    Else 
10)       Let F = F’ 
11)    End If 

12) End For 
Output: C - a modularisation of M 

 

In HC, the search process starts from a randomly chosen representation. Modules 

are rearranged to find better clustering arrangements with a higher fitness function 

value. Once a ‘fitter’ representation is found, this becomes the current 

representation in the search space. This process iterates. Modules from this 

partition are then re-arranged systematically in order to find an improved partition 
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(with better fitness function). If no ‘fitter’ representation is found, the search 

converges and the maximum is found. Figure 3.4 presents and highlights the 

clustering algorithm. The pseudo-code of the clustering algorithm is shown in 

Algorithm 3.1. 

3.3.5  Fitness Functions 

The fitness function is used to measure the relative quality of the decomposed 

structure of system into subsystems (clusters). Two main fitness functions were 

employed and experimented with for this study. First, was the Modularisation 

Quality (MQ) metric of Mancoridis et al (1998) as implemented in Bunch. 

Bunch’s MQ metric is based on the trade-off between coupling and cohesion, that 

is, connections between components of two distinct clusters and connections 

between the components of the same cluster, respectively. MQ is based on the 

assumption that quality software system are organised into cohesive cluster that 

are loosely interconnected. The other function is EVM of Tucker et al (2001). It 

has been previously applied to problems of time-series data and clustering of 

genes in concurrence with gene expression data (Harman et al, 2005). 

3.3.5.1 Modularisation Quality (MQ) 

Mancoridis et al (1998) introduced an objective function called Modularisation 

Quality (MQ), based on the intra-connectivity and inter-connectivity. The intra-

connectivity of a cluster is the cluster’s density, whereas the inter-connectivity 

between two different clusters is expressed as the proportion of possible edges 

between the two clusters that actually exist. The MQ measurement rewards 

maximising the cohesiveness of the clusters (presence of intra-module 

relationships), while penalises excessive inter-clustering coupling (presence of 

extra-module relationship). In other words, few edges are needed between clusters 

(low inter-connectivity) and many edges within them (high intra-connectivity). 

For the formal definition of MQ for a clustering, C, let μi be the amount of 

relationships that exists between elements in cluster ci and εij be the amount of 
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relationships that exists between elements of cluster ci and cluster cj. When i = j, 

εij= 0 and εji= 0. The score, CF(ci) which is awarded to single cluster ci is defined 

in Equation 3.2. 
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3.3.5.2 EValuation Metric (EVM) 

The EValuation Metric (EVM), first introduced by Tucker et al (2001), is used to 

score a clustering arrangement. EVM rewards maximising the cohesiveness of the 

clusters (presence of intra-module relationships) clustering with a high number of 

intra-module relationships, but it does not directly penalise inter-clustering 

coupling. It looks at all possible relationships within a cluster and rewards those 

that exist within the MDG and penalises those that does not exist within the 

MDG. In other words, it looks at all possible links and for each cohesion 

relationship that exist the score is incremented by one, and for each cohesion 

relationship that does not exist, the score is decremented by one. However, this 

implies that it may indirectly penalise high coupling; re-arranging modules 

between clusters can change high coupling between two modules to lower 

coupling between them, and higher cohesion within one (or possibly both) of 

them (Harman, 2005). 

The objective of the heuristic searches is to maximise the fitness function. As the 

value of EVM is not normalised, there are no upper limits to the value of the 

functions. EVM has a global optimum that corresponds to all modules in a single 

cluster, where modules are all related to each other. The theoretical maximum 
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possible value for EVM is the total number of links (relationships) in the graph, 

whereas the minimum value is simply the negative of the total number of links. 

For the following formal definition of EVM, a clustering arrangement C of n items 

is defined as a set of sets {c1, . . . , cm}, where each set (cluster) ci  {1,…,n} such 

that ci ≠  and ci  cj=  for all i ≠ j. Note that 1 ≤ m ≤ n and n > 0. Note also that 
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Let MDG M be an n by n matrix, where a one at row i and 

column j (Mij) indicates a relationship between variable i and j, and zero indicates 

that there is no relationship. Let cij refer to the j
th

 element of the i
th

 cluster of C. 

The score for cluster ci is defined in Equation 3.4. 
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The EVM metric has the following properties:  

I. If no relationships exists (M=φ), the maximum fitness is achieved when all 

variables are in distinct groups.  

II. If there is a relationship for each pairing of variables, the maximum value 

is achieved when all variables are in a single group.  

3.3.5.3 EValuation Metric Difference (EVMD) 

In order to make the process of modularisation faster, a new fitness function, 

EVMD, is introduced. It utilises an update formula on the assumption that one 
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small change is being made between clusters. It is a faster way of evaluating 

EVM, where the previous fitness is known and the current fitness is calculated, 

without having to do the move. It calculates the value of what the fitness function 

is going to be. It produces the same results as EVM, but effectively reduces the 

computational operations from O(n√n) to O(√n), thus reducing the speed 

significantly. 

For the formal definition of EVMD, let fold be the EVM fitness function. Also, let x 

be the from cluster, y be the to cluster and z be the index. Function G, defined in 

Equation 3.7, determines the relationship (from MDG M) that exists between 

variable v and cluster k. Equation 3.5 simply checks whether it is a positive or 

negative influence (i.e. does a relationship exist?). 

),,(),,(),,,,,( MCCGMCCGfMzyxCfEVMD xzyxzxoldold   (3.6) 
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3.3.6  Fitness Function Selection  

The work in this section is based on some of the work presented in (Arzoky et al, 

2011). In order to decide the fitness function to employ for conducting the 

modularisation experiments, the fitness functions introduced in the previous 

sections were implemented into Munch and evaluated accordingly. Six real-world 

programs, ranging from small systems of 13 modules to larger systems with over 

400 modules were used for this evaluation. These systems were selected as they 

vary in size, complexity and application characteristics; to address concerns 

related to the threat of validity. They were also used in previous studies (Harman 

et al, 2005; Mitchell, 2002). They were only available as MDGs and pre-

processing was not needed to be performed. Table 3.2 describes the systems used 

and displays the nodes and edges for each of these systems. The MDGs were 

constructed using the programs’ files; each file corresponds to a module and 

where the file makes use of another file, it is treated as module dependency. 
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Software 

System 

Nodes Edges Description 

 

Mtunis 20 57 A simple operating system used for educational 

purposes written in the Turing language 

Ispell 24 103 A spelling and typographical checking utility. 

Rcs 29 163 A revision control system that manages multiple 

revisions of files. 

Bison 37 179 GNU version of yacc parser generator used for 

converting grammar descriptions into C programs. 

Swing 413 1513 Integration software for Lotus notes and Microsoft 

office. 

Compiler 13 32 Simple compiler program developed at University 

of Toronto 

Table 3.2 – Description of the software systems 

The perfect clusters for the six real systems are not known, but a cross comparison 

of the results produced by the fitness functions was performed on the real MDGs. 

Three components were investigated, they are: Bunch (results of the 

modularisation of the systems using the Bunch tool and its MQ fitness function), 

Munch MQ (results of the modularisation of the system using the Munch 

clustering algorithm and the MQ fitness function), and Munch EVM (results of the 

modularisation of the system using the Munch clustering algorithm and the EVM 

fitness function). 

Due to the small sizes of the datasets used, the experiments were repeated only 12 

times for each of the six datasets, to remove any possibilities of randomness. 

Table 3.2 shows the calculated averages and standard deviations of Homogeneity 

and Separations (HS) metric (described in Section 3.3.8). It is a coupling metric 

that calculates the ratio of the proportion of internal and external edges. A value of 

+1.0 is produced if all the links are within the modules, and a value of −1.0 is 

produced if all links are external coupling. External links are not modularised and 

thus the more links between the clusters the worse the modularisation.  

The results showed that EVM performed better, producing higher HS values, than 

both Bunch and Munch MQ for most of the real systems. The results for compiler 

produce results that are different to the rest of the programs; this is possibly 

because compilers can often be designed very differently to other software and 
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also due to its extremely small size. For most of the real systems, the standard 

deviation of EVM is reasonably low, thus suggesting that it is producing 

consistent results. 

Software 

System 

Bunch Munch MQ Munch EVM 
Average Standard 

deviation 

Average Standard 

deviation 

Average Standard 

deviation 

Mtunis -0.2164 0.11812 -0.2135 0.09633 0.0556 0.01807 

Ispell -0.5711 0.09240 -0.4701 0.07756 0.2041 0.14628 

Rcs -0.6215 0.05909 -0.4925 0.14234 0.4043 0.05097 

Bison -0.5948 0.05051 -0.5289 0.04854 -0.2046 0.08881 

Swing -0.5984 0.00244 -0.5713 0.02088 -0.6049 0.00914 

Compiler 0.5355 0.02918 0.6065 0.06923 -0.4624 0.03177 

Table 3.3 – Results showing clustering comparison 

Mann-Whitney U test (Mann and Whitney, 1947) is a statistical test of the null 

hypothesis that two samples are independent from identical continuous 

distributions with equal medians against an alternative hypothesis. It was used as 

it does not assume that the distribution is normal, unlike the t-test. A probability 

value, p that the distributions are from the same distribution is returned. It is a 

simple statistical test to show that the means produced from the repeats are 

different. 

The 12 repeat results of three components were compared to each other to produce 

a set of p values for each of the three comparisons (Bunch vs. Munch MQ, Bunch 

vs. Munch EVM, and Munch MQ vs. Munch EVM). From Table 3.4, results that 

indicate a rejection of the null hypothesis at the 5% significance level are shown 

in italic, these results are statistically different. Whereas, the rest indicate a failure 

to reject the null hypothesis at the 5% significance level.  

From the table only two results shows a p value of over 0.5. They are for Mtunis 

and Ispell systems for the comparison of Bunch against MQ Munch only. This 

shows that the values of Mtunis and Ispell for these two components come from 

the same distribution. However, looking at the mean and standard deviation for 

each of these two systems from Table 3.3, it can be seen that they are very similar 

for Mtunis and not very different for Ispell. 
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Consequently, the majority of the results show that they are not randomly 

generated and thus are significantly statistically different. Since results in Table 

3.3 shows that Munch EVM outperforms Bunch and Munch MQ, this statistical 

test shows that the results are statistically significantly better. Thus, demonstrating 

that EVM is producing clusterings that are comparable or better than both Bunch 

and Munch MQ, illustrating that Munch can be used as a good approximator for 

Bunch. In addition, Munch is a much better experimental framework due to its 

one fitness call per iteration (this is explained further in Chapter 5). Thus, 

indicating its creditability for the rest of the modularisation experiments 

conducted for this study.  

Software 

System 

Bunch vs. 

MQ 

Munch 

Bunch vs. 

Munch EVM 

Munch MQ vs. 

Munch EVM 

Mtunis 1.0000 0.0000 0.0000 

Ispell 0.0531 0.0000 0.0000 

Rcs 0.0038 0.0000 0.0000 

Bison 0.0042 0.0000 0.0000 

Swing 0.0344 0.0164 0.0006 

Compiler 0.0213 0.0000 0.0000 

Table 3.4 – Cross-comparison results of Mann-Whitney U test for the three 

components 

There were three sets of fitness functions that were initially selected for this 

thesis: MQ, EVM and EVMD. EVMD (a more efficient version of EVM) was 

selected as the fitness function from these experiments, as it is more robust than 

MQ and faster than EVM. However, from this point forward EVM will be used 

when referring to the EVMD metric. 

3.3.7  Weighted-Kappa 

Weighted-Kappa (WK) is an agreement metric used to rate the classification 

decisions made between two or more observers. The decisions are categorised into 

ordered classes {class1,...,classN}, for example, a classification made by two 

observers of class1 and class2 has a better agreement than class1 and class3 
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(Altman, 1997). An n × n counts table is assembled for the set of classifications, 

refer to Figure 3.5. 

Rows and columns are manifested according to the observers’ classifications. 

Row(i) is the row total and Col(i) is the column total, whereas Countij is the count 

for the combination of classifications. The sum of all of the cells in the table is 

shown in Equation 3.8. 
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Figure 3.5 – WK count table 

The WK metric, Kw, is calculated below, where, po(w) represents the observed 

weighted proportional agreement, and pe(w) represents the expected weighted 

proportional agreement. pe(w) is an indicator of the totals that would be expected 

by chance.  
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WK is defined and used in this study for the comparison of two clustering 

arrangements. It not only measures similarity but also takes into account the 

degree of disagreements. WK is used to rate the agreements of the clustering 

arrangements of the time-series modularisation.  

For the two clustering arrangements, rows represent one observer, whereas 

columns represent the other. Order is not of importance. WK is computed in terms 

of a matrix of observations; in this case a two-by-two contingency table is 

constructed. There is a maximum of four outcomes to a single paired observation, 

two observers and two observations (same cluster, different cluster). For two of 

the four outcomes, the observers agree with either on same cluster or on different 

cluster. For the other two outcomes, the observers do not agree. One observes that 

nodes are in the same cluster, and the other observes that they are in different 

clusters. For each of the four matrix elements the total number of occasions on 

which one of the four possible outcomes occurs is calculated. 

On the leading diagonal, the two agreement outcome totals are recorded: same 

cluster and different cluster. The two possible disagreement outcomes are 

recorded in the other two elements of the matrix. If the value of the matrix is zero 

in all but the leading diagonal, observers agree completely, which means that the 

clustering arrangements are identical. If the leading diagonal consists of only zero 

elements, then the clustering arrangements are in complete disagreement about all 

pairs of nodes. If some non-leading diagonal elements are non-zero, then the 

clustering arrangements are not identical. 

The WK value ranges from −1.0 (for total dissimilarity of clusters) and 1.0 (for 

identical clusters). A high WK value suggests that the two arrangements are 
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similar, whereas a low value suggests that they are dissimilar. A value of 

approximately zero is normally observed for two random clusters. An 

interpretation table of the WK values (indicating the strength of the agreement 

between two arrangements) is shown in Table 3.5. 

Weighted-Kappa  Agreement Strength 

0.00.1  WK  Very Poor 

 2.00.0 WK  Poor 

 4.02.0 WK  Fair 

 6.04.0 WK  Moderate 

 8.06.0 WK  Good 

 0.18.0 WK  Very Good 

Table 3.5 – Agreement strength of Weighted-Kappa 

3.3.8  Homogeneity and Separations Metric 

The author is aware that the fitness function by itself might not be a good 

indicator for the quality of the modularisation and as a result an external metric of 

validity is incorporated into Munch and used when conducting the 

experimentations. Homogeneity and Separation (HS) is an external coupling 

metric defined to measure the quality of the modularisation. HS is based on the 

Coupling Between Objects (CBO) metric, first introduced by Chidamber and 

Kemerer (1994). CBO (for a class) is defined as the count of the number of other 

classes to which it is coupled. It is based on the concept that if one object acts on 

another, then there is coupling between the two objects. Since the properties 

between objects of the same class are the same, the two classes are coupled when 

methods of one class use the methods defined by the other (Chidamber and 

Kemerer, 1994). 

For the formal mathematical definition of the HS metric, a function P(v,C) was 

defined, which returns the cluster number within C that variable (class) v resides. 
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The Kronecher’s Delta function (i,j) was used, which is defined as follows: 
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HS is a simple and intuitive coupling metric that calculates the ratio of the 

proportion of internal and external edges. As shown in Equation 3.9, HS is 

calculated by subtracting the number of links within clusters from the number of 

links that are between clusters, and then dividing the output by the total number of 

links (to normalise it). Figure 3.6 shows a simple illustration of the HS metric. 

The HS metric looks at all the links within the MDG, finding all the pairs that are 

not equal to 0. If the two variables are in the same cluster, H is incremented, and if 

they are in different clusters, S is incremented. The more links between the 

clusters the worse the modularisation, as only internal links are modularised (and 

not external ones). A value of +1.0 is returned if all the links are within the 

modules, a value of −1.0 is returned if all links are external coupling, and 

approximately zero is produced if there is an equal number. 

 

Figure 3.6 – A simple illustration of the HS metric 
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3.4 Datasets 

This section describes the creation and pre-processing of the source data for this 

study and describes a simple metric for calculating the similarity between 

subsequent graphs. As the main dataset used for this study is time-series, the 

following section presents an overview for analysing time-series data. 

3.4.1  Time-Series Analysis 

A time-series is a sequence of observations that are usually measured at sequential 

points in time and are spaced at uniform intervals in time. There are different 

notations that are used for time-series analysis. One way of representing a time-

series is: xi(t); [i=1,...,n; t=1,...,T], where i represents the various measurements at 

each time point t, n represents the number of variables that are being observed and 

T indicate the number of observations made (Chatfield, 1989). Univariate time 

series consists of single observations that are recorded consecutively (if n is equal 

to one), whereas multivariate consists of more than one outcome variable at a time 

(if n is greater than one) (Hannan, 1970). 

