

Munch: An efficient modularisation strategy on sequential

source code check-ins

Mahir Arzoky

A thesis submitted for the degree of

Doctor of Philosophy

Brunel University

February 2015

Department of Computer Science

I

Abstract

As developers are increasingly creating more sophisticated applications, software

systems are growing in both their complexity and size. When source code is easy

to understand, the system can be more maintainable, which leads to reduced costs.

Better structured code can also lead to new requirements being introduced more

efficiently with fewer issues. However, the maintenance and evolution of systems

can be frustrating; it is difficult for developers to keep a fixed understanding of

the system’s structure as the structure can change during maintenance. Software

module clustering is the process of automatically partitioning the structure of the

system using low-level dependencies in the source code, to improve the system’s

structure. There have been a large number of studies using the Search Based

Software Engineering approach to solve the software module clustering problem.

A software clustering tool, Munch, was developed and employed in this study to

modularise a unique dataset of sequential source code software versions. The tool

is based on Search Based Software Engineering techniques. The tool constitutes

of a number of components that includes the clustering algorithm, and a number

of different fitness functions and metrics that are used for measuring and assessing

the quality of the clustering decompositions. The tool will provide a framework

for evaluating a number of clustering techniques and strategies. The dataset used

in this study is provided by Quantel Limited, it is from processed source code of a

product line architecture library that has delivered numerous products. The dataset

analysed is the persistence engine used by all products, comprising of over 0.5

million lines of C++. It consists of 503 software versions.

This study looks to investigate whether search-based software clustering

approaches can help stakeholders to understand how inter-class dependencies of

the software system change over time. It performs efficient modularisation on a

time-series of source code relationships, taking advantage of the fact that the

nearer the source code in time the more similar the modularisation is expected to

be. This study introduces a seeding concept and highlights how it can be used to

significantly reduce the runtime of the modularisation. The dataset is not treated

II

as separate modularisation problems, but instead the result of the previous

modularisation of the graph is used to give the next graph a head start. Code

structure and sequence is used to obtain more effective modularisation and reduce

the runtime of the process. To evaluate the efficiency of the modularisation

numerous experiments were conducted on the dataset. The results of the

experiments present strong evidence to support the seeding strategy.

To reduce the runtime further, statistical techniques for controlling the number of

iterations of the modularisation, based on the similarities between time adjacent

graphs, is introduced. The convergence of the heuristic search technique is

examined and a number of stopping criterions are estimated and evaluated.

Extensive experiments were conducted on the time-series dataset and evidence are

presented to support the proposed techniques. In addition, this thesis investigated

and evaluated the starting clustering arrangement of Munch’s clustering

algorithm, and introduced and experimented with a number of starting clustering

arrangements that includes a uniformly random clustering arrangement strategy.

Moreover, this study investigates whether the dataset used for the modularisation

resembles a random graph by computing the probabilities of observing certain

connectivity. This thesis demonstrates how modularisation is not possible with

data that resembles random graphs, and demonstrates that the dataset being used

does not resemble a random graph except for small sections where there were

large maintenance activities. Furthermore, it explores and shows how the random

graph metric can be used as a tool to indicate areas of interest in the dataset,

without the need to run the modularisation.

Last but not least, there is a huge amount of software code that has and will be

developed, however very little has been learnt from how the code evolves over

time. The intention of this study is also to help developers and stakeholders to

model the internal software and to aid in modelling development trends and

biases, and to try and predict the occurrence of large changes and potential

refactorings. Thus, industrial feedback of the research was obtained. This thesis

presents work on the detection of refactoring activities, and discusses the possible

applications of the findings of this research in industrial settings.

III

Acknowledgements

I am indebted to many people who have helped and supported me during my

studies.

I would like to thank Dr Stephen Swift, my supervisor, for his invaluable support

and guidance throughout the PhD, and for fostering my research interest in this

field. I would also like to thank Dr Steve Counsell, my second supervisor, for his

helpful feedback and support throughout my research, and Dr Allan Tucker for his

constructive comments and advice.

I am thankful to our industrial collaborator Quantel Limited for providing me with

their unique dataset and for their significant feedback and comments on the

dataset, and Dr James Cain, senior software architect at Quantel, for his helpful

feedback and comments on the dataset and for his support throughout my project.

I would also like thank all of my friends, colleagues and staff in the Department of

Computer Science at Brunel University, in particular Dr Salaheddin Darwish, Dr

Ali Tarhini and Samy Ayed. Moreover, I am grateful to all of those with whom I

have had the pleasure to meet and work with during the course of my PhD.

Last but not least, I would like to thank my family for their extraordinary care and

support. I am very grateful to my parents Dr Akram and Eman for their

continuous help, encouragement, patience and prayers. Additionally, I would like

to thank my two lovely sisters Marwa and Zahra for their constant support.

IV

Supporting Publications

The following publications have resulted from the research presented in this

thesis:

Arzoky, M., Swift, S., Counsell, S., and Cain, J., (2014c). An Approach to

Controlling the Runtime for Search Based Modularisation of Sequential Source

Code Check-ins. In Advances in Intelligent Data Analysis XIII. Springer

International Publishing, pp. 25-36.

Arzoky, M., Swift, S., Counsell, S., and Cain, J., (2014b). A Measure of the

Modularisation of Sequential Software Versions Using Random Graph Theory. In

Agile Methods. Large-Scale Development, Refactoring, Testing, and Estimation.

Springer International Publishing, pp. 105-120.

Arzoky, M., Swift, S., Counsell, S., and Cain, J., (2014a). The use of random

graph theory to assess the quality of sequential source code check-ins.

Reftest2014, a co-located workshop with XP2014.

Arzoky, M., Swift, S., Tucker, A. and Cain, J., (2012). A Seeded Search for the

Modularisation of Sequential Software Versions. Journal of Object Technology,

11(2), pp. 6:1-27.

Arzoky, M., Swift, S., Tucker, A. and Cain, J., (2011). Munch: An efficient

modularisation strategy to assess the degree of refactoring on sequential source

code checkings. In: Software Testing, Verification and Validation Workshops

(ICSTW), 2011 IEEE Fourth International Conference on IEEE, pp. 422-429.

V

Table of Contents

Abstract .. 1

Acknowledgements .. 3

Supporting Publications ... 4

List of Tables ... 10

List of Figures .. 11

List of Algorithms ... 13

Abbreviations .. 14

Chapter 1: Introduction ... 1

1.1 OVERVIEW ... 1

1.2 RESEARCH OUTLINE AND MOTIVATION ... 5

1.3 RESEARCH APPROACH ... 8

1.4 RESEARCH CONTRIBUTIONS ... 10

1.4.1 Munch Tool .. 10

1.4.2 Large Bespoke Software System ... 11

1.4.3 Time-series dataset and AVD metric ... 11

1.4.4 The Concept of Seeding and the Modularisation Process Speed Up ... 12

1.4.5 Randomness of Graphs .. 12

1.4.6 Industrial Feedback (including refactoring detection) 13

1.5 THESIS OUTLINE .. 14

Chapter 2: Literature Review .. 16

2.1 INTRODUCTION... 16

2.2 ARTIFICIAL INTELLIGENCE ... 16

2.2.1 Overview .. 16

2.2.2 Search Problem .. 17

2.2.3 Heuristic and Metaheuristic Algorithms .. 18

2.2.4 Data Mining ... 25

2.2.5 Classification ... 26

2.2.6 Clustering ... 26

2.2.7 Computation ... 28

2.3 SOFTWARE ENGINEERING .. 30

2.3.1 Overview .. 30

2.3.2 Software Project Management and Maintenance 30

VI

2.3.3 Software Architecture... 32

2.3.4 Software Evolution ... 33

2.3.5 Software Clustering .. 33

2.3.6 Refactoring ... 36

2.4 SEARCH BASED SOFTWARE ENGINEERING ... 38

2.4.1 Overview .. 38

2.4.2 Search Based Software Engineering .. 38

2.4.3 Modularisation using metaheuristic algorithms 39

2.4.4 Evaluation and Quality Metrics ... 42

2.4.5 Graph Clustering ... 45

2.5 RESEARCH OUTLINE... 48

2.6 SUMMARY .. 49

Chapter 3: Munch Tool and Datasets ... 50

3.1 INTRODUCTION... 50

3.2 BUNCH TOOL ... 50

3.2.1 Overview .. 50

3.2.2 Module Dependency Graph (MDG)... 52

3.2.3 Improvement on Bunch .. 52

3.3 MUNCH TOOL .. 53

3.3.1 Overview .. 53

3.3.2 The Matrix .. 55

3.3.3 Representing a Cluster ... 56

3.3.4 Munch Clustering Algorithm ... 56

3.3.5 Fitness Functions ... 58

3.3.6 Fitness Function Selection ... 61

3.3.7 Weighted-Kappa ... 64

3.3.8 Homogeneity and Separations Metric .. 67

3.4 DATASETS .. 69

3.4.1 Time-Series Analysis .. 69

3.4.2 Bespoke Software Dataset .. 70

3.4.3 Absolute Value Difference (AVD) .. 73

3.5 EVALUATION OF MUNCH TOOL COMPONENTS 74

3.6 SUMMARY .. 76

Chapter 4: Modularisation and the Concept of Seeding 77

VII

4.1 INTRODUCTION... 77

4.2 CONCEPT OF SEEDING .. 77

4.3 REDUCTION OF MATRICES ... 78

4.4 PROOF OF CONCEPT (MODULARISATION EXPERIMENTS) 80

4.4.1 Initial Experimental Procedure.. 80

4.4.2 Full Dataset Experiments Results .. 84

4.4.3 50 Graphs Experiments Results ... 89

4.4.4 Overview of Proof of Concept Experiments ... 95

4.5 CONSTRAINTS AND THREATS TO VALIDITY .. 96

4.6 SUMMARY .. 98

Chapter 5: Modularisation Process Optimisation ... 99

5.1 INTRODUCTION... 99

5.2 AVERAGE SIZE OF CLUSTERS ... 99

5.3 RUNTIME ESTIMATION INVESTIGATION .. 100

5.3.1 Modelling the Move Operator of the Algorithm 100

5.3.2 Computing the Probability Estimate .. 102

5.3.3 Experimental procedure ... 104

5.3.4 Results and Discussion ... 106

5.3.5 Constraints and Threats to Validity ... 112

5.4 FUTURE EXTENSIONS .. 113

5.4.1 Bell Number Strategy ... 113

5.4.2 Actual Count of the Number of Clusters Strategy 115

5.5 SUMMARY .. 115

Chapter 6: Starting Clustering Arrangement Analysis 116

6.1 INTRODUCTION... 116

6.2 MOTIVATION .. 116

6.3 UNIFORMLY AND PSEUDO- RANDOM NUMBERS 117

6.4 UNIFORMLY RANDOM PARTITION .. 118

6.4.1 Overview of Stirling Numbers of the Second Kind and Bell Numbers118

6.4.2 Uniformly Distributed Random Partitions Generator 119

6.4.3 An Approximation for the Stirling Numbers of the Second Kind 120

6.4.4 An Approximation for Bell Numbers .. 121

6.5 EVALUATING THE RANDOM PARTITION GENERATOR 122

6.5.1 Smaller Approximation of the Average Number of Clusters 122

VIII

6.5.2 Larger Approximation of the Average Number of Clusters 123

6.5.3 Ten Variable Simulation Verification .. 125

6.6 VISUALISATION OF THE CLUSTERING ARRANGEMENTS 127

6.6.1 Search space... 127

6.6.2 Multi-Dimensional Scaling (MDS) Overview 127

6.6.3 Visualising the clustering arrangements using MDS 128

6.7 EXPERIMENTAL PROCEDURE .. 130

6.8 RESULTS AND DISCUSSION ... 131

6.9 SUMMARY .. 135

Chapter 7: A Measure of Modularisation using Random Graph Theory ... 136

7.1 INTRODUCTION... 136

7.2 INVESTIGATING THE RANDOMNESS IN THE DATASET 136

7.2.1 An Overview of Random Graphs.. 136

7.2.2 The use of Random Graphs .. 137

7.2.3 Experiment Procedure ... 138

7.2.4 Results and Discussion of experiment .. 138

7.2.5 Summary of the Analysis .. 144

7.3 INDUSTRIAL FEEDBACK ... 145

7.3.1 Detecting refactoring activities .. 145

7.3.2 Software Architecture... 147

7.3.3 Programmers’ productivity issues and modularisation 148

7.4 SUMMARY .. 149

Chapter 8: Conclusions .. 151

8.1 THESIS OVERVIEW ... 151

8.2 RESEARCH CONTRIBUTIONS ... 153

8.2.1 Munch Tool .. 153

8.2.2 Large Bespoke Software System ... 154

8.2.3 Time-series Dataset and AVD Metric .. 154

8.2.4 The Concept of Seeding and the Modularisation Process Speed Up . 155

8.2.5 Randomness of Graphs .. 155

8.2.6 Industrial Feedback (including refactoring detection) 156

8.3 THREATS TO VALIDITY AND FUTURE WORK .. 157

8.3.1 Application of Munch to Further Datasets .. 158

8.3.2 Thorough Evaluations of Clustering Output 159

IX

8.3.3 Usage of Reverse Engineered Structures ... 159

8.3.4 Evaluation and Validity Metrics .. 159

8.3.5 Other Metaheuristic Techniques .. 160

8.3.6 Refactoring Prediction ... 160

8.3.7 Other Industrial Impact.. 161

References .. 163

X

List of Tables

Table 3.1 – A simple comparison between Munch and Bunch 54

Table 3.2 – Description of the software systems .. 62

Table 3.3 – Results showing clustering comparison ... 63

Table 3.4 – Cross-comparison results of Mann-Whitney U test for the three

components ... 64

Table 3.5 – Agreement strength of Weighted-Kappa ... 67

Table 3.6 – Class relation types .. 72

Table 4.1 – Illustrating the classification of classes .. 79

Table 5.1 – Implications of a move ... 101

Table 5.2 – Time saving under all schemes .. 107

Table 5.3 – Count of highest ... 107

Table 6.1 – Simulations of clustering arrangement vs Bell number estimations 123

Table 6.2 – Large approximations of the average number of clusters 124

Table 6.3 – The averages of EVM, HS and convergence points for the three

strategies .. 133

Table 7.1 – Domain expert comments on the dataset ... 146

XI

List of Figures

Figure 1.1 – An overview of the research approach ... 9

Figure 2.1 – Hill Climb algorithm getting stuck at a local maximum 22

Figure 2.2 – One-point crossover .. 24

Figure 2.3 – Uniform crossover .. 25

Figure 2.4 – Mutation operator ... 25

Figure 2.5 – Modularisation graph of Mtunis ... 41

Figure 2.6 – An example of a graph .. 45

Figure 3.1 – An overview of the Munch tool .. 53

Figure 3.2 – A graphical representation of the matrix .. 55

Figure 3.3 – A graphical representation of the clustering process 56

Figure 3.4 – An overview of the clustering algorithm of Munch 56

Figure 3.5 – WK count table ... 65

Figure 3.6 – A simple illustration of the HS metric .. 68

Figure 3.7 – A system diagram for the modularisation of the Quantel dataset 73

Figure 3.8 – Plot showing the AVDs of the full dataset 74

Figure 4.1 – Illustration of the seeding strategy .. 77

Figure 4.2 – Quantel’s active classes at each software check-in 80

Figure 4.3 – The relationships between the experiments 82

Figure 4.4 – EVM results of the full dataset for the five experiments 84

Figure 4.5 – HS results of the full dataset for the five experiments...................... 86

Figure 4.6 – WK results between C1 and Ci for the full dataset 87

Figure 4.7 – WK results of the modularisations produced by C and SS for the full

dataset .. 88

Figure 4.8 – WK results of the modularisations produced by C and SSD for the

full dataset ... 88

Figure 4.9 – Plot showing similarity of graphs ... 89

Figure 4.10 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of C ... 90

Figure 4.11 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of S ... 91

Figure 4.12 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of SS ... 91

XII

Figure 4.13 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of SD .. 91

Figure 4.14 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of SSD .. 92

Figure 4.15 – Average HS results for ten repeats of the five experiments 92

Figure 4.16 – Average WK results between C1 and Ci ... 93

Figure 4.17 – Average WK results of the modularisations produced by C and SS93

Figure 4.18 – Average WK results of the modularisations produced by C and SSD

 ... 94

Figure 4.19 – Average WK results of all pair-wise comparison of the ten repeats

 ... 95

Figure 5.1 – Plot showing the ranking of the six policies 106

Figure 5.2 – Plot showing the convergence points of C and S for the full dataset

 ... 108

Figure 5.3 – Plot showing the EVM of C and S for the full dataset 109

Figure 5.4 – Plot showing the HS of C and S for the full dataset 110

Figure 5.5 – Plot showing the HS against EVM for the full dataset.................... 110

Figure 5.6 – Plot showing the AVDs against convergence points for the full

dataset .. 111

Figure 5.7 – WK results between C1 and Ci for the full dataset 111

Figure 6.1 – Plot showing the frequencies and numerations 126

Figure 6.2 – Search space of pseudo-random starting clustering arrangement... 129

Figure 6.3 – Search space of uniformly random clustering arrangement 130

Figure 6.4 – Plot showing the EVM for the three strategies................................ 132

Figure 6.5 – Plot showing the convergence points for the three strategies 133

Figure 6.6 – Plot showing the HS for the three strategies 134

Figure 7.1 – Connectivity against the frequency of edges for graph 105 139

Figure 7.2 – Connectivity against the frequency of edges for graph 95 139

Figure 7.3 – Probability values representing the randomness of the graph 140

Figure 7.4 – The natural logarithm of the probability values for the whole dataset

 ... 141

Figure 7.5 – The natural logarithm of the probability values against active classes

 ... 141

Figure 7.6 – The natural logarithm of the probability values against EVM 142

Figure 7.7 – The natural logarithm of the probability values against AVD 144

XIII

List of Algorithms

Algorithm 2.1 – Hill Climbing Algorithm .. 21

Algorithm 2.2 – Basic Genetic Algorithm .. 24

Algorithm 3.1 – Munch Clustering algorithm .. 57

Algorithm 6.1 – Uniformly Distributed Random Partition Generator 120

XIV

Abbreviations

ACO Ant Colony Optimisation

AI Artificial Intelligence

AVD Absolute Value Difference

CBO Coupling Between Objects

ES Evolution Strategies

EVM EValuation Metric

EVMD EValuation Metric Difference

GA Genetic Algorithm

GP Genetic Programming

HC Hill Climbing

HS Homogeneity and Separation

IDE Integrated Development Environment

K-S Kolmogorov-Smirnov test

MDG Module Dependency Graph

MDS Multi-Dimensional Scaling

MQ Modularisation Quality

PSO Particle Swarm Optomisation

RGF Restricted Growth Function

RGFGA Restricted Growth Function Genetic Algorithm

RMHC Random Mutation Hill Climbing

RRHC Random Restart Hill Climbing

SA Simulated Annealing

SBSE Search Based Software Engineering

SE Software Engineering

SHC Stochastic Hill Climbing

STL Standard Template Library

TDD Test Driven Development

TS Tabu Search

WK Weighted-Kappa

XP eXtreme Programming

1

Chapter 1: Introduction

1.1 Overview

Software systems that are of a certain amount of functionality and size are usually

supplemented with non-trivial amount of complexity (Bass et al, 2003). Their

structures are often difficult to comprehend due to the large number of modules

and inter-relationships that exist between them. As the requirements of companies

and institutions change, the software that supports them need to be regularly

maintained to cope with constantly evolving requirements. Diverse artefacts such

as classes, modules, packages and methods are another reason for this complexity,

in addition to the changes in the structure of the software system during

maintenance, extensions and refactorings (Bosch, 2004).

A problem that needs to be considered by software developers is the creation of a

structural model of the software system and maintaining the model consistent

when changes occur during the evolution of the system. The lack of informal

advice from system developers, and non-existent or inconsistent design

documentations can make software maintenance a difficult task. Software

developers usually modify the source code without thoroughly understanding its

structure. Maintaining large software system is challenging. Occasionally, the

system will be extensively deteriorated that an entire rebuild becomes necessary.

Thus, illustrating the importance for developers to have access to consistent and

up-to-date documentations of the structure of the software system.

The evolution of a large software system is an important source for evaluating and

enhancing the software development process. Analysing how developers change

and maintain the source code of a software system can help management control

the software development process, and help software architects to design flaws

and to easier identify bugs and faults.

In order to ease the problems mentioned above, the source code can be manually

looked at to develop a model of the system structure. The need for portioning low

2

level components of software system into high-level abstractions was identified in

the early days of computing. Parnas (1972) was the first to propose that certain

information such as design decisions of a program should be hidden behind

interfaces i.e. from all other modules. Parnas (1972) also promoted that

procedures acting as data structures should be clustered into sets of common

modules.

However, poorly partitioned software is widely considered to be a source of

problems for understanding (Constantine and Yourdon, 1979). Due to the

complexity associated with understanding source-level components of a system

and the large relations between the components, manual decomposition of a

software system into meaningful subsystems can be a time-consuming process

and thus not practical. An automated assistance was required to help understand

the system design.

To address this issue, fast and effective tools that automatically decompose a

software system into a set of meaningful subsystems were developed. Automated

tools can analyse the entities and relations in the source code and produce

information on the structure of software systems. These tools analyse low-level

dependencies in the source code and cluster them into meaningful subsystems.

Software clustering is a field of research that automatically groups software

artefacts. In order to obtain good clustering results, information on the software

artefacts are needed. These information which can include structural data such as

inheritance and method invocations among classes, are retrieved from the source

code of the system. Software clusters allow developers to obtain more information

on the system, comprehend complex software systems, recognise reusable

components and detect faults and misplaced software.

There are extensive work in the field of software clustering, it includes: functions

that are clustered to modules and classes (Abd-El-Hafiz, 2000; Schwanke, 1991;

Siff and Reps, 1999; Deursen and Kuipers, 1999), files to subsystems

(Andreopoulos et al, 2007; Anquetil and Lethbridge, 1997), and classes to

3

packages and components (Bauer and Trifu, 2004; Etzkorn and Davis, 1997; Li

and Tahvildari, 2006; Wierda et al, 2006).

Graphs can be used to make the software structure of complex systems more

comprehensible (Mancoridis and Traverso, 2002). Software structure can be

depicted as one or more directed graphs. Graphs can be described as language-

independent, whereby components such as classes or subroutines of a system are

represented as nodes and the inter-relationships between the components are

represented as edges. Such graphs are referred to as Module Dependency Graph

(MDG), refer to Section 3.2.2 for formal definition. Many of the studies on the

software clustering problem uses directed graphs to represent the structure of a

software system.

Creating an MDG of the system does not always make it easy to understand the

system's structure; graphs could be partitioned to make them more accessible and

easier to comprehend. Dependence information from system source code is used

as input information. A file is considered as a module and the reference

relationship between files is considered to be a relationship. Mancoridis et al

(1998) were the first to use MDG as a representation of the software module

clustering problem.

Modularisation is the process of partitioning the structure of the software system

into meaningful subsystems using Search Based Software Engineering techniques

(defined on the next page), allowing developers to gain access of abstract

information on structure and dependencies of the system. Subsystems consist of

source code resources that provide a service to part of the system. They include

resources such as modules, classes and other subsystems. Subsystems can be

organised hierarchically in order to allow developers to navigate through the

system at various levels of details. They can facilitate program understanding.

Modularisation also makes the problem at hand easier to understand, as it reduces

the amount of data needed by developers. Refer to Section 2.4.3 for further

description on the process of modularisation and its use in previous studies.

4

Creating meaningful partitions of an MDG is not an easy task as the number of

possible partitions can be very large, even for smaller systems. In addition, a small

difference between two partitions can produce very different results (Mancoridis

et al, 1999). A good partition of a system would produce independent subsystems

that contain highly interdependent modules. Clustering helps developers to better

understand the structure of complex systems by providing them with a high level

view of the system structure.

Search Based Software Engineering (SBSE) is a term that describes the use of

metaheuristic algorithms (refer to Section 2.2.3.1 for the definition) in the field of

software engineering. Search-based algorithms are used to produce solutions that

gradually evolve to become the optimal or near-optimal solution. It was first

introduced by Harman and Jones (2001). SBSE is becoming increasingly

prevalent for the study and implementation of tackling complex and dynamic

software engineering problems (Harman et al., 2012).

Studies such as Harman and Jones (2001), Mitchell (2002) and Seng et al (2005)

have shown that SBSE can be used to solve computational challenges in the area

of software clustering. Previous studies that used heuristic techniques to attempt

to solve software project scheduling, staffing and maintenance problems include

(Chang et al., 1998; Ge and Chang, 2006; Chang et al., 2008; Alba and Chicano,

2007; Hindi et al., 2002; Alvarez-Valdes et al., 2006; Antoniol et al., 2005;

Gueorguiev et al., 2009).

For various search algorithms (Michalewicz and Fogel, 2004), Search Based

Software Engineering has been shown to be highly robust. There have been a

large number of studies (Harman et al, 2002; Harman et al, 2005; Mancoridis and

Traverso, 2002; Mitchell, 2002) using the Search Based Software Engineering

approach to solve the software module-clustering problem. In previous studies,

techniques that automatically cluster a system's MDG were introduced. They treat

clustering as an optimisation problem, in order to find good partitions. A number

of various heuristic search techniques, including Hill Climbing, Simulated

Annealing and Genetic Algorithms were used to explore the large solution space

5

of all possible partitions of an MDG. These algorithms are explained in details in

Section 2.2.3.2, Section 2.2.3.3 and Section 2.2.3.4, respectively.

Refactoring is a common technique that can be used to improve the internal

attributes of a system to make it easier to maintain without changing its external

behaviour (Fowler et al, 1999; Stroggylos and Spinellis, 2007). The objective is to

increase the design quality. Refactoring can improve maintainability, enhance

performance and reduce the complexity of certain code units, if applied correctly.

Unfortunately, it is not practical to refactor a software system without taking into

account the cost and deadlines of the project. Thus, there is significant value in

being able to predict where refactoring occurs.

1.2 Research Outline and Motivation

This research was motivated by a number of common problems within the

software comprehension, software clustering, and Search Based Software

Engineering domains. There is a huge amount of software code that has and will

be developed, however very little has been learnt from how the code evolves over

time. In addition, software systems need to be regularly maintained in order to

cope with the constantly evolving requirements. These modifications can

adversely degrade the quality of software systems. This thesis focuses on applying

Search Based Software Engineering techniques to the software system

maintenance problems. The aim of this study is: “To investigate whether search-

based software clustering approaches can help stakeholders to understand how

inter-class dependencies of the software system change over time”.

In order to fulfil the aim of the study a number of objectives are derived. The first

and initial objective for this research is: “To conduct a thorough literature review

in the fields of Artificial Intelligence, Software Engineering and Search Based

Software Engineering in order to identify and address the research gaps that this

research aims to tackle” [Objective I].