Time-series analysis can be used to extract beneficial statistics and characteristics 

of a particular data. It is widely available in various fields that include medicine, 

finance and engineering. Time-series models are used to forecast future values to 

help comprehend the relationships within a time-series. Time-series forecasting 

involves the use of previous observations to estimate future values of the whole 

set of observations made at time t. Extensive research have been done towards 

forecasting time-series data (Chatfield, 1988; Faraway and Chatfield, 1998; 

Numata et al, 1998). 
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3.4.2  Bespoke Software Dataset 

3.4.2.1 The Dataset and Quantel Limited 

The large dataset used primarily for this study consists of information about 

different versions of a software system over time. It was provided by the 

international company Quantel Limited. Quantel is one of the world’s leading 

developers of high performance content creation and delivery system across 

television and film post production. It supplies products to many of leading media 

companies, such as Fox, Sky, BBC and ESPN. Furthermore, they have been a 

recipient of many prestigious awards such as Oscars, Emmys and the MacRobert 

Award, presented by the Royal Academy of Engineering. 

The data source for this study is from processed source code of an award winning 

product line architecture library that has delivered over 15 distinct products. The 

entire code base currently runs to over 12 million lines of C++. It has been 

developed for over ten years and has taken over several person centuries of 

developer effort. The subset under analysis in this study is the persistence engine 

used by all products, comprising of over 0.5 million lines of C++ (Cain, 2009). 

3.4.2.2 Pre-Processing and Data Creation 

The data sources needed to be pre-processed in order to obtain the dependency 

graphs. This step was completed by the developer. Using numeric IDs protected 

Quantel from revealing Intellectual Property; the author only received matrices of 

numbers, allowing Quantel management to consent the project. The pre-

processing stage of the data is highlighted below. 

The Debug Symbol Information Program Databases (PDB files) are data files that 

contain all the type information in a system; they are produced by Microsoft 

Visual C++. Debuggers can interpret global, stack and heap locations and map 

them back to the types they represent. This file format is undocumented by 

Microsoft (Pietrek, 2002). However in March 2002 an API released by Microsoft 

allowed access to (some of) the debug type information without undue reverse 
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engineering (Schreiber, 2001). The PDB files for each version of the code were 

archived and analysed using bespoke software that interfaced with the PDB files 

using the DIA SDK. Explanations on extracting type information using DIA SDK 

are in (Cain, 2004). 

The PDBs were checked into a revision control system. Data was collected over 

the period 17/10/2000 to 03/02/2005, with 503 PDBs in total. To ensure 

anonymity, all class names (types) in all the PDBs were sorted into an 

alphabetically sorted master class table. This was used as a global index to convert 

each class name to a globally unique ID. A total of 6120 classes exist in the 

system (indexed as 0 - 6119), however, not all classes exist at the same time slice; 

there are between 29 and 1626 active classes at any one time. Active classes are 

the classes that exist at a particular point in time. Hence, classes generally appear 

at certain time point, and then “disappear” at a later time point. Some of the 

appearances and disappearances of these classes are because when a class is 

renamed, it will appear in the dataset as a new class with a new identifier. At this 

time, there is no way to detect this phenomenon, but the author looks to resolve 

this as part of future work. 

The dataset consists of five time-series of directed graphs with integer edge 

weights; the absence of an edge weight implies a weight of zero. The experiments 

are going to be performed using un-weighted (binary) graphs. The whole process 

of modularisation will be the same for weighted and un-weighted. Only the fitness 

function would need to be amended for weighted graphs.  

Each graph originally consisted of a 6120 by 6120 relationship matrix. It is highly 

sparse, as there are only between 29 and 1626 classes at any one point in time. An 

initial analysis showed that none of the graphs over the five types of relationships 

were fully connected; each graph consisted of numerous disconnected sub-graphs. 

This may seem unusual, as for it to be part of the same application each class 

should be indirectly related to all other classes. However, this is true if each type 

of graph is combined for each time slice, but not when each type of relationship is 

considered on its own. Table 3.6 describes how each graph represents a 

relationship between classes. For this study, graphs of the five types of 
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relationships were merged together to form the ‘whole system’ for particular time 

slices. 

Class relationship Description 

Attributes Data members in a class 

Bases Immediate base classes 

Inners Any type declared inside the scope of a class. An embedded 

class. 

Parameters Parameters to member functions of a class 

Returns Return values from member functions of a class 

Table 3.6 – Class relation types 

As shown, Table 3.6 contains data relating to returns, parameters, attributes, 

inners and bases. These were relatively easy to extract using the DIA SDK kit; 

however, obtaining the method information i.e. a method using another class as a 

local variable was more difficult. This type of information is at a much deeper 

level in the data structure and is significantly more difficult to obtain. In addition, 

the data extraction process was implemented at Quantel, and they provided the 

author with these information. The author would like to acknowledge that only the 

structural relationship can be extracted from the source code. Conceptual design 

might not be fully appreciated, as the MDG is only an approximation of some of 

the structures. 

Figure 3.7 shows an illustration of the process of the software system from the 

source code to the outputted clustering arrangement. It can be seen from the figure 

that the system went through a number of pre-processing stages before the Munch 

tool was used for modularising the dataset. The diagram displays the processes for 

one software version; these steps were repeated for all software versions (503). 
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Figure 3.7 – A system diagram for the modularisation of the Quantel dataset 

3.4.3  Absolute Value Difference (AVD) 

From the experimentation conducted in (Arzoky et al, 2011) it was predicted that 

within two weeks of development there were no significant changes to the source 

code that made two successive graphs very different (for seeding not to be 

possible). It was also expected that if one graph is similar to the next, then 

modularisation would also be similar. To empirically find out whether this 

relationship existed, the matrix of each graph was produced, and by subtracting 

the matrices of two successive graphs from each other and taking the absolute 

value of the results a set of results showing the similarity between the graphs was 

produced. Equation 3.13 shows how the AVD is calculated for each graph, where 

X and Y are two n by n binary matrices. A value of zero indicates that two 

matrices are identical, whereas a large positive value indicates that they are 

different. A value between zero and a large number gives a degree of similarity. 
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(3.13) 

Figure 3.8 shows the results of the AVD for the full dataset of 503 graphs. The 

results produced show that the majority of the graphs have very low AVD, as 

there were only few days of development between each check-in. In fact, 46 per 

cent of the graphs have an AVD of zero. Sudden peaks and drops can also be seen 

in values, which could possibly indicate where major changes or refactoring work 

occurred. These relationships are discussed in details in Sections 4.3 and 4.4. 

 

Figure 3.8 – Plot showing the AVDs of the full dataset 

3.5 Evaluation of Munch Tool Components 

The objectives of this research include implementing a software component 

capable of decomposing a software system. There are a number of components 

that are needed to be considered in order to design the software clustering system; 

they are: revelation of the system components to be clustered, the selection of a 

criterion for measuring the similarity between these software components and a 

clustering algorithm that applies the similarity measure (Wiggerts, 1997). 

In order to evaluate the clustering results of the software system it is important to 

select appropriate datasets for the indicative analysis. As a result, a large real-
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world time-series dataset was chosen for this study. The majority of the research 

for this thesis was conducted on this dataset.  

The Munch tool is based on work presented in (Mancoridis et al, 1998; Mitchell, 

2002), who first introduced search-based approach to software modularisation. As 

discussed in Section 2.5, within this study a variety of clustering algorithms were 

initially considered. However, from the objectives of this study, the tool 

incorporates and uses a simple RMHC approach for conducting the majority of 

the experimentations for this thesis. The RMHC algorithm was chosen due to its 

simplicity and robustness in terms of modularisation, and because of its 

application in previous studies. Mancoridis et al (1998) used a HC algorithm to 

cluster graphs due to its good performance and high flexibility. Wu et al (2005) 

compared the clustering techniques of a number of studies. In the study, Bunch, a 

tool by Mitchel (2002) that uses the HC algorithm performed best in terms of 

authoritativeness and extremity to clustering distribution. In recent years, there 

have been a lot of interests in applying evolutionary approaches into software 

clustering. However, GAs use in software clustering has not been very successful 

(Doval et al, 1999). On the other hand, they are used in various complicated 

problems. 

The fitness function is an important component that is used to evaluate the 

candidate solutions and to select the most optimal solution. A number of fitness 

functions were presented in this study, MQ, EVM and EVMD. From preliminary 

analysis and experimentation conducted in Section 3.3.6, the most optimal 

solution was selected to be EVMD (hereafter referred to as EVM).  

Cohesion and coupling measurements plays an important role in the software 

clustering discipline (Jiang et al, 2007; Seng et al, 2005). Cohesion could be 

measured by dividing the inner edges by the number of possible inner edges. 

Whereas, coupling could be measured by dividing the number of edges connected 

to the clusters by the number of possible connections that can be made to outer 

edges. For this thesis, the partitioning is based on the heuristic rule of high 

cohesion and low coupling.  
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Since, this study looks at the decomposition of software system, the influence of 

the cohesion and coupling factors is particularly examined. Previous research of 

the cohesion and coupling of artefacts (Mitchell, 2002), has presented sound 

results, and accordingly these were exploited when implementing the tool. 

A large number of evaluation and validation metrics were discussed in Section 

2.4.4. These metrics were investigated to be fitted into the clustering assignment 

evaluation for this research project. The majority of the metrics discussed did not 

meet the criteria for the algorithm implemented and the dataset under analysis. As 

a result, a large number of those metrics were not used. Section 3.3 presented a 

number of techniques and metrics that are used to assess and evaluate the quality 

of the clustering decompositions. The HS metric, based on CBO metric, is 

incorporated into the Munch tool to measure the coupling of two artefacts on the 

basis of a given system. Moreover, WK is implemented and used in this study for 

the comparison of two clustering arrangements. 

3.6 Summary 

This chapter demonstrated the design and implementation of the tool for this 

research project. It constitutes the product of this research undertaking to provide 

a clustering tool by the configuration of algorithms and metrics, and thus adding 

to the domain knowledge. The dataset used in this study was also discussed in 

depth. There was no need to extract the module-level dependencies from the 

source code; they were pre-processed and readily available. The next chapter 

looks at the use of the Munch tool to conduct modularisation experiments on the 

dataset under analysis. It introduces the concept of seeding and how it can be used 

to significantly reduce the runtime of the modularisation process. 
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Chapter 4:  Modularisation and the Concept 

of Seeding 

4.1 Introduction 

This chapter introduces the concept of seeding when modularising time-series of 

source code relationships. It entails proof of concept work that introduces a 

number of techniques and experimentations for speeding up the modularisation 

process. This chapter is based upon work presented in (Arzoky et al, 2011; 

Arzoky et al, 2012). 

4.2 Concept of Seeding 

The primary purpose of this research project is to perform efficient modularisation 

on a time-series of source code relationships, taking advantage of the fact that the 

nearer the source code in time, the more similar the modularisation is expected to 

be, which is the central hypothesis of this study. The dataset is not treated as 

separate modularisation problems, but instead the result of the previous 

modularisation of the graph is used to give the next graph a head start. The aim is 

to use code structure and sequence to obtain more effective modularisation and 

reduce the runtime of the process. Figure 4.1 presents a simple illustration of how 

the seeding concept works. 

 

Figure 4.1 – Illustration of the seeding strategy 

There are previous studies that employ some form of seeding by integrating 

solutions manually or through other machine learning techniques. Langdon (1996) 
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made use of GA results for initialising a GP population. Langdon and Nordin 

(2000) employed a seeding strategy that starts from a solution rather than a 

random starting point. Whereas, Marek et al (2002) manually generated solutions 

and seeded them into the initial population. 

There have also been few studies that used the concept of seeding for clustering 

such as (Basu, 2002; Arthur and Vassilvitskii, 2007; Suresh, 2010). Other studies 

have explored the use of hybrid algorithms to obtain a quick and fast 

approximation, more sophisticated search follows. However, according to the 

author’s knowledge there are no previous studies that have looked at the notion of 

using seeding, i.e. using results of previous modularisation to modularise time-

series dataset.  

4.3 Reduction of Matrices 

For earlier work presented in (Arzoky et al, 2011), the full graphs in the dataset 

were modularised, knowing that around 55% of the dataset code is not Quantel’s 

data, and thus should not be clustered. The author was provided with a 

classification table of the 6120 classes and what they represent; there are ten 

general classifications for each of the classes in the dataset. Table 4.1 displays the 

classification of classes that was provided by Quantel (a more detailed 

classification was provided at a later stage of the research). Quantel has indicated 

the classes that they have developed; four out of the ten classifications are 

Quantel’s code. Classes not produced by Quantel consist of Standard Template 

Library (STL), Windows COM Interface class and component from a third-party 

library. The STL is a generic C++ library that consists of container classes, 

algorithms and iterators; it is used to implement standard data structures such as 

queues, lists and stacks. It is difficult to modularise source code that uses library 

functions due to the amount of coupling involved, the Quantel code uses a large 

number of Strings and Vectors. 
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Table 4.1 – Illustrating the classification of classes 

As discussed in Section 3.4.2.2, there are 6120 classes that exist in the system, 

however, not all classes exist at the same time slice, there are between 434 and 

2272 of classes that exist at a particular point in time, referred to as active classes. 

Across the entirety of the lifespan of the software system there were only 2801 

classes produced by Quantel. Thus, all the modules that are not produced by 

Quantel are removed. Due to the removal of classes that were not produced by 

Quantel, the number of classes at most graphs changed. This has reduced the size 

of the MDGs significantly. All modules that were not produced by Quantel and 

are not active at the time slices were removed. This required additional 

implementation to the Munch tool. This bound is most representative when 

considering sparse matrices. The number of clusters is extremely large and thus 

adjusting and reducing the size of the sparse graphs has vastly improved the speed 

of the algorithm without causing any detriment to the quality of the results. There 

are now between 202 and 1193 active classes at any one point. Figure 4.2 displays 

all of the active classes that are only produced by Quantel at each software check-

in (graph), all of the graphs are ordered in time.  

Description 
of 
classification 
of classes 

1: Standard C++ library component that is not 2. 

2: Standard C++ library template specialised by a manufacturer class. 

3: Component from a 3rd party library that offers persistence support. 

4: Implementation class developed by the manufacturer. 

5: Interface class developed by the manufacturer. 

6: Class developed by the manufacturer (that is not 4 or 5). 

7: Windows COM Interface class 

8: Windows structure 

0: None of the above. 

Quantel 

No 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

No 
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Eliminating these classes significantly improved the results, producing higher HS 

and WK results. The next sections describe the use of the modified dataset to 

conduct the modularisation experiments.  

 

Figure 4.2 – Quantel’sactiveclassesateachsoftwarecheck-in 

4.4 Proof of Concept (Modularisation 

Experiments) 

4.4.1  Initial Experimental Procedure 

This section outlines the experimental procedure of the proof of concept work for 

this study. There were two initial sets of experiments that were conducted, they 

are:  

1) A single modularisation of the full dataset. 

2) Ten repeats of the modularisation of only 50 sampled graphs from the dataset.  

Without loss of generality, the amount of time it takes the modularisation program 

to run is proportional to the number of fitness function calls. In the experiments 

conducted the number of fitness function calls is referred to as the number of 
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iterations, and the time it takes the program to run is proportional to the number of 

iterations. 

The main aim of the experiments is to modularise the Quantel dataset using a 

number of techniques which are explained below. As described in Section 3.4, the 

full dataset consists of 503 sets of graphs with each graph containing five types of 

relationships combined together to form the 'whole' system at a particular time 

slice. There are roughly two to three days’ gaps between each check-in, giving a 

total time span of four years and four months for the full dataset.  

Five sets of experiments were designed for this proof of concept work. The main 

difference between the experiments conducted in this chapter is the number of 

iterations they run for and their starting clustering arrangements; otherwise it is 

the same program. Figure 4.3 shows a representation of the relationships between 

the five experiments. 

The five experiments described below were conducted only once for the full 

dataset of 503 graphs. However, a well-known problem with the HC algorithm is 

that it can run into and get stuck at local maximums. In order to show whether this 

is happening or not, a practitioner often runs a number of repeat experiments. 

However, initially, the main issue with this type of data was the runtime of the 

experiments. Thus, to work out the consistency and variability of the HC, the 

modularisation of at least 50 graphs was needed to be repeated. Thus, the same 

five experiments were repeated ten times but only for 50 graphs of the same 

dataset. 50 sets of the five types of relationships were selected, as at the initial 

stages of the research the modularisation of the full dataset took a considerable 

amount of time. Thus, graphs were sampled every sixth graph to give a time 

interval of approximately two weeks between each graph. This gave a total time 

span of one year and ten months for the sampled data. 



 

82 

 

Figure 4.3 – The relationships between the experiments 

Experiment 1 (C) – The modularisation of data for eight million iterations each. 