As this study looks at investigating the modularisation of the structure of software

system and how it might help developers to gain access of abstract information on

6

structure and dependencies of the system, a tool needs to be employed. The

intention is to use this tool to investigate Search Based Software Engineering and

Intelligent Data Analysis techniques in order to investigate how the inter-class

relationships of the system change over time. Thus, the second objective for this

research is: “To implement a prototype tool (Munch) with a number of individual

components to conduct modularisation experiments on a dataset to further

understand the inter-class relationships of the system and to examine a number

techniques and strategies that can be used to optimise the modularisation

process” [Objective II]. The tool is to provide a framework for introducing and

evaluating a number of clustering techniques. In addition, the author looks to

include and experiment with several similarity and object-oriented metrics, and

fitness functions to investigate the different perspectives of performing the

clustering.

This study looks to employ a number of search-based algorithms to cluster the

source code dependency graphs into sub-clusters. There are many existing

techniques that are well proven, and the choice of the clustering algorithm is

based on the evaluation of related previous software clustering techniques. This

study looks to use a tool named Bunch, presented by Mitchell (2002), as a

benchmark clustering algorithm due to its graph-based approach and reliability in

producing good clustering decomposition of software system. From the heuristic

techniques that have been applied in previous studies, Hill Climbing is chosen to

be applied for this work. This work does not directly aim to improve the quality of

the clustering algorithm but mainly focuses on speeding up the time taken to

cluster the data sources. Thus, the study focuses on one clustering algorithm, Hill

Climbing; however other heuristic techniques were explored in the study for

generalisability.

A large real-world time-series (successive check-ins) dataset was provided by the

industrial partner, Quantel Limited (Quantel, 2014). It consists of information

about different versions of a software system over time, which is essential for

conducting and completing this study. A check-in is a version of the software that

compiles. It is not an official release of the software. The terms software version

7

and check-in will be refereed to interchangeably throughout the thesis. The aim is

for Munch to modularise this unique dataset of sequential source code check-ins.

Since this study mainly focuses on speeding up the process of the modularisation.

The next objective of this research project is: “To introduce and develop the

concept of seeding to modularise the sequential source code software versions, by

not treating the dataset as separate modularisation problems and by utilising the

fact that the dataset is time-series” [Objective III]. Thus, this implies that

previous results of the modularisation of a software version can be used to give

the next software version a head start i.e. code structure and sequence is to be used

to achieve more effective modularisation and to reduce the runtime of the process.

The efficiency of the modularisation is evaluated by performing a number of

experiments on the dataset. A number of techniques and statistics are introduced

and experimented with for controlling the number of iterations of the

modularisation process, based on the similarities between time adjacent graphs.

The convergence of the search techniques is examined and a number of stopping

criterion are introduced and evaluated.

As this study looks at further understanding the structure of software system, in

specific the inter-class dependencies and how they evolve over time, another

objective that this thesis aims to investigate is: “To find out whether the

modularised dataset resembles random graphs, and to see whether

modularisation will be possible with data that resembles random graphs”

[Objective IV]. In addition, it investigates if the random graph metric introduced

can be used as a tool to indicate areas of interest in the dataset, without the need to

run the modularisation, and to obtain further information on the software system

to aid developers in understanding it.

Refactoring is a common techniques used in transforming the software to improve

its internal quality attributes. If applied correctly, refactoring can improve

maintainability, enhance performance, simplify the structure of the code and make

it easier to understand. Nonetheless, both managers and developers can be hesitant

when it comes to using refactoring due to the amount of effort needed to make

even a slight change in the code and also the risk of introducing new bugs.

8

Predicting the likely changes a system will undergo, based on previous

development time, makes it possible to estimate developer effort required and to

allocate resources appropriately. Thus, another objective is: “To apply Search

Based Software Engineering techniques and Intelligent Data Analysis techniques

to a large real world dataset to locate the occurrence of major changes and

refactoring activities, and to categorise these accordingly” [Objective V]. The

intention is that this project will model some of the internal software structure and

thus help in developing a foundation for predicting the efforts of future software

development.

Last but not least, the author strives to obtain feedback on the industrial relevance

of the research conducted. Initially, the problem is studied and analysed.

Subsequently, candidate solutions are formulated and several investigations are

carried out. Subsequently, the industrial applicability of obtained results is

assessed on large scale problems. Thus, the last objective of this thesis is: “To

obtain feedback from the developers of the dataset employed in this study,

regarding the techniques and strategies that are introduced in this study, and to

discuss the possible applications of the findings of this research and how they can

be further expanded in an industrial settings” [Objective VI].

1.3 Research Approach

In order to evaluate the research approach adopted, a research methodology was

needed to be selected. The research methodology and design of the research is

described in this section.

The methodology adopted for this research project is illustrated in Figure 1.1. It

uses both quantitative and qualitative methods. It is vital to understand the

problem space before employing any of the constructive concepts as it could lead

to misleading results. This study includes an in-depth literature review of previous

research in the areas of software clustering and Search Based Software

Engineering. The aims and objectives of this research have been influenced by the

direction and appointment of this study based on earlier studies.

9

A tool named Munch that integrates the data sources, clustering algorithms and

evaluation methods was needed to be initially developed for this study. Munch is

a rapid prototype implemented to carry out experimentations of different heuristic

search approaches and fitness functions. Munch’s output is a hierarchical

decomposition of the system structure, whereby closely related modules are

grouped into clusters that are loosely connected to other clusters. The primary

dataset of the research is a large real-world dataset developed by UK company

Quantel Limited. Before applying the clustering tool, the required information

needed to be extracted from the data sources and transformed into a suitable form.

Figure 1.1 – An overview of the research approach

One aspect of this research examines whether the seeding strategy is applicable to

time-series software. That required a specific implementation of heuristic

techniques to be applied within the Search Based Software Engineering paradigm.

Code structure and sequence are evaluated and used to achieve effective

modularisation and to reduce the runtime of the process. Thus, a series of SBSE

and IDA techniques were used to modularise the given dataset. They were

Literature review and identification
of research objectives

Implementation of Munch Tool

Applying IDA and SBSE techniques

Analysing and improving the
techniques introduced

Evaluating and verifying techniques
introduced

Research outcomes and
conclusions

10

implemented and evaluated in an iterative process, at each iterative stage the

techniques were analysed and improved.

In search algorithms, there are a number of parameters that needs to be considered

and tuned accordingly. Various experiments are conducted to measure the

performance of the techniques introduced while changing and tuning its’

parameters. Experimentation is conducted on different fitness functions, starting

points for the algorithms as well as the use of different heuristic algorithms. All

these techniques and parameters are added to the Munch tool.

Finally, the author obtains extensive feedback from the software developers, by

discussing the results of the study with the senior software architect. This provides

a different perspective of looking at the software system and will further validate

the results of the research, and also provide feedback on the applicability of the

research in industrial settings.

1.4 Research Contributions

This thesis contributes in widening and exploring the scope of analysing the

software architecture of software system, in specific how inter-class relationships

evolve over time, using SBSE techniques. Below are the key contributions of this

study:

1.4.1 Munch Tool

One of the first contributions of this study is the implementation of a tool named

Munch that was used to conduct modularisation experiments on the dataset to

understand how dependency relationships of the system change over time and to

examine a number of techniques and strategies that were presented for speeding

up the process of modularisation. It encompasses of software clustering algorithm,

a number of fitness functions and a number of evaluation metrics for evaluating

the clustering decompositions. Munch was built on previous work by Mancordis

11

(1998) and Mitchell (2002) who introduced a tool named Bunch and used it for

software clustering.

Munch takes in an MDG as an input and produces a decomposed MDG as an

output. It partitions the system dependencies into clusters. Munch was

implemented in a way that it can cluster a stand-alone software systems and a

time-series dataset (using the seeding strategy introduced in this thesis, refer to

1.4.4). It can also be extended with ease to include further clustering algorithms,

fitness functions, validity metrics, as well as further datasets.

1.4.2 Large Bespoke Software System

From the literature review conducted, there was no previous study that applies

modularisation and SBSE techniques on a large time-series bespoke software

system. The dataset employed for this study consists of information about

different versions of a software system over time. It was provided by Quantel

Limited. The data source for this study is from processed source code of a product

line architecture library that has delivered over 15 distinct products. It is the

persistence engine used by all of the products, comprising of over 0.5 million

lines of C++.

1.4.3 Time-series dataset and AVD metric

Due to the time-series nature of the dataset and the fact that there are only few

days of developments between each check-in in the dataset, a metric called AVD,

was introduced for displaying the similarity between subsequent graphs. AVD can

provide information on the time-series dataset by determining the similarities

between the software versions, without the need to perform modularisation or

other longer techniques. Thus, allowing for an immense reduction in the

computational complexity of the analysis. In addition, although this statistic does

not provide information on where the modules are or what is related together, it

can be used to display and possibly indicate areas of interest. This study has

shown how this simple metric can be used to identify areas of where extension or

12

refactoring activities have occurred. Moreover, it can also be used to locate areas

where there were no refactoring activities based on the fact that there were very

few changes between subsequent classes.

1.4.4 The Concept of Seeding and the Modularisation

Process Speed Up

The main contribution of this thesis is the introduction of the seeding concept and

its use in speeding up the modularisation process. Since the dataset is time-series

and that successive software versions are similar, due to the few development

days in-between, this feature was exploited and used in the seeding concept. The

dataset was not treated as 503 separate modularisation problems, but instead

results of previous time slices are used to speed up the search process of the next

time slice. In this study a number of strategies and techniques were introduced and

used to estimate the stopping conditions of the clustering algorithm and optimise

the Munch search algorithm, and as a result reducing the modularisation process

considerably. This study has achieved over 500 times speed up of the

modularisation process compared to modularising the graphs individually.

1.4.5 Randomness of Graphs

Another contribution for this research is the introduction of a technique to

investigate the randomness of the dataset. In other words, whether the dataset

employed for this study resembles a random graph or not. From the

experimentation conducted, results have demonstrated that the Quantel dataset

does not resemble random graphs except for the very small periods of time where

there were large activities. Thus, the random graph metric can be used to indicate

areas of interest in the dataset without having to run the modularisation. In

addition, it was used to illustrate the decay of the system over time, as there is a

slow gradual increase in the randomness of the graphs throughout the project.

13

1.4.6 Industrial Feedback (including refactoring

detection)

Identifying areas in the dataset that had radical changes and classifying these as

refactoring or extension activities was one of the objectives of this study.

However, since the dataset employed does not allow for the automated distinction

between the two types, industrial feedback from the software architect was needed

to help with this distinction. Detailed classifications of the classes and the check-

in comments of the dataset were provided by the developers. This allowed for the

modularisation to be mapped back to the architecture of the system. In addition,

discussions with the senior architect at Quantel have helped to clarify and identify

the large changes in the number of classes in the dataset. This allowed for the

categorisation of the major changes in the code as new functionalities or activities

that involves refactorings.

Another contribution to the domain knowledge in this field are the strategies and

approaches introduced in this thesis, which can be used to allow developers and

maintainers to gather further information on the structure of the software system.

These are in turn utilised when designing and maintaining further development in

the system.

This study has shown that there is a great deal of potential in assisting

stakeholders of system to obtain a more abstract perspective of the inter-class

relationships of large software system. Furthering the understanding of the

evolution of large program source code is of importance to Quantel. In addition,

being able to predict future changes would greatly enhance their ability to allocate

resources, and hence give them a more competitive and adaptable edge.

Moreover, since the development process at Quantel comprise of subsystem or

classes being owned by individual developers, the author hypothesises that there

is a relationship between modularisation and how people are grouped into team

i.e. modularisation of the dataset represent how people work together. Further

discussions are presented in Chapter 7 and 8.

14

1.5 Thesis Outline

The rest of the thesis is structured as follows:

Chapter 2: Provides a literature review in the field of Search Based Software

Engineering, software comprehension and software clustering. The literature

review examines relevant and recent studies in the areas of research and provides

concepts, techniques and methods that are used within this research. The main

concerns that need to be addressed by the approaches presented in this thesis were

addressed in this chapter. Previous approaches to the problem, both practical and

theoretical were discussed at length. It identifies and addresses the research gaps

that this study is addressing.

Chapter 3: Introduces the Munch tool employed in this thesis and all of its

individual components. It details the clustering algorithms, fitness functions and

the metrics that are used for assessing and evaluating the results of the

modularisation experiments. In addition, this chapter introduces and describes the

Quantel dataset used in this study.

Chapter 4: Introduces the seeding concept when modularising time-series of

source code relationships. The dataset is not treated as separate modularisation

problems; instead, results of previous time slices are used for speeding up the

search process. This chapter aims at reducing the runtime of the modularisation

process without undermining the accuracy of the results. This chapter presents a

number of techniques and experiments for evaluating the modularisation process.

Chapter 5: Extends work presented in Chapter 4 to improve the effectiveness and

efficiency of the modularisation procedure. A statistic for controlling the number

of iterations of the modularisation is introduced in this chapter. It aims to reduce

the running time of the modularisation process further by estimating and

evaluating a number of stopping criterion for the clustering algorithm. Moreover,

it also discusses the computation and complexity issues of making a move using

the clustering algorithm.

15

Chapter 6: Investigates and discusses three different starting clustering

arrangements for the clustering algorithm employed in this study. It presents a

number of experiments that are conducted to evaluate these clustering

arrangements. The three starting positions are: uniformly random clustering

arrangement (randomly determines the number of clusters using a probability

model), the pseudo-random clustering arrangement (randomly generate clustering

arrangement using deterministic algorithm) and disjoint clustering arrangement

(the starting clustering arrangement is of each element in its own cluster). Graphs

of the search spaces for each of the three starting points are generated and

visualised in this chapter.

Chapter 7: Introduces a technique for investigating whether the dataset used for

the modularisation resembles a random graph. It illustrates how the random graph

metric can be used as a tool to indicate areas of interest in the dataset, without the

need to run the modularisation. It also investigates whether the probabilities of the

dataset resembling a random graph increase as the maintenance increase and

whether the architecture resembles more randomness throughout the life of the

project. In addition, it discusses the possible applications of the findings of the

research, especially the application of the findings in locating and guiding

refactoring activities.

Chapter 8: Provides a summary of the research findings and outlines the research

contributions to the knowledge. It examines what has been developed and

achieved in this research project. In addition, it outlines the limitations of this

research and discusses potential future work directions.

16

Chapter 2: Literature Review

2.1 Introduction

This chapter provides an overview of the different areas and concepts within the

Artificial Intelligence and Software Engineering domains, in particular, applying

Search Based Software Engineering techniques to the area of software clustering.

It reviews previous research, and identifies and addresses the research gaps that

this research is addressing.

2.2 Artificial Intelligence

2.2.1 Overview

Intelligence can be defined as the ability to learn, reason, and solve problems;

particularly, the ability to solve problems that are novel, act rationally and act like

humans. Legg and Hutter (2007) present a large collection of definitions of

intelligence. Artificial Intelligence (AI) is the intelligence than can be possessed

or displayed in software or machines. AI is a discipline that has an elongated past

but it is still constantly and continuously growing and adapting. AI is becoming

progressively prevalent in our lives; it is used in various industries and fields that

include medical diagnosis, media, finance, robotics and gaming. Simply said, the

possible goals that scientists are pursuing in AI field is for systems to think and

act rationally, and for systems to think and act like humans. However, there are a

number of capabilities that computers need to possess first, these include; natural

language processing, knowledge representation, machine learning and automated

reasoning (Russell and Norvig, 1995).

This thesis concentrates on understanding the search problem in specific and

presents techniques for solving a specific problem. The next few sections outline

approaches for representing problems to do with the search and introduce a

17

number of search algorithms that deals with searching for solutions of given

problems.

2.2.2 Search Problem

Search is a central concept in the field of AI; it plays a major role in solving AI

problems. The sequence of events that are used in solving many AI problems is

often not known beforehand and thus a systematic exploration technique of

alternatives need to be established (Russell and Norvig, 1995). A search of very

large number of possibilities is required. Search problems involve searching for

the solution in particular solution space, which can be very large to search

exhaustively. Thus, heuristics search algorithms (described in the next section) are

often needed for searching through candidate solutions and finding the optimal

solution. Thus, a specific approach to evaluate the fitness of candidate solutions is

needed.

In order to search for a particular solution, there need to be other potential

solutions to be compared with. Thus, a function needs to be derived to map a

solution to a value that rates how suitable the solution is at solving the problem. A

change in the solution quality would reflect on the corresponding fitness. A

method is needed to compare solutions with each other and to find the most

optimal solution. This is fulfilled by using a fitness function (or Objective

Function). It quantifies the worth of the solution and state the goal of the search. It

enables the solutions to be ranked with each other. Badly designed fitness

function will lead to poor or improper solutions (Harman and Jones, 2001).

The assembly of all potential solutions can be reflected as a high dimensional

space, referred to as fitness landscape or search space. Concepts of how “good”

the solution is at each point in the search space and the distance between solutions

exists. There are a number of techniques that can map the high dimensional space

to a two-dimensional space (or n-dimensional space) in order to plot the

landscape. The x and y coordinates can represent a solution, whilst the z

coordinate (altitude) represents the fitness of that solution.

18

2.2.3 Heuristic and Metaheuristic Algorithms

2.2.3.1 Overview

The term heuristics refers to a wide range of problem solving approaches that can

derive an approximate solution to a problem in a faster and more efficient way

than a precise algorithm. Heuristic search methods can be employed to try and

find a solution from a large number of possible solutions, e.g. NP-hard problems

(refer to Section 2.2.7.1 for the definition of a NP-hard problem). These methods

are usually applied to problems where exhaustive search for a precise solution is

not practical. These types of problems usually have a wide range of solutions that

cannot all be examined in a reasonable time, even with the current computer

processing power. One of the most commonly studied problem is the travelling

salesman problem. The aim is to find the shortest route visiting number of cities

and returning to the starting point, whilst visiting the cities exactly once. Lin and

Kernighan (1973) presented a heuristic algorithm for solving the travelling

salesman problem.

There are several fundamental components in algorithmic methods for solving

problems, these include: representation of the solution, establishing the fitness

function and controlling the constraints. These factors that would need to be

considered before developing or applying the heuristic algorithms to the problem

Representation is a vital aspect in the application of efficient heuristic techniques

(Glover and Kochenberger, 2003). It is important to represent the possible

solutions in a way that is coherent with the problem i.e. to choose the most

appropriate representation as it represents the size of the search space of the

problem (the range of possible solutions). Many of the heuristics algorithms

manipulate the solutions to obtain better solutions.

The objective function determines the quality of the potential solutions, which the

algorithm uses to find the optimal solution. The algorithm is used to iteratively

explore the search space until a termination criteria is met. The performance of the

19

heuristic search methods are often rated in terms of the number of fitness function

calls.

The aim of the various heuristic techniques is to perform and achieve an efficient

and effective search of the solution space and to identify the most optimal solution

from this space. Solution space refers to all of the possible solutions of a given

problem. Search-based algorithms are often used when it is infeasible to derive the

solution or when the complexity of the algorithm is too high. They are very

relevant when near-optimal results would still be accepted as the solution to the

problem. There is a wide range of heuristic techniques whose aim is to find the

most optimum solution in the smallest number of fitness function calls (Russell

and Norvig, 2010). Selecting the most suitable technique depends on a number of

factors that include the quality of the solution, complexity of the search space and

the appropriate manipulation of the search method (Birattari, 2005).

The search algorithms can be categorised into two types of search behaviours. A

trajectory based algorithms such as Simulated Annealing (Kirkpatrick et al, 1983)

and Hill Climbing (Johnson et al, 1988) tracks and follows the path of one

solution in order to find the local or global optima. The other type is a population

based algorithms such as Genetic Algorithm (Holland, 1975) and Ant Colony

Optimisation (Dorigo and Stützle, 2004) that disperse a population over the search

space in order to achieve a global search.

Search-based algorithms do not always converge on optimal solution and may

sometimes get trapped in local optima. Local optima can either be contributed to

the fitness function or the search algorithm. A local optimum is the point(s) in a

subset of the search space with the best objective function evaluation. Whereas,

the global optimum is the point(s) in the whole search space with the best

objective function evaluation. A number of search techniques such as Hill

Climbing and Simulated Annealing might get “stuck” at the local optima and not

get to the global optima.

The Random Mutation Hill Climbing algorithm (described in Section 2.2.3.2)

selects the best neighbouring solution. It is an example of a strong intensification

20

approach i.e. exploitation of the best solution in areas where good solutions are

already found (Glover and Kochenberger, 2003).

Algorithms can also be classified into two groups: deterministic and stochastic. A

deterministic approach finds the same solution in multiple runs, with the same

starting parameters and search space. It offers a theoretical assurance to locating

the global or at least local optimum. Whereas, a stochastic algorithm, such as

Simulated Annealing or Genetic Algorithm, could lead to a number of different

solutions even with the same starting arrangements. It offers a guarantee only in

terms of probability. Stochastic approaches are usually faster than deterministic

approaches at locating the global optimum (Michalewicz and Fogel, 2004).

A number of heuristic techniques do not store any information of previous

solutions to guide the search. An example of these algorithms is the Greedy

Algorithms. Greedy Algorithms do not consider the problem at hand as a whole,

instead, immediate output of the local optimal solution is provided at each stage,

with the aim of locating the global optimum. On the other hand, Tabu Search

(Glover, 1986) utilises both short and long term memory.

A Metaheuristic algorithm is an upper-level heuristic that is capable of solving

almost any optimisation problem and achieves better solutions. They are designed

to be problem independent algorithms. Metaheuristic algorithms are more

generically designed to solve different problems than heuristic algorithms (Yang,

2008). Metaheuristic techniques seek to solve and optimise a problem through

iterative search. They do not need prior expert knowledge of the problem under

analysis. Metaheuristic algorithms such as Hill Climbing, Simulated Annealing

and Genetic Algorithm have been employed to find optimal solutions to many

NP-complete problems (refer to Section 2.2.7.1 for the definition of a NP-

complete problem). Other algorithms include Ant Colony Optimisation (Dorigo,

1992) and Particle Swarm Optimisation (Kennedy et al, 2001).

Many of the metaheuristic algorithms are inspired by natural processes. The best

adapted individual of the population form the solution representation.

Evolutionary Algorithms are based on the theory of biological evolution.

21

Evolutionary algorithms include Genetic Algorithms, Genetic Programming and

Evolutionary Programming.

Metaheuristics algorithms are used when exact solutions do not exist or are too

computationally expensive. The aim is to explore the search space to locate the

optimum solution. Several techniques to the problem exist, all performing the

same exploration of the search space, with each having different performance

characteristics (Michalewicz and Fogel, 2004).

2.2.3.2 Hill Climbing

Hill Climbing (HC) (Johnson et al, 1988), a local search algorithm, is an iterative

search approach where the value of the solution can either increase or stay the

same at each step. The HC algorithm traverses the space of all solutions by

considering solutions that are adjacent to the starting point. Adjacent neighbours

are evaluated for an increase in fitness. Algorithm 2.1 illustrates the operation of a

HC algorithm. In this example, the current node is replaced by the best neighbour

at each step i.e. the neighbour with the highest fitness. It returns a state that is a

local maximum. Frequently, the starting points are selected at random. The

termination conditions can be determined by a number of factors that include: the

amount of computation used, user intervention and the state of the search i.e. if no

improvement is observed (Russell and Norvig, 2003).

Algorithm 2.1 – Hill Climbing Algorithm

current MAKE-NODE (INITIAL STATE of the problem)

loop do

neighbour a highest-valued successor of current

if Fitness (neighbour) ≤ Fitness (current) then
 return STATE of current

current neighbour

end if
end loop

A well-known issue with the HC algorithm is that it can get stuck at local

maximums; Figure 2.1 illustrates how this occurs. One common solution to the

problem of a HC algorithm getting stuck at local optima is to restart the search at

another random point. Thus, running the algorithm a number of times and

22

selecting the best of all of the solutions. Another possible solution is to use a

Simulated Annealing algorithm, discussed in the next section. It is similar to a HC

algorithm and allows for a solution with a worse fitness to be accepted.

Figure 2.1 – Hill Climb algorithm getting stuck at a local maximum

Random Mutation Hill Climbing (RMHC) is a heuristic search algorithm that uses

an iterative approach to find a point in the search space by maximising an

objective function. The algorithm starts by starting at a random point in the search

space. It randomly searches its closer neighbours until a better fitness of the

objective function is found. The algorithm continues to search for an improvement

from the new point. According to Droste et al (2002) RMHC algorithm is the

most basic variant of an evolutionary algorithm.

RMHC algorithm can have a variable performance and need an improvement in

order to escape the local optima. This can be achieved by allowing the algorithm

to accept worst fitness function values during its search. For Stochastic Hill

Climbing (SHC) algorithm, the chance of accepting a solution is based on how

bad the change is. A bad change will have smaller probability of being accepted,

whereas a better change will be accepted more often. The Random Restart Hill

Climbing (RRHC) is a more effective version of the RMHC. For this algorithm,

the RMHC is run for a number of times and the best is recorded.

global maximum

local maximum
value

state

23

2.2.3.3 Simulated Annealing

Simulated Annealing (SA) (Kirkpatrick et al, 1983) is another algorithm that

improves on RMHC. It allows a worse solution to be accepted in order to avoid

the local optima. The SA algorithm was inspired from the process of annealing in

metallurgy, which involves initially heating materials to a very high temperature

and then allowing it to slowly cool down in order to alter its physical structure. In

SA a temperature variable, TEMP, is kept in order to simulate the heating process

(it defines the probability of accepting a solution with a worst fitness). Initially,

the temperature is set to a high value, allowing the temperature to gradually

“cool” i.e. decrease whilst running the algorithm. This temperature keeps

decreasing to reach a zero by the end of the algorithm, revealing the solutions.

The temperature represents a probability that a given random move will be

accepted if it lowers the current solution. This probability of a given temperature,

TEMP, can be calculated as in Equation 2.1, where C0 is the cost before the move

and C1 is the most after the move, 𝐾𝛽 is Boltzmann's constant, equal to 1:38 x 10-

23 joules per kelvin.

𝑃 (
𝐶0 − 𝐶1

𝑘𝛽𝑇𝐸𝑀𝑃
)

(2.1)

However, for SA, many moves are needed to be made and thus progress is made

very slowly. SA have been applied to a number of problems that include circuit

design (Kirkpatrick et al, 1983), partitional geometric clustering (Bandyopadhyay

et al, 2001), graph drawing (Davidson and Harel, 1996) and landscape

characterisation and stopping criteria (Waeselynck et al, 2006).