As mentioned earlier, the amount of time it takes Munch to run is proportional to 

the number of fitness function calls. During this experiment as well as the 

remainder of experiments, the number of fitness function calls is referred to as the 

number of iterations. Thus, the time it takes the program to run is proportional to 

the number of iterations. In order to decide on the number of iterations that are 

needed for this experiment, a series of preliminary experimentations were 

conducted to find the most optimal iterations to run the algorithm for. 

The starting clustering arrangement consisted of every variable in its own cluster. 

It assumes that all classes are independent; there are no relationships. The author 

decided to use this technique as the starting clustering arrangement as starting it 

from a random clustering arrangement would affect the initial value of the fitness 

function, EVM, employed. The initial fitness value would start from a negative 

value when initiating the search from a random clustering arrangement. Since this 

part of the study concentrates on speeding up the process of the modularisation, 

there was no need to investigate or use other starting clustering arrangements. 

Refer to Chapter 6 for an investigation of different starting clustering arrangement 

of the algorithm.  

Experiment 2 (S) – The modularisation of data using results of the previous 

clustering arrangement from C. Instead of creating a random starting arrangement 

for the modularisation, the clustering arrangement of the preceding graph 

(produced from C) was used to give it a head start. For example, for modularising 
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the fourth graph, the results from the full modularisation of the third graph were 

used. Graphs were modularised for 80,000 iterations apart from the first graph, 

which was run for the full eight million iterations. 

Experiment 3 (SS) – The modularisation of data using the preceding results of the 

modularisation. Instead of creating a random starting arrangement when the 

modularisation process starts, the clustering arrangement of the preceding seeded 

graph was used. For example, for modularising the fourth graph, results produced 

from the third seeded graph were used as the starting arrangement. The first graph 

was run for eight million iterations, as it has no preceding graph. All other graphs 

were modularised for 80,000 iterations only. 

Experiment 4 (SD) – The modularisation of dataset using the results produced 

from the modularisation of the preceding graph. However, unlike the other 

experiments, the number of iterations was not fixed. It varied depending on the 

similarity of the graphs. The AVD was calculated (as described in Section 3.4.3) 

for all the graphs and was used as a scalar for controlling the number of runs. The 

more similar the two graphs (low AVD), the less runs needed. The more different 

two successive graphs (high AVD) are, the higher the number of iterations. 

Identical graphs with zero AVD run for zero number of iterations. Equation 4.1 

was used for calculating the number of iterations of each graph. The value 8000 

was derived from the maximum AVD value of the whole dataset. A number of 

experiments were initially conducted on sampled graphs to ensure that there are 

enough iterations for modularising the majority of the graphs.  

8000 AVDITER  (4.1) 

Experiment 5 (SSD) – The modularisation of data using the preceding results of 

the modularisation, as in SS, while using Equation 4.1 to calculate the number of 

iterations as in SD.  
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4.4.2  Full Dataset Experiments Results 

Figure 4.4 shows a plot of the EVM values produced for the five experiments. 

Where the results overlap on the plot, the same EVM values are produced despite 

the fact that S and SS were run for one per cent of the original time of C. This 

shows that the seeding technique works to a fair degree of accuracy. For S and SS 

a clear increasing trend of EVM is observed from the plot, which is due to graphs 

increasing in size. It seems to correlate with the plot in Figure 4.2, which shows 

an increase in the number of active classes throughout the project, apart from few 

peaks and drops, which may possibly suggest where radical extensions or 

refactoring events have taken place.   

 

Figure 4.4 – EVM results of the full dataset for the five experiments 

The peaks from the results correlate with the spikes from the AVD graph, shown 

in Figure 3.7. The results produced can indicate how different two 

modularisations are without actually running the modularisation. It is also 

interesting to see from the plot how the seeding strategy breaks down when there 

are large changes. The EVM values of few graphs from S are negative, due to the 

major differences among these graphs (major changes being made to the code). 

The starting clustering arrangements of these particular graphs were very poor, 
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and they needed a longer running time for the modularisation. However, for SS it 

can be seen that after the major changes were made to the code, EVM values 

dropped to very low negative values (showing how the structure of the system 

crumbled).  

Note that it is not possible to differentiate C from the plot, as it overlaps with SD. 

SD produces the same results as C because the graphs are the same and the full 

modularisation results from C are used as the starting clustering arrangements. 

The average percentages of the fitness function calls for C and SD are eight 

million and 232,095, respectively. Thus, in terms of runtime, SD was more than 

34 times faster than C, despite the fact that they both produced identical results, 

illustrating the potential of using the concept of seeding. However, in the real 

world, we would not have the full modularisation results. Thus, SSD was 

conducted combining SS and SD together to produce a run that runs as SS, but the 

iterations are computed as in SD.  

From the plot it can be observed that at points 128 and 132, the dataset seems to 

gain and lose a large number of classes. This behaviour repeats two more times in 

the dataset at points 138 and 139, and 150 and 154. This trend can also be 

observed from Figure 3.7, which shows the AVD results for the full dataset. The 

results were confirmed with the developers at Quantel and they have reflected that 

these major changes coincide with a new major release of a library. They had a 

major update to a core piece of their software. The three spikes are when they 

have carried out each new release of it. The author was informed by the 

manufacturer that this extensive class library had new functionalities including 

new classes (this is explained in details in Chapter 7). Further analysis of all major 

activities in the code is also provided in Chapter 7. 

From Figure 4.4 it can be seen that SSD produces better EVM values than SS. This 

illustrates how introducing the scalar to control the number of iterations produces 

better results. However, it still produces values that are considerably lower the 

EVM values of C. These relationships are investigated further in Chapter 5. 
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Figure 4.5 – HS results of the full dataset for the five experiments 

Figure 4.5 shows a plot of the HS values for the five experiments. From the plot a 

gradually decreasing trend of HS values can be observed. It seems that HS values 

are gradually getting worse throughout the life of the project. The HS results of C, 

S and SS seem to be very similar, overlapping for most of the time, even though S 

and SS were run for only one per cent of the original time for C. Thus, results 

from experiment S have 100 fold improvements in time with less apparent loss in 

performance. The author is not stating that the seeding technique can perform 

better than C, but instead is implying that if the same results of C can be 

produced, but in a shorter period of time through seeding, then 100 times the 

amount of runtime can be saved for the majority of the results. 

Note that it is not possible to differentiate C from the plot, as it overlaps with SD. 

SD produced HS results that are identical to C, despite the fact that it was 

considerably faster to run, whereas SSD, which also was more than 34 times faster 

than C, produced HS results that are better than C. This suggests that the seeding 

strategy works very well.  

For produced modularisations, the negative HS values indicate that the inter-

module edges are more than the intra-module edges. In addition, from Figure 4.5, 

there seems to be large changes or refactoring events that occurred numerous 

times throughout the life of the project. The plot illustrates that there is a reduction 

of coupling to a certain degree during these events.  
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There is a noticeable trend between the HS of C observed from Figure 4.5 and the 

number of active classes from Figure 4.2. To find out whether there is a 

relationship between the two, they were correlated. A value of −0.841 is 

produced, which indicates a very high negative correlation. This indicates that as 

the number of classes throughout the system increase, the HS metric decreases. 

The WK of the modularisations is calculated for the full set of results. WK is the 

modularisation based correlation on how similar two clustering arrangements are. 

The higher the WK value, the closer the agreements between graphs. If the value 

is one then modularisations are identical and if it is zero they are empirically 

different. A value above 0.5 indicates that there is a lot of structure to the 

modularisation.  

 

Figure 4.6 – WK results between C1 and Ci for the full dataset 

Figure 4.6 shows a plot of the WK values for the clustering results of the first 

graph compared to the i
th

 clustering results for C. From the plot a decreasing trend 

of WK values can be observed. The WK values are initially between 0.3 and 0.6 

which are considered to have moderate or fair agreement strengths, according to 

Table 3.3. These WK values become poorer over the lifespan of the project. This 

illustrates the deterioration of the original structure of the system over time. From 

the plot, it can be seen that the WK values vary widely; this is due to taking the 

results of only a single run of the HC algorithm.  
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Figure 4.7 – WK results of the modularisations produced by C and SS for the 

full dataset 

Figure 4.7 displays a plot showing the WK results of the modularisations 

produced by C and SS. WK of individual successive graphs seems to vary. 

However, a gradual drop of WK values can be observed from the graph. It also 

shows a compounded error gradually building up throughout the seeding strategy. 

However, there seem to be some structures in the results to be seeded through; 

presumably the same core structure is maintained all the way through the result 

while the rest degrades. 

 

Figure 4.8 – WK results of the modularisations produced by C and SSD for 

the full dataset 
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Figure 4.8 displays the WK values of C and SSD. A drop of WK values can be 

seen from the plot. A compounded error gradually building up throughout the 

seeding strategy can also be observed from the plot. Like Figure 4.7, there still 

seems to be some structure in the results being seeded through. 

4.4.3  50 Graphs Experiments Results 

The issue with Hill Climbing is that there is a risk of the search reaching only the 

local maxima and thus a large number of runs are needed. For this proof of 

concept work a smaller sample of 50 graphs were modularised and repeated ten 

times. This section outlines the results of the analysis. 

As discussed in Section 4.3, it is believed that within few days or weeks of 

development there are usually no significant changes to the source code that 

makes two successive graphs completely different. If one graph is similar to the 

next then it is expected for modularisation to also be similar. Figure 4.9 shows the 

results for the AVD. The results produced are interesting as the majority of the 

graphs have low AVD indicating that our earlier prediction of the similarity 

between graphs is true. There are also few peaks and sudden drops in values 

possibility indicating where major changes or refactoring events occurred. These 

similarities suggest that modularisation may also have similar trends and thus 

forming the basis for the rest of the experiments. 

 

Figure 4.9 – Plot showing similarity of graphs 
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As mentioned earlier, running each graph individually take a long time, however 

applying the seeding strategy reduces the runtime enormously. It was due to the 

similarity between graphs that the previous graphs were seeded through, instead 

of starting from random clustering arrangements.  

Figure 4.10, Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14 show the plots 

of the average, minimum, maximum and standard deviation of the EVM values for 

each of the five experiments, respectively. These EVM values were collected from 

ten repeats of the modularisations. The average, minimum and maximum of the 

five experiments seem to be similar, which shows that there is some consistency 

in the results. Also, the standard deviation results from the plots seem to be fairly 

low throughout the five experiments, which indicate that the results produced 

from each run is close to the mean and thus represents consistency. In addition, 

the EVM values from the plot seem to be similar to the EVM values of the graphs 

from Figure 4.4.  

 

Figure 4.10 – Average, minimum, maximum and standard deviation of EVM 

values for ten repeats of C 
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Figure 4.11 – Average, minimum, maximum and standard deviation of EVM 

values for ten repeats of S 

 

Figure 4.12 – Average, minimum, maximum and standard deviation of EVM 

values for ten repeats of SS 

 

Figure 4.13 – Average, minimum, maximum and standard deviation of EVM 

values for ten repeats of SD 



 

92 

 

Figure 4.14 – Average, minimum, maximum and standard deviation of EVM 

values for ten repeats of SSD 

 

Figure 4.15 – Average HS results for ten repeats of the five experiments 

Figure 4.15 shows a plot of the average HS values of the first 50 graphs for ten 

repeats of the five experiments. Note that C cannot be seen from the plot as it 

overlaps with SD, and S is not very noticeable as it overlaps with SS. From the 

plot a very gradual decreasing trend of HS values can be initially noticed. A 

sudden increase in HS values is then observed. This increase in HS values is due 

to the removal of nearly 200 classes from the system at that software check-in. 

Figure 4.16 shows the average WK results between the first graph and the i
th

 

graph for 100 comparisons, as there are ten C1 and ten Ci values. A clear 

decreasing trend can be observed from the graph illustrating the gradual decay of 

the system over time. The WK values went down from 0.6 to 0.4 in the span of 
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three months, and there still seems to be structure and similarity between the 

graphs. This adds weight to the validity of the seeding strategy employed in this 

study. 

 

Figure 4.16 – Average WK results between C1 and Ci 

Figure 4.17 shows the average WK results between C and SS for the ten repeats. 

The first repeat of C was used for seeding the first repeat of SS. Since choosing 

the first repeat to seed from is as valid as choosing a random repeat, WK was only 

calculated for the ten repeats between C and SS. A gradual smooth drop of WK 

values can be observed from the plot and therefore there seems to be some 

structures in the results that are being seeded through. The WK values do not vary 

widely as in Figure 4.7, due to the number of repeats conducted. 

 

Figure 4.17 – Average WK results of the modularisations produced by C and 

SS 
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Figure 4.18 displays the average WK results between C and SSD for the ten 

repeats. As in Figure 4.17, there is a gradual drop of WK values and a 

compounded error building up throughout the seeding strategy. The WK values of 

C and SSD were generally the same as the WK values of C and SS; however, on a 

number of graphs WK values are higher. This illustrates that using the scalar to 

control the number of iterations (based on AVD) was a much more robust way of 

conducting the experiment, as it not only reduces the overall running time of the 

experiment but also provides enough iterations to reach the optima. Also, WK 

values do not vary widely as in Figure 4.8, due to the number of repeats 

conducted. 

 

Figure 4.18 – Average WK results of the modularisations produced by C and 

SSD 

Figure 4.19 displays the average WK results of every pair-wise comparison of the 

ten repeats for each of the five experiments. An average WK value of 0.6 between 

the graphs shows the clustering arrangements of the runs to be reasonably 

consistent to each other. However, there still needs to be repeats as HC is a 

stochastic method and can produce varying results. 
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Figure 4.19 – Average WK results of all pair-wise comparison of the ten 

repeats 

4.4.4  Overview of Proof of Concept Experiments 

The results produced from the experiments are interesting in the sense that it is 

possible to find out how different two modularisations are without actually 

running the modularisation. If successive modularisations are very different, this 

may suggest that the program has been radically refactored or extended. As there 

is a large correlation between subsequent graphs, the modularisation does not 

need to be run, a quick statistic of the AVD will provide the similarity of the 

graphs. This reduces the computational complexity down from hours to seconds. 

However, this statistic does not provide information on where the modules should 

be and what is related together.  

The similarity between graphs was used to control the number of iterations the 

seeded modularisation runs for. The AVD of the graphs was analysed and used as 

a scalar to determine the runtime. This technique caters for the fact that when 

there are major extensions or refactoring events, (almost) full modularisation is 

needed. Using this seeding strategy, it was possible to produce results identical to 

the full modularisation of graphs (when the full modularisation results are 

available to seed from) while reducing the running time by more than 34 times.  
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For this early work, the AVDs of graphs is used for specifying the number of 

iterations of the modularisation, however these values are not normalised. Thus, 

converting them into probability values will inform the author of the significance 

of the values that are seeded through from subsequent changes. Chapter 5 

investigates this relationship in further details. 

4.5 Constraints and Threats to Validity 

Search algorithms are usually considered “better” if they require less runtime to 

find the optimal solution to a problem. However, working out the actual time the 

algorithm runs for might not be suitable as it is dependent on various factors such 

as the compiler, hardware configuration and the design of the algorithm itself. 

Thus, a more unbiased way is to compute the number of objective functions. 

However, one limitation of this approach is that only parts of the algorithm might 

be computationally expensive. The objective function of the majority of the search 

algorithms is the most expensive part of the algorithm. This is also the case with 

the algorithm employed for this study. There are a number of factors that were 

initially considered when designing and implementing the experimentations of the 

search algorithms. These factors are described below with an explanation of how 

they were dealt with. 

The main issue with the HC algorithm is that there is a risk of the search reaching 

only the local maxima and thus a large number of runs are needed. There is a large 

difference in the time a search algorithm converges even for the same input. A 

repeated run of the same algorithm on the same data can produce different results. 

For the proof of concept work described in the above sections, only one run was 

conducted on the full dataset and a smaller sample of 50 graphs was repeated ten 

times. However, all further experimentations of the modularisations of the 

datasets involved repeats of at least 25 times. The average is calculated and then 

used for measurement and comparisons purposes. 

In search algorithms, there are a number of parameters that needs to be considered 

and tuned accordingly. Various experiments are conducted to measure the 
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performance of the techniques introduced while changing and tuning its’ 

parameters. The author has experimented with various fitness functions, different 

starting points for the algorithms as well as different heuristic algorithms. 

The empirical experimentations should be carried out on various large case studies 

in order to conclude or generalise the results. However, limitations that need to be 

considered include; computational resources might not be considered, benchmarks 

for comparisons might not exist, and automated tools for aiding the 

experimentations could be difficult to obtain or develop. The author was fortunate 

that all of the experimentations were performed on a large real time-series dataset. 

A drawback of this preliminary work is that only empirical ways was used for 

evaluating the software metric. Thus, at this stage the author would like to 

acknowledge that there is an absence of qualitative evaluation of the clusters. The 

meaningfulness of the clusters of further experimentations is discussed with the 

industrial collaborator and presented on a case by case basis. This analysis can be 

found in Chapter 7. 