2.2.3.4 Genetic Algorithms

Genetic Algorithms (GA) are powerful tools that can perform various

optimisation problems (Michalewicz and Fogel, 2004). GAs represents a solution

to a problem as a string, encoded as a chromosome. Each bit of a chromosome is

referred to as a gene. A population of chromosomes represents a subset of the

space of all possible solutions. A fitness function is needed to rate the worth of a

24

solution that a chromosome represents. It is used to rate how well a chromosome

solves the problem at hand. Selecting a suitable fitness function is essential

(Holland, 1975). Genetic operations such as survival of the fittest, mutation and

crossover are then applied to the solutions in order to find the best one(s).

Algorithm 2.2 displays the pseudo-code of a basic GA.

Algorithm 2.2 – Basic Genetic Algorithm

Set t = 0
Initialise the population P0
Evaluate initial population P0
While t<= MAX GENERATION do

t = t + 1
Select Pt from Pt−1

Crossover Pt
Mutate Pt
Survival Pt

end

Survival of the fittest selects and carries over a number of the parents and children

(population) to the next generation. It is applied to the population to reduce the

population size of the starting population, ensuring that chromosomes with higher

fitness function are more likely to be retained and passed over to the next

generation. Without the survival operator the size of the population would

increase exponentially at each generation (iteration). The most popular method is

called the roulette wheel, first introduced by Holland (1975).

The crossover procedure is used to initiate ‘children’ by re-combining segments of

chromosomes from one or more parents to create a new individual, with the aim

of improving the fitness of all of the chromosomes in a given population. The two

most popular types of crossover are uniform crossover (Syswerda, 1989) and one-

point crossover, first introduced by Holland (1975). Figure 2.2 and Figure 2.3

illustrate how the two crossover techniques work.

Figure 2.2 – One-point crossover

parent 1

parent 2

0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0

0

1

0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0

1

0

25

Figure 2.3 – Uniform crossover

On the other hand, mutation is usually applied to the children that are resulted

from the crossover stage. It randomly changes the value of genes of a

chromosome, as shown in Figure 2.4. It is a genetic operator of GA that is utilised

to maintain genetic diversity from one generation of a population to the next,

allowing the GA to achieve a better solution than is previously possible. There are

various types of mutation operators, these include: Flip bit (as shown in the

example below), boundary, uniform, non-uniform and Gaussian.

Figure 2.4 – Mutation operator

2.2.4 Data Mining

Data mining is an interdisciplinary discipline in computer science that involves

the analysis of data from various perspectives and summarising this data into

useful information. Data mining can make use of AI techniques and advanced

statistical tools to detect trends and patters that might have remained unnoticed

(Hand et al., 2001).

Data mining is a relatively new term, however the technology behind it has

existed for longer. Companies were able to use powerful machines to scan data

and analyse market gaps and research. However, the rapid development in data

capture, machine processing power, storage capabilities and analytical software

are increasing the accuracy of knowledge discovery whilst reducing the cost down

(Hand et al., 2001).

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

before after

parent 1

parent 2

0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0

0

1

0 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0

0

1

26

Organisations and companies are amassing vast amount of data in various formats

and databases. The patterns and relationships between this data can provide

information, which can be converted into knowledge about previous patterns and

future trends. There are two main forms of data analysis techniques that can

provide a better understanding of large data, they are classification and prediction.

Classification model can predict categorical functions (the membership for data

instances) whereas prediction models can predict valued function.

2.2.5 Classification

From the machine learning and statistics field, classification is the identification

of which set of categories a new observation belongs to. Classification can be

supervised or unsupervised learning. Supervised learning involves the inference of

a function from labelled data. It involves learning from a training set of existing

identifiable observations. Unsupervised learning attempts to locate hidden

structure in unlabelled data. It encompasses numerous techniques, most being

based on data mining methods, that aims to summarise and clarify crucial aspects

of the data, these include; clustering, Hidden Markov Models (Comon and Jutten,

2010) or Blind Signal Separation (Manning and Schütze, 1999). This research

project only focuses on clustering (or unsupervised classification); presented in

the next section.

2.2.6 Clustering

Clustering is the process of differentiating groups inside a given set of objects.

The resulting groups are assigned so that objects that are with each subset are

more closely related to each other than objects that are assigned in different

subsets. There is a wide range of reasons on why to cluster, these include; it is

very useful within data analysis to know which objects are highly related to other

objects; it is less complex to model; and it may also provide insight into unknown

properties of some of the objects.

27

A vital aspect of the clustering process is the concept of degree of similarity (or

dissimilarity) between objects. The measure used for clustering the set of objects

can be any metric function. There is a wide range of measures that are available,

such as: Euclidean distance, Minkowski distance, Hamming distance, etc. In

addition, there is a large collection of clustering algorithms that are available in

the literature (refer to Section 2.2.3.1).

Data clustering is the process of arranging objects into a number of sets according

to similarity or proximity of some defined distance measure, as mentioned above.

Each set shares some common traits and will be referred to as a cluster. An

ultimate problem in cluster analysis is that given a collection of objects, how can

we recognise and group similar objects together while differentiating those that

are dissimilar? Identifying those collections has a wide number of applications

that include module organisation in software engineering. However, determining

the number of clusters is often difficult and it requires a method for locating the

number of clusters and their contents.

There are two main popular techniques of clustering algorithms: partitional and

hierarchical clustering. Within each of these techniques exists various subtypes

and numerous algorithms for obtaining the clusters. Partitional clustering involves

the direct decomposition of the dataset into a set of disjoint of clusters, and then

evaluates these clusters by certain criterion. Partitional clustering algorithms are

usually iterative and converge to a local optimum. Commonly used clustering

methods include K-means (Lloyds, 1982) and K-Medoids (Kaufman and

Rousseeuw, 1990). On the other hand, hierarchical clustering entails the

hierarchical decomposition of the data using set criterion. It is performed by either

splitting larger clusters into smaller ones or merging smaller clusters into larger

ones. There are two types of hierarchical clustering: Agglomerative (bottom-up)

and divisive (top-down) methods.

Bottom-up clustering algorithm begins with all entities in different clusters and, at

every iteration, it merges the two most similar clusters together until there is only

one cluster subsists. On the other hand, for top-down clustering algorithm, all

28

observations start in a single cluster, and splits are executed repeatedly down the

hierarchy until each element is in its own singleton cluster.

Clustering techniques are widely used in a variety of research disciplines. Some

examples of the uses of clustering include: data mining (Pham et al, 2004), image

analysis and segmentation (Rommelse, 2004), ecology (Petchey and Gaston,

2002), and biology and gene expression data (Reinke, 2002).

2.2.7 Computation

2.2.7.1 Overview and Computational Complexity

To gain an in depth understanding of the benefits and the limitations of applying

search algorithms to software engineering problems, it is important to

complement any experimental research with theoretical investigations.

Computation is the process of calculating and determining something using

mathematical or logical models. It provides us with an indication of the time a

computer will undertake to solve a problem, given the size of the problem. It

allows us to compare algorithms independent of the speed of a computer. The

running time of an algorithm can be different depending on the input; it usually

grows with the size of the input. An algorithm might be faster on some datasets

and not others, thus, there are three different types of runtimes; best case, average

case and worst case. The best case is usually not very informative as it might not

occur frequently, whereas the average case is usually difficult to determine. On

the other hand, the worst case running time is easier to analyse and crucial in real-

time applications (Lewis and Papadimitriou, 1997). Runtime Analysis can bridge

together the evaluation of search algorithms to how algorithms are classically

analysed.

The term computational complexity centres on the classification of computational

problems based on their innate difficulty and linking those problems to each other.

Analysing the computational complexity of a problem can estimate the resource

needed regarding changing the size of the input. Computational complexity is of

29

importance to this study due to the size of data sources and the time it takes for the

clustering algorithms to run. Computational complexity of some problems grows

very fast and becomes not practical if not impossible to solve. A problem is

solvable in polynomial time. Polynomial time can distinguish and classifies

whether a problem is solvable or not.

From above, the classification of problems can be based on the difficulty in

solving them. There are a number of classes that these problems can be assigned

to, they are: P-problem (polynomial-time) is where the number of steps that are

required for solving it is constrained by a power (exponent by which a quantity is

raised) of the size of the problem; NP-problem (non-deterministic polynomial-

time) is where is has a non-deterministic solution and the steps needed for

verifying the solution is bounded by a power of the problem size; NP-hard

problem is where an algorithm for solving it can be used to solve any NP-problem

problem; and NP-complete problem is when it is both NP and NP-hard, there is no

known efficient or fast approach to this problem (Bridges, 1994).

2.2.7.2 Asymptotic Analysis

Asymptotic analysis is an alternative to running a large number of experiments. It

can be used to estimate the running time without actually running the experiments.

It uses a high-level description of the algorithm without the need to implement or

run it, it evaluates the running time independently of the hardware and software

environment. By using the pseudo-code the number of steps can be counted in

terms of primitive operations. Primitive operations are the basic computations that

are performed by an algorithm. Thus, time complexity refers to the number of

steps needed to solve a problem of input size n. The resultant formulae are

referred as T(n) where n is the size of the input. In order to perform asymptotic

analysis, the worst-case number of primitive operations executed as T(n) should

be found. If more than one input is present we might have T(n,m) where n and m

are the input sizes. T(n) can be used to compute a property called Big-O.

The asymptotic analysis of an algorithm determines the running time in Big-O

(O(n)) notation. Big-O notation is used to rank functions according to their growth

30

rates. Given two functions f(n) and g(n), f(n) is O(g(n)) if there are positive

constants c and n0 such that f(n) cg(n) for n n0.This indicates that the growth

rate of f(n) is not more than the growth rate of g(n), f(n) grows less than g(n). Big-

O notation provides an upper-bound on the growth rate of a function.

2.3 Software Engineering

2.3.1 Overview

The engineering field has always been growing and expanding, taking in many

new disciples along the way. The latest of these is the discipline of Software

Engineering. Software Engineering is defined by the Institute of Electrical and

Electronics Engineers (IEEE) (1990) as: (1) The application of systematic,

disciplined, quantifiable approach to the development, operation, and maintenance

of software; that is, the application of engineering to software. (2) The study of

approaches in (1).

Since software is nowadays used in everything from medical apparatus to

airplanes to financial information, faulty software can have substantial impact on

our lives. Software engineering does not only revolve around implementing code,

it is instead a well-articulated lifecycle. It is initiated well before the software is

designed and it continues long afterwards. Software systems can be designed and

maintained through a structured software development lifecycle.

There are various software engineering problems such as software testing, module

clustering, systems integration, software maintenance and evolution of legacy

systems. In addition, there are a wide range of studies in the field of software

engineering.

2.3.2 Software Project Management and Maintenance

Software project management is a large field that has many subtopics.

Considering the wide range of software engineering problems, this research is

31

focused on analysing the maintenance and evolution of software systems. The

maintenance and evolution of a system are important stages of any software

system lifecycle. Harman et al (2009) has recognised several unresolved problems

in software projects that include poor estimates and poor integration of various

processes. These are caused by various factors that include: changing

requirements by either clients or stakeholders, the iteration cycles in the

development process, the high novelty and complexity of the system, the slow

adaptability to the rapidly changing underlying technology, the inattention to the

robustness in planning, and the undependability of the scheduling and allocation

of resources with the development process of the software project.

Estimating the cost of software is critical for the success of software projects.

Currently, there are no accurate cost estimation systems and it still continues to be

one of the unsolved challenges in Software Engineering (Sheppard, 2007).

Estimation techniques still remain inaccurate and have a factor of high costs.

However, differences in estimated and actual cost do not have to imply poor

estimation techniques. It is beneficial for decision makers to gain insight into the

effects caused by the uncertainties of cost estimation (Gueorguiev et al., 2009).

Software projects require a large amount of management effort. Management

activities such as planning, scheduling and monitoring are usually conducted by

project managers to achieve the required objectives and to satisfy any encountered

constraints. These activities justify the need for automated tools for finding the

most optimal solutions. These tools can be used for difficult tasks such as project

scheduling, resource allocation and cost estimation, as there is a vast amount of

solutions to be searched without an automated assistance.

Maintenance is often attributed to be the most expensive phase of the software

development lifecycle. Maintenance of systems is under intense research interest

and providing insights into our understanding of this software aspect is very

useful. It is difficult to determine the amount of resources spent on software

maintenance, as companies are secretive about showing their weaknesses (Lano,

1993). In the development of industrial software, it is well-known that 75% of the

32

total cost of software system development is spent on software maintenance and

evolution stages (Pressman, 1982).

Although, the presence of documentations is considered extremely useful, they are

likely to be neglected (Parnas, 1994). One of the reasons behind this neglect is the

focus on short term goals (Lethbridge et al., 2003). Documentation is widely

considered to reduce the cost of software maintenance and is necessary to ease

maintenance activities. They serve as additional information for providing

abstraction.

2.3.3 Software Architecture

The software architecture serves as a high level structure of the software system.

It provides a framework for the development of such systems. The stability of

large software systems, with high degree of complexity, can be controlled by

developers with the help of efficient software architecture.

According to Zuse (1991) complexity relates to the difficulty level encountered by

developers in understanding the software system. High level of complexity causes

maintenance problems. High complexity in software system can be caused by

various reasons such as the problem’s difficulty, the flexibility of the software

system or the large amount of coupling between the artefacts (Darcy and Kemerer,

2002). Software comprehension is considered to be a vital activity of the software

maintenance process (Koenemann and Robertson, 1991).

To maintain quality of the software architecture a number of approaches are

available for observing and monitoring it. Integrated Development Environments

(IDEs) can assist stakeholders in the creation of high quality design and provide

information on the software architecture. The use of revision control is another

approach that can be used for the management of changes in software systems.

Abstraction of software systems is a key goal in software architecture

development. Developers can gain insight into software systems by the

decomposition of these systems into modules (Courses and Surveys, 2002). The

33

software architecture can display the structure and decomposition of the system

into modules/components and relationships between these modules/components.

Classification and modularisation (refer to Section 2.4.3) are used for obtaining

larger controlled structures from smaller unstructured components. There are

several levels of abstraction that includes classes, methods, packages and files. At

an abstract level, the term artefact is introduced to express the generalisation of

the software system features. Section 2.3.5 presents a more detailed analysis of the

software clustering problem.

2.3.4 Software Evolution

Recently, researchers started performing clustering research based on the

evolution of the software system. Few studies such as (Andritsos and Tzerpos,

2005; Wierda et al, 2006) integrate their data sources into their clustering

approaches. Examining the development process of software systems is a growing

area of research. Software system evolution is documented by its release history

or by recording changes to the source files during the system’s development

process. Revision control system such as CVS and Git is used for storing these

changes to the source code. It is usually the developer’s decision to commit

changes made to the source code. There are tools (Burch and Diehl, 2008; Burch

et al, 2005; Gall, 2003; Gall, 1999) that can visualise the committed data for it to

be used to comprehend the software system and detect weaknesses in the

architecture.

2.3.5 Software Clustering

Software clustering refers to the classification of the artefacts of a software system

into partitions, according to measures of similarity (Tzerpos and Holt, 2000). The

partitions are referred to as clusters. Clustering identifies artefacts that are similar

and abstracts them into clusters of similar attributes. Software module clustering

can provide assistance in the comprehension of software (Di-Lucca, 2002;

Kanellopoulos and Tjortjis, 2004). Software abstraction can help stakeholders to

34

identify vulnerable areas when changes are made to the software for maintenance

or testing purposes (Burd and Munro, 1998).

Parnas (1972) has voiced some of the basic principles for good object-oriented

design. He expressed the view to fuse low-level system attributes into modules;

the concept of clustering and abstracting to unite artefacts into groups. Booch

(1994) stresses the significance to use abstraction to assemble structures that are

similar into related groups, and the importance of encapsulation to execute

information hiding. Moreover, he emphasises the importance of clustering in

achieving good system design, high cohesion and low coupling. Cohesion can be

defined as the degree to which the elements of a system such as classes, modules

or components function together as an operating unit; whereas coupling indicates

the degree of inter-dependence between two or more classes, modules or

components. Coupling and Cohesion metrics are explained in more details in

Section 2.4.4.

One of the goals of this study is to derive the structure of the software

architecture. The aim is to provide developers and software architects with

sufficient understanding of the dependency relationships of the system, and to try

to locate the occurrence of major changes and refactoring activities in the software

system.

Brooks (1999) stated that in order to comprehend completed software, developers

would need to construct a top-level hierarchy and continuously look at lower

levels until reaching the program code. Another concept is the bottom-up

approach, it also improves comprehension of software by clustering lines of code

into larger chunks (Shneiderman and Mayer, 1979). A study by Koenemann and

Robertson (1991) explores both methods and found that developers mainly use a

top-down approach and only turn to bottoms-up approach when they fail to

understand specific areas of the system.

There are numerous proposed techniques in the literature that partition the

structure of software system into subsystems. These techniques determine the

clusters using various ways such as heuristic rules (Schwanke, 1991), clustering

35

metrics (Anquetil, 2000; Hutchens and Basili, 1985; Lindig and Snelting, 1997) or

source code component similarity (Muller et al, 1993). The problem of automated

clustering was tackled in (Schwanke and Plato, 1989) by introducing the Shared

Neighbours’ technique. This technique was incorporated with the heuristics of low

coupling and high cohesion to find the common patterns in software systems.

Schwanke (1991) improved on these techniques by refining the partitioning of the

software system by identifying and classifying components that are placed in the

wrong subsystem and moving them into the correct one, providing a better

modularity.

There are a range of algorithms that are specifically designed for clustering

software objects using feature based data models and these include (Andritsos and

Tzerpos, 2005; Anquetil et al, 1999; Kuhn et al, 2005; Voinea and Telea, 2006).

Andritsos and Tzerpos (2005) introduced a clustering approach named LIMBO

that minimises the information loss of the feature vector at every step of the

clustering approach. Tzerpos and Holt (2000), introduced a tool called ACDC,

which uses a graph based approach, to search for subsystem trends in dependency

graphs. Other clustering studies that use graph data models include: (Beyer and

Noack, 2005; Chiricota et al, 2003; Maletic and Marcus, 2001; Muller and Uhl,

1990; Rayside et al, 2000).

Other studies that employed software clustering techniques into software projects

include: (Andritsos and Tzerpos, 2003; Maletic and Marcus, 2001; Mancoridis et

al, 1999; Mitchell and Mancoridis, 2001; Shtern and Tzerpos, 2004; Tzerpos and

R. C. Holt, 2000; Vanya et al, 2008; Wen and Tzerpos, 2004; Mitchell and

Mancoridis, 2001; Mitchell and Mancoridis, 2007; Wu et al, 2005; Beyer and

Noack, 2005; Beck, 2009).

Considerable differences in size and connectivity can generate different

landscapes of the search space, indicating the need for a robust search technique.

Heuristic techniques (discussed in Section 2.2.3) have already replaced traditional

clustering techniques such as hierarchical when solving the software module

clustering problem. This will be explained further in Section 2.4.

36

2.3.6 Refactoring

The design of software system is usually not prepared for the new requirements

that emerge through its lifecycle; a vital concern that needs to be considered

during the evolution of the system is the enhancement of the quality of the

software system design. Large non-trivial software systems have ever-changing

requirements. They evolve over time and have many releases; these releases

address and resolve new requirements as well as improve any technological issues

that these systems may have. The structure of the software system needs to be

updated when new requirements are introduced during the lifecycle of these

systems.

The firm schedules and deadlines in real-life software development can cause

different people to change and maintain the system. Inappropriate changes to the

system can cause structure degradation and increases the complexity of the

software system. This in turns leads to a rise in maintenance costs. Thus, an

important process in the evolution of software systems is the continuous

restructurings of the code.

Fowler et al (1999) defines refactoring as “the process of changing a software

system in such a way that it does not alter the external behaviour of the code yet

improves its internal structure. It is a disciplined way to clean up code that

minimizes the chances of introducing bugs”. Refactoring is a way to enhance the

design structure of software systems. Initial work into refactoring was first

conducted by Opdyke in his PhD thesis (Opdyke, 1992). He used object-oriented

C++ as the basis for using refactoring to enhance the design of code. Software

developments methodologies such as Extreme Programming (XP) (Beck, 1999)

and Test Driven Development (TDD) rely on refactoring to improve the software

quality and keep the structure of the code easy to maintain.

Refactoring has now become an important process with developers alternating

between introducing new functionalities and refactoring the code in order to

improve the clarity of the structure. Developers first have to identify the sections

37

in the code that are impacting on the system’s maintainability and apply the fitting

refactorings in order to remove “bad-smells” (Brown et al, 1998).

There were a large number of studies in the field of refactoring; however there is

limited research in the field of detecting refactorings. Deursen and Moonen (2001)

have presented the difference test code and production code refactoring. They

have described a set of bad smells in test code and the refactorings that are needed

to remove these smells. On the other hand, Xing and Stroulia (2006) illustrated

the detection of refactoring activities by analysing the evolution of the system at

the design stage. Seng et al (2006) proposed a search-based approach for

refactoring the structure of software systems. Xu et al (2004) has presented a

clustering based technique for restructuring the program at the functional level,

focusing on automating the identification of badly structured or low cohesive

functions. Weißgerber and Diehl (2006) work also presents techniques for

refactoring prediction from source code changes.

Seng et al (2006) employed a Genetic Algorithm to identify refactorings for

software system. Sequences of refactoring activities (transformations to be made

to the system design, for example the movement of a method from one class to

another) were evolved. A number of metrics that includes coupling and cohesion

were used to evaluate the fitness of the results. Harman and Tratt in (2007)

extended this approach with a multi-objective HC technique.

Other studies that use partitional and hierarchical clustering techniques for

refactoring detection include: (Czibula and Serban, 2006; Czibula and Serban,

2008a; Czibula and Serban, 2008b). The authors conduct an experimental

evaluation of the clustering algorithms for refactoring open-source and real

software systems.

38

2.4 Search Based Software Engineering

2.4.1 Overview

There has been significant amount of effort to automate tasks in the software

development phase. The automation of these tasks can dramatically reduce the

development costs as it requires fewer resources. A large number of techniques

were proposed for automating the software engineering process. A trivial way of

finding the optimal clustering is by using an exhaustive search of all potential

clustering. However, obtaining the optimal clustering is an NP-hard problem

(Mitchell, 2002). Moreover, as the number of modules in the system increases, the

number of possible solutions radically increases. Thus, exhaustive search

approaches for obtaining the optimal solutions to clustering are impractical.

As mentioned in Section 2.2.7.1, the computation complexity to achieve optimal

or accurate solution may vary for some problems. Thus, instead an approximate or

near-optimal solution can be found. Search algorithms are among those that have

gained successful and promising results. They are called search-based techniques

as they explore and navigate the search space of all possible solutions. However,

in order to be able to apply these search techniques to software engineering

problems, the problems need to be re-formulated to search problems. Miller and

Spooner (1976) were one of the first to use search-based techniques to solve a

software engineering problem.

2.4.2 Search Based Software Engineering

Search Based Software Engineering (SBSE) concerns the application of

techniques from metaheuristic search, evolutionary computation and operations

research to solve problems in software engineering (Harman and Jones, 2001). It

is based on the concept of reformulating software engineering problems as search

problems, allowing search techniques to solve these problems and benefits from

the advantages offered by these techniques. SBSE is a term which was first coined

by Harman and Jones (2001).

39

Three aspects are used for formulating software engineering problems as search-

based optimisation problems, they are: representation, fitness function and choice

of search-based technique. Search algorithms require an appropriate fitness

function for distinguishing between the solutions for finding the optimal ones. The

fitness function should aim to estimate how good a solution is even if it does not

solve the problem. The search algorithm guides the fitness function into searching

for better solutions, although finding the most optimal solution is not guaranteed.

Refer to Section 2.2.2 for further details on the search problem.

Over the last number of years SBSE has become a widely vibrant research area

for solving software engineering problems. In 2009, Harman et al performed an

extensive review of the application of search-based approaches to software

engineering problems. The review comprises of challenges throughout the

software engineering lifecycle, including requirement selection, cost estimation,

software system scheduling and testing. Search algorithms have been applied to

many software engineering problems: requirement analysis (Bagnall et al, 2001),

project planning and cost estimation (Aguilar-Ruiz et al, 2001; Antoniol et al,

2004; Burgess and Lefley, 2001; Kirsopp, 2002), testing (Baresel et al, 2002;

Harman et al, 2004; McMinn et al, 2006), maintenance (Bouktif et al, 2006;

O’Keeffe and O’Cinneide, 2006; Seng et al, 2006) and quality assessment

(Bouktif et al, 2006; Khoshgoftaar et al, 2004).

2.4.3 Modularisation using metaheuristic algorithms

The clustering algorithm task is to create a cluster landscape of the software

system by distributing the artefacts based on their similarities. Most clustering

algorithms distribute the clusters hierarchically; low-level artefacts are arranged

and organised into subsystems (Mitchell, 2002). Subsystems can then be clustered

based on their similarities to create another level of abstraction i.e. new larger

subsystems, until it can possibly end up with only one cluster containing all

subsystems. This approach can help stakeholders to understand the structure of the

software system, and to analyse and revise the system at different levels of

abstraction. However, one disadvantage to this technique is that some software

40

systems evolve quicker than others and as such several parts of the system may

progress into higher abstraction levels, whilst other are still at a lower subsystem

level.

Previous studies indicate that metaheuristic techniques have shown to be good at

delivering near-optimal solutions for complex problems within reasonable amount

of time, making them ideal for search-based optimisation (Harman, 2010). The

human effort is shifted to guiding the automated search instead of performing the

search. These techniques model a problem in terms of an objective function and

use a search technique to minimise or maximise that function. Modularisation is

another term used to describe the grouping of common functionality into

components. It also aims to produce meaningful abstractions that manage the

complexity of the model. Figure 2.5 displays the modularisation graph of a small

software system called Mtunis (a simple operating system used for educational

purposes).

A wide range of metaheuristic techniques could be applied in SBSE. Genetic

Algorithms (GA), first introduced by (Holland, 1975) is one of the most

commonly used search-based algorithms in SBSE (Harman, 2007). Other

metaheuristic techniques include Genetic Programming (GP) (Smith, 1980),

Evolution Strategies (ES) (Schwefel, 1981), Hill Climbing (Johnson et al, 1988),

Simulated Annealing (Kirkpatrick et al, 1983), Tabu Search (TS) (Glover, 1986),

Ant Colony Optimisation (ACO) (Dorigo, 1992), and Particle Swarm

Optimisation (PSO) (Kennedy and Eberhart, 1995).

Clustering techniques has now become more used in software understanding,

evolution and maintenance of software (Di-Lucca, 2002; Maletic and Marcus,

2001; Jahnke, 2004; Lung, 1998), in particular, the work involving Mancoridis et

al (1998) and Mitchell (2000). They make use of clustering techniques to identify

and group subsystem within the software modules in order to aid software re-

engineering. Moreover, Tzerpos and Holt (2000) introduced a clustering algorithm

to locate clusters that are observed in the decompositions of large software

systems that were manually prepared by their software architects.

41

Figure 2.5 – Modularisation graph of Mtunis

Mancoridis et al (1998) introduced a collection of algorithms to automatically

recover the modular structure of the software system from its source code.

Clustering is treated as an optimisation problem. Software modularisation is

achieved by constructing a Module Dependency Graph (refer to Section 3.2.2 for

definition) of the source code. Software objects are represented as nodes which

are connected by dependencies (edges) (Doval et al, 1999; Mancoridis et al,

1999). In order to obtain the required information for software clustering, an

analysis of the underlying software is initially needed.

The objective function is maximised based on the inter and intra connectivity

between the software components. In other words, it optimises the decomposition

of the software to reach low coupling between different clusters and high cohesion

42

of objects from the same cluster; an established concept of good software design

(Stevens et al, 1974). A clustering tool Bunch was developed for the recovery and

maintenance of the software system structures. The tool incorporates user-directed

and incremental software structure partitioning. An overview of the tools that can

be used for this purpose is presented in (Antoniol, 2003). Three clustering

algorithms (Exhaustive, Hill Climbing and Genetic Algorithm) were implemented

in (Mitchell, 2002). These clustering algorithms maximise the objective function.

The term Modularisation Quality was introduced to describe the quality of the

solution. Two objective functions were introduced: BasicMQ and TurboMQ.

2.4.4 Evaluation and Quality Metrics

In order to determine the quality of the clustering technique, the quality of the

outputted decompositions need to be assessed. These outputted decompositions

can be assessed through a number of criteria that involves the use of one or more

numerical metrics. Structural quality metrics concentrate on particular parts of the

system and provide numerical outline of those parts. Software metrics can provide

basic measurement for estimating the quality of clustering results of the software.

According to Schneidewind (1992) a metric is a subjective function f: S R that

transforms a set of attributes, S, into a relational system R. It measures certain

software qualities by looking at the attributes of artefacts. It interprets the quality

of the software attribute and conveys these measured attributes into an equivalent

scale.

There are a number of different internal quality metrics that can be employed for

measuring the quality of the decomposition. Examples include: size and number

of clusters, high stability of the clustering arrangement, and heuristic

measurements such as coupling and cohesion. Some of these metrics do not

independently measure the quality of the decomposition, whereas others such as

cohesion and coupling metrics can be used as independent quality evaluation.

Coupling and cohesion are important metrics that are widely used to assess the

quality of a system design. A system with low inter-module coupling and high

43

intra-module cohesion reflects a well-designed system by the standards of

structured design (Yourdon and Constantine, 1979). Cohesion and coupling is

vital for the decomposition and the modularisation of software systems. The

hierarchical decomposition should produce a high quality structure that is judged

by these metrics. Coupling indicates the strength between two artefacts. High

coupling affects the reusability and understandability of the artefacts. Whereas,

cohesion refers to the internal coherence within the artefact. Low cohesion could

be caused by the implementation of different (multiple) functionalities in an

artefacts. This can also affect the understanability and reusability of the artefact.

Coupling and cohesion has been used in previous studies to assess the quality of

system hierarchy generation approaches. Coupling and Cohesion were the basis

for measuring the quality of the Bunch modularisation tool (Mitchell, 2002).

Anquetil and Laval (2011) have described how cohesion and coupling that is

measured at class level decrease through several refactoring activities of the

project. Counsell et al in (2006) has described how the cohesion ratings of

software has a small difference when compared between two developers that are

grouped by experience.

There are various approaches to measuring coupling, for example Chidamber and

Kemerer (1994) introduced the metric Coupling Between Objects (CBO) (refer to

Section 3.3.8 for details) that measures coupling between classes in their object-

oriented suite. Fenton and Melton (1990) illustrated how coupling at several levels

(for example, control flow and variable dependencies) can be calculated based on

the different connectivity of the modules. The coupling could range from no

coupling (best) to content coupling (worst).

There are various similarity measurements that were used in previous research for

computing the similarity of clustering arrangement, effectively they are rather

similar. Tzerpos and Holt (1999) defines a metric for evaluating the similarity of

two decompositions of a software system by calculating the distances of the two

partitions of the same set of resources, for solving the software clustering

problem. It uses the Move and Join operations that are needed for mapping the

two decompositions. The metric was then further optimised and normalised by

44

Wen and Tzerpos (2004) to produce a new metric called MoJoFM. Wen and

Tzerpos (2004) state that similarity measures are used to compare two software

decompositions in terms of the nodes of the dependency graph, edges of the

dependency graph or both. Other similarity metrics include: EdgeSim and MeCl

developed by Mitchell and Mancoridis (2001) and EdgeMoJo developed by Wen

and Tzerpos (2004). Maqbool and Babri (2007) present and evaluate several

metrics for computing the similarities of two software clustering outputs.

There are clear similarities between the software metric and the fitness function

and these are presented in Harman and Clark (2004). Harman and Clark (2004)

have also motivated the idea of including different metrics into the fitness

function. Other work that have included metric values into the fitness function

include Mitchell (2002), Seng et al. (2005) and Jiang et al. (2007). Mitchell

(2002) was based on cohesion and coupling measurements. Seng et al (2005)

included cohesion, coupling and bottleneck metrics into the fitness function. Jiang

et al (2007) have also introduced software metrics to guide the search.

The evaluation of the results of the clustering process can also be referred to as

cluster validation. There are two main types of evaluation techniques; internal and

external evaluation. Internal evaluation techniques concerns evaluating the

clustering results based on the data that was clustered, it assesses the clustering

algorithm’s quality based on an internal criterion. Some of these techniques are

Davies-Bouldin index (Davies and Bouldin, 1979), Dunn index (Dunn, 1974) and

Silhouette coefficient (Rousseeuw, 1987).

In contrast, external evaluation techniques evaluate the clustering results based on

information that are not used for clustering such as external reference

decompositions and class labels. Some of these methods include Rand measure

(Rand, 1971), Jaccard Index (Jaccard, 1901) and Fowlkes–Mallows index

(Fowlkes and Mallows, 1983).

Reference decomposition, an external assessment method, uses a consensus as a

benchmark to the clustering results to measure the similarity between the

algorithms and the decisions made by the developers. A distance or similarity

45

metric is needed to measure the two decompositions. Similarity of the results of

decompositions (assuming they are in acknowledged hierarchy) permits the

accuracy of the algorithm to be estimated. Mitchell and Mancoridis (2001)

suggested the use of aggregated appointments of repeats runs of the clustering

algorithm in the absence of an expert benchmark.

However, this form of testing has been widely applied in software clustering. The

number of clusters is not fixed when modularising, and thus thinking about the

accuracy on a cluster by cluster basis is not possible. Most similarity

measurements regard the assignments made by the algorithm as pair-wise

relations, calculating the score over the sets of all pairs of elements (Hall, 2013).

2.4.5 Graph Clustering

2.4.5.1 Graph Overview

Let G = (V, E) be a graph, consisting of a collection of vertices (or vertex set), V

and a collection of edges (or edge set), E. The vertices indicate the objects that are

being modelled (will be referred to as nodes), whereas the edges correspond to the

relationship between the vertices. An edge can be defined as an unordered

sequence {u, v} ∈ E that indicate u and v are directly connected. As an example,

V={1,2,3,4,5} and E={{1,2},{1,3},{3,5},{2,5},{5,4}}. Figure 2.6 illustrates a

graphical representation for this example.

Figure 2.6 – An example of a graph

1

3

2

5

4

46

Graphs can either be undirected or directed. Undirected graphs means that if u is

directly connected to v then v is directly connected to u; an edge is seen as a pair

of vertices. Whereas, for directed graphs, when the edge (u, v) is present, the

reverse edge (u, v) does not need to be present. For this, edges are denoted by the

ordered pair (u, v) with u, v ∈ V.

2.4.5.2 Representing Software as a Graph

Software can be modelled using numerous representations. Many graphical

models including graphs using the concept of connectivity between entities to

presents the system components. Graphs are very versatile.

For the model types studied for this work, the node graph represents an entity and

the edges between them represents some form of a relation. This thesis focuses on

one graph-based representation, the Module Dependency Graph (MDG). In the

MDG, a text file, every line represents a dependency with an artefact and a

destination artefact (refer to Section 3.2.2 for further details).

2.4.5.3 Graph Clustering

Graph clustering can be defined as the grouping of the vertices of the graph into

clusters, such that there are many edges within each clusters and fewer between

the clusters. Clustering will generally be denoted with the symbol C. The clusters

within the clustering will be denoted Ci. Clustering graph G is the partitioning of

V into k sets or clusters (C1, C2,….Ck). Clustering G would result into induced

near-cliques that are loosely inter-connected.

A weighted graph refers to a graph in which each branch (connecting the vertices)

has a numerical weight. If G is a weighted graph, a good clustering, would result

in Ci containing a high edge weight sum, whilst keeping the sum of weights of

edges in G between graphs relatively low.

As mentioned above, graph clustering involves finding a decomposition of the

vertex set into subsets that are highly intra-connected but loosely inter-connected.

Good clustering involves the partitioning of the graphs into clusters with high

47

density. Graph clustering is a common and a natural problem to consider. It is not

straightforward to determine the goodness of clustering a graph. Familiar graph

problems include clique finding and colouring. As an example, clustering a graph

may produce two very good and natural clusters, but with one of the clustering

arrangement containing many more clusters than the other. Determining which of

the two clustering arrangement produced is better, without prior knowledge of the

context of the graph, can be difficult.

The graph clustering problem has a computational complexity of NP-hard, with

the number of solutions to cluster increasing exponentially with the number of

nodes in the system. Thus, Mitchell (2002) expressed a number of aspects that

needed to be measured whilst designing the representation of the artefacts. The

granularity of the system, the level of the clustering, is one of the impelling

factors that need to be considered i.e. whether to apply the clustering at method,

class, file or package level. Another aspect which is of relevance is the weight of

the connection strength between two artefacts i.e. which attributes are of more

importance.

2.4.5.4 Applications of Graph Clustering

There are countless practical applications of graph clustering. Clustering can be

applied to various modelled systems and for many purposes that include

bioinformatics, computational vision and data management.

A growing area of application for graph clustering is bioinformatics (Enright et al,

2002; Przulj et al, 2004). There is a wide range of applications of graph theory to

biological analysis, some of these are described in (Przulj, 2002; Barabási and

Albert, 1999). Graph theory was applied to protein complex prediction problems

(Altaf-Ul-Amin et al, 2003; Bader and Hogue, 2003; Hu and Han, 2003). In

(Aksoy and Haralick, 1999), clustering was used to improve image grouping and

retrieval within a database. Clustering has also been applied to image

segmentation (Faugeras, 1983; Good, 1977; Wu and Leahy, 1993). Moreover, one

of the most basic and direct application of graph clustering is graph colouring

(Johnson and Trick, 1996; Mihaila, 1995).

48

Software organisation is another field that graph clustering can be directly applied

to. Simply, software components can be modelled as vectors and their similarities

as edges. Software modularisation is a field on the rise. Mancordis et al (1998)

was first to apply clustering to software organisation. They used techniques such

as Exhaustive search, HC and GA for partitioning the system. In Mancoridis et al.

(1998) the software system is presented as a directed graph G = (V,E). V, set of

nodes, represents the artefacts in the system, and E represents the relationship

between the artefacts. The goal of the software clustering tool is to partition the

graph into a set of meaningful subsystems. There are various methods for scoring

the clustering of a graph. The scoring is rather subjective. Without a solid

benchmark, the experimental performance would be less meaningful.

2.5 Research Outline

As discussed in the sections above, a wide range of clustering approaches have

been introduced and studied in the field of AI, SE and SBSE. After a

comprehensive study of these studies, especially in the module clustering and

cost/effort prediction, it is concluded that it is a continuously expanding field of

domain that has many already studied fields but at the same time there are many

un-researched directions. There are still many problems in software engineering

that have not been tackled using metaheuristics.

The overall aim of the study is to offer help to stakeholders of software systems in

arriving at optimal structure of their systems in the least amount of time taken.

There is an emphasis on the development of the software clustering framework

which applied heuristic techniques when guiding the search process. This study

focuses on understanding the inter-class relationships of large time-series systems

in software engineering using metaheuristic techniques. Metaheuristic algorithms

have been widely applied to both clustering and modularisation problems.

Software changes during maintenance and evolution of systems can have a ripple

effect (Bennett, 1996), thus good modularisation of software can lead to systems

that are easier to understand, develop and maintain.

49

Current research still demonstrates that there is a lack of flexibility in effectively

dealing with large dynamic software projects such as the need to allocate the

appropriate number of staff during the various stages of the project. Previous

studies on scheduling and staffing of software projects have shown that it is

possible to optimise the schedule of a project and to accurately estimate the effort

of individuals. However, the project teams is allocated according to a prearranged

optimised project schedule, which will no longer to be deemed optimised since

the skills and availabilities of staff will most likely be different than the

information used when initially scheduling the project. These issues are

investigated and are presented in Chapter 7.

To summarise, there are still unsolved areas in this field. Thus, there is the need to

perform further analysis of large and complex time-series software projects in

order to solve the challenges concerning them. This study intends to show how the

application of the modularisation tool presented in this thesis can help

stakeholders of the software system to identify how the system can deteriorate

over time. Accordingly, refactoring activates can be planned with the intention of

improving the software system quality. To the author’s knowledge, there was no

study that focuses on using SBSE techniques to cluster large time-series software

system for analysing the dependency relationships of the software system and

locating the occurrence of extension or refactoring activities, and classifying these

accordingly.

2.6 Summary

This chapter summarised background information in the area of AI, SE and SBSE.

This constitutes the main motivation and background behind the research

presented in this thesis. The next chapter reviews the tool implemented and all of

its individual components, and presents the main dataset used in this project.

50

Chapter 3: Munch Tool and Datasets

3.1 Introduction

This chapter commences by introducing the Bunch tool, first implemented by

Mitchell (2002). This tool forms the basis for the implementation of the tool

employed for this research. Section 3.3 introduces the Munch tool and all of the

components that constitutes it. It explores the clustering algorithm and the fitness

functions implemented and describe the metrics that are used for measuring and

assessing the quality of the clustering decompositions. Section 3.4 introduces the

dataset used in this study and outlines the origins and the structure of this dataset.

Lastly, Section 3.5 provides an overall evaluation of the components of the

Munch tool.

3.2 Bunch Tool

3.2.1 Overview

Bunch (Michell, 2002) is a clustering based tool that is designed to group software

components together into modules based upon their coupling. It ensures that the

components that are grouped together are highly cohesive with low coupling

existing between modules. It is the most extensively used and studied search-

based modularisation technique. Bunch initially clusters files or classes into small

modules, subsequent searches merges modules of previous searches to produce a

layered hierarchy (Mancoridis, 1998). Bunch purely relies on the connectivity in

the MDG (explained in the next section), however it also offers support for

weights on the edges in MDG. It uses a heuristic search technique to optimise the

clustering quality metric. It was developed in the Java programming language. An

extension API is offered for the tool to integrate independently developed

algorithms.

Bunch uses the concept of low coupling and high cohesion between classes. The

fitness function employed in Bunch maximises the cohesion of clusters and

51

minimises coupling between clusters. Modularisation Quality (MQ) is expressed

as the ratio of coupling to cohesion. The MQ metric is not very different from the

similarity metric employed in Arch (Schwanke, 1991).

If we are to treat modularisation as a set of feature vectors, algorithms cluster

artefacts by the similarities of their dependencies. The Bunch process initially

starts by clustering the MDG, in each successive search the clusters of previous

search and their inter-edges are clustered again. A new level in the hierarchy is

produced by each search, in a bottom-up way. Bunch comes to a halt when the

search yields a cluster by itself. Components that do not require modularisations

are restricted from the search by Bunch, these include omnipresent and library

modules. Omnipresent modules can be identified from their above-average edge

count (Mitchell, 2002).

As mentioned earlier, Bunch uses a metric to estimate and assess the quality of the

current clustering. Bunch provides three adaptations of the metric used for

classifying the edges. BasicMQ is a very basic implementation of the low

coupling and high cohesion, with high computational complexity. TurboMQ is an

updated version of the BasicMQ. ITurboMQ is the fastest metric, as it uses

incremental computation.

Three clustering algorithms were implemented in Bunch, they are: an Exhaustive

search algorithm, a HC algorithm and a GA. The Exhaustive search algorithm was

not practical with large number of modules due to its computational complexity.

The GA yielded results of unstable quality using varying runtime. On the other

hand, the HC algorithm produced the most stable results with most predictable

time (Mitchell, 2002). In addition to the following publications (Doval et al, 1999;

Mancoridis et al, 1999; Mancoridis, 1998), the PhD thesis of Mitchell (2002)

provides an extensive description of the tool and the corresponding Java API.

The Bunch tool is only available as binary jar files and there is no source code of

the tool available. Thus, source code analysis and modifications is not possible on

the Bunch tool. This prohibited the use of the Bunch tool and therefore motivated

the creation of a tool for the analysis of the metrics and algorithms.

52

3.2.2 Module Dependency Graph (MDG)

It is important to achieve a language independent graph from the system’s source

code. The module-level dependencies can be extracted from the source code and

stored in a textual representation. Static analysis tools such as Dependency Finder

and Source Navigator can be used to extract the dependency graphs from the

software. Other source code analysis tools include CIA, Acacia and Chava.

An MDG is a language independent graph representation of the components and

the relations of the source code of a software system. An MDG represents

modules as nodes and module dependences as edges. For the formal definition, let

MDG = (V,E) be a graph, where V is a set of the modules of a software system and

E ∈ V × V is a set of ordered pairs (u,v) which represents the source level relations

between modules u and v of the system (Mitchell, 2002). For source code, the

lines of code in a system can indicate the size of the system. Also the number of

classes or files in a system (the size of V in MDG) can also indicate the size of the

system. Bunch identifies clusters and displays the dependency graphs that are

within the software system.

There are more than one way to define an MDG, refer to Mitchell (2002) for more

details. For the definition above an edge is placed between a pair of modules when

the module uses resources of the other module.

3.2.3 Improvement on Bunch

Recent studies has focused on alternative search techniques to generate better MQ

values and improve on Bunch, for example; Mahdavi et al (2003) employed a

multiple HC technique to locate better starting assignments for the search. On the

other hand, Praditwong at al (2011) used a multi-objective GA approach and

compared the results to the Bunch HC algorithm. Results produced higher MQ

values than Bunch for the same number of fitness function calls, however at an

increased computational cost.

53

In Harman et al (2005), the performance of the MQ fitness function and the EVM

fitness function introduced in Tucker et al (2001) were analysed and compared.

The fitness function were evaluated on both software system and simulated

datasets. The case studies were each clustered with an increasing amount of noise.

Results have shown that EVM was more tolerant to noise.

Glorie et al (2008) evaluated Bunch in a real-world scenario; whilst Bunch

managed to identify few useful modularisations, the dominant results were poor,

rendering it unusable for industrial settings (Glorie et al, 2008). In contrasts,

developers of systems reported agreement with the clustering produced by Bunch

(Mitchell and Mancoridis, 2006; Mitchell and Mancoridis, 2008).

3.3 Munch Tool

3.3.1 Overview

Figure 3.1 – An overview of the Munch tool

A tool, named Munch that integrates the data sources, clustering algorithms and

evaluation methods (including the fitness function) was developed for this study.

It is a rapid prototype implemented to carry out experimentations of different

heuristic search approaches and fitness functions. The design and implementation

of the tool was guided by the aims and objective of the research. Before

describing the design and implementation of the individual components of the

Pre-Processing
Import dependency data

from different sources

Transform to
dependency graph

Perform clustering
algorithm

Record results incl.
evaluation metrics

54

tool, this section provides an overview of the tool and the development

environment utilised in this study.

Munch’s uses an MDG of a system as input and produces a hierarchical

decomposition of the system structure as output, whereby closely related modules

are grouped into clusters that are loosely connected to other clusters. Munch was

developed using the Eclipse IDE and Java programming language. The tool is not

limited in terms of applicability, as any time-series software system could be

applied to the tool. It works on individual data sources and large time-series

datasets. Refer to Figure 3.1 for a simple representation of the software

architecture of the tool. It also illustrates the pre-processing stage of the data and

the evaluation stage of the clustering output. Table 3.1 provides a summary of the

main differences between Munch and Bunch tools.

Munch Bunch

RMHC clustering algorithm Exhaustive search, HC and GA

clustering algorithms

EVM fitness function MQ fitness function

Three different starting clustering

arrangement of the MDG is used

including a pseudo-random and a truly

random arrangement

A random starting clustering

arrangement of the MDG is used

It employs a seeding strategy for

modularising time-series datasets

No seeding strategy

Better experimental framework (due to

the move operator); one fitness function

call per iteration

A more detailed clustering approach

that provides fully-automatic, semi-

automatic and manual clustering

features

No Graphical User Interface It comprises of a Graphical User

Interface

No API An API for integrating independently

developed algorithms

Third-party libraries are excluded from

the search

Omnipresent and library modules are

excluded from the search

Munch was applied to a number of

open source software systems as well as

a large commercial time-series dataset.

Bunch was used on a variety of open

source software systems.

Table 3.1 – A simple comparison between Munch and Bunch

There are various details that are recorded for each of the modularisation

experiments to be conducted, these include: fitness function values (Sections 3.3.5

55

and 3.3.6), Weighted-Kappa (Section 3.3.7), Homogeneity and Separations metric

(Section 3.3.8), number of fitness function calls, convergence points and the

runtime of the algorithm.

3.3.2 The Matrix

A graph is often represented as a matrix (two-dimensional array), although other

data structures can be used depending on the application. Each software version of

the dataset (described in Section 3.4) was converted to a matrix. The matrix is

represented as follows: If there are n nodes to represent, for an n by n matrix M, a

non-zero value of Mij (i
th

 row, j
th

 column of M) means there is an edge between

node i and j. The matrices produced are symmetrical. Figure 3.2 illustrates how

the matrix is represented. As the dataset is non-weighted, Mij is either one for an

edge or zero for no edge i.e. one for a relationship and zero for no relationship.

0 𝑀12 𝑀13 𝑀14 ⋯ ⋯ ⋯ ⋯ ⋯ 𝑀1𝑛

𝑀21 0 𝑀12 𝑀12 ⋯ ⋯ ⋯ ⋯ ⋯ 𝑀2𝑛

𝑀31 𝑀12 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑀3𝑛

𝑀41 𝑀12 ⋮ ⋱ 𝑀4𝑛

⋮ ⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ 𝑀𝑖𝑗 ⋮

⋮ ⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋮

𝑀𝑛1 𝑀𝑛2 𝑀𝑛3 0

Figure 3.2 – A graphical representation of the matrix

56

3.3.3 Representing a Cluster

A cluster will be represented as a vector C where ci=j means that object i is in

cluster j. For example C = [1,2,3,1,2,3] (Number of clusters, k=3). Figure 3.3

shows a graphical representation of the clustering of the example above.

Figure 3.3 – A graphical representation of the clustering process

3.3.4 Munch Clustering Algorithm

This work follows Mancoridis et al (1998) and Mitchell (2002), who first

introduced search-based approach to software modularisation. The clustering

algorithm was re-implemented from available literature on Bunch’s clustering

algorithm (Mitchell, 2002) to form a tool called Munch.

Figure 3.4 – An overview of the clustering algorithm of Munch

A heuristic algorithm is required to traverse the space of possible solutions using

the fitness function in order to locate the best solution. It uses an MDG as an input

Ends when no further improvement is possible

Process iterates to find other better clustering arrangements

Modules rearranged to find better clustering arrangements with higher fitness function

Simple RMHC

Generate a starting clustering arrangement of MDG

57

and produces a partition of the MDG as an output. It partitions the system into

clusters. A cluster is a set of the modules in each partition of the clustering. The

software module clustering problem involves finding good quality software

modules clusters based on the relationships amongst the modules. It aims to

produce a graph partition that minimises coupling between clusters and maximises

cohesion within each cluster. Coupling is defined as the degree of dependence

between different modules or classes in a system, whereas cohesion is the internal

strength of a module or class (Sommerville, 1995).

The clustering algorithm uses a simple RMHC approach (Michalewicz and Fogel,

2004) to guide the search. It is a simple, easy to implement technique that has

proven to be useful and robust in terms of modularisation. It was chosen for this

study as it has performed best in reported recent studies. It has outperformed other

algorithms in terms of both quality of the solutions and execution time

(Praditwong, 2011).

Algorithm 3.1 – Munch Clustering Algorithm

MUNCH(ITER,M)
Input:

ITER the number of iterations (runs)
M an MDG
 1) Let C be a random (or specified - for seeded)
 clustering arrangement
 2) Let F = Fitness Function (See Section 3.3.7)
 3) For i = 1 to ITER (number of iterations)

 4) Choose two random clusters X and Y (X≠Y)
 5) Move a random variable from cluster X to Y
 6) Let F’= Fitness Function
 7) If F’ is worse than F Then
 8) Undo move
 9) Else
10) Let F = F’
11) End If

12) End For
Output: C - a modularisation of M

In HC, the search process starts from a randomly chosen representation. Modules

are rearranged to find better clustering arrangements with a higher fitness function

value. Once a ‘fitter’ representation is found, this becomes the current

representation in the search space. This process iterates. Modules from this

partition are then re-arranged systematically in order to find an improved partition

58

(with better fitness function). If no ‘fitter’ representation is found, the search

converges and the maximum is found. Figure 3.4 presents and highlights the

clustering algorithm. The pseudo-code of the clustering algorithm is shown in

Algorithm 3.1.

3.3.5 Fitness Functions

The fitness function is used to measure the relative quality of the decomposed

structure of system into subsystems (clusters). Two main fitness functions were

employed and experimented with for this study. First, was the Modularisation

Quality (MQ) metric of Mancoridis et al (1998) as implemented in Bunch.

Bunch’s MQ metric is based on the trade-off between coupling and cohesion, that

is, connections between components of two distinct clusters and connections

between the components of the same cluster, respectively. MQ is based on the

assumption that quality software system are organised into cohesive cluster that

are loosely interconnected. The other function is EVM of Tucker et al (2001). It

has been previously applied to problems of time-series data and clustering of

genes in concurrence with gene expression data (Harman et al, 2005).

3.3.5.1 Modularisation Quality (MQ)

Mancoridis et al (1998) introduced an objective function called Modularisation

Quality (MQ), based on the intra-connectivity and inter-connectivity. The intra-

connectivity of a cluster is the cluster’s density, whereas the inter-connectivity

between two different clusters is expressed as the proportion of possible edges

between the two clusters that actually exist. The MQ measurement rewards

maximising the cohesiveness of the clusters (presence of intra-module

relationships), while penalises excessive inter-clustering coupling (presence of

extra-module relationship). In other words, few edges are needed between clusters

(low inter-connectivity) and many edges within them (high intra-connectivity).