In addition, due to the nature of the dataset, it was not possible to check at this 

stage whether changes between time slices are refactoring or just an extension pro 

tem; only whether one class uses another can be determined. It was suspected that 

refactoring is occurring and not simply other development because the author was 

informed by Quantel that they refactor and that this is a practice they encourage 

all staff to strive towards. Their senior systems architects are proactive in 

promoting and pushing refactoring techniques. Thus, by finding areas of major 

change it will either be new functionality or refactoring. One of the objectives of 

the project is to be able to identify one or the other, but, the author does not have 

the data to distinguish between the two. At the moment being able to identify 

areas of interest is useful. Although, the author cannot prove that refactoring 

activities are occurring, the locations of where refactoring does not occur is 

known, on the basis that there are very few changes. The aim is to investigate this 

further by correlating the results produced with information from the developers, 

and to use the developers commit comments in the version control system. These 

are all investigated and discussed in details in Chapter 7. 



 

98 

4.6 Summary 

This chapter presented the preliminary work of this research; the 

results gathered from these experiments provided the basis for the research study. 

The author has introduced the concept of seeding into modularising large time-

series datasets. The dataset was not treated as 503 separate modularisation 

problems, but instead the author took advantage of the fact that the dataset is time-

series. Results of previous time slices were used to speed up the search process of 

the next time slice. Thus, the author managed to reduce the duration of the 

modularisation process by a factor of 100 and to a good degree of accuracy. The 

next chapter looks at improving the techniques presented so far.  
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Chapter 5:  Modularisation Process 

Optimisation 

5.1 Introduction 

This chapter extends on work presented in Chapter 4, which introduced the 

seeding technique to improve the effectiveness and efficiency of the 

modularisation procedure. A number of strategies to estimate the stopping 

conditions and the minimal runtime of the modularisation are explored and 

evaluated in this chapter. These statistics control the number of iterations of the 

modularisation process, based on the similarities between time adjacent graphs. 

This chapter starts by highlighting the computational and complexity issues of 

making a move using the Munch clustering algorithm. This chapter is based on 

work presented in (Arzoky et al, 2014c). 

5.2 Average Size of Clusters 

An important issue in cluster analysis is the estimation of the average number or 

size of clusters. As the average size of clusters during a single run of 

modularisation changes, the running total of how many iterations are needed to 

obtain the expected number of moves that need to be performed by the fitness 

function, EVM, also changes. 

However, according to the clustering algorithm and the fitness function employed, 

the average number of clusters should not change very often. This is due to the 

move operations of the fitness function. The cluster size only changes when a 

cluster is emptied or a new cluster is created, it will not occur at every iteration of 

the clustering algorithm. If the average number of clusters is constant or does not 

change massively, then it is kept. The probability of making the number of right 

moves at this particular time is known, and thus the modularisation can be run for 

an expected number of times. However, if it does change then an update would 
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need to be performed as the probability of making a move will change every time. 

These are explained in more details in Section 5.3.1. 

Thus, this chapter looks at different techniques for estimating and evaluating the 

running time of the modularisation process, based on the average number of 

clusters. Correctly estimating the number of clusters can help to more accurately 

measure the runtime needed for the algorithm to converge. 

5.3 Runtime Estimation Investigation 

The following sections describe a technique that is introduced to more accurately 

estimate the number of iterations that are needed for the Munch algorithm to run. 

Section 5.3.1 explains how the move operator of EVM is modelled, based on the 

hypothesis that the average size and number of clusters is √n. Section 5.3.2 

introduces a statistical technique based on the probability of making the right 

move, to estimate the runtime needed for the modularisation experiments. Section 

5.3.3 describes the experimental procedure that was conducted and results are 

illustrated in Section 5.3.4. Lastly, the constraints and threats to validity for this 

investigation are outlined in Section 5.3.5. 

5.3.1  Modelling the Move Operator of the Algorithm 

For the following section, let MDG1 and MDG2 be an n by n matrix, G1 be the 

optimal clustering arrangement applied to MDG1, M1 be the MDG associated with 

the clustering arrangement, E1 be the optimal EVM for MDG1 and E2 be the 

optimal EVM for MDG2. A difference of one between two MDGs indicates that 

one edge is being added or deleted. Assume that E1 is the optimal EVM applied to 

M1 and G1 associated modularisation, and also that the dataset is of solid and 

dense clusters. In addition, from the literature it is estimated and assumed that the 

size and the number of clusters is √n (Mardia et al, 1979). Last but not least, the 

author hypothesizes that only one move is needed to make the fitness function 

value change. 
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When an edge is added or deleted, the difference in MDG is either going to be 

between two different clusters or between the same cluster. Thus, there are four 

possibilities that would result in a fitness change and thus would have an impact 

on the value of EVM, refer to Table 5.1. 

 

 

 

 

Table 5.1 – Implications of a move 

If an edge is added to the same cluster then the fitness function, EVM, will be 

incremented by one. But, if an edge is deleted from the same cluster then EVM 

will be decremented by one, the edge will no longer be there and thus will be 

penalised. 

If an edge is deleted between two different clusters, EVM will not change. This is 

because EVM only looks at intra-clusters, there is no penalisation between 

clusters. On the other hand, if they are in different clusters and an edge is added, 

either the EVM does not change or the best EVM is attained by moving the 

variable into the cluster. If it is assumed that the size of the first cluster is √n and 

the size of the second cluster is √n, this indicates that EVM will be incremented by 

one.  

Table 5.1 shows the change to EVM, where E1 is the old fitness and E2 is the new 

fitness. From the table is can be seen that the worst case scenario involves 

choosing the correct variable and placing it in the correct cluster, to account for 

the one difference in the MDG, which will be the probable one difference in the 

EVM. Thus, now the probability of a move occurring is computed, which is linked 

to the iterations attempts in a HC. 

For each one difference between the MDGs, the correct variable needs to be 

selected. Normally, if a wrong move is made, there would either be no effect on 

 Same cluster  Different clusters 

Add 

edge 

E2 = E1 + 1  E2 = E1 

OR 

E2 = E1 + 1 

Delete 

edge 

E2 = E1 -1  E2 = E1 
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the fitness or the fitness would be decremented by one. However, since a HC 

algorithm is being used, if a wrong move is made a worst fitness would not be 

accepted. 

5.3.2  Computing the Probability Estimate  

Let n be the number of variables (classes) in an MDG. Let d be the AVD between 

two MDGs, and T be the number of iterations we are running the process for. 

There is a one in n chance of selecting the right variable, and to move it to the 

correct cluster there are √n clusters. There are n variables to choose from and they 

can be moved to √n-1 clusters, as one cluster can be ruled out and that is the 

cluster it originated from. 

Assume that Pr(correct move) = P = 1/(n√n) 

Let Q = 1-P (5.1) 

The chance a single move occurs after T iterations is as follows: 
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Therefore the probability that the move occurs before (or up to) t=T is as follows: 
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Therefore, 
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(5.5) 

If there are d moves to make, then the probability that all of the d moves are made 

after T iterations of the HC algorithms is: 

Pr(All d moves after T iterations) = (1-Q
T
)
d 

(5.6) 

Let there be an assumption that there is some acceptable level of confidence  that 

all the moves have been made, then to compute a T for which this might happen: 
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(5.7) 

5.3.3  Experimental procedure 

Two experiments that modularise the dataset were designed. The main difference 

between the experiments is the number of iterations they run for and their starting 

clustering arrangements; otherwise it is the same program. The two experiments 

were repeated 25 times each as HC is a stochastic method and there is a risk of the 

search reaching only the local maxima and thus produce varying results. 

For Experiment 1 (C), the dataset was modularised for ten million iterations each. 

Note that the amount of time it takes Munch to run is proportional to the number 

of fitness function calls. The number of fitness function calls is referred to as the 

number of iterations. Thus, the time it takes the program to run is proportional to 

the number of iterations. A series of preliminary experimentations were conducted 

to find the most optimal iterations to run the algorithm for. The starting clustering 

arrangement consisted of every variable in its own cluster. It assumes that all 

classes are independent; there are no relationships.  

For Experiment 2 (S), the dataset was modularised using results of the previous 

clustering arrangement from C. Instead of creating a random starting arrangement 

for the modularisation, the clustering arrangement of the preceding graph 

(produced from C) was used to give it a head start. For Experiment 2, three 

different strategies was selected to try to estimate the stopping conditions and find 

the minimal runtime needed for the modularisation process, they are: 
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Strategy 1 - The number of iterations for this strategy was fixed at 100,000 

iterations, which is one per cent of the full run, apart from the first graph which 

was run for ten million iterations. 

Strategy 2 - The number of iterations for this strategy varied depending on the 

similarity between graphs. The AVD was calculated for all graphs and was used 

as a scalar for calculating the number of iterations. The more similar two 

successive graphs (low AVD), the less runs needed; and the more different two 

successive graphs (high AVD), the higher the number of iterations needed. 

Equation 5.8 was used for calculating the number of iterations of each graph. As 

explained previously, the value 8000 was derived the maximum AVD value of the 

whole dataset. A number of experiments were initially conducted on sampled 

graphs to ensure that there are enough iterations for the algorithm to converge for 

the majority of the graphs. 

8000 AVDITER  (5.8) 

Strategy 3 – It is an estimate based on the probability of making the right move, 

computed as outlined in Section 5.3.2. Several acceptable level of confidence 

values that represent the likelihood of obtaining the correct answer were selected; 

they are, T1 - 99%, T2 - 95%, T3 - 90% and T4 - 70%. 

The convergence points of the three strategies (six policies above) were computed 

and the maximum of these at each time slice was calculated. Convergence point 

can be defined as the earliest point in the iterations of the heuristic search of when 

the fitness function no longer increases until the end of the run. An extra five per 

cent of the estimated number of iterations was added to the iterations of all graphs, 

for each of the six policies. Results produced were used to run Experiment 2; 

graphs were modularised using these computed values apart from the first graph, 

which was run for the full ten million iterations. 
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5.3.4  Results and Discussion 

As mentioned previously, the amount of time it takes the modularisation program 

to run is proportional to the number of fitness function calls. In these experiments 

the number of fitness function calls is referred to as the number of iterations, and 

the time it takes the program to run is proportional to the number of iterations. 

Strategy 1 and 2 were initially introduced in Chapter 4 and needed improvement 

as the graphs do not necessarily need to run for a set number of iterations. The 

process might continue to run even when the algorithm has converged. Thus, 

Strategy 3 was introduced here in order to correctly estimate the number of 

iterations needed for each graph. 

The average fitness function calls for Strategy 1 and 2 are 100,000 and 464,956 

iterations, respectively. Whereas, the fitness function calls for Strategy 3 range 

from 12,825 iterations for T4 to 23,162 iterations for T1. From the results it can be 

seen that there is a large efficiency improvement using the new strategy compared 

to previous strategies.  

 

Figure 5.1 – Plot showing the ranking of the six policies 

Figure 5.1 shows a count of the closest strategy estimate to the converged point. 

From the plot it can be seen that T4 is the most accurate estimate as it is the closest 

or nearest to the converged point for most graphs. Even though the new strategy 
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was based on a broad estimate of the number of average clusters (Mardia et al, 

1979), it still produced better estimate than the old strategies. Results show that 71 

graphs from the dataset were modularised using the old strategies, whereas 260 

graphs were modularised using Strategy 3. 171 of the graphs were omitted from 

the plot as they are zeroes for all of the strategies. Currently the author is only 

investigating the most accurate strategy and thus did not account to whether it is 

an underestimate or overestimate of the convergence point.  

Strategy Time savings 

per cent 

Reduction factor 

(in iterations) 

Strategy 1– 1% 99.00 100 

Strategy 2 – 8000D 92.88 14 

T1– 99% 99.65 282 

T2– 95% 99.72 360 

T3– 90% 99.76 412 

T4– 70% 99.80 509 

Table 5.2 – Time saving under all schemes 

Given that the Munch algorithm runs for T iterations, the fitness function is O(√n), 

and that the fitness function is where all of the computational complexity of the 

HC algorithm is, then the overall complexity of the run is O(T√n). Thus, the 

smaller the value of T the faster the algorithm runs. Table 5.2 shows the time 

savings under each scheme compared to the full run of ten million iterations. 

From the table it can be seen that the least amount of saving in terms of runtime is 

92.88%, this is for Strategy 2. T4 has the highest percentage of saving in terms of 

runtime. For ease of comparison, the author has computed how fast each of the 

strategies compared to the full iterations run, C (displayed in Table 5.2). The 

results show that T4 is 509 times faster than C, more than five times faster than 

Strategy 1 and 36 times faster than Strategy 2.  

Strategy Count of highest 

Strategy 1– 1% 167 

Strategy 2– 8000D 159 

T1– 99% 5 

T2– 95% 0 

T3– 90% 0 

T4– 70% 0 

Table 5.3 – Count of highest 
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Table 5.3 displays a frequency count of the largest iterations of each of the 

strategies. It can be clearly seen that Strategy 1 and Strategy 2 are nearly the 

highest for all graphs. This illustrates that the previous strategies had higher 

running times for 326 graphs compared to only five graphs from the new 

strategies. 

 

Figure 5.2 – Plot showing the convergence points of C and S for the full 

dataset 

Figure 5.2 shows a plot of the convergence points of C and S for the full datasets. 

The convergence points indicate that the EVM is at a maximum. A gradually 

increasing trend can be observed for C, which indicates that a longer running time 

is needed for later graphs. The general trend of the results correlates with Figure 

4.2, which shows a gradual increase of the number of active classes throughout 

the project. Results of S are considerably lower than C throughout the full dataset, 

which indicates that the seeding technique works well. This is particularly true 

when comparing the results with Figure 5.4 and Figure 5.5, as they produce the 

same EVM and HS values for the majority of the graphs. From the plot, drops and 

peaks can be observed, indicating the convergence points of the subsequent graph 

are very different. These may possibly suggest radical extensions or refactoring 

events taking place (these trends are investigated in Chapter 7). 
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Figure 5.3 shows a plot of the EVM of experiments C and S for the full dataset. It 

is not possible to differentiate C from the plot, as it overlaps with S. S produces 

the same results as C despite the fact that S was ran for a fraction of the original 

time of C. This demonstrates that the seeding technique works and to a fair degree 

of accuracy. In addition, from the plot it can be observed that there is a general 

increase in the number of active classes throughout the project, apart from the 

peaks and drops which may also possibly suggest radical extensions or refactoring 

events occurring. 

 

Figure 5.3 – Plot showing the EVM of C and S for the full dataset 

Figure 5.4 shows a plot of HS values of experiments C and S for the full dataset. It 

is not possible to differentiate C from the plot, as it overlaps with S. The same 

results are produced despite the fact that S was run for considerably less time than 

C. It can be observed that HS results are gradually getting worse throughout the 

life of the project. The author hypothesises that when the system was designed 

there were more coupling than cohesion in the modules and as a result the internal 

structure of the system design was deteriorating over time. The negative HS 

values indicate that the inter-modules are more than the intra-module edges. In 

addition, it seems that large extensions or refactoring events occurred a number of 

times throughout the life of the system. There seem to be a reduction of coupling 

to a certain degree during these events. 
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Figure 5.4 – Plot showing the HS of C and S for the full dataset 

Figure 5.5 shows a plot of HS against EVM for the whole system. To find out 

whether there is a relationship between HS and EVM they were correlated. A 

value of −0.791 is produced, which indicates that the correlation is highly 

significant. It is interesting to observe that this strong correlation illustrates the 

credibility of EVM as a good metric. The plot shows that EVM is a good predictor 

for HS. HS cannot be used as a fitness function, as it would re-arrange all clusters 

into one (HS value of 1.0); since there would be no coupling. Despite the fact that 

EVM is not a measure of coupling or cohesion, it was still strongly correlated with 

HS. Thus, the metric is performing as desired, achieving low coupling and high 

cohesion. 

 

Figure 5.5 – Plot showing the HS against EVM for the full dataset 
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Figure 5.6 – Plot showing the AVDs against convergence points for the full 

dataset 

Figure 5.6 shows a plot of the AVD against the convergence points of the full 

datasets. The correlation of the AVD and the convergence points is 0.658, which 

indicates a very high correlation. From the plot, it can be seen that the lower the 

difference between subsequent graphs the quicker it will converge. This is good 

evidence in support of the hypothesis that the larger the difference the longer the 

iterations needed to run the modularisation. 

  

Figure 5.7 – WK results between C1 and Ci for the full dataset 
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Figure 5.7 shows a plot of the WK values for the clustering results of the first 

graph compared to the i
th

 clustering results for C. From the plot a general 

decreasing trend of WK values can be observed. Initially, the majority of the 

graphs of the system compared to the first graph had fair and moderate agreement 

strengths. They gradually become poorer throughout the lifespan of the project. 

This illustrates the deterioration of the original structure of the system over time. 

5.3.5  Constraints and Threats to Validity 

The above evaluation shows that the modularisation techniques introduced runs 

much faster than prior modularisation techniques introduced in Chapter 4, 

demonstrating that the seeding process of the modularisation works well. Previous 

work introduced Strategy 1 and Strategy 2 which resulted in 99% and 93.88% 

time saving in terms of runtime. However, using a scalar to control the number of 

iterations is a much more robust way of conducting the experiment than running 

the process for a fixed length. It reduced the overall runtime of the experiment and 

provided enough iterations to reach the optima. 

In previous sections it was shown that the author has attempted to improve the 

efficiency and convergence of the search process by introducing a strategy based 

on probability values of the significance of the seeded graphs. Using this new 

seeding strategy, the author managed to produce results identical to the full 

modularisation of graphs while reducing the running time by more than 500 times. 

Thus, from the results produced if a scheme is to be chosen for running the seeded 

modularisation then T4 would be selected as the scheme to use. The same theory 

applies when modularising the dataset using the preceding results of the 

modularisation. 

Although, the estimate is fundamentally based on the assumption that the average 

number of clusters is √n, the results of the new strategy clearly demonstrate a 

significantly better limit than Strategy 2, evidently revealing that the 

approximation method works. However, the author would like to acknowledge 

that a better estimate of the average number of clusters is needed. A more accurate 
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estimation of the average number of clusters may provide a better estimate of the 

number of iterations that are needed for the modularisation process. The next 

section presents a number of possible ways to extend the strategies that are 

introduced so far. 

5.4 Future extensions 

As mentioned in the previous section, the probability function of obtaining the 

number of right moves is based upon the average number of clusters. Previous 

results showed that there was a reduction in the runtime of the clustering 

algorithm by over 500 times when using these techniques. However, since √n is 

only an approximate estimate of the average number of clusters, a better way of 

estimating the average number of clusters is needed. The following sections 

outline two approaches that can possibly provide a much more accurate estimation 

of the runtime needed for the modularisation process. The first is based on Bell 

numbers (refer to Section 6.4.1 for an overview of Bell numbers). It can be used 

to provide a more accurate estimate of the average number of clusters and thus the 

number of iterations needed for the run. The second approach is to use the actual 

number of clusters whilst running the clustering algorithm. For time constraints 

reasons these two techniques were not incorporated in this study. These two 

techniques are outlined briefly in the next two sections. 

5.4.1  Bell Number Strategy 

A strategy based on Bell numbers can be used to estimate the average number of 

clusters for each time slice. This can then be incorporated into the probability 

model introduced in Section 5.3.1 (instead of √n) and used to control the number 

of iterations to modularise the next seed in the dataset. Below is an outline of the 

Bell number strategy. Refer to Section 6.4.1 for definitions of Bell numbers and 

Stirling number of the second kind. 

As described in Section 6.4.1, Bell numbers gives the sum of the values for k of 

the Stirling numbers of the second kind: 
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𝐵(𝑁) =  ∑ {
𝑛
𝑘

}

𝑛

𝑘=0

 
(5.9) 

𝐵(𝑁 + 1) =  ∑ {
𝑛 + 1

𝑘
}

𝑛+1

𝑘=0

 

(5.10) 

The Sterling number of the second kind follows the recurrence relation in 

Equation 5.9 for k > 0: 

{
𝑛 + 1

𝑘
} = 𝑘 {

𝑛
𝑘

} + {
𝑛

𝑘 − 1
} (5.11) 

𝑘 {
𝑛
𝑘

} = {
𝑛 + 1

𝑘
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𝑛
𝑘 − 1

} (5.12) 

∅(𝑛) =  𝜇(𝑐) + 1 (5.13) 

𝜇(𝑐) =
∑ 𝑘 {

𝑛
𝑘

}𝑛
𝑘=0
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𝑛
𝑘

}𝑛
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(5.14) 

𝜇(𝑐) =
∑ {

𝑛 + 1
𝑘

} − {
𝑛

𝑘 − 1
}𝑛

𝑘=0

∑ {
𝑛
𝑘

}𝑛
𝑘=0

 

(5.15) 

𝜇(𝑐) =
𝐵(𝑛 + 1) − 1

𝐵(𝑛)
−

𝐵(𝑛) − 1

𝐵(𝑛)
 

(5.16) 

𝜇(𝑐) =
𝐵(𝑛 + 1) − 𝐵(𝑛)

𝐵(𝑛)
 

(5.17) 

𝜇(𝑐) + 1 =
𝐵(𝑛 + 1)

𝐵(𝑛)
 

(5.18) 

Average number of clusters + 1 =
𝐵(𝑛 + 1)

𝐵(𝑛)
 

(5.19) 
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ln (∅(𝑛)) =  ln (
𝐵(𝑛 + 1)

𝐵(𝑛)
) 

(5.20) 

=  ln (𝐵(𝑛 + 1)) − ln(𝐵(𝑛)) (5.21) 

∅(𝑛) = 𝑒ln (∅(𝑛))  

Equation 5.19 cannot be evaluated for large n values as it will be extremely large; 

storing these values is very difficult. However, if the natural logarithm (ln) is used 

(as shown in the equations above) then it will be possible to evaluate for larger 

values. Verifying the approximation of this strategy for larger values of n is 

introduced in Section 6.4.3. In addition, Section 6.5.1 investigates verifying the 

Bell number formula for calculating the average number of clusters, for smaller 

values of n. 

5.4.2  Actual Count of the Number of Clusters Strategy 

A more accurate strategy for working out the number of clusters is to calculate 

and store the current average number of clusters whilst the algorithm is running. 

The average number of clusters of the final run (iteration) of the algorithm can be 

stored and incorporated into the probability model introduced in Section 5.3.1. It 

can then be used to calculate the number of iterations that are needed for 

modularising the next time slice of the dataset.  

5.5 Summary 

This chapter introduced a number of strategies and techniques for estimating and 

evaluating a number of stopping conditions of the clustering algorithm. The 

techniques introduced reduced the runtime of the modularisation process by over 

500 times with no significant loss of results. The complexity issues of making a 

move in the clustering algorithm are also investigated in this chapter.    
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Chapter 6:  Starting Clustering Arrangement 

Analysis 

6.1 Introduction 

This chapter investigates and evaluate the starting clustering arrangement of the 

Munch clustering algorithm. Three starting clustering arrangement are presented 

and investigated, they are; a truly random clustering arrangement (randomly 

determines the number of clusters), a biased random clustering arrangement 

(based on a deterministic algorithm), and a disjoint clustering arrangement (each 

variable in its own clusters arrangement). Creating and evaluating uniformly 

distributed random partitions for the truly random clustering arrangement is also 

presented and discussed in this chapter. In addition, this chapter presents and 

discusses generated graphs of the search space for each of the three starting points 

of the algorithm. 

6.2 Motivation 

Due to the nature of the algorithm employed in this study, every point of the 

search space should be reached from any other point of the search space. 

Theoretically, the clustering arrangement could be created from any other 

clustering arrangement and in a short amount of time. If all variables are in a 

single cluster, the algorithm should be able to transform the clustering 

arrangement into every variable in their own independent clusters; intuitively this 

should be the most difficult transformation to achieve. In theory, from the Munch 

clustering algorithm, any clustering arrangement can be created from when all 

variables are in their clusters in less than n moves (n being the number of 

variables divided by the number of classes). This is considerably less than the 

fixed ten million iterations that the full modularisation process runs for. 

However, the main issue is that the correct moves are not known and thus the 

need for the search. The fitness function indicates whether the move is “good” or 
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“bad”. Guiding the search process can significantly reduce the runtime of finding 

the most optimal clustering arrangement.  

For the previous modularisation experiments conducted in Chapter 4 and 5, the 

starting clustering arrangement of the HC algorithm (Munch Tool) was being 

generated in a fixed way. In previous work, the algorithm starts from the same 

point i.e. a fixed point in the search space. The starting clustering arrangement 

consisted of every variable in its own cluster. It assumes that all classes are 

independent; there are no relationships. Since, only moves that allow 

improvements of the fitness are performed, the algorithm might still be likely to 

get ‘stuck’ at a local optimum and not obtain the near optimum solution. It might 

be possible that using this clustering arrangement, the number of clusters at the 

beginning of the search are related to the ones at the end.  

In this chapter, a number of experiments are conducted that evaluates three 

starting clustering arrangement of the Munch Tool. These starting positions are: 

The truly random (randomly and uniformly determines the number of clusters), 

the biased random (pseudo-random method of determining the number of 

clusters), and independent clusters method (where all variables are in their own 

individual clusters). Section 6.4 demonstrates how to create uniformly distributed 

random partitions. This will be used to create a uniformly random clustering 

arrangement for the algorithm in order to investigate the effect that this might 

have on the search. The next section provides an overview of random numbers 

and demonstrates the main difference between uniformly random numbers and 

pseudo-random numbers. 

6.3 Uniformly and Pseudo- Random Numbers 

A random number is a number that is selected based on an underlying probability 

distribution. A large sample of these random numbers can be used to produce this 

distribution. On the other hand, a uniformly distributed random number is a 

random number which rests between two predetermined bounds, where the 

probability of the number being selected from these two limits is constant. 
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It is acknowledged within this field that generating a uniformly random number is 

extremely difficult as machines are based on deterministic algorithm. The term 

pseudo-random is usually referred to random numbers that are generated by 

computers. Thus, it is preferred to test if a set of numbers is truly random. 

However, testing whether a random number generator is truly random is 

particularly challenging. 

6.4 Uniformly Random Partition 

As mentioned earlier, finding an accurate non-biased way of generating the 

random clustering points is a non-trivial and complex problem. Creating 

uniformly distributed random partitions is based on Bell numbers and Stirling 

numbers of the second kind and the recurrence relationship between them. This 

section looks at how the uniformly distributed random partitions can be generated 

and illustrates the approaches that were used to evaluate the Bell numbers and the 

Stirling number of the second kind. 

6.4.1  Overview of Stirling Numbers of the Second Kind 

and Bell Numbers 

The Stirling number of the second kind, denoted as S(n,k) or {𝑛
𝑘

}, can be defined as 

the arrangement of n distinct elements into k partitions (non-empty sets) (Riordan, 

1980). For example, the set {1,2,3} can be partitioned into one subset in only one 

manner: {{1,2,3}}; into two subsets in three different ways: {{1,2},{3}}, 

{{1,3},{2}}, {{1},{2,3}}; and into three subsets in only one way: {{1},{2},{3}}.  

Bell numbers, denoted Bn, are commonly attributed to Bell (1934) due to the 

general theory that he developed, although they were extensively studied over 30 

years before by Ramanujan (Berndt, 2011). Bell numbers can be defined as the 

count of the total number of ways a set of n elements can be partitioned into non-

empty subsets i.e. clustering arrangements. As an example, there are five different 

ways that the set of numbers {1,2,3} can be grouped (as explained above), they 

are: {{1},{2},{3}}, {{1,2},{3}}, {{1,3},{2}}, {{1},{2,3}} and {{1,2,3}}. Thus, 
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B3 = 5. The n
th

 Bell number can be computed by summing the Stirling numbers of 

the second kind, as shown in the example above. 

6.4.2  Uniformly Distributed Random Partitions 

Generator 

Stirling numbers of the second kind and Bell numbers are described in the 

previous section. These numbers can be evaluated in a number of ways 

(Weisstein, 2008); however there exists a very useful recurrence relation 

(Devroye, 1986) as shown in Equation 6.1: 
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The total number of ways that a set of n objects can be partitioned is defined 

according to the Bell numbers in Equation 6.2: 
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The recurrence relation in Equation 6.1 can be exploited to create an algorithm 

that can generate a uniformly distributed random partition of n objects into k 

groups as according to Algorithm 6.1 adapted from (Devroye, 1986). This 

algorithm returns a random partition represented in Restricted Growth Function 

(RGF) form. 

RGF is a function f with a range equal to {1,2,…,n} satisfying the conditions that 

f(1) = 1 and  fi+1 ≤ 1 + max{f(1),f(2),….f(i)} i.e. f(i) be not more than the 

maximum of the previous function values. As an example, the RGF for the set 

partition of {{1},{2},{3,4,5}} would be (0,1,2,2,2). 

Within Algorithm 6.1, UR(a,b) is a uniformly distributed real number generator 

that returns a random real number between a and b inclusive, and UI(a,b) is a 
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uniformly distributed integer number generator that returns a random whole 

number between a and b inclusive. 

Algorithm 6.1 – Uniformly Distributed Random Partition Generator 

MUNCH(ITER,M) 
Input:  
n  number of objects to partition 
k  number of partitions 
 1) Let X = n length vector of zeros 
 2) Repeat 
 3) Let U = UR(0,1) 
 4)    If k > 1 
 5)     R = S(n-1,k-1)/S(n,k) 

 6)    Else 
 7)    R = 0 
 8)    End if 

 9)    If U≤ R  
10)       X(n) = k  
11)     k = k - 1 
12)    Else   
13)  X(n) = UI(1,k) 
14)   End If 
15) n = n - 1 
16) Until n = 0 
Output: Random partition X in RGF form 

To determine the number of partitions to separate the objects into, the distribution 

can be computed using Pr(k=x) = S(n,x)/B(n). 

This algorithm works well for small n, but as n gets large, S(n,k) and B(n) get 

astronomically large. For example, according to (Weisstein, 2008), B(1000) has 

1928 digits. In order to avoid numerical instability the natural logarithm of S(n,k) 

and B(n) would need to be used. 

6.4.3  An Approximation for the Stirling Numbers of the 

Second Kind 

It is difficult to directly obtain the natural logarithm of the Stirling numbers of the 

second kind, either from Equation 6.1 or from the various other forms, as these 

involve summations. An approximation involving products is therefore desirable. 

Temme (1993) provides one such approximation, given in Equation 6.3. 
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To find the value of x0 (real and positive) in Equation 6.4, we use the Newton-

Raphson method, with initial starting value of n/k. The natural logarithm of the 

Stirling Numbers of the second kind is shown in Equation 6.5. 

6.4.4  An Approximation for Bell Numbers 

Since Bell numbers are defined in terms of the summation of Stirling numbers, 

deriving the natural logarithm directly from Equation 6.2 is difficult. An 

approximation involving products is therefore desirable. Harper (1967) provides 

one such approximation given in Equation 6.6: 
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To find the value of R (real and positive) in Equation 6.7, it is noted that the two 

inequalities in Equation 6.9 are derived from Equation 6.7. This gives an upper 

and lower bound for R, hence the Bisection Search based method is used to derive 

the value of R. The Bisection search method works by repetitively bisecting 

(dividing) the interval and selecting a subinterval that the root is within for 

additional processing. The natural logarithm of the Bell numbers is shown in 

Equation 6.8. 

6.5 Evaluating the Random Partition Generator 

The random partition generator will only work for large values of n. The Sterling 

numbers of second kind and Bell numbers can be evaluated for small values of n. 

For larger values, the natural logarithm would need to be applied to them and an 

approximation technique is used. This is due to computational issues, it is 

extremely difficult to evaluate them for very large numbers of n. The next few 

sections presents a number of methods for verifying the use of Bell numbers for 

calculating the average number of clusters and for verifying the uniformly random 

partition generator. 

6.5.1  Smaller Approximation of the Average Number of 

Clusters 

To verify the mathematics for calculating the average number of clusters using 

Bell numbers, simulations of a large number of clustering arrangements of small 

values of n (up to 16) are conducted. The search space is exhaustively explored; 

generating all partitions (clusters) and summing up the total number of clusters to 

evaluate the average number of clusters. In addition, the average number of 

clusters was evaluated using the Bell number strategy for the same values of n. 

Table 6.1 demonstrate the results of the simulations. Only 16 samples were 
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demonstrated as it is not efficient for larger values of n, it is not practical to run it 

for larger values due to the amount of time that it takes for the computation. Thus, 

due to the small sample size, it cannot be proved that the clustering arrangements 

are uniformly distributed, however it can be seen that the average cluster size is 

exactly as was expected. Results shows that the actual average cluster sizes are 

identical to the estimated average number of clusters, thus proving that the Bell 

number strategy is accurate for small values of n. Refer to the next section for 

verifying the bell number strategy for larger values of n.  

N Count Simulations 

(No. of clusters) 

Bell number strategy 

(No. of clusters) 

1 1 1 1 

2 2 1.5 1.5 

3 5 2 2 

4 15 2.46667 2.46667 

5 52 2.90385 2.90385 

6 203 3.3202 3.3202 

7 877 3.72064 3.72064 

8 4140 4.10797 4.10797 

9 21147 4.48423 4.48423 

10 115975 4.851 4.851 

11 678570 5.20952 5.20952 

12 4.21E+06 5.56077 5.56077 

13 2.76E+07 5.90552 5.90552 

14 1.91E+08 6.24444 6.24444 

15 1.38E+09 6.57806 6.57806 

16 1.05E+10 6.90685 6.90685 

Table 6.1 – Simulations of clustering arrangement vs Bell number 

estimations 

6.5.2  Larger Approximation of the Average Number of 

Clusters 

For larger values of n, 100 million simulations of random clusters of different 

sizes are generated and the running total of the number of average clusters is 

calculated. The simulations starts with n = 100 and ends with n = 1000, in 

intervals of 100 between each n value. Subsequently, the average number of 
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clusters is evaluated using the Bell number formula for the same n values, to find 

out how close is the Bell number approximation is to the simulations conducted.  