For the formal definition of MQ for a clustering, C, let μi be the amount of

relationships that exists between elements in cluster ci and εij be the amount of

59

relationships that exists between elements of cluster ci and cluster cj. When i = j,

εij= 0 and εji= 0. The score, CF(ci) which is awarded to single cluster ci is defined

in Equation 3.2.

mi

i

icCFCMQ
1

)()(
(3.1)

Otherwise,

0,

)(2

2

0

)(

1

i

i

i

k

ij
j

jiij

icCF

(3.2)

3.3.5.2 EValuation Metric (EVM)

The EValuation Metric (EVM), first introduced by Tucker et al (2001), is used to

score a clustering arrangement. EVM rewards maximising the cohesiveness of the

clusters (presence of intra-module relationships) clustering with a high number of

intra-module relationships, but it does not directly penalise inter-clustering

coupling. It looks at all possible relationships within a cluster and rewards those

that exist within the MDG and penalises those that does not exist within the

MDG. In other words, it looks at all possible links and for each cohesion

relationship that exist the score is incremented by one, and for each cohesion

relationship that does not exist, the score is decremented by one. However, this

implies that it may indirectly penalise high coupling; re-arranging modules

between clusters can change high coupling between two modules to lower

coupling between them, and higher cohesion within one (or possibly both) of

them (Harman, 2005).

The objective of the heuristic searches is to maximise the fitness function. As the

value of EVM is not normalised, there are no upper limits to the value of the

functions. EVM has a global optimum that corresponds to all modules in a single

cluster, where modules are all related to each other. The theoretical maximum

60

possible value for EVM is the total number of links (relationships) in the graph,

whereas the minimum value is simply the negative of the total number of links.

For the following formal definition of EVM, a clustering arrangement C of n items

is defined as a set of sets {c1, . . . , cm}, where each set (cluster) ci {1,…,n} such

that ci ≠ and ci cj= for all i ≠ j. Note that 1 ≤ m ≤ n and n > 0. Note also that

m

i

i nc
1

}.,...,1{

Let MDG M be an n by n matrix, where a one at row i and

column j (Mij) indicates a relationship between variable i and j, and zero indicates

that there is no relationship. Let cij refer to the j
th

 element of the i
th

 cluster of C.

The score for cluster ci is defined in Equation 3.4.

m

i

i MchMCEVM
1

),(),(
(3.3)

Otherwise,

1if,

0

),(

),(

1 |c|

1

|c|

1

i i

i
a ab

ibia

i

cccL

Mch

(3.4)

Otherwise,

0,

,

1

1

0

),,(
1221

21

21 vvvv MM

vv

MvvL

(3.5)

The EVM metric has the following properties:

I. If no relationships exists (M=φ), the maximum fitness is achieved when all

variables are in distinct groups.

II. If there is a relationship for each pairing of variables, the maximum value

is achieved when all variables are in a single group.

3.3.5.3 EValuation Metric Difference (EVMD)

In order to make the process of modularisation faster, a new fitness function,

EVMD, is introduced. It utilises an update formula on the assumption that one

61

small change is being made between clusters. It is a faster way of evaluating

EVM, where the previous fitness is known and the current fitness is calculated,

without having to do the move. It calculates the value of what the fitness function

is going to be. It produces the same results as EVM, but effectively reduces the

computational operations from O(n√n) to O(√n), thus reducing the speed

significantly.

For the formal definition of EVMD, let fold be the EVM fitness function. Also, let x

be the from cluster, y be the to cluster and z be the index. Function G, defined in

Equation 3.7, determines the relationship (from MDG M) that exists between

variable v and cluster k. Equation 3.5 simply checks whether it is a positive or

negative influence (i.e. does a relationship exist?).

),,(),,(),,,,,(MCCGMCCGfMzyxCfEVMD xzyxzxoldold (3.6)

kC

i

kik MvcLMvCG
1

),,(),,(

(3.7)

3.3.6 Fitness Function Selection

The work in this section is based on some of the work presented in (Arzoky et al,

2011). In order to decide the fitness function to employ for conducting the

modularisation experiments, the fitness functions introduced in the previous

sections were implemented into Munch and evaluated accordingly. Six real-world

programs, ranging from small systems of 13 modules to larger systems with over

400 modules were used for this evaluation. These systems were selected as they

vary in size, complexity and application characteristics; to address concerns

related to the threat of validity. They were also used in previous studies (Harman

et al, 2005; Mitchell, 2002). They were only available as MDGs and pre-

processing was not needed to be performed. Table 3.2 describes the systems used

and displays the nodes and edges for each of these systems. The MDGs were

constructed using the programs’ files; each file corresponds to a module and

where the file makes use of another file, it is treated as module dependency.

62

Software

System

Nodes Edges Description

Mtunis 20 57 A simple operating system used for educational

purposes written in the Turing language

Ispell 24 103 A spelling and typographical checking utility.

Rcs 29 163 A revision control system that manages multiple

revisions of files.

Bison 37 179 GNU version of yacc parser generator used for

converting grammar descriptions into C programs.

Swing 413 1513 Integration software for Lotus notes and Microsoft

office.

Compiler 13 32 Simple compiler program developed at University

of Toronto

Table 3.2 – Description of the software systems

The perfect clusters for the six real systems are not known, but a cross comparison

of the results produced by the fitness functions was performed on the real MDGs.

Three components were investigated, they are: Bunch (results of the

modularisation of the systems using the Bunch tool and its MQ fitness function),

Munch MQ (results of the modularisation of the system using the Munch

clustering algorithm and the MQ fitness function), and Munch EVM (results of the

modularisation of the system using the Munch clustering algorithm and the EVM

fitness function).

Due to the small sizes of the datasets used, the experiments were repeated only 12

times for each of the six datasets, to remove any possibilities of randomness.

Table 3.2 shows the calculated averages and standard deviations of Homogeneity

and Separations (HS) metric (described in Section 3.3.8). It is a coupling metric

that calculates the ratio of the proportion of internal and external edges. A value of

+1.0 is produced if all the links are within the modules, and a value of −1.0 is

produced if all links are external coupling. External links are not modularised and

thus the more links between the clusters the worse the modularisation.

The results showed that EVM performed better, producing higher HS values, than

both Bunch and Munch MQ for most of the real systems. The results for compiler

produce results that are different to the rest of the programs; this is possibly

because compilers can often be designed very differently to other software and

63

also due to its extremely small size. For most of the real systems, the standard

deviation of EVM is reasonably low, thus suggesting that it is producing

consistent results.

Software

System

Bunch Munch MQ Munch EVM
Average Standard

deviation

Average Standard

deviation

Average Standard

deviation

Mtunis -0.2164 0.11812 -0.2135 0.09633 0.0556 0.01807

Ispell -0.5711 0.09240 -0.4701 0.07756 0.2041 0.14628

Rcs -0.6215 0.05909 -0.4925 0.14234 0.4043 0.05097

Bison -0.5948 0.05051 -0.5289 0.04854 -0.2046 0.08881

Swing -0.5984 0.00244 -0.5713 0.02088 -0.6049 0.00914

Compiler 0.5355 0.02918 0.6065 0.06923 -0.4624 0.03177

Table 3.3 – Results showing clustering comparison

Mann-Whitney U test (Mann and Whitney, 1947) is a statistical test of the null

hypothesis that two samples are independent from identical continuous

distributions with equal medians against an alternative hypothesis. It was used as

it does not assume that the distribution is normal, unlike the t-test. A probability

value, p that the distributions are from the same distribution is returned. It is a

simple statistical test to show that the means produced from the repeats are

different.

The 12 repeat results of three components were compared to each other to produce

a set of p values for each of the three comparisons (Bunch vs. Munch MQ, Bunch

vs. Munch EVM, and Munch MQ vs. Munch EVM). From Table 3.4, results that

indicate a rejection of the null hypothesis at the 5% significance level are shown

in italic, these results are statistically different. Whereas, the rest indicate a failure

to reject the null hypothesis at the 5% significance level.

From the table only two results shows a p value of over 0.5. They are for Mtunis

and Ispell systems for the comparison of Bunch against MQ Munch only. This

shows that the values of Mtunis and Ispell for these two components come from

the same distribution. However, looking at the mean and standard deviation for

each of these two systems from Table 3.3, it can be seen that they are very similar

for Mtunis and not very different for Ispell.

64

Consequently, the majority of the results show that they are not randomly

generated and thus are significantly statistically different. Since results in Table

3.3 shows that Munch EVM outperforms Bunch and Munch MQ, this statistical

test shows that the results are statistically significantly better. Thus, demonstrating

that EVM is producing clusterings that are comparable or better than both Bunch

and Munch MQ, illustrating that Munch can be used as a good approximator for

Bunch. In addition, Munch is a much better experimental framework due to its

one fitness call per iteration (this is explained further in Chapter 5). Thus,

indicating its creditability for the rest of the modularisation experiments

conducted for this study.

Software

System

Bunch vs.

MQ

Munch

Bunch vs.

Munch EVM

Munch MQ vs.

Munch EVM

Mtunis 1.0000 0.0000 0.0000

Ispell 0.0531 0.0000 0.0000

Rcs 0.0038 0.0000 0.0000

Bison 0.0042 0.0000 0.0000

Swing 0.0344 0.0164 0.0006

Compiler 0.0213 0.0000 0.0000

Table 3.4 – Cross-comparison results of Mann-Whitney U test for the three

components

There were three sets of fitness functions that were initially selected for this

thesis: MQ, EVM and EVMD. EVMD (a more efficient version of EVM) was

selected as the fitness function from these experiments, as it is more robust than

MQ and faster than EVM. However, from this point forward EVM will be used

when referring to the EVMD metric.

3.3.7 Weighted-Kappa

Weighted-Kappa (WK) is an agreement metric used to rate the classification

decisions made between two or more observers. The decisions are categorised into

ordered classes {class1,...,classN}, for example, a classification made by two

observers of class1 and class2 has a better agreement than class1 and class3

65

(Altman, 1997). An n × n counts table is assembled for the set of classifications,

refer to Figure 3.5.

Rows and columns are manifested according to the observers’ classifications.

Row(i) is the row total and Col(i) is the column total, whereas Countij is the count

for the combination of classifications. The sum of all of the cells in the table is

shown in Equation 3.8.

N

i

N

i

N

i

N

j

ijk iColiRowCountN
111 1

).()(
(3.8)

Count11 Count12

Count21 Count22

class1 class2

class1

class2

O
b

s
e

rv
e

r
2

Observer 1

Count1N

Count2N

=Row(1)

=Row(2)

CountN1 CountN2

=
C

o
l(1

)

=
C

o
l(2

)

CountNN =Row(N)

=
C

o
l(N

)

classN

classN

Figure 3.5 – WK count table

The WK metric, Kw, is calculated below, where, po(w) represents the observed

weighted proportional agreement, and pe(w) represents the expected weighted

proportional agreement. pe(w) is an indicator of the totals that would be expected

by chance.

i) Compute Nji
N

ji
wij

 ,1 where

1

||
1

66

ii) Compute ij

N

i

N

j

ij

k

wo Countw
N

p

1 1

)(

1

iii) Compute)()(
1

1 1
2)(jColiRoww

N
p

N

i

N

j

ij

k

we

iv) Then
)(

)()(

1 we

wewo

w
p

pp
K

WK is defined and used in this study for the comparison of two clustering

arrangements. It not only measures similarity but also takes into account the

degree of disagreements. WK is used to rate the agreements of the clustering

arrangements of the time-series modularisation.

For the two clustering arrangements, rows represent one observer, whereas

columns represent the other. Order is not of importance. WK is computed in terms

of a matrix of observations; in this case a two-by-two contingency table is

constructed. There is a maximum of four outcomes to a single paired observation,

two observers and two observations (same cluster, different cluster). For two of

the four outcomes, the observers agree with either on same cluster or on different

cluster. For the other two outcomes, the observers do not agree. One observes that

nodes are in the same cluster, and the other observes that they are in different

clusters. For each of the four matrix elements the total number of occasions on

which one of the four possible outcomes occurs is calculated.

On the leading diagonal, the two agreement outcome totals are recorded: same

cluster and different cluster. The two possible disagreement outcomes are

recorded in the other two elements of the matrix. If the value of the matrix is zero

in all but the leading diagonal, observers agree completely, which means that the

clustering arrangements are identical. If the leading diagonal consists of only zero

elements, then the clustering arrangements are in complete disagreement about all

pairs of nodes. If some non-leading diagonal elements are non-zero, then the

clustering arrangements are not identical.

The WK value ranges from −1.0 (for total dissimilarity of clusters) and 1.0 (for

identical clusters). A high WK value suggests that the two arrangements are

67

similar, whereas a low value suggests that they are dissimilar. A value of

approximately zero is normally observed for two random clusters. An

interpretation table of the WK values (indicating the strength of the agreement

between two arrangements) is shown in Table 3.5.

Weighted-Kappa Agreement Strength

0.00.1 WK Very Poor

 2.00.0 WK Poor

 4.02.0 WK Fair

 6.04.0 WK Moderate

 8.06.0 WK Good

 0.18.0 WK Very Good

Table 3.5 – Agreement strength of Weighted-Kappa

3.3.8 Homogeneity and Separations Metric

The author is aware that the fitness function by itself might not be a good

indicator for the quality of the modularisation and as a result an external metric of

validity is incorporated into Munch and used when conducting the

experimentations. Homogeneity and Separation (HS) is an external coupling

metric defined to measure the quality of the modularisation. HS is based on the

Coupling Between Objects (CBO) metric, first introduced by Chidamber and

Kemerer (1994). CBO (for a class) is defined as the count of the number of other

classes to which it is coupled. It is based on the concept that if one object acts on

another, then there is coupling between the two objects. Since the properties

between objects of the same class are the same, the two classes are coupled when

methods of one class use the methods defined by the other (Chidamber and

Kemerer, 1994).

For the formal mathematical definition of the HS metric, a function P(v,C) was

defined, which returns the cluster number within C that variable (class) v resides.

),(),(

),(),(
),(

MCSMCH

MCSMCH
MCHS

(3.9)

68

)),(),,(())0,(1(),(
1

1 1

MjPMiPMMCH
n

i

n

ij

ij

(3.10)

)),(),,((1())0,(1(),(
1

1 1

MjPMiPMMCS
n

i

n

ij

ij

(3.11)

The Kronecher’s Delta function (i,j) was used, which is defined as follows:

ji

ji
ji

,0

,1
),(

(3.12)

HS is a simple and intuitive coupling metric that calculates the ratio of the

proportion of internal and external edges. As shown in Equation 3.9, HS is

calculated by subtracting the number of links within clusters from the number of

links that are between clusters, and then dividing the output by the total number of

links (to normalise it). Figure 3.6 shows a simple illustration of the HS metric.

The HS metric looks at all the links within the MDG, finding all the pairs that are

not equal to 0. If the two variables are in the same cluster, H is incremented, and if

they are in different clusters, S is incremented. The more links between the

clusters the worse the modularisation, as only internal links are modularised (and

not external ones). A value of +1.0 is returned if all the links are within the

modules, a value of −1.0 is returned if all links are external coupling, and

approximately zero is produced if there is an equal number.

Figure 3.6 – A simple illustration of the HS metric

𝑯 − 𝑺

𝑯 + 𝑺

Edges between modules

Edges within

modules

Total number of edges

69

3.4 Datasets

This section describes the creation and pre-processing of the source data for this

study and describes a simple metric for calculating the similarity between

subsequent graphs. As the main dataset used for this study is time-series, the

following section presents an overview for analysing time-series data.

3.4.1 Time-Series Analysis

A time-series is a sequence of observations that are usually measured at sequential

points in time and are spaced at uniform intervals in time. There are different

notations that are used for time-series analysis. One way of representing a time-

series is: xi(t); [i=1,...,n; t=1,...,T], where i represents the various measurements at

each time point t, n represents the number of variables that are being observed and

T indicate the number of observations made (Chatfield, 1989). Univariate time

series consists of single observations that are recorded consecutively (if n is equal

to one), whereas multivariate consists of more than one outcome variable at a time

(if n is greater than one) (Hannan, 1970).

Time-series analysis can be used to extract beneficial statistics and characteristics

of a particular data. It is widely available in various fields that include medicine,

finance and engineering. Time-series models are used to forecast future values to

help comprehend the relationships within a time-series. Time-series forecasting

involves the use of previous observations to estimate future values of the whole

set of observations made at time t. Extensive research have been done towards

forecasting time-series data (Chatfield, 1988; Faraway and Chatfield, 1998;

Numata et al, 1998).

70

3.4.2 Bespoke Software Dataset

3.4.2.1 The Dataset and Quantel Limited

The large dataset used primarily for this study consists of information about

different versions of a software system over time. It was provided by the

international company Quantel Limited. Quantel is one of the world’s leading

developers of high performance content creation and delivery system across

television and film post production. It supplies products to many of leading media

companies, such as Fox, Sky, BBC and ESPN. Furthermore, they have been a

recipient of many prestigious awards such as Oscars, Emmys and the MacRobert

Award, presented by the Royal Academy of Engineering.

The data source for this study is from processed source code of an award winning

product line architecture library that has delivered over 15 distinct products. The

entire code base currently runs to over 12 million lines of C++. It has been

developed for over ten years and has taken over several person centuries of

developer effort. The subset under analysis in this study is the persistence engine

used by all products, comprising of over 0.5 million lines of C++ (Cain, 2009).

3.4.2.2 Pre-Processing and Data Creation

The data sources needed to be pre-processed in order to obtain the dependency

graphs. This step was completed by the developer. Using numeric IDs protected

Quantel from revealing Intellectual Property; the author only received matrices of

numbers, allowing Quantel management to consent the project. The pre-

processing stage of the data is highlighted below.

The Debug Symbol Information Program Databases (PDB files) are data files that

contain all the type information in a system; they are produced by Microsoft

Visual C++. Debuggers can interpret global, stack and heap locations and map

them back to the types they represent. This file format is undocumented by

Microsoft (Pietrek, 2002). However in March 2002 an API released by Microsoft

allowed access to (some of) the debug type information without undue reverse

71

engineering (Schreiber, 2001). The PDB files for each version of the code were

archived and analysed using bespoke software that interfaced with the PDB files

using the DIA SDK. Explanations on extracting type information using DIA SDK

are in (Cain, 2004).

The PDBs were checked into a revision control system. Data was collected over

the period 17/10/2000 to 03/02/2005, with 503 PDBs in total. To ensure

anonymity, all class names (types) in all the PDBs were sorted into an

alphabetically sorted master class table. This was used as a global index to convert

each class name to a globally unique ID. A total of 6120 classes exist in the

system (indexed as 0 - 6119), however, not all classes exist at the same time slice;

there are between 29 and 1626 active classes at any one time. Active classes are

the classes that exist at a particular point in time. Hence, classes generally appear

at certain time point, and then “disappear” at a later time point. Some of the

appearances and disappearances of these classes are because when a class is

renamed, it will appear in the dataset as a new class with a new identifier. At this

time, there is no way to detect this phenomenon, but the author looks to resolve

this as part of future work.

The dataset consists of five time-series of directed graphs with integer edge

weights; the absence of an edge weight implies a weight of zero. The experiments

are going to be performed using un-weighted (binary) graphs. The whole process

of modularisation will be the same for weighted and un-weighted. Only the fitness

function would need to be amended for weighted graphs.

Each graph originally consisted of a 6120 by 6120 relationship matrix. It is highly

sparse, as there are only between 29 and 1626 classes at any one point in time. An

initial analysis showed that none of the graphs over the five types of relationships

were fully connected; each graph consisted of numerous disconnected sub-graphs.

This may seem unusual, as for it to be part of the same application each class

should be indirectly related to all other classes. However, this is true if each type

of graph is combined for each time slice, but not when each type of relationship is

considered on its own. Table 3.6 describes how each graph represents a

relationship between classes. For this study, graphs of the five types of

72

relationships were merged together to form the ‘whole system’ for particular time

slices.

Class relationship Description

Attributes Data members in a class

Bases Immediate base classes

Inners Any type declared inside the scope of a class. An embedded

class.

Parameters Parameters to member functions of a class

Returns Return values from member functions of a class

Table 3.6 – Class relation types

As shown, Table 3.6 contains data relating to returns, parameters, attributes,

inners and bases. These were relatively easy to extract using the DIA SDK kit;

however, obtaining the method information i.e. a method using another class as a

local variable was more difficult. This type of information is at a much deeper

level in the data structure and is significantly more difficult to obtain. In addition,

the data extraction process was implemented at Quantel, and they provided the

author with these information. The author would like to acknowledge that only the

structural relationship can be extracted from the source code. Conceptual design

might not be fully appreciated, as the MDG is only an approximation of some of

the structures.

Figure 3.7 shows an illustration of the process of the software system from the

source code to the outputted clustering arrangement. It can be seen from the figure

that the system went through a number of pre-processing stages before the Munch

tool was used for modularising the dataset. The diagram displays the processes for

one software version; these steps were repeated for all software versions (503).

73

Figure 3.7 – A system diagram for the modularisation of the Quantel dataset

3.4.3 Absolute Value Difference (AVD)

From the experimentation conducted in (Arzoky et al, 2011) it was predicted that

within two weeks of development there were no significant changes to the source

code that made two successive graphs very different (for seeding not to be

possible). It was also expected that if one graph is similar to the next, then

modularisation would also be similar. To empirically find out whether this

relationship existed, the matrix of each graph was produced, and by subtracting

the matrices of two successive graphs from each other and taking the absolute

value of the results a set of results showing the similarity between the graphs was

produced. Equation 3.13 shows how the AVD is calculated for each graph, where

X and Y are two n by n binary matrices. A value of zero indicates that two

matrices are identical, whereas a large positive value indicates that they are

different. A value between zero and a large number gives a degree of similarity.

74

(3.13)

Figure 3.8 shows the results of the AVD for the full dataset of 503 graphs. The

results produced show that the majority of the graphs have very low AVD, as

there were only few days of development between each check-in. In fact, 46 per

cent of the graphs have an AVD of zero. Sudden peaks and drops can also be seen

in values, which could possibly indicate where major changes or refactoring work

occurred. These relationships are discussed in details in Sections 4.3 and 4.4.

Figure 3.8 – Plot showing the AVDs of the full dataset

3.5 Evaluation of Munch Tool Components

The objectives of this research include implementing a software component

capable of decomposing a software system. There are a number of components

that are needed to be considered in order to design the software clustering system;

they are: revelation of the system components to be clustered, the selection of a

criterion for measuring the similarity between these software components and a

clustering algorithm that applies the similarity measure (Wiggerts, 1997).

In order to evaluate the clustering results of the software system it is important to

select appropriate datasets for the indicative analysis. As a result, a large real-

75

world time-series dataset was chosen for this study. The majority of the research

for this thesis was conducted on this dataset.

The Munch tool is based on work presented in (Mancoridis et al, 1998; Mitchell,

2002), who first introduced search-based approach to software modularisation. As

discussed in Section 2.5, within this study a variety of clustering algorithms were

initially considered. However, from the objectives of this study, the tool

incorporates and uses a simple RMHC approach for conducting the majority of

the experimentations for this thesis. The RMHC algorithm was chosen due to its

simplicity and robustness in terms of modularisation, and because of its

application in previous studies. Mancoridis et al (1998) used a HC algorithm to

cluster graphs due to its good performance and high flexibility. Wu et al (2005)

compared the clustering techniques of a number of studies. In the study, Bunch, a

tool by Mitchel (2002) that uses the HC algorithm performed best in terms of

authoritativeness and extremity to clustering distribution. In recent years, there

have been a lot of interests in applying evolutionary approaches into software

clustering. However, GAs use in software clustering has not been very successful

(Doval et al, 1999). On the other hand, they are used in various complicated

problems.

The fitness function is an important component that is used to evaluate the

candidate solutions and to select the most optimal solution. A number of fitness

functions were presented in this study, MQ, EVM and EVMD. From preliminary

analysis and experimentation conducted in Section 3.3.6, the most optimal

solution was selected to be EVMD (hereafter referred to as EVM).

Cohesion and coupling measurements plays an important role in the software

clustering discipline (Jiang et al, 2007; Seng et al, 2005). Cohesion could be

measured by dividing the inner edges by the number of possible inner edges.

Whereas, coupling could be measured by dividing the number of edges connected

to the clusters by the number of possible connections that can be made to outer

edges. For this thesis, the partitioning is based on the heuristic rule of high

cohesion and low coupling.

76

Since, this study looks at the decomposition of software system, the influence of

the cohesion and coupling factors is particularly examined. Previous research of

the cohesion and coupling of artefacts (Mitchell, 2002), has presented sound

results, and accordingly these were exploited when implementing the tool.

A large number of evaluation and validation metrics were discussed in Section

2.4.4. These metrics were investigated to be fitted into the clustering assignment

evaluation for this research project. The majority of the metrics discussed did not

meet the criteria for the algorithm implemented and the dataset under analysis. As

a result, a large number of those metrics were not used. Section 3.3 presented a

number of techniques and metrics that are used to assess and evaluate the quality

of the clustering decompositions. The HS metric, based on CBO metric, is

incorporated into the Munch tool to measure the coupling of two artefacts on the

basis of a given system. Moreover, WK is implemented and used in this study for

the comparison of two clustering arrangements.

3.6 Summary

This chapter demonstrated the design and implementation of the tool for this

research project. It constitutes the product of this research undertaking to provide

a clustering tool by the configuration of algorithms and metrics, and thus adding

to the domain knowledge. The dataset used in this study was also discussed in

depth. There was no need to extract the module-level dependencies from the

source code; they were pre-processed and readily available. The next chapter

looks at the use of the Munch tool to conduct modularisation experiments on the

dataset under analysis. It introduces the concept of seeding and how it can be used

to significantly reduce the runtime of the modularisation process.

77

Chapter 4: Modularisation and the Concept

of Seeding

4.1 Introduction

This chapter introduces the concept of seeding when modularising time-series of

source code relationships. It entails proof of concept work that introduces a

number of techniques and experimentations for speeding up the modularisation

process. This chapter is based upon work presented in (Arzoky et al, 2011;

Arzoky et al, 2012).

4.2 Concept of Seeding

The primary purpose of this research project is to perform efficient modularisation

on a time-series of source code relationships, taking advantage of the fact that the

nearer the source code in time, the more similar the modularisation is expected to

be, which is the central hypothesis of this study. The dataset is not treated as

separate modularisation problems, but instead the result of the previous

modularisation of the graph is used to give the next graph a head start. The aim is

to use code structure and sequence to obtain more effective modularisation and

reduce the runtime of the process. Figure 4.1 presents a simple illustration of how

the seeding concept works.

Figure 4.1 – Illustration of the seeding strategy

There are previous studies that employ some form of seeding by integrating

solutions manually or through other machine learning techniques. Langdon (1996)

Graph
6

Graph
5

Graph
4

Graph
3

Graph
2

Graph
1

78

made use of GA results for initialising a GP population. Langdon and Nordin

(2000) employed a seeding strategy that starts from a solution rather than a

random starting point. Whereas, Marek et al (2002) manually generated solutions

and seeded them into the initial population.

There have also been few studies that used the concept of seeding for clustering

such as (Basu, 2002; Arthur and Vassilvitskii, 2007; Suresh, 2010). Other studies

have explored the use of hybrid algorithms to obtain a quick and fast

approximation, more sophisticated search follows. However, according to the

author’s knowledge there are no previous studies that have looked at the notion of

using seeding, i.e. using results of previous modularisation to modularise time-

series dataset.

4.3 Reduction of Matrices

For earlier work presented in (Arzoky et al, 2011), the full graphs in the dataset

were modularised, knowing that around 55% of the dataset code is not Quantel’s

data, and thus should not be clustered. The author was provided with a

classification table of the 6120 classes and what they represent; there are ten

general classifications for each of the classes in the dataset. Table 4.1 displays the

classification of classes that was provided by Quantel (a more detailed

classification was provided at a later stage of the research). Quantel has indicated

the classes that they have developed; four out of the ten classifications are

Quantel’s code. Classes not produced by Quantel consist of Standard Template

Library (STL), Windows COM Interface class and component from a third-party

library. The STL is a generic C++ library that consists of container classes,

algorithms and iterators; it is used to implement standard data structures such as

queues, lists and stacks. It is difficult to modularise source code that uses library

functions due to the amount of coupling involved, the Quantel code uses a large

number of Strings and Vectors.

79

Table 4.1 – Illustrating the classification of classes

As discussed in Section 3.4.2.2, there are 6120 classes that exist in the system,

however, not all classes exist at the same time slice, there are between 434 and

2272 of classes that exist at a particular point in time, referred to as active classes.

Across the entirety of the lifespan of the software system there were only 2801

classes produced by Quantel. Thus, all the modules that are not produced by

Quantel are removed. Due to the removal of classes that were not produced by

Quantel, the number of classes at most graphs changed. This has reduced the size

of the MDGs significantly. All modules that were not produced by Quantel and

are not active at the time slices were removed. This required additional

implementation to the Munch tool. This bound is most representative when

considering sparse matrices. The number of clusters is extremely large and thus

adjusting and reducing the size of the sparse graphs has vastly improved the speed

of the algorithm without causing any detriment to the quality of the results. There

are now between 202 and 1193 active classes at any one point. Figure 4.2 displays

all of the active classes that are only produced by Quantel at each software check-

in (graph), all of the graphs are ordered in time.

Description
of
classification
of classes

1: Standard C++ library component that is not 2.

2: Standard C++ library template specialised by a manufacturer class.

3: Component from a 3rd party library that offers persistence support.

4: Implementation class developed by the manufacturer.

5: Interface class developed by the manufacturer.

6: Class developed by the manufacturer (that is not 4 or 5).

7: Windows COM Interface class

8: Windows structure

0: None of the above.

Quantel

No

Yes

No

Yes

Yes

Yes

No

No

No

80

Eliminating these classes significantly improved the results, producing higher HS

and WK results. The next sections describe the use of the modified dataset to

conduct the modularisation experiments.

Figure 4.2 – Quantel’sactiveclassesateachsoftwarecheck-in

4.4 Proof of Concept (Modularisation

Experiments)

4.4.1 Initial Experimental Procedure

This section outlines the experimental procedure of the proof of concept work for

this study. There were two initial sets of experiments that were conducted, they

are:

1) A single modularisation of the full dataset.

2) Ten repeats of the modularisation of only 50 sampled graphs from the dataset.

Without loss of generality, the amount of time it takes the modularisation program

to run is proportional to the number of fitness function calls. In the experiments

conducted the number of fitness function calls is referred to as the number of

81

iterations, and the time it takes the program to run is proportional to the number of

iterations.

The main aim of the experiments is to modularise the Quantel dataset using a

number of techniques which are explained below. As described in Section 3.4, the

full dataset consists of 503 sets of graphs with each graph containing five types of

relationships combined together to form the 'whole' system at a particular time

slice. There are roughly two to three days’ gaps between each check-in, giving a

total time span of four years and four months for the full dataset.

Five sets of experiments were designed for this proof of concept work. The main

difference between the experiments conducted in this chapter is the number of

iterations they run for and their starting clustering arrangements; otherwise it is

the same program. Figure 4.3 shows a representation of the relationships between

the five experiments.

The five experiments described below were conducted only once for the full

dataset of 503 graphs. However, a well-known problem with the HC algorithm is

that it can run into and get stuck at local maximums. In order to show whether this

is happening or not, a practitioner often runs a number of repeat experiments.

However, initially, the main issue with this type of data was the runtime of the

experiments. Thus, to work out the consistency and variability of the HC, the

modularisation of at least 50 graphs was needed to be repeated. Thus, the same

five experiments were repeated ten times but only for 50 graphs of the same

dataset. 50 sets of the five types of relationships were selected, as at the initial

stages of the research the modularisation of the full dataset took a considerable

amount of time. Thus, graphs were sampled every sixth graph to give a time

interval of approximately two weeks between each graph. This gave a total time

span of one year and ten months for the sampled data.

82

Figure 4.3 – The relationships between the experiments

Experiment 1 (C) – The modularisation of data for eight million iterations each.

As mentioned earlier, the amount of time it takes Munch to run is proportional to

the number of fitness function calls. During this experiment as well as the

remainder of experiments, the number of fitness function calls is referred to as the

number of iterations. Thus, the time it takes the program to run is proportional to

the number of iterations. In order to decide on the number of iterations that are

needed for this experiment, a series of preliminary experimentations were

conducted to find the most optimal iterations to run the algorithm for.

The starting clustering arrangement consisted of every variable in its own cluster.

It assumes that all classes are independent; there are no relationships. The author

decided to use this technique as the starting clustering arrangement as starting it

from a random clustering arrangement would affect the initial value of the fitness

function, EVM, employed. The initial fitness value would start from a negative

value when initiating the search from a random clustering arrangement. Since this

part of the study concentrates on speeding up the process of the modularisation,

there was no need to investigate or use other starting clustering arrangements.

Refer to Chapter 6 for an investigation of different starting clustering arrangement

of the algorithm.

Experiment 2 (S) – The modularisation of data using results of the previous

clustering arrangement from C. Instead of creating a random starting arrangement

for the modularisation, the clustering arrangement of the preceding graph

(produced from C) was used to give it a head start. For example, for modularising

83

the fourth graph, the results from the full modularisation of the third graph were

used. Graphs were modularised for 80,000 iterations apart from the first graph,

which was run for the full eight million iterations.

Experiment 3 (SS) – The modularisation of data using the preceding results of the

modularisation. Instead of creating a random starting arrangement when the

modularisation process starts, the clustering arrangement of the preceding seeded

graph was used. For example, for modularising the fourth graph, results produced

from the third seeded graph were used as the starting arrangement. The first graph

was run for eight million iterations, as it has no preceding graph. All other graphs

were modularised for 80,000 iterations only.

Experiment 4 (SD) – The modularisation of dataset using the results produced

from the modularisation of the preceding graph. However, unlike the other

experiments, the number of iterations was not fixed. It varied depending on the

similarity of the graphs. The AVD was calculated (as described in Section 3.4.3)

for all the graphs and was used as a scalar for controlling the number of runs. The

more similar the two graphs (low AVD), the less runs needed. The more different

two successive graphs (high AVD) are, the higher the number of iterations.

Identical graphs with zero AVD run for zero number of iterations. Equation 4.1

was used for calculating the number of iterations of each graph. The value 8000

was derived from the maximum AVD value of the whole dataset. A number of

experiments were initially conducted on sampled graphs to ensure that there are

enough iterations for modularising the majority of the graphs.

8000 AVDITER (4.1)

Experiment 5 (SSD) – The modularisation of data using the preceding results of

the modularisation, as in SS, while using Equation 4.1 to calculate the number of

iterations as in SD.

84

4.4.2 Full Dataset Experiments Results

Figure 4.4 shows a plot of the EVM values produced for the five experiments.

Where the results overlap on the plot, the same EVM values are produced despite

the fact that S and SS were run for one per cent of the original time of C. This

shows that the seeding technique works to a fair degree of accuracy. For S and SS

a clear increasing trend of EVM is observed from the plot, which is due to graphs

increasing in size. It seems to correlate with the plot in Figure 4.2, which shows

an increase in the number of active classes throughout the project, apart from few

peaks and drops, which may possibly suggest where radical extensions or

refactoring events have taken place.

Figure 4.4 – EVM results of the full dataset for the five experiments

The peaks from the results correlate with the spikes from the AVD graph, shown

in Figure 3.7. The results produced can indicate how different two

modularisations are without actually running the modularisation. It is also

interesting to see from the plot how the seeding strategy breaks down when there

are large changes. The EVM values of few graphs from S are negative, due to the

major differences among these graphs (major changes being made to the code).

The starting clustering arrangements of these particular graphs were very poor,

85

and they needed a longer running time for the modularisation. However, for SS it

can be seen that after the major changes were made to the code, EVM values

dropped to very low negative values (showing how the structure of the system

crumbled).

Note that it is not possible to differentiate C from the plot, as it overlaps with SD.

SD produces the same results as C because the graphs are the same and the full

modularisation results from C are used as the starting clustering arrangements.

The average percentages of the fitness function calls for C and SD are eight

million and 232,095, respectively. Thus, in terms of runtime, SD was more than

34 times faster than C, despite the fact that they both produced identical results,

illustrating the potential of using the concept of seeding. However, in the real

world, we would not have the full modularisation results. Thus, SSD was

conducted combining SS and SD together to produce a run that runs as SS, but the

iterations are computed as in SD.

From the plot it can be observed that at points 128 and 132, the dataset seems to

gain and lose a large number of classes. This behaviour repeats two more times in

the dataset at points 138 and 139, and 150 and 154. This trend can also be

observed from Figure 3.7, which shows the AVD results for the full dataset. The

results were confirmed with the developers at Quantel and they have reflected that

these major changes coincide with a new major release of a library. They had a

major update to a core piece of their software. The three spikes are when they

have carried out each new release of it. The author was informed by the

manufacturer that this extensive class library had new functionalities including

new classes (this is explained in details in Chapter 7). Further analysis of all major

activities in the code is also provided in Chapter 7.

From Figure 4.4 it can be seen that SSD produces better EVM values than SS. This

illustrates how introducing the scalar to control the number of iterations produces

better results. However, it still produces values that are considerably lower the

EVM values of C. These relationships are investigated further in Chapter 5.

86

Figure 4.5 – HS results of the full dataset for the five experiments

Figure 4.5 shows a plot of the HS values for the five experiments. From the plot a

gradually decreasing trend of HS values can be observed. It seems that HS values

are gradually getting worse throughout the life of the project. The HS results of C,

S and SS seem to be very similar, overlapping for most of the time, even though S

and SS were run for only one per cent of the original time for C. Thus, results

from experiment S have 100 fold improvements in time with less apparent loss in

performance. The author is not stating that the seeding technique can perform

better than C, but instead is implying that if the same results of C can be

produced, but in a shorter period of time through seeding, then 100 times the

amount of runtime can be saved for the majority of the results.

Note that it is not possible to differentiate C from the plot, as it overlaps with SD.

SD produced HS results that are identical to C, despite the fact that it was

considerably faster to run, whereas SSD, which also was more than 34 times faster

than C, produced HS results that are better than C. This suggests that the seeding

strategy works very well.

For produced modularisations, the negative HS values indicate that the inter-

module edges are more than the intra-module edges. In addition, from Figure 4.5,

there seems to be large changes or refactoring events that occurred numerous

times throughout the life of the project. The plot illustrates that there is a reduction

of coupling to a certain degree during these events.

87

There is a noticeable trend between the HS of C observed from Figure 4.5 and the

number of active classes from Figure 4.2. To find out whether there is a

relationship between the two, they were correlated. A value of −0.841 is

produced, which indicates a very high negative correlation. This indicates that as

the number of classes throughout the system increase, the HS metric decreases.

The WK of the modularisations is calculated for the full set of results. WK is the

modularisation based correlation on how similar two clustering arrangements are.

The higher the WK value, the closer the agreements between graphs. If the value

is one then modularisations are identical and if it is zero they are empirically

different. A value above 0.5 indicates that there is a lot of structure to the

modularisation.

Figure 4.6 – WK results between C1 and Ci for the full dataset

Figure 4.6 shows a plot of the WK values for the clustering results of the first

graph compared to the i
th

 clustering results for C. From the plot a decreasing trend

of WK values can be observed. The WK values are initially between 0.3 and 0.6

which are considered to have moderate or fair agreement strengths, according to

Table 3.3. These WK values become poorer over the lifespan of the project. This

illustrates the deterioration of the original structure of the system over time. From

the plot, it can be seen that the WK values vary widely; this is due to taking the

results of only a single run of the HC algorithm.

88

Figure 4.7 – WK results of the modularisations produced by C and SS for the

full dataset

Figure 4.7 displays a plot showing the WK results of the modularisations

produced by C and SS. WK of individual successive graphs seems to vary.

However, a gradual drop of WK values can be observed from the graph. It also

shows a compounded error gradually building up throughout the seeding strategy.

However, there seem to be some structures in the results to be seeded through;

presumably the same core structure is maintained all the way through the result

while the rest degrades.

Figure 4.8 – WK results of the modularisations produced by C and SSD for

the full dataset

89

Figure 4.8 displays the WK values of C and SSD. A drop of WK values can be

seen from the plot. A compounded error gradually building up throughout the

seeding strategy can also be observed from the plot. Like Figure 4.7, there still

seems to be some structure in the results being seeded through.

4.4.3 50 Graphs Experiments Results

The issue with Hill Climbing is that there is a risk of the search reaching only the

local maxima and thus a large number of runs are needed. For this proof of

concept work a smaller sample of 50 graphs were modularised and repeated ten

times. This section outlines the results of the analysis.

As discussed in Section 4.3, it is believed that within few days or weeks of

development there are usually no significant changes to the source code that

makes two successive graphs completely different. If one graph is similar to the

next then it is expected for modularisation to also be similar. Figure 4.9 shows the

results for the AVD. The results produced are interesting as the majority of the

graphs have low AVD indicating that our earlier prediction of the similarity

between graphs is true. There are also few peaks and sudden drops in values

possibility indicating where major changes or refactoring events occurred. These

similarities suggest that modularisation may also have similar trends and thus

forming the basis for the rest of the experiments.

Figure 4.9 – Plot showing similarity of graphs

90

As mentioned earlier, running each graph individually take a long time, however

applying the seeding strategy reduces the runtime enormously. It was due to the

similarity between graphs that the previous graphs were seeded through, instead

of starting from random clustering arrangements.

Figure 4.10, Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14 show the plots

of the average, minimum, maximum and standard deviation of the EVM values for

each of the five experiments, respectively. These EVM values were collected from

ten repeats of the modularisations. The average, minimum and maximum of the

five experiments seem to be similar, which shows that there is some consistency

in the results. Also, the standard deviation results from the plots seem to be fairly

low throughout the five experiments, which indicate that the results produced

from each run is close to the mean and thus represents consistency. In addition,

the EVM values from the plot seem to be similar to the EVM values of the graphs

from Figure 4.4.

Figure 4.10 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of C

91

Figure 4.11 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of S

Figure 4.12 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of SS

Figure 4.13 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of SD

92

Figure 4.14 – Average, minimum, maximum and standard deviation of EVM

values for ten repeats of SSD

Figure 4.15 – Average HS results for ten repeats of the five experiments

Figure 4.15 shows a plot of the average HS values of the first 50 graphs for ten

repeats of the five experiments. Note that C cannot be seen from the plot as it

overlaps with SD, and S is not very noticeable as it overlaps with SS. From the

plot a very gradual decreasing trend of HS values can be initially noticed. A

sudden increase in HS values is then observed. This increase in HS values is due

to the removal of nearly 200 classes from the system at that software check-in.

Figure 4.16 shows the average WK results between the first graph and the i
th

graph for 100 comparisons, as there are ten C1 and ten Ci values. A clear

decreasing trend can be observed from the graph illustrating the gradual decay of

the system over time. The WK values went down from 0.6 to 0.4 in the span of

93

three months, and there still seems to be structure and similarity between the

graphs. This adds weight to the validity of the seeding strategy employed in this

study.

Figure 4.16 – Average WK results between C1 and Ci

Figure 4.17 shows the average WK results between C and SS for the ten repeats.

The first repeat of C was used for seeding the first repeat of SS. Since choosing

the first repeat to seed from is as valid as choosing a random repeat, WK was only

calculated for the ten repeats between C and SS. A gradual smooth drop of WK

values can be observed from the plot and therefore there seems to be some

structures in the results that are being seeded through. The WK values do not vary

widely as in Figure 4.7, due to the number of repeats conducted.

Figure 4.17 – Average WK results of the modularisations produced by C and

SS

94

Figure 4.18 displays the average WK results between C and SSD for the ten

repeats. As in Figure 4.17, there is a gradual drop of WK values and a

compounded error building up throughout the seeding strategy. The WK values of

C and SSD were generally the same as the WK values of C and SS; however, on a

number of graphs WK values are higher. This illustrates that using the scalar to

control the number of iterations (based on AVD) was a much more robust way of

conducting the experiment, as it not only reduces the overall running time of the

experiment but also provides enough iterations to reach the optima. Also, WK

values do not vary widely as in Figure 4.8, due to the number of repeats

conducted.

Figure 4.18 – Average WK results of the modularisations produced by C and

SSD

Figure 4.19 displays the average WK results of every pair-wise comparison of the

ten repeats for each of the five experiments. An average WK value of 0.6 between

the graphs shows the clustering arrangements of the runs to be reasonably

consistent to each other. However, there still needs to be repeats as HC is a

stochastic method and can produce varying results.

95

Figure 4.19 – Average WK results of all pair-wise comparison of the ten

repeats

4.4.4 Overview of Proof of Concept Experiments

The results produced from the experiments are interesting in the sense that it is

possible to find out how different two modularisations are without actually

running the modularisation. If successive modularisations are very different, this

may suggest that the program has been radically refactored or extended. As there

is a large correlation between subsequent graphs, the modularisation does not

need to be run, a quick statistic of the AVD will provide the similarity of the

graphs. This reduces the computational complexity down from hours to seconds.

However, this statistic does not provide information on where the modules should

be and what is related together.

The similarity between graphs was used to control the number of iterations the

seeded modularisation runs for. The AVD of the graphs was analysed and used as

a scalar to determine the runtime. This technique caters for the fact that when

there are major extensions or refactoring events, (almost) full modularisation is

needed. Using this seeding strategy, it was possible to produce results identical to

the full modularisation of graphs (when the full modularisation results are

available to seed from) while reducing the running time by more than 34 times.

96

For this early work, the AVDs of graphs is used for specifying the number of

iterations of the modularisation, however these values are not normalised. Thus,

converting them into probability values will inform the author of the significance

of the values that are seeded through from subsequent changes. Chapter 5

investigates this relationship in further details.

4.5 Constraints and Threats to Validity

Search algorithms are usually considered “better” if they require less runtime to

find the optimal solution to a problem. However, working out the actual time the

algorithm runs for might not be suitable as it is dependent on various factors such

as the compiler, hardware configuration and the design of the algorithm itself.

Thus, a more unbiased way is to compute the number of objective functions.

However, one limitation of this approach is that only parts of the algorithm might

be computationally expensive. The objective function of the majority of the search

algorithms is the most expensive part of the algorithm. This is also the case with

the algorithm employed for this study. There are a number of factors that were

initially considered when designing and implementing the experimentations of the

search algorithms. These factors are described below with an explanation of how

they were dealt with.

The main issue with the HC algorithm is that there is a risk of the search reaching

only the local maxima and thus a large number of runs are needed. There is a large

difference in the time a search algorithm converges even for the same input. A

repeated run of the same algorithm on the same data can produce different results.

For the proof of concept work described in the above sections, only one run was

conducted on the full dataset and a smaller sample of 50 graphs was repeated ten

times. However, all further experimentations of the modularisations of the

datasets involved repeats of at least 25 times. The average is calculated and then

used for measurement and comparisons purposes.

In search algorithms, there are a number of parameters that needs to be considered

and tuned accordingly. Various experiments are conducted to measure the

97

performance of the techniques introduced while changing and tuning its’

parameters. The author has experimented with various fitness functions, different

starting points for the algorithms as well as different heuristic algorithms.

The empirical experimentations should be carried out on various large case studies

in order to conclude or generalise the results. However, limitations that need to be

considered include; computational resources might not be considered, benchmarks

for comparisons might not exist, and automated tools for aiding the

experimentations could be difficult to obtain or develop. The author was fortunate

that all of the experimentations were performed on a large real time-series dataset.

A drawback of this preliminary work is that only empirical ways was used for

evaluating the software metric. Thus, at this stage the author would like to

acknowledge that there is an absence of qualitative evaluation of the clusters. The

meaningfulness of the clusters of further experimentations is discussed with the

industrial collaborator and presented on a case by case basis. This analysis can be

found in Chapter 7.

In addition, due to the nature of the dataset, it was not possible to check at this

stage whether changes between time slices are refactoring or just an extension pro

tem; only whether one class uses another can be determined. It was suspected that

refactoring is occurring and not simply other development because the author was

informed by Quantel that they refactor and that this is a practice they encourage

all staff to strive towards. Their senior systems architects are proactive in

promoting and pushing refactoring techniques. Thus, by finding areas of major

change it will either be new functionality or refactoring. One of the objectives of

the project is to be able to identify one or the other, but, the author does not have

the data to distinguish between the two. At the moment being able to identify

areas of interest is useful. Although, the author cannot prove that refactoring

activities are occurring, the locations of where refactoring does not occur is

known, on the basis that there are very few changes. The aim is to investigate this

further by correlating the results produced with information from the developers,

and to use the developers commit comments in the version control system. These

are all investigated and discussed in details in Chapter 7.

98

4.6 Summary

This chapter presented the preliminary work of this research; the

results gathered from these experiments provided the basis for the research study.

The author has introduced the concept of seeding into modularising large time-

series datasets. The dataset was not treated as 503 separate modularisation

problems, but instead the author took advantage of the fact that the dataset is time-

series. Results of previous time slices were used to speed up the search process of

the next time slice. Thus, the author managed to reduce the duration of the

modularisation process by a factor of 100 and to a good degree of accuracy. The

next chapter looks at improving the techniques presented so far.

99

Chapter 5: Modularisation Process

Optimisation

5.1 Introduction

This chapter extends on work presented in Chapter 4, which introduced the

seeding technique to improve the effectiveness and efficiency of the

modularisation procedure. A number of strategies to estimate the stopping

conditions and the minimal runtime of the modularisation are explored and

evaluated in this chapter. These statistics control the number of iterations of the

modularisation process, based on the similarities between time adjacent graphs.

This chapter starts by highlighting the computational and complexity issues of

making a move using the Munch clustering algorithm. This chapter is based on

work presented in (Arzoky et al, 2014c).

5.2 Average Size of Clusters

An important issue in cluster analysis is the estimation of the average number or

size of clusters. As the average size of clusters during a single run of

modularisation changes, the running total of how many iterations are needed to

obtain the expected number of moves that need to be performed by the fitness

function, EVM, also changes.

However, according to the clustering algorithm and the fitness function employed,

the average number of clusters should not change very often. This is due to the

move operations of the fitness function. The cluster size only changes when a

cluster is emptied or a new cluster is created, it will not occur at every iteration of

the clustering algorithm. If the average number of clusters is constant or does not

change massively, then it is kept. The probability of making the number of right

moves at this particular time is known, and thus the modularisation can be run for

an expected number of times. However, if it does change then an update would

100

need to be performed as the probability of making a move will change every time.

These are explained in more details in Section 5.3.1.

Thus, this chapter looks at different techniques for estimating and evaluating the

running time of the modularisation process, based on the average number of

clusters. Correctly estimating the number of clusters can help to more accurately

measure the runtime needed for the algorithm to converge.

5.3 Runtime Estimation Investigation

The following sections describe a technique that is introduced to more accurately

estimate the number of iterations that are needed for the Munch algorithm to run.

Section 5.3.1 explains how the move operator of EVM is modelled, based on the

hypothesis that the average size and number of clusters is √n. Section 5.3.2

introduces a statistical technique based on the probability of making the right

move, to estimate the runtime needed for the modularisation experiments. Section

5.3.3 describes the experimental procedure that was conducted and results are

illustrated in Section 5.3.4. Lastly, the constraints and threats to validity for this

investigation are outlined in Section 5.3.5.

5.3.1 Modelling the Move Operator of the Algorithm

For the following section, let MDG1 and MDG2 be an n by n matrix, G1 be the

optimal clustering arrangement applied to MDG1, M1 be the MDG associated with

the clustering arrangement, E1 be the optimal EVM for MDG1 and E2 be the

optimal EVM for MDG2. A difference of one between two MDGs indicates that

one edge is being added or deleted. Assume that E1 is the optimal EVM applied to

M1 and G1 associated modularisation, and also that the dataset is of solid and

dense clusters. In addition, from the literature it is estimated and assumed that the

size and the number of clusters is √n (Mardia et al, 1979). Last but not least, the

author hypothesizes that only one move is needed to make the fitness function

value change.

101

When an edge is added or deleted, the difference in MDG is either going to be

between two different clusters or between the same cluster. Thus, there are four

possibilities that would result in a fitness change and thus would have an impact

on the value of EVM, refer to Table 5.1.

Table 5.1 – Implications of a move

If an edge is added to the same cluster then the fitness function, EVM, will be

incremented by one. But, if an edge is deleted from the same cluster then EVM

will be decremented by one, the edge will no longer be there and thus will be

penalised.

If an edge is deleted between two different clusters, EVM will not change. This is

because EVM only looks at intra-clusters, there is no penalisation between

clusters. On the other hand, if they are in different clusters and an edge is added,

either the EVM does not change or the best EVM is attained by moving the

variable into the cluster. If it is assumed that the size of the first cluster is √n and

the size of the second cluster is √n, this indicates that EVM will be incremented by

one.

Table 5.1 shows the change to EVM, where E1 is the old fitness and E2 is the new

fitness. From the table is can be seen that the worst case scenario involves

choosing the correct variable and placing it in the correct cluster, to account for

the one difference in the MDG, which will be the probable one difference in the

EVM. Thus, now the probability of a move occurring is computed, which is linked

to the iterations attempts in a HC.

For each one difference between the MDGs, the correct variable needs to be

selected. Normally, if a wrong move is made, there would either be no effect on

 Same cluster Different clusters

Add

edge

E2 = E1 + 1 E2 = E1

OR

E2 = E1 + 1

Delete

edge

E2 = E1 -1 E2 = E1

102

the fitness or the fitness would be decremented by one. However, since a HC

algorithm is being used, if a wrong move is made a worst fitness would not be

accepted.