N Average random 
clusters 

 
 

Average Bell 
number estimation 

100 27.6248  28.5046 
120 32.1096  32.9875 
140 36.4668  37.3434 
160 40.7208  41.5955 
180 44.8845  45.7601 
200 48.9754  49.8497 
220 52.9996  53.8737 
240 56.9661  57.8396 
260 60.8818  61.7537 
280 64.7478  65.6209 
300 68.5729  69.4455 
320 72.3584  73.231 
340 76.1083  76.9805 
360 79.8267  80.6968 
380 83.5102  84.3821 
400 87.1685  88.0383 
420 90.7966  91.6676 
440 94.3996  95.2714 
460 97.9837  98.851 
480 101.538  102.408 
500 105.074  105.943 
520 108.589  109.458 
540 112.086  112.954 
560 115.561  116.431 
580 119.022  119.89 
600 122.464  123.332 
620 125.886  126.758 
640 129.3  130.168 
660 132.696  133.564 
680 136.076  136.945 
700 139.442  140.312 
720 142.796  143.665 
740 146.137  147.006 
760 149.466  150.334 
780 152.781  153.65 
800 156.084  156.954 
820 159.381  160.247 
840 162.661  163.529 
860 165.934  166.8 
880 169.195  170.061 
900 172.448  173.312 
920 175.684  176.553 
940 178.916  179.785 
960 182.142  183.007 
980 185.355  186.22 
1000 188.555  189.424 

Table 6.2 – Large approximations of the average number of clusters 
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Table 6.2 displays the results of the simulations and Bell number formula 

approximation for the average number of clusters. From the results, the random 

number generator cannot be proven to be uniformly distributed, however, on 

average it generates the expected number of clusters. The random generator 

introduced produces results that are very similar to what is expected. Thus, 

proving that the random generator work correctly. From the table, it can be seen 

that there is a difference of 0.835 between the average number of clusters for the 

random simulations and the Bell number formula. This is probably due to the 

constant biased form of the approximation that is being employed. It would offer 

more reliability to test it with very large number of n values, but the number of 

simulations that would need to be implemented would be enormous and not 

practical. Due to computational issues, it is extremely difficult to evaluate bell 

numbers for very large numbers. 

6.5.3  Ten Variable Simulation Verification 

The approximation technique (approximating the natural logarithm of Bell 

numbers), described in the previous section, does not work for small values of n. 

The approximation breaks down and is inaccurate. Thus, an exploration technique, 

simulations, was conducted for small values of n (ten variables) to verify that the 

random number generator works for smaller values of n. 

The author generated 100 million random clustering arrangements for n = 10. The 

number of possible clustering arrangements is hyper-exponential, for one variable 

there is one cluster and for ten variables there 115,977 possible partitions. The 

issue faced in performing the simulations with larger n values is that the 

simulations will not hit every single possibility. However, since there are 115,977 

possibilities for n = 10, then with a 100 million simulations it is guaranteed to hit 

every single clustering arrangement at least once.  

Figure 6.1 displays the frequencies against numerations. The plot displays a count 

of the number of times the simulations hit the possible clustering arrangement. 

From the results, the expected average number of clusters is 862.255 (100 million 
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clustering arrangements divided by the number of possible partitions), the 

minimum pile size is 723 and the maximum pile size is 995. Thus, showing that 

every single clustering arrangement is covered; results show that there are no zero 

values which prove that it hits all of the possibilities. Moreover, it shows that 

there is a uniform distribution across the 115,977 possibilities, majority of the 

spikes are roughly the same (showing a steady pile). This illustrates that that the 

results are significant for the ten variables. The addition of all the possible 

clustering arrangements will produce 100 million, which is the total number of 

simulations that are produced using the random number generator. 

 

Figure 6.1 – Plot showing the frequencies and numerations 

As there are only ten variables, the results cannot be statistically significant. The 

approximations being used is for very large values of n, and for this simulation the 

author has only used n as 10, which is considerably small. However, being able to 

obtain extremely good results with small values of n, as well as accurate results 

for the approximation methods demonstrates that the random number generator 

works well and is accurate. 
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6.6 Visualisation of the Clustering 

Arrangements 

6.6.1  Search space 

As described in the literature review, the space that contains all of the feasible 

solutions is referred to as search space. Every point in the search space represents 

a possible solution and each of these solutions can be given a value or fitness for 

the problem. 

Using the previous starting clustering arrangement (the starting clustering 

arrangement consisted of every variable in its own cluster), the search starts from 

the same place every time it is initiated. Thus, as explained in the previous 

sections, starting the search off at a more biased or uniformly random point in the 

search space might produce different results. 

In order to reveal where the majority of the clustering arrangements are going to 

be and to visualise the search space of the uniformly and pseudo- random 

techniques, simulations would need to be conducted. The next section introduces 

Multi-Dimensional Scaling and illustrates how it was used to visualise a sample of 

how the starting clustering arrangements of these techniques looks like. 

6.6.2  Multi-Dimensional Scaling (MDS) Overview 

Multi-Dimensional Scaling (MDS) is an approach for multivariate and 

exploratory data analysis that aims to reveal and visualise the structure of a 

dataset. It consists of related gradient analysis techniques that are used in the 

information visualisation discipline, specifically, to display information contained 

in a distance matrix. MDS allows the visualisation of how close points are to each 

other for various distance and dissimilarity metrics. It only requires a matrix of 

pairwise distances or dissimilarities, no raw data is required. The “multi” part of 

the name indicates that there is no restriction related to the construction of the 

maps in one or two dimensions. The aim of using MDS is to place each object in 
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n-dimensional space in a way that preserves the distance between objects (Borg 

and Groenen, 2005).  

There are a number of algorithms for MDS that depends on the input matrix. One 

such example is the classical Multi-Dimensional Scaling i.e. Principal 

Coordinates Analysis (Torgerson, 1952). It takes a matrix of dissimilarities 

between pairs of object as input and produces a coordinate matrix as output. It 

assumes the distances to be Euclidean; it is usually the first choice for an MDS 

space. The Euclidean distances between the configuration points reproduce the 

original distance matrix. 

On the other hand, non-classical MDS, which includes metric, non-metric and 

generalised approaches (Cox and Cox, 2001), can be used to measure 

dissimilarities of a set of objects. Using these techniques, MDS can also be used 

to measure dissimilarities that are abstract. Various criteria can be used to express 

how close are the distances of the points on the plot, to the original dissimilarities. 

Thus, a visual representation can be used to represent their dissimilarities. Allan et 

al (2007) used MDS to visualise and compare the search space of two crossover 

operators. They used a metric-based MDS to generate sample random points of 

the crossover operators and exploit the extrema within the search space in order to 

avoid early convergence. 

6.6.3  Visualising the clustering arrangements using MDS 

Non-classical (metric-based) MDS are used to visualise high dimensional spaces 

into high dimensional plots. A distance matrix, Hamming distance (Hamming, 

1950), is used to calculate the coordinates for the plot, where the distances 

between the variables are maintained. If the numbers are very large it indicates 

that they are far apart, whereas if the numbers are very small it indicates that they 

are almost the same. The individuals within the population are subsequently 

applied. For each of the starting clustering arrangement, 4000 RGFs (RGF is 

defined in Section 6.4.1) was generated from eight variables and 1000 random 
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points were selected at random. A matrix of 1000 by 1000 points is plotted, and 

the random points are plotted on the search space. 

Figure 6.2 displays a plot of the shape of the search space for the pseudo-random 

clustering arrangement and Figure 6.3 displays the shape of the search space for 

the uniformly random clustering arrangement. From the plots it can be seen that 

the biased random arrangements are more bunched together than the uniformly 

random arrangements, there is a more definable oval shape for the pseudo-random 

clustering arrangements. Whereas, the truly random arrangements displays a 

better distribution of points, with more outliers (on the outskirts of the general 

shape) displayed. The search space starts off more in corners. Thus, indicating that 

the uniformly random clustering arrangements can be more representative of the 

real world. 

Since the graphs are based on MDS, the author would like to point out that the 

scales from the plot are only relative distances. The disjoint clustering 

arrangement (each variable in its own cluster) did not need to be visualised as it 

starts from the same point in the search space every time the algorithm runs.  

 

Figure 6.2 – Search space of pseudo-random starting clustering arrangement 
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Figure 6.3 – Search space of uniformly random clustering arrangement 

6.7 Experimental Procedure 

In order to evaluate the starting clustering arrangements of the Munch algorithm 

and to find out the most optimal arrangement to use for guiding the search, three 

experiments were conducted. The three experiments (described below) involve the 

modularisation of the full dataset for ten million iterations. The same program is 

used for the three experiments, with only the starting clustering arrangements 

differ for each. The experiments were repeated 100 times each as HC is a 

stochastic method and there is a risk of the search reaching only the local maxima 

and thus producing varying results. 

Independent clustering arrangement (IC) – The starting clustering arrangement 

consisted of every variable in its own cluster, assuming that all classes are 

independent; there are no relationships. This starting arrangement indicates that 

the search will always starts at the same point in the search space. This technique 

was used for all previous modularisation experiments. 

(Biased) random clustering arrangement (BR) – The starting clustering 

arrangement was produced by generating a random number of clusters between 
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one and n and a random number of variables between one and n for each of the 

clusters. The random numbers of variables are placed randomly inside the 

clusters.  

Uniformly random clustering arrangement (TR) – The starting arrangement of this 

experiment was produced and used as the starting point for commencing the 

search. It is based on the uniformly random partition generator introduced in 

Section 6.4.  

As seeding was already proved to improve the efficiency of the modularisation 

process, it was not needed to be included as part of these experimentations. For 

this section, the interest is primarily on further understanding the performance of 

the Munch algorithm. 

6.8 Results and Discussion 

Figure 6.4 shows the EVM values for IC, BR and TR for the full dataset. From the 

plot it can be seen that IC produces the best EVM values for the whole dataset, 

illustrating that the technique originally used for previous work is the most 

optimal in terms of EVM. For both IC and BC there seems to be a gradual 

increasing trend in the EVM values, whereas for TR it can be seen that there is a 

gradual decrease in the EVM values. This might suggests that starting the search 

from a uniformly random point in the search space might not be the best technique 

to use for the Munch algorithm. Note that the author expected the fitness function, 

EVM, of BC and TC to be lower as the fitness function will start with a negative 

value. In addition, the peaks and drops can still be noticed from the plot which 

suggests at these time slices there were large difference in the number of classes 

(suggesting where activities such as extensions or refactoring occurred). Where 

there are drops instead of peaks on the plot, this suggests that the algorithm 

converged early and thus there were not enough iterations for producing the most 

optimal clustering arrangements.  
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Figure 6.4 – Plot showing the EVM for the three strategies 

Figure 6.5 displays the convergence points for IC, BR and TR for the full dataset. 

The convergence point is an indication that the EVM is at a maximum. It is the 

earliest point in terms of the iterations of the search, when the fitness function no 

longer increases until the end of the run. From the plot, it can be seen that there is 

a gradually increasing trend that can be observed for the three strategies, 

indicating that a longer runtime is required for later graphs. This correlates with 

the fact that the software system is increasing in size through time. Refer to Figure 

4.2 for a plot of the active classes at each software check-in. From Figure 6.5, it 

can be seen that IC had the highest convergence points throughout the dataset, 

followed by BR and then TR. This indicates that IC ran for longer iterations than 

both BR and TR, which explains why the EVM values of BR and TR are lower than 

IC. The search converged early for both BR and TR.  
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Figure 6.5 – Plot showing the convergence points for the three strategies 

From Figure 6.4, it can be seen that BR produced better EVM values than TR; this 

can be explained by looking at Table 6.3. The average convergence point for BR 

is 997,919, whereas the average convergence point for TR is 624,395. Thus, it can 

be clearly seen that TR converged earlier than BR for the majority of the graphs. 

From the table, it can also be seen that the average convergence points for IC is 

1,535,037, which is considerably more than BR and TR.  

Strategy Avg EVM  Avg HS Avg Convergence 

IC 295.22  -0.41887 1535037 

BR 109.73  -0.23591 997919 

TR -37.48  -0.15876  624395 

Table 6.3 – The averages of EVM, HS and convergence points for the three 

strategies 

Table 6.3 display the averages of EVM, HS and convergence points for the three 

strategies. The best average of EVM and convergence points from the three 

strategies is IC, followed by BR, then TR. However, the best average HS value 

from the three strategies is TR, followed by BR and IC, respectively. 
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Figure 6.6 – Plot showing the HS for the three strategies 

Figure 6.6 displays a plot of HS values of the three strategies for the full dataset. 

From the plot, it can be noticed that the same gradual decrease in HS values is 

shown for the three strategies, illustrating how the quality of the system collapses 

over time. It seems that the system was designed with more coupling than 

cohesion in the modules and as a result the internal structure of the system design 

was deteriorating. However, from the plot, it can be seen that TR produces the best 

HS values, followed by BR and then IC. This contradicts with the EVM plot, 

which shows IC producing the most optimal results and TR the worst results from 

the strategies. However, as HS is the external validation metric that is used along 

EVM to verify the results, the author assumes that there can be variability in the 

results produced.  

To conclude, TR or BR is useful for analytical purposes, however they were not 

able to perform better than starting the search using IC technique. The advantage 

of starting the search much higher in the search space seems to be difficult to beat. 

However, this work requires further future research. One way to extend this piece 

of work is apply the RRHC algorithm to the TR or BR techniques. RRHC will be 

inefficient if the starting points of the search are in the same position every time. 
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The use of RRHC algorithm traditionally outperforms the RMHC algorithm, and 

starting at a different position in the search space might allow the RRHC 

algorithm to perform better. 

6.9 Summary 

This chapter investigated and evaluated three starting clustering arrangement of 

the Munch tool clustering algorithm, they are; a truly random clustering 

arrangement (randomly determines the number of clusters), a (biased) pseudo-

random clustering arrangement, and disjoint clustering arrangement (placing all 

variables in their own respective clusters). This chapter has also presented how to 

create and evaluate uniformly distributed random clusters for the uniformly 

random starting clustering arrangement. In addition, it highlighted issues that are 

related to the search space and presented graphs of the search spaces for each of 

the three starting points of the algorithm.  
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Chapter 7:  A Measure of Modularisation 

using Random Graph Theory 

7.1 Introduction 

This chapter looks at calculating the probabilities of the software versions of the 

dataset resembling a random graph. It investigates whether the probabilities 

increase as the maintenance increase and whether the architecture resembles more 

randomness throughout the life of the project. It illustrates how the graph metric 

can be used as a tool to indicate areas of interest in the dataset, without the need 

for modularisation. Moreover, this chapter discusses the possible applications of 

the findings of the research, in particular the application of locating and guiding 

refactoring activities. This chapter is based on work presented in (Arzoky et al, 

2014a; Arzoky et al, 2014b). 

7.2 Investigating the Randomness in the Dataset 

7.2.1  An Overview of Random Graphs  

The domain of random graphs was started in the late fifties and early sixties of the 

last century. Although there were studies that appeared before that time, the 

papers by Erdős and Rényi (1959, 1960 and 1961) are considered to have founded 

this discipline (van der Hofstad, 2014). The minimal random graph model can be 

modelled with a set of n nodes (or vertices), adding edges between them 

uniformly at random. Erdős and Rényi (1960) introduced a number of versions of 

their models, with the most commonly studied one denoted G(n,p). An edge can 

occur independently with probability 0 <p< 1. Edges are chosen randomly for a 

fixed set of n nodes and each edge is chosen to be added or removed from the 

graph with probability p (Newman, 2003).  

There are currently various studies such as (Barabási et al, 2000; Mislove et al, 

2007; Roth et al, 2012) that have used random graph theories for source code 
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analysis. However, according to the author’s knowledge comparing the coupling 

graphs of the dataset to the random graphs, has not been performed in the software 

engineering field previously. In addition, investigating how software changes 

throughout its lifecycle (through software versions) are correlated to randomness 

has not been attempted before. 

7.2.2  The use of Random Graphs 

This section describes how random graphs were used to calculate the probabilities 

of whether the software versions of the dataset resemble random graphs or not. 

There are a number of available random graph models; however, the Erdős-Rényi 

random graph model was chosen for this study as it is one of the simplest and 

most commonly used. It calculates the probability of a node being connected to 

another node. Other models which include the degree of the number of edges that 

are connected to a node as opposed to the connectivity of the node was not 

investigated due to time constraints. 