5.3.2 Computing the Probability Estimate

Let n be the number of variables (classes) in an MDG. Let d be the AVD between

two MDGs, and T be the number of iterations we are running the process for.

There is a one in n chance of selecting the right variable, and to move it to the

correct cluster there are √n clusters. There are n variables to choose from and they

can be moved to √n-1 clusters, as one cluster can be ruled out and that is the

cluster it originated from.

Assume that Pr(correct move) = P = 1/(n√n)

Let Q = 1-P (5.1)

The chance a single move occurs after T iterations is as follows:

1

2

)Pr(

...

)3Pr(

)2Pr(

)1Pr(

iPQiT

PQT

PQT

PT

(5.2)

Therefore the probability that the move occurs before (or up to) t=T is as follows:

Tt

t

t

Tt

t

t

QP

PQTt

1

1

1

1)Pr(

(5.3)

103

Now,

1

1
)(

1)()(

1)1()(

)()1(

)(
1

1

Q

Q
TS

QTSTSQ

TSTST

QTSTS

QTS

T

T

T

Tt

t

t

(5.4)

Therefore,

T

T

T

T

Tt

t

t

QTt

P

Q
PTt

P

Q
PTt

Q

Q
PTt

TSPTt

QPTt

1)Pr(

1
)Pr(

)1(1

1
)Pr(

1

1
)Pr(

)()Pr(

)Pr(
1

1

(5.5)

If there are d moves to make, then the probability that all of the d moves are made

after T iterations of the HC algorithms is:

Pr(All d moves after T iterations) = (1-Q
T
)
d

(5.6)

Let there be an assumption that there is some acceptable level of confidence that

all the moves have been made, then to compute a T for which this might happen:

104

)ln(

)1ln(

)1ln()ln(

1

1

)1(

/1

/1

/1

/1

Q
T

QT

Q

Q

Q

d

d

dT

Td

dT

(5.7)

5.3.3 Experimental procedure

Two experiments that modularise the dataset were designed. The main difference

between the experiments is the number of iterations they run for and their starting

clustering arrangements; otherwise it is the same program. The two experiments

were repeated 25 times each as HC is a stochastic method and there is a risk of the

search reaching only the local maxima and thus produce varying results.

For Experiment 1 (C), the dataset was modularised for ten million iterations each.

Note that the amount of time it takes Munch to run is proportional to the number

of fitness function calls. The number of fitness function calls is referred to as the

number of iterations. Thus, the time it takes the program to run is proportional to

the number of iterations. A series of preliminary experimentations were conducted

to find the most optimal iterations to run the algorithm for. The starting clustering

arrangement consisted of every variable in its own cluster. It assumes that all

classes are independent; there are no relationships.

For Experiment 2 (S), the dataset was modularised using results of the previous

clustering arrangement from C. Instead of creating a random starting arrangement

for the modularisation, the clustering arrangement of the preceding graph

(produced from C) was used to give it a head start. For Experiment 2, three

different strategies was selected to try to estimate the stopping conditions and find

the minimal runtime needed for the modularisation process, they are:

105

Strategy 1 - The number of iterations for this strategy was fixed at 100,000

iterations, which is one per cent of the full run, apart from the first graph which

was run for ten million iterations.

Strategy 2 - The number of iterations for this strategy varied depending on the

similarity between graphs. The AVD was calculated for all graphs and was used

as a scalar for calculating the number of iterations. The more similar two

successive graphs (low AVD), the less runs needed; and the more different two

successive graphs (high AVD), the higher the number of iterations needed.

Equation 5.8 was used for calculating the number of iterations of each graph. As

explained previously, the value 8000 was derived the maximum AVD value of the

whole dataset. A number of experiments were initially conducted on sampled

graphs to ensure that there are enough iterations for the algorithm to converge for

the majority of the graphs.

8000 AVDITER (5.8)

Strategy 3 – It is an estimate based on the probability of making the right move,

computed as outlined in Section 5.3.2. Several acceptable level of confidence

values that represent the likelihood of obtaining the correct answer were selected;

they are, T1 - 99%, T2 - 95%, T3 - 90% and T4 - 70%.

The convergence points of the three strategies (six policies above) were computed

and the maximum of these at each time slice was calculated. Convergence point

can be defined as the earliest point in the iterations of the heuristic search of when

the fitness function no longer increases until the end of the run. An extra five per

cent of the estimated number of iterations was added to the iterations of all graphs,

for each of the six policies. Results produced were used to run Experiment 2;

graphs were modularised using these computed values apart from the first graph,

which was run for the full ten million iterations.

106

5.3.4 Results and Discussion

As mentioned previously, the amount of time it takes the modularisation program

to run is proportional to the number of fitness function calls. In these experiments

the number of fitness function calls is referred to as the number of iterations, and

the time it takes the program to run is proportional to the number of iterations.

Strategy 1 and 2 were initially introduced in Chapter 4 and needed improvement

as the graphs do not necessarily need to run for a set number of iterations. The

process might continue to run even when the algorithm has converged. Thus,

Strategy 3 was introduced here in order to correctly estimate the number of

iterations needed for each graph.

The average fitness function calls for Strategy 1 and 2 are 100,000 and 464,956

iterations, respectively. Whereas, the fitness function calls for Strategy 3 range

from 12,825 iterations for T4 to 23,162 iterations for T1. From the results it can be

seen that there is a large efficiency improvement using the new strategy compared

to previous strategies.

Figure 5.1 – Plot showing the ranking of the six policies

Figure 5.1 shows a count of the closest strategy estimate to the converged point.

From the plot it can be seen that T4 is the most accurate estimate as it is the closest

or nearest to the converged point for most graphs. Even though the new strategy

107

was based on a broad estimate of the number of average clusters (Mardia et al,

1979), it still produced better estimate than the old strategies. Results show that 71

graphs from the dataset were modularised using the old strategies, whereas 260

graphs were modularised using Strategy 3. 171 of the graphs were omitted from

the plot as they are zeroes for all of the strategies. Currently the author is only

investigating the most accurate strategy and thus did not account to whether it is

an underestimate or overestimate of the convergence point.

Strategy Time savings

per cent

Reduction factor

(in iterations)

Strategy 1– 1% 99.00 100

Strategy 2 – 8000D 92.88 14

T1– 99% 99.65 282

T2– 95% 99.72 360

T3– 90% 99.76 412

T4– 70% 99.80 509

Table 5.2 – Time saving under all schemes

Given that the Munch algorithm runs for T iterations, the fitness function is O(√n),

and that the fitness function is where all of the computational complexity of the

HC algorithm is, then the overall complexity of the run is O(T√n). Thus, the

smaller the value of T the faster the algorithm runs. Table 5.2 shows the time

savings under each scheme compared to the full run of ten million iterations.

From the table it can be seen that the least amount of saving in terms of runtime is

92.88%, this is for Strategy 2. T4 has the highest percentage of saving in terms of

runtime. For ease of comparison, the author has computed how fast each of the

strategies compared to the full iterations run, C (displayed in Table 5.2). The

results show that T4 is 509 times faster than C, more than five times faster than

Strategy 1 and 36 times faster than Strategy 2.

Strategy Count of highest

Strategy 1– 1% 167

Strategy 2– 8000D 159

T1– 99% 5

T2– 95% 0

T3– 90% 0

T4– 70% 0

Table 5.3 – Count of highest

108

Table 5.3 displays a frequency count of the largest iterations of each of the

strategies. It can be clearly seen that Strategy 1 and Strategy 2 are nearly the

highest for all graphs. This illustrates that the previous strategies had higher

running times for 326 graphs compared to only five graphs from the new

strategies.

Figure 5.2 – Plot showing the convergence points of C and S for the full

dataset

Figure 5.2 shows a plot of the convergence points of C and S for the full datasets.

The convergence points indicate that the EVM is at a maximum. A gradually

increasing trend can be observed for C, which indicates that a longer running time

is needed for later graphs. The general trend of the results correlates with Figure

4.2, which shows a gradual increase of the number of active classes throughout

the project. Results of S are considerably lower than C throughout the full dataset,

which indicates that the seeding technique works well. This is particularly true

when comparing the results with Figure 5.4 and Figure 5.5, as they produce the

same EVM and HS values for the majority of the graphs. From the plot, drops and

peaks can be observed, indicating the convergence points of the subsequent graph

are very different. These may possibly suggest radical extensions or refactoring

events taking place (these trends are investigated in Chapter 7).

109

Figure 5.3 shows a plot of the EVM of experiments C and S for the full dataset. It

is not possible to differentiate C from the plot, as it overlaps with S. S produces

the same results as C despite the fact that S was ran for a fraction of the original

time of C. This demonstrates that the seeding technique works and to a fair degree

of accuracy. In addition, from the plot it can be observed that there is a general

increase in the number of active classes throughout the project, apart from the

peaks and drops which may also possibly suggest radical extensions or refactoring

events occurring.

Figure 5.3 – Plot showing the EVM of C and S for the full dataset

Figure 5.4 shows a plot of HS values of experiments C and S for the full dataset. It

is not possible to differentiate C from the plot, as it overlaps with S. The same

results are produced despite the fact that S was run for considerably less time than

C. It can be observed that HS results are gradually getting worse throughout the

life of the project. The author hypothesises that when the system was designed

there were more coupling than cohesion in the modules and as a result the internal

structure of the system design was deteriorating over time. The negative HS

values indicate that the inter-modules are more than the intra-module edges. In

addition, it seems that large extensions or refactoring events occurred a number of

times throughout the life of the system. There seem to be a reduction of coupling

to a certain degree during these events.

110

Figure 5.4 – Plot showing the HS of C and S for the full dataset

Figure 5.5 shows a plot of HS against EVM for the whole system. To find out

whether there is a relationship between HS and EVM they were correlated. A

value of −0.791 is produced, which indicates that the correlation is highly

significant. It is interesting to observe that this strong correlation illustrates the

credibility of EVM as a good metric. The plot shows that EVM is a good predictor

for HS. HS cannot be used as a fitness function, as it would re-arrange all clusters

into one (HS value of 1.0); since there would be no coupling. Despite the fact that

EVM is not a measure of coupling or cohesion, it was still strongly correlated with

HS. Thus, the metric is performing as desired, achieving low coupling and high

cohesion.

Figure 5.5 – Plot showing the HS against EVM for the full dataset

111

Figure 5.6 – Plot showing the AVDs against convergence points for the full

dataset

Figure 5.6 shows a plot of the AVD against the convergence points of the full

datasets. The correlation of the AVD and the convergence points is 0.658, which

indicates a very high correlation. From the plot, it can be seen that the lower the

difference between subsequent graphs the quicker it will converge. This is good

evidence in support of the hypothesis that the larger the difference the longer the

iterations needed to run the modularisation.

Figure 5.7 – WK results between C1 and Ci for the full dataset

112

Figure 5.7 shows a plot of the WK values for the clustering results of the first

graph compared to the i
th

 clustering results for C. From the plot a general

decreasing trend of WK values can be observed. Initially, the majority of the

graphs of the system compared to the first graph had fair and moderate agreement

strengths. They gradually become poorer throughout the lifespan of the project.

This illustrates the deterioration of the original structure of the system over time.

5.3.5 Constraints and Threats to Validity

The above evaluation shows that the modularisation techniques introduced runs

much faster than prior modularisation techniques introduced in Chapter 4,

demonstrating that the seeding process of the modularisation works well. Previous

work introduced Strategy 1 and Strategy 2 which resulted in 99% and 93.88%

time saving in terms of runtime. However, using a scalar to control the number of

iterations is a much more robust way of conducting the experiment than running

the process for a fixed length. It reduced the overall runtime of the experiment and

provided enough iterations to reach the optima.

In previous sections it was shown that the author has attempted to improve the

efficiency and convergence of the search process by introducing a strategy based

on probability values of the significance of the seeded graphs. Using this new

seeding strategy, the author managed to produce results identical to the full

modularisation of graphs while reducing the running time by more than 500 times.

Thus, from the results produced if a scheme is to be chosen for running the seeded

modularisation then T4 would be selected as the scheme to use. The same theory

applies when modularising the dataset using the preceding results of the

modularisation.

Although, the estimate is fundamentally based on the assumption that the average

number of clusters is √n, the results of the new strategy clearly demonstrate a

significantly better limit than Strategy 2, evidently revealing that the

approximation method works. However, the author would like to acknowledge

that a better estimate of the average number of clusters is needed. A more accurate

113

estimation of the average number of clusters may provide a better estimate of the

number of iterations that are needed for the modularisation process. The next

section presents a number of possible ways to extend the strategies that are

introduced so far.

5.4 Future extensions

As mentioned in the previous section, the probability function of obtaining the

number of right moves is based upon the average number of clusters. Previous

results showed that there was a reduction in the runtime of the clustering

algorithm by over 500 times when using these techniques. However, since √n is

only an approximate estimate of the average number of clusters, a better way of

estimating the average number of clusters is needed. The following sections

outline two approaches that can possibly provide a much more accurate estimation

of the runtime needed for the modularisation process. The first is based on Bell

numbers (refer to Section 6.4.1 for an overview of Bell numbers). It can be used

to provide a more accurate estimate of the average number of clusters and thus the

number of iterations needed for the run. The second approach is to use the actual

number of clusters whilst running the clustering algorithm. For time constraints

reasons these two techniques were not incorporated in this study. These two

techniques are outlined briefly in the next two sections.

5.4.1 Bell Number Strategy

A strategy based on Bell numbers can be used to estimate the average number of

clusters for each time slice. This can then be incorporated into the probability

model introduced in Section 5.3.1 (instead of √n) and used to control the number

of iterations to modularise the next seed in the dataset. Below is an outline of the

Bell number strategy. Refer to Section 6.4.1 for definitions of Bell numbers and

Stirling number of the second kind.

As described in Section 6.4.1, Bell numbers gives the sum of the values for k of

the Stirling numbers of the second kind:

114

𝐵(𝑁) = ∑ {
𝑛
𝑘

}

𝑛

𝑘=0

(5.9)

𝐵(𝑁 + 1) = ∑ {
𝑛 + 1

𝑘
}

𝑛+1

𝑘=0

(5.10)

The Sterling number of the second kind follows the recurrence relation in

Equation 5.9 for k > 0:

{
𝑛 + 1

𝑘
} = 𝑘 {

𝑛
𝑘

} + {
𝑛

𝑘 − 1
} (5.11)

𝑘 {
𝑛
𝑘

} = {
𝑛 + 1

𝑘
} + {

𝑛
𝑘 − 1

} (5.12)

∅(𝑛) = 𝜇(𝑐) + 1 (5.13)

𝜇(𝑐) =
∑ 𝑘 {

𝑛
𝑘

}𝑛
𝑘=0

∑ {
𝑛
𝑘

}𝑛
𝑘=0

(5.14)

𝜇(𝑐) =
∑ {

𝑛 + 1
𝑘

} − {
𝑛

𝑘 − 1
}𝑛

𝑘=0

∑ {
𝑛
𝑘

}𝑛
𝑘=0

(5.15)

𝜇(𝑐) =
𝐵(𝑛 + 1) − 1

𝐵(𝑛)
−

𝐵(𝑛) − 1

𝐵(𝑛)

(5.16)

𝜇(𝑐) =
𝐵(𝑛 + 1) − 𝐵(𝑛)

𝐵(𝑛)

(5.17)

𝜇(𝑐) + 1 =
𝐵(𝑛 + 1)

𝐵(𝑛)

(5.18)

Average number of clusters + 1 =
𝐵(𝑛 + 1)

𝐵(𝑛)

(5.19)

115

ln (∅(𝑛)) = ln (
𝐵(𝑛 + 1)

𝐵(𝑛)
)

(5.20)

= ln (𝐵(𝑛 + 1)) − ln(𝐵(𝑛)) (5.21)

∅(𝑛) = 𝑒ln (∅(𝑛))

Equation 5.19 cannot be evaluated for large n values as it will be extremely large;

storing these values is very difficult. However, if the natural logarithm (ln) is used

(as shown in the equations above) then it will be possible to evaluate for larger

values. Verifying the approximation of this strategy for larger values of n is

introduced in Section 6.4.3. In addition, Section 6.5.1 investigates verifying the

Bell number formula for calculating the average number of clusters, for smaller

values of n.

5.4.2 Actual Count of the Number of Clusters Strategy

A more accurate strategy for working out the number of clusters is to calculate

and store the current average number of clusters whilst the algorithm is running.

The average number of clusters of the final run (iteration) of the algorithm can be

stored and incorporated into the probability model introduced in Section 5.3.1. It

can then be used to calculate the number of iterations that are needed for

modularising the next time slice of the dataset.

5.5 Summary

This chapter introduced a number of strategies and techniques for estimating and

evaluating a number of stopping conditions of the clustering algorithm. The

techniques introduced reduced the runtime of the modularisation process by over

500 times with no significant loss of results. The complexity issues of making a

move in the clustering algorithm are also investigated in this chapter.

116

Chapter 6: Starting Clustering Arrangement

Analysis

6.1 Introduction

This chapter investigates and evaluate the starting clustering arrangement of the

Munch clustering algorithm. Three starting clustering arrangement are presented

and investigated, they are; a truly random clustering arrangement (randomly

determines the number of clusters), a biased random clustering arrangement

(based on a deterministic algorithm), and a disjoint clustering arrangement (each

variable in its own clusters arrangement). Creating and evaluating uniformly

distributed random partitions for the truly random clustering arrangement is also

presented and discussed in this chapter. In addition, this chapter presents and

discusses generated graphs of the search space for each of the three starting points

of the algorithm.

6.2 Motivation

Due to the nature of the algorithm employed in this study, every point of the

search space should be reached from any other point of the search space.

Theoretically, the clustering arrangement could be created from any other

clustering arrangement and in a short amount of time. If all variables are in a

single cluster, the algorithm should be able to transform the clustering

arrangement into every variable in their own independent clusters; intuitively this

should be the most difficult transformation to achieve. In theory, from the Munch

clustering algorithm, any clustering arrangement can be created from when all

variables are in their clusters in less than n moves (n being the number of

variables divided by the number of classes). This is considerably less than the

fixed ten million iterations that the full modularisation process runs for.

However, the main issue is that the correct moves are not known and thus the

need for the search. The fitness function indicates whether the move is “good” or

117

“bad”. Guiding the search process can significantly reduce the runtime of finding

the most optimal clustering arrangement.

For the previous modularisation experiments conducted in Chapter 4 and 5, the

starting clustering arrangement of the HC algorithm (Munch Tool) was being

generated in a fixed way. In previous work, the algorithm starts from the same

point i.e. a fixed point in the search space. The starting clustering arrangement

consisted of every variable in its own cluster. It assumes that all classes are

independent; there are no relationships. Since, only moves that allow

improvements of the fitness are performed, the algorithm might still be likely to

get ‘stuck’ at a local optimum and not obtain the near optimum solution. It might

be possible that using this clustering arrangement, the number of clusters at the

beginning of the search are related to the ones at the end.

In this chapter, a number of experiments are conducted that evaluates three

starting clustering arrangement of the Munch Tool. These starting positions are:

The truly random (randomly and uniformly determines the number of clusters),

the biased random (pseudo-random method of determining the number of

clusters), and independent clusters method (where all variables are in their own

individual clusters). Section 6.4 demonstrates how to create uniformly distributed

random partitions. This will be used to create a uniformly random clustering

arrangement for the algorithm in order to investigate the effect that this might

have on the search. The next section provides an overview of random numbers

and demonstrates the main difference between uniformly random numbers and

pseudo-random numbers.

6.3 Uniformly and Pseudo- Random Numbers

A random number is a number that is selected based on an underlying probability

distribution. A large sample of these random numbers can be used to produce this

distribution. On the other hand, a uniformly distributed random number is a

random number which rests between two predetermined bounds, where the

probability of the number being selected from these two limits is constant.

118

It is acknowledged within this field that generating a uniformly random number is

extremely difficult as machines are based on deterministic algorithm. The term

pseudo-random is usually referred to random numbers that are generated by

computers. Thus, it is preferred to test if a set of numbers is truly random.

However, testing whether a random number generator is truly random is

particularly challenging.

6.4 Uniformly Random Partition

As mentioned earlier, finding an accurate non-biased way of generating the

random clustering points is a non-trivial and complex problem. Creating

uniformly distributed random partitions is based on Bell numbers and Stirling

numbers of the second kind and the recurrence relationship between them. This

section looks at how the uniformly distributed random partitions can be generated

and illustrates the approaches that were used to evaluate the Bell numbers and the

Stirling number of the second kind.

6.4.1 Overview of Stirling Numbers of the Second Kind

and Bell Numbers

The Stirling number of the second kind, denoted as S(n,k) or {𝑛
𝑘

}, can be defined as

the arrangement of n distinct elements into k partitions (non-empty sets) (Riordan,

1980). For example, the set {1,2,3} can be partitioned into one subset in only one

manner: {{1,2,3}}; into two subsets in three different ways: {{1,2},{3}},

{{1,3},{2}}, {{1},{2,3}}; and into three subsets in only one way: {{1},{2},{3}}.

Bell numbers, denoted Bn, are commonly attributed to Bell (1934) due to the

general theory that he developed, although they were extensively studied over 30

years before by Ramanujan (Berndt, 2011). Bell numbers can be defined as the

count of the total number of ways a set of n elements can be partitioned into non-

empty subsets i.e. clustering arrangements. As an example, there are five different

ways that the set of numbers {1,2,3} can be grouped (as explained above), they

are: {{1},{2},{3}}, {{1,2},{3}}, {{1,3},{2}}, {{1},{2,3}} and {{1,2,3}}. Thus,

119

B3 = 5. The n
th

 Bell number can be computed by summing the Stirling numbers of

the second kind, as shown in the example above.

6.4.2 Uniformly Distributed Random Partitions

Generator

Stirling numbers of the second kind and Bell numbers are described in the

previous section. These numbers can be evaluated in a number of ways

(Weisstein, 2008); however there exists a very useful recurrence relation

(Devroye, 1986) as shown in Equation 6.1:

1),(

1)1,(

)1,1(),1(),(

nnS

nS

knSknkSknS

(6.1)

The total number of ways that a set of n objects can be partitioned is defined

according to the Bell numbers in Equation 6.2:

n

k

knSnB
1

),()(
(6.2)

The recurrence relation in Equation 6.1 can be exploited to create an algorithm

that can generate a uniformly distributed random partition of n objects into k

groups as according to Algorithm 6.1 adapted from (Devroye, 1986). This

algorithm returns a random partition represented in Restricted Growth Function

(RGF) form.

RGF is a function f with a range equal to {1,2,…,n} satisfying the conditions that

f(1) = 1 and fi+1 ≤ 1 + max{f(1),f(2),….f(i)} i.e. f(i) be not more than the

maximum of the previous function values. As an example, the RGF for the set

partition of {{1},{2},{3,4,5}} would be (0,1,2,2,2).

Within Algorithm 6.1, UR(a,b) is a uniformly distributed real number generator

that returns a random real number between a and b inclusive, and UI(a,b) is a

120

uniformly distributed integer number generator that returns a random whole

number between a and b inclusive.

Algorithm 6.1 – Uniformly Distributed Random Partition Generator

MUNCH(ITER,M)
Input:
n number of objects to partition
k number of partitions
 1) Let X = n length vector of zeros
 2) Repeat
 3) Let U = UR(0,1)
 4) If k > 1
 5) R = S(n-1,k-1)/S(n,k)

 6) Else
 7) R = 0
 8) End if

 9) If U≤ R
10) X(n) = k
11) k = k - 1
12) Else
13) X(n) = UI(1,k)
14) End If
15) n = n - 1
16) Until n = 0
Output: Random partition X in RGF form

To determine the number of partitions to separate the objects into, the distribution

can be computed using Pr(k=x) = S(n,x)/B(n).

This algorithm works well for small n, but as n gets large, S(n,k) and B(n) get

astronomically large. For example, according to (Weisstein, 2008), B(1000) has

1928 digits. In order to avoid numerical instability the natural logarithm of S(n,k)

and B(n) would need to be used.

6.4.3 An Approximation for the Stirling Numbers of the

Second Kind

It is difficult to directly obtain the natural logarithm of the Stirling numbers of the

second kind, either from Equation 6.1 or from the various other forms, as these

involve summations. An approximation involving products is therefore desirable.

Temme (1993) provides one such approximation, given in Equation 6.3.

121

n

kn
t

ekxnt

txt

t
tf

tknkttA

k

n
tfAkknS

x

kn

0

00

000

0
0

000

0

)(

)1ln()ln()(

))(1(
)(

)ln()()(

)(~),(

0

(6.3)

xex
n

k
x 1 solves 0

(6.4)

k

n
tfkknAknS ln))(ln()ln()()ln(~),(ln 0

(6.5)

To find the value of x0 (real and positive) in Equation 6.4, we use the Newton-

Raphson method, with initial starting value of n/k. The natural logarithm of the

Stirling Numbers of the second kind is shown in Equation 6.5.

6.4.4 An Approximation for Bell Numbers

Since Bell numbers are defined in terms of the summation of Stirling numbers,

deriving the natural logarithm directly from Equation 6.2 is difficult. An

approximation involving products is therefore desirable. Harper (1967) provides

one such approximation given in Equation 6.6:

))1(24/()1072(1)(1)1((

1

1
~)(

3221

 RnRRRRRnC

e
R

nB C

(6.6)

nReR R solves

(6.7)

))1(24/()1072(1)(1)1(()1ln(
2

1
~)(ln 3221 RnRRRRRnRnB

(6.8)

122

 nR

nR

ln
2

1

(6.9)

To find the value of R (real and positive) in Equation 6.7, it is noted that the two

inequalities in Equation 6.9 are derived from Equation 6.7. This gives an upper

and lower bound for R, hence the Bisection Search based method is used to derive

the value of R. The Bisection search method works by repetitively bisecting

(dividing) the interval and selecting a subinterval that the root is within for

additional processing. The natural logarithm of the Bell numbers is shown in

Equation 6.8.

6.5 Evaluating the Random Partition Generator

The random partition generator will only work for large values of n. The Sterling

numbers of second kind and Bell numbers can be evaluated for small values of n.

For larger values, the natural logarithm would need to be applied to them and an

approximation technique is used. This is due to computational issues, it is

extremely difficult to evaluate them for very large numbers of n. The next few

sections presents a number of methods for verifying the use of Bell numbers for

calculating the average number of clusters and for verifying the uniformly random

partition generator.

6.5.1 Smaller Approximation of the Average Number of

Clusters

To verify the mathematics for calculating the average number of clusters using

Bell numbers, simulations of a large number of clustering arrangements of small

values of n (up to 16) are conducted. The search space is exhaustively explored;

generating all partitions (clusters) and summing up the total number of clusters to

evaluate the average number of clusters. In addition, the average number of

clusters was evaluated using the Bell number strategy for the same values of n.