The Erdős-Rényi random graph model arises by taking n vertices and adding an 

edge between any pair of discrete vertices with some fixed probability p 

independently for all pairs (van der Hofstad, 2014). Consequently, the expected 

number of edges can be calculated as in Equation 7.1, however, the number of 

edges can change randomly and all graphs have p ≠ 0 of being selected.  

2

)1( 


nn
pE  

(7.1) 

Thus, the expected distribution of edges was generated based on the Erdős-Rényi 

random graph model. Subsequently, the observed distribution was created from 

each MDG. The binomial distribution was used to compute the probability of 

observing 1…n−1 connectivity. p is calculated from the density and the density is 

calculated from the MDG. The density is simply calculated by dividing the 

number of edges by the total number of edges that there could have been. Lastly, 

the Kolmogorov-Smirnov test (K-S) (Massey, 1951) was used to determine 

whether the two datasets differ significantly. The K-S is a common statistical test 
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that is used for measuring the goodness of fit. It is a used for measuring general 

differences in two populations (Matsumoto, 1988). This test allowed the author to 

find out if the probability of the two distributions is equivalent i.e. whether it is a 

random graph or not. 

7.2.3  Experiment Procedure 

In order to investigate the randomness of the dataset, one experiment was devised 

to modularise the full dataset of 503 graphs. The runtime for each modularisation 

was ten million iterations. The starting clustering arrangement consisted of every 

variable in its own cluster. It assumes that all classes are independent; there are no 

relationships. The experiment was repeated 25 times as there is a risk of the search 

only reaching a local maximum. 

7.2.4  Results and Discussion of experiment 

For each graph in the dataset the frequency of the number of edges was recorded. 

There will be no nodes that have zero edges as everything is connected to each 

other. As mentioned in Section 4.3, all of the modules that are not produced by 

Quantel and all of the non-active classes were removed. For example, for graph 1, 

there are 85 classes that are connected to only one class and there are 66 classes 

that are connected to two classes.  

Figure 7.1 shows the connectivity of graph 105 for both the observed and the 

expected number of edges. It can be observed from the plot that there is a 

noticeable similarity between observed and expected edges; this is due to the high 

probability value (0.0343) of this graph resembling a random graph i.e. the 

chances of these two being the same distribution is reasonably high.  
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Figure 7.1 – Connectivity against the frequency of edges for graph 105 

Conversely, it is expected that a graph with a lower probability to be different as 

the chances of it becoming from the same probability is very unlikely. Figure 7.2 

displays graph 95 for both the observed and the expected number of edges. This 

graph has a very low probability value (2.28E-52) of it resembling a random 

graph. 

 

Figure 7.2 – Connectivity against the frequency of edges for graph 95 

Figure 7.3 displays the probability values of whether a graph resembles a random 

graph for the full dataset. From the plot it can be seen that the majority of the 

probabilities have extremely small values that range from 1.3086E-05 to 2.2806E-

52. The lower the probability values the less the graph resembles a random graph, 
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which suggests that the majority of the graphs are not random. However, few of 

the graphs have probability values of up to 0.034 which indicate that there is a 3.4 

per cent chance of these graphs resembling a random graph. These values are 

reasonably high and it shows that there is an area of randomness in the way the 

software is structured at these points. Modularisation is not possible with data that 

resembles random graphs.  

As discussed previously in Chapter 3, the EVM metric employed for this study 

relies on the concept of low inter-module coupling and high intra-module 

cohesion. It rewards maximising the cohesiveness of the clusters (presence of 

intra-module relationships), clustering with a high number of intra-module 

relationships. It optimises the decomposition of the software to reach low 

coupling between different clusters and high cohesion of objects from the same 

cluster. As random graphs have n nodes with randomly connected edges between 

them, modularising random graphs can be very difficult. 

 

Figure 7.3 – Probability values representing the randomness of the graph 

Due to the extremely small probability values produced the natural logarithm of 

these probabilities were computed. Figure 7.4 shows the natural logarithm of the 

probability values (ln(p)), the higher the value the more the graph resembles a 

random graph. From the plot it can be observed that graphs 100-180 have higher 

ln(p) values which indicates that at these points the graphs more resemble random 

graphs.  
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Figure 7.4 – The natural logarithm of the probability values for the whole 

dataset 

Figure 7.5 shows a plot of the ln(p) against active classes for the whole dataset. A 

general relationship can be observed from the plot, which shows that as the 

number of active classes increases ln(p) decreases, apart from the large peaks and 

drops between graphs 100-200. A value of −0.372 is produced when correlating 

ln(p) against active classes. This still indicates a high correlation as there are over 

500 pairs of observations; the one per cent significance level is at 0.115. 

 

Figure 7.5 – The natural logarithm of the probability values against active 

classes 
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Figure 7.6 shows the relationship between ln(p) and EVM. It can be observed that 

as EVM increases, ln(p) decreases. To find out how strong is this relationship the 

two values were correlated for the whole dataset and for graphs 100-200 only. A 

value of 0.266 is produced for the whole dataset and −0.513 is produced for 

graphs 100-200. These values indicate a strong correlation. In addition, correlating 

the ln(p) against the HS metric produced −0.403 over the whole dataset, which 

also indicates a very high correlation. These relationships demonstrate that the 

modularisation works well for the majority of the dataset (apart from the small 

activities between graphs 100-200). It also suggests that the random graph metric 

can be used to quickly measure how effective the search is going to be and to 

indicate areas (software check-ins) of interest in the software, such as locating 

major changes and refactoring activities. 

 

Figure 7.6 – The natural logarithm of the probability values against EVM 

Figure 7.7 shows a plot of the ln(p) against AVD. Correlating the dataset results 

of the two values together produced no clear relationship, however, looking at the 

100-200 graphs section of the dataset, produced −0.407. This suggests a strong 

negative correlation for this period, mainly due to the large number of activities. 

In addition, Figure 7.7 shows that there are three time periods (graphs 101-127, 

141-149 and 161-163) where there were very large differences in the probability 

values, revealing that these graphs had up to 3.4 per cent chance of resembling a 
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random graph. It is interesting to notice that these large changes in probability 

values occur just before the sizeable changes in the AVD and active classes. This 

suggests that during this period there was instability in the code. This was 

investigated further by correlating the results produced with information from the 

developers; the author was provided with feedback on the results from the senior 

architect at Quantel, and was also supplied with all of the check-in comments for 

the dataset currently being analysed.  

During this period, the implementation of a new version of the main library 

caused some of the libraries to be unstable and to have unpredictable behaviour. 

Developers were in a state of flux on how to use the libraries. There were few 

months of implementation that included coding the interface and trying out the 

libraries in different ways and then a roll back to the previous code. The roll back 

did not only include the library classes but also their own code. Thus, there were 

sizable shifts in the number of classes as they went through the different library 

models. Developers went back and forth a number of times. It finally stabilises as 

they worked out the appropriate model to use.  

During this period there was evidence to suggest early product implementation 

with many issues in the code. Thus, these activities are not considered as new 

feature developments as internal structures of the code were changed without 

changing the functionality of the software. However, it is also not refactoring, as 

refactoring does not involve introducing new functionalities. It almost falls into a 

third category, which involves the addition of a new version of the software of the 

library being used and modifying the code to be compatible with the newly 

introduced library.  

WK values for the clustering results of the first graph and the i
th

 clustering results 

for the full modularisation were produced. There is a decreasing trend of the WK 

values which suggests that the original structure of the system deteriorates over 

time. Correlating ln(p) and WK did not produce a high correlation (0.159), 

however a relationship can still be observed. This still requires further 

investigation as part of future work. 
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Figure 7.7 – The natural logarithm of the probability values against AVD 

7.2.5  Summary of the Analysis 

To summarise, the majority of the graphs from the dataset has very low 

probability values of them resembling random graphs, apart from the small time 

frames where there were large subsequent changes in the code. These large 

changes were due to the introduction of a new version of a library. There were a 

number of major roll backs; going back and forth was chaotic as there were a 

number of bugs that the Quantel team of developers were not able to initially fix. 

Heavy pressures to resolve work with impending deadlines had led to this 

randomness. There should be a worry for the software manufacturing company if 

the structure of the code resembles a random graph. 

The view of the analysis was fed back to the developers at Quantel, they were 

surprised on how the results of certain periods of development resembled more 

randomness. However, they felt that future research work (beyond the current 

dataset under analysis) is needed to be able to show that the rate of change is 

slowing as the code matures. Using random graphs, observing when a certain 

percentage of randomness occurs, can possibly indicate whether or when 
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refactoring should be performed. The random graph test may also be used to 

indicate areas where a higher runtime of the modularisation process is needed. 

7.3 Industrial Feedback 

7.3.1  Detecting refactoring activities 

One of the aims of this research is to be able to identify areas of major change, 

from the source code. These changes can either be new functionality or 

refactoring. However, the data obtained from Quantel does not allow for the 

automated distinction between the two types, but being able to identify areas of 

interest was useful, as it allowed potential locations of refactoring in the code to 

be identified.  

As the numbers of classes that are active tend to grow over time, so does the 

complexity of the software. Refactoring efforts can help to reduce these 

complexities. It was suspected that refactoring was occurring and not simply other 

development because Quantel has informed the author that they refactor, and that 

this is a practice they encourage all staff to strive towards. 

Quantel has provided the author with more detailed classifications for each of the 

classes in the dataset, and also the check-in comments for the whole dataset. Thus, 

allowing the results of the modularisations to be mapped back to the architecture. 

The author has had discussions about the results with the senior architect at 

Quantel and was provided with comments and feedback for each high value 

change in the number of classes from the dataset. Table 7.1 provides a summary 

of the check-ins for each high value change in the dataset. It shows the check-in 

number, the difference in the number of classes (AVD) and the domain expert 

comments. Three main categories were defined for these check-ins, they are; 

feature change i.e. new functionality, library change (involves sizeable refactoring 

activities) and roll back error (regression). 
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Check-in No  

(time slice) 

     AVD  

 

Domain expert  

comments 

30  283  Roll back error 

79  250  Library change 

115  104  Library change 

128  1325  Library change 

132  1327  Feature change 

138  1317  Library change 

139  1309  Library change 

150  1164  Library change 

154  1203  Roll back error 

218  290  Feature change 

369  157  Feature change 

426  894  Library change 

454  363  Feature change 

476  243  Feature change 

484  123  Feature change 

Table 7.1 – Domain expert comments on the dataset 

From the table above, several feature change can be noticed. These are due to the 

impact of merges i.e. when a branch is committed into the main trunk. The dataset 

under analysis is only the main trunk. Developers were working on branches for a 

number of weeks or months and then checking-in the code all at once; thus, 

showing large “jumps” in the number of classes.  

From the table it can also be noticed that library changes have a large impact on 

the number of classes. In fact, out of the 15 largest changes in the source code, 

seven of them were library changes. Library changes involve inheriting a number 

of classes and subsequently refactoring the code to work with the new library. It 

does not entail new feature development but at the same time it is not pure 

refactoring activities, it almost falls into a third category (as mentioned in the 

previous section). During the period under analysis Quantel did not refactor a 

great deal, there were no major refactoring activities that are performed as a 

whole. However, there were numerous smaller refactoring activities that are 

performed before or after the introduction of new updates, versions or 

functionalities.  
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The possibility of furthering the understanding of the evolution of large program 

source code is of high importance to Quantel, since bespoke software product 

development is one of their core business activities. Also, being able to predict 

future changes would greatly enhance their ability to allocate resources, and hence 

give them a more competitive and adaptable edge. For future work, the approach 

aforementioned in this chapter would need to be developed in order to predict 

when the system will be in needs of refactoring. These approaches can be 

investigated further to find out whether they can be useful for project team leaders 

to predict in advance when maintenance or refactoring sessions should be planned 

in the future. 

7.3.2  Software Architecture 

As shown from the experimentations conducted, the addition of further 

functionalities was becoming more difficult as more active classes are being 

added to the system. Thus, there is a need for a metric to derive industry to 

consider simplifying and refactoring the code as these measures goes up. 

Indicating whether the complexity or the structure of the code is stabilising, could 

be used as a feedback mechanism to justify to management that a particular way 

of code development is actually working. Thus, one particular metric that requires 

further investigation is the addition of classes. From the range of adding classes it 

might be possible to identify whether the software is in early development or not. 

As the software starts to mature the rate of adding classes would gradually slow. 

The current dataset covers over four years and four months; however the author 

now has access into nine years of data. For future research, the author predicts that 

the rate of change would slow as the system is becoming more stable, the rate of 

change of graphs would smooth to almost stable as the code gets into maintenance 

mode. 

The author reversed engineered the initial architecture of the code (from the first 

time slice) using modularisation. That matched the designed architecture that 

Quantel developers started with. However, as time went forward it seems that the 

architecture started to deteriorate. As the software system grows there seemed to 
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be emerging problems and the architecture of the software became more and more 

eroded, thus obtaining less and less coherence. 

7.3.3  Programmers’ productivity issues and 

modularisation 

The architecture of the software under analysis took a long time to create (over 

four years), with small teams of developers. There were no solid formal design 

methods that were used to build the architecture of the system; these were 

considered too formal for the developers at Quantel. Instead, developers started 

building the code almost straight away to test out ideas, dropping them and 

building the code again. Thus, to start with, developers had an overall picture of 

the design; this was then communicated to the team members. Team members 

came up with an idea on how to code it and passed the design to the development 

engineers. 

A small group of developers that were in few small teams worked on the 

architectural components of the software system, such as, user interface, system 

engine and database. Thus, part subsystems are owned by an individual or a pair 

i.e. classes are owned by individual developer(s). These are based on the concept 

of module assignment first introduced by Parnes (1972) i.e. the allocation of 

modules to people. Thus, if we have a software system, parts of this system have 

people underneath it that are responsible for individual classes (knowing that 

people are working in teams). If there is a program with two people looking at that 

particular program, then they are in conflict as they will not be able to edit at the 

same time. One way of solving it is to create a header or a class and decline one 

person to it whilst the other person being the implementer. This is referred to as 

information hiding, a concept also first introduced by Parnes (1972). 

According to Brooks (1995), adding more developers to a late software project 

can causes it to become later. He argued that as the number of developers rise so 

does the complexity and communication costs. His argument has now become 

known as Brooks’s Law. Thus, if an individual programmer can produce a certain 
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amount of lines of production code a year; as soon as they are allocated in a large 

team their productivity can drops dramatically. This is because the programmers 

will keep impeding each other. The more programmers on the team the less each 

programmer can develop. Thus, there is a need for a software architecture that can 

keep programmers as de-coupled as possible, especially as the software gets more 

and more coupled over time. The more coupled the software becomes the less 

programmer productivity becomes. As programmer’s comprehension gets worse, 

the impact of changes in classes as the software becomes more coupled becomes 

broader. In other words, the more lines of code that the software has, the more 

impact there is on key headers changing. As people working on branches have to 

merge in and there is a substantial amount of change, they cannot merge the code 

and thus having to re-implement it. Due to all the increase in these complexities 

and coupling effects the programmer’s productivity will get worse. This leads to 

the appearance of more bugs due to the merge errors. 

All the above indicates to the author that modularisation can also represent how 

people work together. The author hypothesises that there is a relationship between 

modularisation and how people are grouped into teams. Investigating if 

modularisation can show the conflicts that are happening between the ways 

individuals are working can be a direct useful application of modularisation and a 

direct way of indicating the lack of productivity. 

7.4 Summary 

This chapter introduced a technique for investigating whether the dataset used for 

the modularisation resembles a random graph. Results have demonstrated that the 

Quantel time-series dataset does not resemble random graphs except for very 

small sections of the datasets where there were large activities i.e. major roll 

backs. Thus, from the results it can be seen that the random graph metric can be 

used as a tool to focus on and indicate areas of interest in the dataset (without 

running the modularisation), such as where the system is starting to decay i.e. if 

the link between classes is random or strongly resemble a random graph then the 

software is decaying. In addition, results presented in this chapter shows that as 
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the software grows, the architecture of the software gets more eroded and less 

coherence. These results were backed up by the senior software architect at 

Quantel. Moreover, this chapter discussed the possible applications of the findings 

of the research, especially the application of the outcomes of the research in 

finding and guiding refactoring activities.  
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Chapter 8:  Conclusions 

8.1 Thesis Overview 

This thesis highlighted and described previous approaches to the problems of 

SBSE, software clustering and software architecture. Based on this extensive 

research, a number of research objectives were derived for this research. In order 

to examine the research objectives of the study, a software tool named Munch was 

designed and implemented. It allowed the research questioned to be addressed by 

conducting extensive experiments on a large real-world time-series dataset.  

The thesis is organised into eight chapters. In this chapter, a summary of the 

research objectives and contributions of this thesis is addressed and summarised. 

An outline of the research limitations is also provided for future research 

directions. The followings summaries the previous seven chapters: 

Chapter 1 

This chapter provides an introduction to the thesis. An overview of related 

research areas is presented in this chapter along with an outline of the main 

motivations for the research, and the aim and objectives of this study. It also 

described the research approach employed and presented an overview layout of 

the thesis. 

Chapter 2 

This chapter summarised background information in the areas of AI, SE and 

SBSE, and presented introductions to the problems to be tackled by this study. It 

constitutes of the main motivation and background knowledge behind the research 

presented in this thesis. 

Chapter 3 

This chapter introduced Munch, a clustering tool, used to conduct modularisation 

experiments on the dataset under analysis. The design and implementation of the 
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tool, including all of its individual components was illustrated in this chapter. The 

individual components of the tool includes the clustering algorithm, fitness 

functions, an external validity metric and criterions for measuring the similarity 

between these software components. Moreover, it provided a detailed description 

of the dataset used in this study that included the pre-processing stages that was 

performed on the dataset. 

Chapter 4 

In this chapter the author presented the modularisation experiments that were 

conducted using the Munch tool on the dataset under analysis. It introduced the 

concept of seeding and illustrated its use to significantly reduce the runtime of the 

modularisation process. The use of previous time slices (software versions) was 

used to speed up the modularisation of the next time slice. A number of 

techniques for modularising the dataset were introduced in this chapter. This 

chapter presented the proof of concept work for the rest of the thesis.  

Chapter 5 

This chapter improved on the techniques and experimentations conducted in 

Chapter 4. It introduced a number of strategies for estimating and evaluating the 

stopping conditions of the clustering algorithm, which was in turn used to reduce 

the runtime of the modularisation process. The techniques introduced in this 

chapter have immensely reduced the runtime of the modularisation process. This 

chapter has investigated the clustering algorithm in details and illustrated the 

complexity issues of performing a move and the importance of estimating the 

average number of clusters during the modularisation run. This analysis was 

exploited when introducing the strategies for speeding up the modularisation 

process. 

Chapter 6 

This chapter investigated and evaluated the starting clustering arrangements of the 

clustering algorithm of Munch. It has introduced two new starting clustering 

arrangements: The first is a pseudo–random clustering arrangement i.e. the 
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clusters are generated randomly using a computer. Whereas, the second is a 

uniformly random starting clustering arrangement i.e. the clusters are randomly 

generated using a distribution model. Since generating a uniformly random 

clustering arrangement is non-trivial, it was discussed in length among the 

validation techniques that were used for verifying it. In addition, this chapter has 

explained and presented an overview of the search space and how it can be 

exploited using these techniques. The search spaces of the starting clustering 

arrangement was visualised and discussed for illustration purposes. 

Chapter 7 

This chapter consists of two main sections. The first part of this chapter presents a 

technique that provides a different perspective of looking at the dataset. It 

investigated whether the Quantel dataset used for the modularisation resembles a 

random graph, and measured the degree of this randomness and how it is 

represented throughout the life of the software system under analysis. The second 

part of the chapter provides industrial feedback of the research of this thesis, 

including the detection of refactoring activities, and discusses the possible 

applications of the findings of this research in industrial settings. 

8.2 Research Contributions 

The intention of this work is to widen and explore the scope of analysing the 

inter-class dependencies of software system using SBSE techniques and to 

demonstrate that these techniques can be valuable when solving software project 

maintenance problems. There are a number of contributions for this thesis and 

they are as follows: 

8.2.1  Munch Tool 

One of the main contributions of this research is the implementation of Munch 

tool for the experimentation of software clustering. It takes in an MDG as an input 

and produces a partition of the MDG as an output. It partitions the system 
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dependencies into clusters. It incorporates software clustering algorithm, a number 

of fitness functions and a number of evaluation methods for analysing and 

evaluating the clustering decompositions. Munch was used to conduct 

modularisation experiments on the time-series dataset in order to further 

understand the inter-class relationships of the system under analysis and to 

examine a number of techniques and strategies that were introduced for speeding 

up the process of modularisation. Munch was implemented in a way that it can be 

extended with ease to assess further clustering algorithms and fitness functions as 

well as validity metrics. It can also be easily utilised to examine further data 

sources.  

8.2.2  Large Bespoke  Software System 

According to the author’s knowledge this thesis is the only study that applies 

modularisation and SBSE techniques on a large time-series bespoke software 

system. The large dataset used for this study consists of information about 

different versions of a software system over time. It was provided by the 

international company Quantel Limited. The data source for this study is from 

processed source code of a product line architecture library that has delivered over 

15 distinct products, it is the persistence engine used by all products, comprising 

of over 0.5 million lines of C++. 

8.2.3  Time-series Dataset and AVD Metric 

Due to the time-series nature of the dataset employed for this study and the fact 

that there are only few days of developments between each check-in in the 

dataset, the author has introduced a metric, AVD, for displaying the similarity 

between subsequent graphs. Displaying the AVD values of the whole dataset can 

provide information on the system without the need to perform modularisation or 

other longer techniques. It can be used as a quick statistics to determine the 

similarities between the software versions, and thus reducing the computational 

complexity from hours to seconds. Although this statistic does not provide 

information on where the modules are or what is related together, it can be used to 
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display and possibly indicate areas of interest. This thesis has highlighted how this 

simple metric can be used to identify areas of where extension or refactoring 

activities has occurred. Moreover, it can also be used to locate areas where there 

were no refactoring activities, on the basis that there were very few changes 

between subsequent classes. 

8.2.4  The Concept of Seeding and the Modularisation 

Process Speed Up 

The main contribution of this study is the introduction of the seeding concept and 

its use in reducing the runtime of the modularisation process. Since it has been 

established that the dataset is a time-series and that subsequent software versions 

are similar (as there are only few days of developments in-between), the seeding 

concept was introduced to exploit this feature. The dataset was not treated as 503 

separate modularisation problems, but instead results of the previous time slice is 

used to speed up the search process of the next time slice. Thus, achieving 

considerable speed up on the modularisation process. There were various 

strategies and techniques that were introduced in this thesis and they were used to 

estimate the stopping conditions of the clustering algorithm and optimise the 

search algorithm by altering the number of iterations that Munch runs for (or that 

the algorithm need to converge for each of the graphs in the dataset); and as a 

result reducing the modularisation process considerably. Using the best of these 

techniques the author has managed to speed up the modularisation process by over 

500 times compared to modularising the graphs individually, with minimal loss in 

the quality of the decomposition. 

8.2.5  Randomness of Graphs 

Another contribution for this research is the use of a technique to investigate the 

randomness of the dataset being used i.e. whether the dataset used for the 

modularisation resembles random graph. Results of the findings have 

demonstrated that the Quantel dataset does not resemble a random graph except 

for very small periods of time where there were large activities. Thus, the random 
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graph metric introduced in this thesis can be used to indicate areas of interest in 

the dataset without the need to run the modularisation. From the results, the author 

was also able to illustrate how the system is decaying overtime, as there is a 

gradual but slow increase in the randomness of the graphs.  

8.2.6  Industrial Feedback (including refactoring 

detection) 

In this study the author attempted to identify areas in the dataset that has been 

radically extended or refactored. However, since the data obtained from Quantel 

does not allow for the automated distinction between the two types, industrial 

feedback from the software architect was needed to help with this distinction. 

Quantel has provided the author with a detailed classification of the classes and 

the check-in comments for the whole dataset. This allowed for the modularisation 

to be mapped back to the architecture of the system. Discussions with the senior 

architect at Quantel have also helped to clarify and identify the large changes in 

the number of classes in the dataset. The author was able to define and categorise 

the major changes in the code as new functionalities or activities that involves 

refactorings. Thus, providing further analysis and discussions regarding the 

techniques and strategies that were introduced in this study and how they can be 

used and further expanded in an industrial setting. 

The problem of controlling and maintaining software system is non-trivial. The 

presented research in this thesis is not the only possible solution in solving this 

problem, however this study has shown that there is a great deal of potential in 

helping stakeholders of the software system to create abstract perspectives of the 

structure of the system in specific how inter-class relationships change over time. 

The approaches introduced here can allow developers and maintainers to gather 

further information on these dependency information, which can then be utilised 

when designing and maintaining further development in the system. As a result, 

this is a key contribution to the domain knowledge in this field. 
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Future work on this project may have the potential to impact on practitioners. The 

possibility of furthering the understanding of the evolution of large program 

source code is of high importance to Quantel, since bespoke software product 

development is one of their core business activities. Also, being able to predict 

future changes would greatly enhance their ability to allocate resources, and hence 

give them a more competitive and adaptable edge.  

The development process at Quantel involves subsystems or classes being owned 

by individual(s) developers. Thus, modularisation of the dataset represents how 

people work together. The author hypothesises that there is a relationship between 

the modularisation and how people are grouped into teams. A software 

architecture that keeps developers as de-coupled as possible is needed in order for 

them to not impede on each other. The more coupled the software become the less 

the programmer’s productivity, and as programmers’ comprehension gets worse 

things such as the impact of changes in classes emerges and bugs will re-appear 

because of merge errors. 

8.3 Threats to Validity and Future Work 

Results of the current study are subject to limitations which are inherent in any 

empirical investigation. It is important to consider the threats to validity in order 

to indicate the effect to which it is possible generalise the results. Moreover, 

through the literature review and the studies conducted for this thesis, there are 

various promising future work opportunities for the applications of search-based 

techniques in the fields of software clustering and software architecture. The 

author was not able to pursue these due to the time constraints. Thus, this section 

sets out the threats to validity and limitations of this study, and highlights and 

discusses the significant research extensions that can be implemented for future 

work. 
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8.3.1  Application of Munch to Further Datasets 

For this thesis, one large real-world time-series dataset, provided by Quantel 

Limited, was used when conducting the empirical studies. The author has shown 

the applicability of the software clustering approach implemented in this field and 

has also featured sufficient variety of approaches to confirm that this approach is 

feasible with other software systems of different sizes and structures. However, 

the relevance can be limited if the findings cannot be applied to larger 

environments. Due to time constraints and the size of the dataset the author was 

not able to verify the results and outcomes with other large datasets. Munch tool is 

not limited to software systems that are implemented in a particular language, nor 

is restricted on the size of the software system. For future work, the Munch tool 

can be applied to other software systems to verify the theories and approaches 

introduced. Further analysis and application of other real software systems would 

provide a more concrete proof for this research. Moreover, although, this dataset 

is from the industry and the information is considerably more realistic, it would be 

interesting to makes use of a large open source dataset of software versions 

(releases) to assess the validity of the techniques introduced. This was not initially 

used due to the lack of feedback that can be obtained from the developers. Unlike 

what was achieved in this study, it is very difficult to obtain any qualitative 

feedback from the developers. 

The current dataset is over four years and the architecture of the system itself has 

taken around three years to build. The author currently has over nine years of data 

i.e. another four years of data. This was not available at the start of the project. 

For future research the author looks to apply the techniques and strategies that 

were introduced in this thesis to the new dataset and investigate the rate of change 

of the classes and whether they would slow as the code gets into more 

maintenance mode. Further understanding of the deterioration of the software 

system over time has the potential to improve the efficiency of the development 

and maintenance stages of the system. 
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8.3.2  Thorough Evaluations of Clustering Output 

The author would like to acknowledge that thorough developer evaluations of the 

clustering results were not performed. It was difficult to perform these evaluations 

as some of the developers have left, the software system under analysis was 

developed from 2000 to 2005. Time constraints issues among other practical 

limitations made this task difficult. Instead, feedback and comments from the 

software architects at Quantel and the check-in comments were used to provide 

constructive feedback on large changes in the code in order to obtain clarifications 

and explanations on the activities that have caused these large changes and to 

classify them accordingly. 

8.3.3  Usage of Reverse Engineered Structures 

The author would also like to acknowledge that reverse engineered structures 

were used in the analysis rather than the original structure of the system, as 

developers were reluctant to give the initial structure of the system. This 

information was considered an advantage for competitors and was not covered by 

the non-disclosure agreement initially signed with the developers of the dataset. 

8.3.4  Evaluation and Validity Metrics 

The fitness function, EVM metric, was used to score the clustering arrangements. 

Simply said, it explores all possible relationships within a cluster and rewards the 

relationship that exists within the MDG and penalises those that does not exists. 

However, the author was aware that the fitness function by itself might not be a 

good indicator for the quality of the modularisation and as a result an external 

metric of validity, HS, was introduced in this study. HS is not a new metric; it is 

based on the Coupling Between Objects (CBO) metric. It is essentially a count of 

the coupling links i.e. the difference between the intra and inter coupling. Due to 

the nature of the dataset being used, a large number of cluster validity metrics 

were ruled out. A large number of these metrics require the original data. The 

dataset contains the distance metric and it produces a binary graph, which limits 
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the validity methods that can be employed. However, as part of future work, other 

metrics can be investigated in order to further verify the techniques introduced in 

this study. 

8.3.5  Other Metaheuristic Techniques 

This study has illustrated the applicability of the heuristic search algorithm, HC, 

chosen for this project. Based on previous studies, the Bunch clustering algorithm 

(which employs HC) was shown to be extremely efficient. For this reason, among 

its ease of implementation and flexibility when conducting experimentation, it 

was chosen for this study. This project has looked at empirically evaluating the 

effectiveness of using the search-based techniques on the development and 

maintenance phases of the software development lifecycle. The author is aware 

that HC is not necessarily the most effective search technique, nevertheless, since 

one of the core contributions of this thesis is the adaption of the algorithm to time-

series code and the introduction of strategies and techniques for speeding up the 

process of modularisation; it was suitable for this purpose. Other algorithms were 

initially investigated. For example, SA and similar algorithms are difficult to 

adapt into the seeding concept as it discards away the seed. In addition, for GA 

and similar algorithms, the EVMD fitness function (the updated version of the 

EVM fitness function) cannot be used, and the use of EVM fitness function would 

cause an immense increase in complexity and runtime. Thus, these types of 

algorithms were not appropriate for this type of time-series analysis. However, for 

future work, other search techniques such as RRHC and the Restricted Growth 

Function Genetic Algorithm (RGFGA) can be employed to further verify the 

outcomes of the research. 

8.3.6  Refactoring Prediction 

As mentioned earlier, another important aim of this project was to be able to 

identify areas of major change i.e. large extensions or refactoring activities, from 

the source code. Since the data does not allow for the distinction between these 

activities, feedback from the software architect and the check-in comments was 
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used to provide constructive feedback on these activities from the dataset. For 

future work, the approach aforementioned in this thesis can be developed and 

extended in order to predict when the system will be in needs of refactoring. 

Predicting the likely changes a system will undergo, based on previous 

development time, makes it possible to estimate developer effort required and to 

allocate resources appropriately. Thus, allowing project managers to more 

usefully coordinate refactoring activities, and software development and project 

management in general. Furthermore, it is very useful to have access to the 

system’s fault logs and another way to extend this work is by predicting these 

faults. 

For future work, this work can be expanded further by collecting the non-

comment lines of code and other details to help determine the type of change 

occurring. If there have been major changes in the dependency graph and the 

number of code lines remained roughly the same, then there had not been major 

functionality added. It would be useful to look at source code analysis software 

that would try to detect Fowler’s 72 refactorings (Fowler et al, 1999), in order to 

detect whether something has occurred. Moreover, it can be investigated further 

by looking at the change in the number of classes, by comparing the class IDs that 

each time slice has in common and using this as a measure. 

8.3.7  Other Industrial Impact 

External validity is the degree to which the findings of the study can be 

generalised to, in this case, industrial practice. This section provides other ways 

that this thesis can be expanded outside of the current experimental setting. 

The clustering being performed on the dataset involves all class relations that are 

aforementioned in Section 3.4.2.2. For this study, the class relations were merged 

together to form the whole system at that particular time slice. However, as part of 

future work, it is possible to calculate the impact of specific class relations such as 

inheritance on the graph (from the dataset), which will account for a small 

percentage of the actual MDG. 
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In addition, the author hypothesises that there is a relationship between 

modularisation and how developers work together, since subsystems or classes are 

owned by individual developer(s). Thus, as part of future work, it is interesting to 

investigate the impact of these measures changing on programmer productivity 

and analyse the architectural decision on team productivity. 

When the view of the analysis was fed back to the programmers at Quantel, they 

were surprised on how the results of certain periods of development resembled 

more randomness. However, they felt that future research work (beyond the 

current dataset under analysis) is needed to be able to predict and show that the 

rate of change is slowing as the code matures. Since, the author has another 

dataset containing the next couple of years of the software system, it is very 

interesting to investigate the rate of change of the classes. For future work, it is 

appealing to investigate whether the complexity and the structure of the code 

stabilises over time and look to explore whether that could be used as a feedback 

mechanism to justify to management that a particular way of developing the code 

actually works. 

In conclusion, the approaches and techniques presented in this thesis provide 

promising direction for future work. However, the author would like to 

acknowledge that the work conducted in this thesis will not change the process of 

how a large software company such as Quantel operates, yet the techniques 

introduced in this study could be the start. 
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