Table 6.1 demonstrate the results of the simulations. Only 16 samples were

123

demonstrated as it is not efficient for larger values of n, it is not practical to run it

for larger values due to the amount of time that it takes for the computation. Thus,

due to the small sample size, it cannot be proved that the clustering arrangements

are uniformly distributed, however it can be seen that the average cluster size is

exactly as was expected. Results shows that the actual average cluster sizes are

identical to the estimated average number of clusters, thus proving that the Bell

number strategy is accurate for small values of n. Refer to the next section for

verifying the bell number strategy for larger values of n.

N Count Simulations

(No. of clusters)

Bell number strategy

(No. of clusters)

1 1 1 1

2 2 1.5 1.5

3 5 2 2

4 15 2.46667 2.46667

5 52 2.90385 2.90385

6 203 3.3202 3.3202

7 877 3.72064 3.72064

8 4140 4.10797 4.10797

9 21147 4.48423 4.48423

10 115975 4.851 4.851

11 678570 5.20952 5.20952

12 4.21E+06 5.56077 5.56077

13 2.76E+07 5.90552 5.90552

14 1.91E+08 6.24444 6.24444

15 1.38E+09 6.57806 6.57806

16 1.05E+10 6.90685 6.90685

Table 6.1 – Simulations of clustering arrangement vs Bell number

estimations

6.5.2 Larger Approximation of the Average Number of

Clusters

For larger values of n, 100 million simulations of random clusters of different

sizes are generated and the running total of the number of average clusters is

calculated. The simulations starts with n = 100 and ends with n = 1000, in

intervals of 100 between each n value. Subsequently, the average number of

124

clusters is evaluated using the Bell number formula for the same n values, to find

out how close is the Bell number approximation is to the simulations conducted.

N Average random
clusters

Average Bell
number estimation

100 27.6248 28.5046
120 32.1096 32.9875
140 36.4668 37.3434
160 40.7208 41.5955
180 44.8845 45.7601
200 48.9754 49.8497
220 52.9996 53.8737
240 56.9661 57.8396
260 60.8818 61.7537
280 64.7478 65.6209
300 68.5729 69.4455
320 72.3584 73.231
340 76.1083 76.9805
360 79.8267 80.6968
380 83.5102 84.3821
400 87.1685 88.0383
420 90.7966 91.6676
440 94.3996 95.2714
460 97.9837 98.851
480 101.538 102.408
500 105.074 105.943
520 108.589 109.458
540 112.086 112.954
560 115.561 116.431
580 119.022 119.89
600 122.464 123.332
620 125.886 126.758
640 129.3 130.168
660 132.696 133.564
680 136.076 136.945
700 139.442 140.312
720 142.796 143.665
740 146.137 147.006
760 149.466 150.334
780 152.781 153.65
800 156.084 156.954
820 159.381 160.247
840 162.661 163.529
860 165.934 166.8
880 169.195 170.061
900 172.448 173.312
920 175.684 176.553
940 178.916 179.785
960 182.142 183.007
980 185.355 186.22
1000 188.555 189.424

Table 6.2 – Large approximations of the average number of clusters

125

Table 6.2 displays the results of the simulations and Bell number formula

approximation for the average number of clusters. From the results, the random

number generator cannot be proven to be uniformly distributed, however, on

average it generates the expected number of clusters. The random generator

introduced produces results that are very similar to what is expected. Thus,

proving that the random generator work correctly. From the table, it can be seen

that there is a difference of 0.835 between the average number of clusters for the

random simulations and the Bell number formula. This is probably due to the

constant biased form of the approximation that is being employed. It would offer

more reliability to test it with very large number of n values, but the number of

simulations that would need to be implemented would be enormous and not

practical. Due to computational issues, it is extremely difficult to evaluate bell

numbers for very large numbers.

6.5.3 Ten Variable Simulation Verification

The approximation technique (approximating the natural logarithm of Bell

numbers), described in the previous section, does not work for small values of n.

The approximation breaks down and is inaccurate. Thus, an exploration technique,

simulations, was conducted for small values of n (ten variables) to verify that the

random number generator works for smaller values of n.

The author generated 100 million random clustering arrangements for n = 10. The

number of possible clustering arrangements is hyper-exponential, for one variable

there is one cluster and for ten variables there 115,977 possible partitions. The

issue faced in performing the simulations with larger n values is that the

simulations will not hit every single possibility. However, since there are 115,977

possibilities for n = 10, then with a 100 million simulations it is guaranteed to hit

every single clustering arrangement at least once.

Figure 6.1 displays the frequencies against numerations. The plot displays a count

of the number of times the simulations hit the possible clustering arrangement.

From the results, the expected average number of clusters is 862.255 (100 million

126

clustering arrangements divided by the number of possible partitions), the

minimum pile size is 723 and the maximum pile size is 995. Thus, showing that

every single clustering arrangement is covered; results show that there are no zero

values which prove that it hits all of the possibilities. Moreover, it shows that

there is a uniform distribution across the 115,977 possibilities, majority of the

spikes are roughly the same (showing a steady pile). This illustrates that that the

results are significant for the ten variables. The addition of all the possible

clustering arrangements will produce 100 million, which is the total number of

simulations that are produced using the random number generator.

Figure 6.1 – Plot showing the frequencies and numerations

As there are only ten variables, the results cannot be statistically significant. The

approximations being used is for very large values of n, and for this simulation the

author has only used n as 10, which is considerably small. However, being able to

obtain extremely good results with small values of n, as well as accurate results

for the approximation methods demonstrates that the random number generator

works well and is accurate.

127

6.6 Visualisation of the Clustering

Arrangements

6.6.1 Search space

As described in the literature review, the space that contains all of the feasible

solutions is referred to as search space. Every point in the search space represents

a possible solution and each of these solutions can be given a value or fitness for

the problem.

Using the previous starting clustering arrangement (the starting clustering

arrangement consisted of every variable in its own cluster), the search starts from

the same place every time it is initiated. Thus, as explained in the previous

sections, starting the search off at a more biased or uniformly random point in the

search space might produce different results.

In order to reveal where the majority of the clustering arrangements are going to

be and to visualise the search space of the uniformly and pseudo- random

techniques, simulations would need to be conducted. The next section introduces

Multi-Dimensional Scaling and illustrates how it was used to visualise a sample of

how the starting clustering arrangements of these techniques looks like.

6.6.2 Multi-Dimensional Scaling (MDS) Overview

Multi-Dimensional Scaling (MDS) is an approach for multivariate and

exploratory data analysis that aims to reveal and visualise the structure of a

dataset. It consists of related gradient analysis techniques that are used in the

information visualisation discipline, specifically, to display information contained

in a distance matrix. MDS allows the visualisation of how close points are to each

other for various distance and dissimilarity metrics. It only requires a matrix of

pairwise distances or dissimilarities, no raw data is required. The “multi” part of

the name indicates that there is no restriction related to the construction of the

maps in one or two dimensions. The aim of using MDS is to place each object in

128

n-dimensional space in a way that preserves the distance between objects (Borg

and Groenen, 2005).

There are a number of algorithms for MDS that depends on the input matrix. One

such example is the classical Multi-Dimensional Scaling i.e. Principal

Coordinates Analysis (Torgerson, 1952). It takes a matrix of dissimilarities

between pairs of object as input and produces a coordinate matrix as output. It

assumes the distances to be Euclidean; it is usually the first choice for an MDS

space. The Euclidean distances between the configuration points reproduce the

original distance matrix.

On the other hand, non-classical MDS, which includes metric, non-metric and

generalised approaches (Cox and Cox, 2001), can be used to measure

dissimilarities of a set of objects. Using these techniques, MDS can also be used

to measure dissimilarities that are abstract. Various criteria can be used to express

how close are the distances of the points on the plot, to the original dissimilarities.

Thus, a visual representation can be used to represent their dissimilarities. Allan et

al (2007) used MDS to visualise and compare the search space of two crossover

operators. They used a metric-based MDS to generate sample random points of

the crossover operators and exploit the extrema within the search space in order to

avoid early convergence.

6.6.3 Visualising the clustering arrangements using MDS

Non-classical (metric-based) MDS are used to visualise high dimensional spaces

into high dimensional plots. A distance matrix, Hamming distance (Hamming,

1950), is used to calculate the coordinates for the plot, where the distances

between the variables are maintained. If the numbers are very large it indicates

that they are far apart, whereas if the numbers are very small it indicates that they

are almost the same. The individuals within the population are subsequently

applied. For each of the starting clustering arrangement, 4000 RGFs (RGF is

defined in Section 6.4.1) was generated from eight variables and 1000 random

129

points were selected at random. A matrix of 1000 by 1000 points is plotted, and

the random points are plotted on the search space.

Figure 6.2 displays a plot of the shape of the search space for the pseudo-random

clustering arrangement and Figure 6.3 displays the shape of the search space for

the uniformly random clustering arrangement. From the plots it can be seen that

the biased random arrangements are more bunched together than the uniformly

random arrangements, there is a more definable oval shape for the pseudo-random

clustering arrangements. Whereas, the truly random arrangements displays a

better distribution of points, with more outliers (on the outskirts of the general

shape) displayed. The search space starts off more in corners. Thus, indicating that

the uniformly random clustering arrangements can be more representative of the

real world.

Since the graphs are based on MDS, the author would like to point out that the

scales from the plot are only relative distances. The disjoint clustering

arrangement (each variable in its own cluster) did not need to be visualised as it

starts from the same point in the search space every time the algorithm runs.

Figure 6.2 – Search space of pseudo-random starting clustering arrangement

130

Figure 6.3 – Search space of uniformly random clustering arrangement

6.7 Experimental Procedure

In order to evaluate the starting clustering arrangements of the Munch algorithm

and to find out the most optimal arrangement to use for guiding the search, three

experiments were conducted. The three experiments (described below) involve the

modularisation of the full dataset for ten million iterations. The same program is

used for the three experiments, with only the starting clustering arrangements

differ for each. The experiments were repeated 100 times each as HC is a

stochastic method and there is a risk of the search reaching only the local maxima

and thus producing varying results.

Independent clustering arrangement (IC) – The starting clustering arrangement

consisted of every variable in its own cluster, assuming that all classes are

independent; there are no relationships. This starting arrangement indicates that

the search will always starts at the same point in the search space. This technique

was used for all previous modularisation experiments.

(Biased) random clustering arrangement (BR) – The starting clustering

arrangement was produced by generating a random number of clusters between

131

one and n and a random number of variables between one and n for each of the

clusters. The random numbers of variables are placed randomly inside the

clusters.

Uniformly random clustering arrangement (TR) – The starting arrangement of this

experiment was produced and used as the starting point for commencing the

search. It is based on the uniformly random partition generator introduced in

Section 6.4.

As seeding was already proved to improve the efficiency of the modularisation

process, it was not needed to be included as part of these experimentations. For

this section, the interest is primarily on further understanding the performance of

the Munch algorithm.

6.8 Results and Discussion

Figure 6.4 shows the EVM values for IC, BR and TR for the full dataset. From the

plot it can be seen that IC produces the best EVM values for the whole dataset,

illustrating that the technique originally used for previous work is the most

optimal in terms of EVM. For both IC and BC there seems to be a gradual

increasing trend in the EVM values, whereas for TR it can be seen that there is a

gradual decrease in the EVM values. This might suggests that starting the search

from a uniformly random point in the search space might not be the best technique

to use for the Munch algorithm. Note that the author expected the fitness function,

EVM, of BC and TC to be lower as the fitness function will start with a negative

value. In addition, the peaks and drops can still be noticed from the plot which

suggests at these time slices there were large difference in the number of classes

(suggesting where activities such as extensions or refactoring occurred). Where

there are drops instead of peaks on the plot, this suggests that the algorithm

converged early and thus there were not enough iterations for producing the most

optimal clustering arrangements.

132

Figure 6.4 – Plot showing the EVM for the three strategies

Figure 6.5 displays the convergence points for IC, BR and TR for the full dataset.

The convergence point is an indication that the EVM is at a maximum. It is the

earliest point in terms of the iterations of the search, when the fitness function no

longer increases until the end of the run. From the plot, it can be seen that there is

a gradually increasing trend that can be observed for the three strategies,

indicating that a longer runtime is required for later graphs. This correlates with

the fact that the software system is increasing in size through time. Refer to Figure

4.2 for a plot of the active classes at each software check-in. From Figure 6.5, it

can be seen that IC had the highest convergence points throughout the dataset,

followed by BR and then TR. This indicates that IC ran for longer iterations than

both BR and TR, which explains why the EVM values of BR and TR are lower than

IC. The search converged early for both BR and TR.

133

Figure 6.5 – Plot showing the convergence points for the three strategies

From Figure 6.4, it can be seen that BR produced better EVM values than TR; this

can be explained by looking at Table 6.3. The average convergence point for BR

is 997,919, whereas the average convergence point for TR is 624,395. Thus, it can

be clearly seen that TR converged earlier than BR for the majority of the graphs.

From the table, it can also be seen that the average convergence points for IC is

1,535,037, which is considerably more than BR and TR.

Strategy Avg EVM Avg HS Avg Convergence

IC 295.22 -0.41887 1535037

BR 109.73 -0.23591 997919

TR -37.48 -0.15876 624395

Table 6.3 – The averages of EVM, HS and convergence points for the three

strategies

Table 6.3 display the averages of EVM, HS and convergence points for the three

strategies. The best average of EVM and convergence points from the three

strategies is IC, followed by BR, then TR. However, the best average HS value

from the three strategies is TR, followed by BR and IC, respectively.

134

Figure 6.6 – Plot showing the HS for the three strategies

Figure 6.6 displays a plot of HS values of the three strategies for the full dataset.

From the plot, it can be noticed that the same gradual decrease in HS values is

shown for the three strategies, illustrating how the quality of the system collapses

over time. It seems that the system was designed with more coupling than

cohesion in the modules and as a result the internal structure of the system design

was deteriorating. However, from the plot, it can be seen that TR produces the best

HS values, followed by BR and then IC. This contradicts with the EVM plot,

which shows IC producing the most optimal results and TR the worst results from

the strategies. However, as HS is the external validation metric that is used along

EVM to verify the results, the author assumes that there can be variability in the

results produced.

To conclude, TR or BR is useful for analytical purposes, however they were not

able to perform better than starting the search using IC technique. The advantage

of starting the search much higher in the search space seems to be difficult to beat.

However, this work requires further future research. One way to extend this piece

of work is apply the RRHC algorithm to the TR or BR techniques. RRHC will be

inefficient if the starting points of the search are in the same position every time.

135

The use of RRHC algorithm traditionally outperforms the RMHC algorithm, and

starting at a different position in the search space might allow the RRHC

algorithm to perform better.

6.9 Summary

This chapter investigated and evaluated three starting clustering arrangement of

the Munch tool clustering algorithm, they are; a truly random clustering

arrangement (randomly determines the number of clusters), a (biased) pseudo-

random clustering arrangement, and disjoint clustering arrangement (placing all

variables in their own respective clusters). This chapter has also presented how to

create and evaluate uniformly distributed random clusters for the uniformly

random starting clustering arrangement. In addition, it highlighted issues that are

related to the search space and presented graphs of the search spaces for each of

the three starting points of the algorithm.

136

Chapter 7: A Measure of Modularisation

using Random Graph Theory

7.1 Introduction

This chapter looks at calculating the probabilities of the software versions of the

dataset resembling a random graph. It investigates whether the probabilities

increase as the maintenance increase and whether the architecture resembles more

randomness throughout the life of the project. It illustrates how the graph metric

can be used as a tool to indicate areas of interest in the dataset, without the need

for modularisation. Moreover, this chapter discusses the possible applications of

the findings of the research, in particular the application of locating and guiding

refactoring activities. This chapter is based on work presented in (Arzoky et al,

2014a; Arzoky et al, 2014b).

7.2 Investigating the Randomness in the Dataset

7.2.1 An Overview of Random Graphs

The domain of random graphs was started in the late fifties and early sixties of the

last century. Although there were studies that appeared before that time, the

papers by Erdős and Rényi (1959, 1960 and 1961) are considered to have founded

this discipline (van der Hofstad, 2014). The minimal random graph model can be

modelled with a set of n nodes (or vertices), adding edges between them

uniformly at random. Erdős and Rényi (1960) introduced a number of versions of

their models, with the most commonly studied one denoted G(n,p). An edge can

occur independently with probability 0 <p< 1. Edges are chosen randomly for a

fixed set of n nodes and each edge is chosen to be added or removed from the

graph with probability p (Newman, 2003).

There are currently various studies such as (Barabási et al, 2000; Mislove et al,

2007; Roth et al, 2012) that have used random graph theories for source code

137

analysis. However, according to the author’s knowledge comparing the coupling

graphs of the dataset to the random graphs, has not been performed in the software

engineering field previously. In addition, investigating how software changes

throughout its lifecycle (through software versions) are correlated to randomness

has not been attempted before.

7.2.2 The use of Random Graphs

This section describes how random graphs were used to calculate the probabilities

of whether the software versions of the dataset resemble random graphs or not.

There are a number of available random graph models; however, the Erdős-Rényi

random graph model was chosen for this study as it is one of the simplest and

most commonly used. It calculates the probability of a node being connected to

another node. Other models which include the degree of the number of edges that

are connected to a node as opposed to the connectivity of the node was not

investigated due to time constraints.

The Erdős-Rényi random graph model arises by taking n vertices and adding an

edge between any pair of discrete vertices with some fixed probability p

independently for all pairs (van der Hofstad, 2014). Consequently, the expected

number of edges can be calculated as in Equation 7.1, however, the number of

edges can change randomly and all graphs have p ≠ 0 of being selected.

2

)1(

nn
pE

(7.1)

Thus, the expected distribution of edges was generated based on the Erdős-Rényi

random graph model. Subsequently, the observed distribution was created from

each MDG. The binomial distribution was used to compute the probability of

observing 1…n−1 connectivity. p is calculated from the density and the density is

calculated from the MDG. The density is simply calculated by dividing the

number of edges by the total number of edges that there could have been. Lastly,

the Kolmogorov-Smirnov test (K-S) (Massey, 1951) was used to determine

whether the two datasets differ significantly. The K-S is a common statistical test

138

that is used for measuring the goodness of fit. It is a used for measuring general

differences in two populations (Matsumoto, 1988). This test allowed the author to

find out if the probability of the two distributions is equivalent i.e. whether it is a

random graph or not.

7.2.3 Experiment Procedure

In order to investigate the randomness of the dataset, one experiment was devised

to modularise the full dataset of 503 graphs. The runtime for each modularisation

was ten million iterations. The starting clustering arrangement consisted of every

variable in its own cluster. It assumes that all classes are independent; there are no

relationships. The experiment was repeated 25 times as there is a risk of the search

only reaching a local maximum.

7.2.4 Results and Discussion of experiment

For each graph in the dataset the frequency of the number of edges was recorded.

There will be no nodes that have zero edges as everything is connected to each

other. As mentioned in Section 4.3, all of the modules that are not produced by

Quantel and all of the non-active classes were removed. For example, for graph 1,

there are 85 classes that are connected to only one class and there are 66 classes

that are connected to two classes.

Figure 7.1 shows the connectivity of graph 105 for both the observed and the

expected number of edges. It can be observed from the plot that there is a

noticeable similarity between observed and expected edges; this is due to the high

probability value (0.0343) of this graph resembling a random graph i.e. the

chances of these two being the same distribution is reasonably high.

139

Figure 7.1 – Connectivity against the frequency of edges for graph 105

Conversely, it is expected that a graph with a lower probability to be different as

the chances of it becoming from the same probability is very unlikely. Figure 7.2

displays graph 95 for both the observed and the expected number of edges. This

graph has a very low probability value (2.28E-52) of it resembling a random

graph.

Figure 7.2 – Connectivity against the frequency of edges for graph 95

Figure 7.3 displays the probability values of whether a graph resembles a random

graph for the full dataset. From the plot it can be seen that the majority of the

probabilities have extremely small values that range from 1.3086E-05 to 2.2806E-

52. The lower the probability values the less the graph resembles a random graph,

140

which suggests that the majority of the graphs are not random. However, few of

the graphs have probability values of up to 0.034 which indicate that there is a 3.4

per cent chance of these graphs resembling a random graph. These values are

reasonably high and it shows that there is an area of randomness in the way the

software is structured at these points. Modularisation is not possible with data that

resembles random graphs.

As discussed previously in Chapter 3, the EVM metric employed for this study

relies on the concept of low inter-module coupling and high intra-module

cohesion. It rewards maximising the cohesiveness of the clusters (presence of

intra-module relationships), clustering with a high number of intra-module

relationships. It optimises the decomposition of the software to reach low

coupling between different clusters and high cohesion of objects from the same

cluster. As random graphs have n nodes with randomly connected edges between

them, modularising random graphs can be very difficult.

Figure 7.3 – Probability values representing the randomness of the graph

Due to the extremely small probability values produced the natural logarithm of

these probabilities were computed. Figure 7.4 shows the natural logarithm of the

probability values (ln(p)), the higher the value the more the graph resembles a

random graph. From the plot it can be observed that graphs 100-180 have higher

ln(p) values which indicates that at these points the graphs more resemble random

graphs.

141

Figure 7.4 – The natural logarithm of the probability values for the whole

dataset

Figure 7.5 shows a plot of the ln(p) against active classes for the whole dataset. A

general relationship can be observed from the plot, which shows that as the

number of active classes increases ln(p) decreases, apart from the large peaks and

drops between graphs 100-200. A value of −0.372 is produced when correlating

ln(p) against active classes. This still indicates a high correlation as there are over

500 pairs of observations; the one per cent significance level is at 0.115.

Figure 7.5 – The natural logarithm of the probability values against active

classes

142

Figure 7.6 shows the relationship between ln(p) and EVM. It can be observed that

as EVM increases, ln(p) decreases. To find out how strong is this relationship the

two values were correlated for the whole dataset and for graphs 100-200 only. A

value of 0.266 is produced for the whole dataset and −0.513 is produced for

graphs 100-200. These values indicate a strong correlation. In addition, correlating

the ln(p) against the HS metric produced −0.403 over the whole dataset, which

also indicates a very high correlation. These relationships demonstrate that the

modularisation works well for the majority of the dataset (apart from the small

activities between graphs 100-200). It also suggests that the random graph metric

can be used to quickly measure how effective the search is going to be and to

indicate areas (software check-ins) of interest in the software, such as locating

major changes and refactoring activities.

Figure 7.6 – The natural logarithm of the probability values against EVM

Figure 7.7 shows a plot of the ln(p) against AVD. Correlating the dataset results

of the two values together produced no clear relationship, however, looking at the

100-200 graphs section of the dataset, produced −0.407. This suggests a strong

negative correlation for this period, mainly due to the large number of activities.

In addition, Figure 7.7 shows that there are three time periods (graphs 101-127,

141-149 and 161-163) where there were very large differences in the probability

values, revealing that these graphs had up to 3.4 per cent chance of resembling a

143

random graph. It is interesting to notice that these large changes in probability

values occur just before the sizeable changes in the AVD and active classes. This

suggests that during this period there was instability in the code. This was

investigated further by correlating the results produced with information from the

developers; the author was provided with feedback on the results from the senior

architect at Quantel, and was also supplied with all of the check-in comments for

the dataset currently being analysed.

During this period, the implementation of a new version of the main library

caused some of the libraries to be unstable and to have unpredictable behaviour.

Developers were in a state of flux on how to use the libraries. There were few

months of implementation that included coding the interface and trying out the

libraries in different ways and then a roll back to the previous code. The roll back

did not only include the library classes but also their own code. Thus, there were

sizable shifts in the number of classes as they went through the different library

models. Developers went back and forth a number of times. It finally stabilises as

they worked out the appropriate model to use.

During this period there was evidence to suggest early product implementation

with many issues in the code. Thus, these activities are not considered as new

feature developments as internal structures of the code were changed without

changing the functionality of the software. However, it is also not refactoring, as

refactoring does not involve introducing new functionalities. It almost falls into a

third category, which involves the addition of a new version of the software of the

library being used and modifying the code to be compatible with the newly

introduced library.

WK values for the clustering results of the first graph and the i
th

 clustering results

for the full modularisation were produced. There is a decreasing trend of the WK

values which suggests that the original structure of the system deteriorates over

time. Correlating ln(p) and WK did not produce a high correlation (0.159),

however a relationship can still be observed. This still requires further

investigation as part of future work.

144

Figure 7.7 – The natural logarithm of the probability values against AVD

7.2.5 Summary of the Analysis

To summarise, the majority of the graphs from the dataset has very low

probability values of them resembling random graphs, apart from the small time

frames where there were large subsequent changes in the code. These large

changes were due to the introduction of a new version of a library. There were a

number of major roll backs; going back and forth was chaotic as there were a

number of bugs that the Quantel team of developers were not able to initially fix.

Heavy pressures to resolve work with impending deadlines had led to this

randomness. There should be a worry for the software manufacturing company if

the structure of the code resembles a random graph.

The view of the analysis was fed back to the developers at Quantel, they were

surprised on how the results of certain periods of development resembled more

randomness. However, they felt that future research work (beyond the current

dataset under analysis) is needed to be able to show that the rate of change is

slowing as the code matures. Using random graphs, observing when a certain

percentage of randomness occurs, can possibly indicate whether or when

145

refactoring should be performed. The random graph test may also be used to

indicate areas where a higher runtime of the modularisation process is needed.

7.3 Industrial Feedback

7.3.1 Detecting refactoring activities

One of the aims of this research is to be able to identify areas of major change,

from the source code. These changes can either be new functionality or

refactoring. However, the data obtained from Quantel does not allow for the

automated distinction between the two types, but being able to identify areas of

interest was useful, as it allowed potential locations of refactoring in the code to

be identified.

As the numbers of classes that are active tend to grow over time, so does the

complexity of the software. Refactoring efforts can help to reduce these

complexities. It was suspected that refactoring was occurring and not simply other

development because Quantel has informed the author that they refactor, and that

this is a practice they encourage all staff to strive towards.

Quantel has provided the author with more detailed classifications for each of the

classes in the dataset, and also the check-in comments for the whole dataset. Thus,

allowing the results of the modularisations to be mapped back to the architecture.

The author has had discussions about the results with the senior architect at

Quantel and was provided with comments and feedback for each high value

change in the number of classes from the dataset. Table 7.1 provides a summary

of the check-ins for each high value change in the dataset. It shows the check-in

number, the difference in the number of classes (AVD) and the domain expert

comments. Three main categories were defined for these check-ins, they are;

feature change i.e. new functionality, library change (involves sizeable refactoring

activities) and roll back error (regression).

146

Check-in No

(time slice)

 AVD

Domain expert

comments

30 283 Roll back error

79 250 Library change

115 104 Library change

128 1325 Library change

132 1327 Feature change

138 1317 Library change

139 1309 Library change

150 1164 Library change

154 1203 Roll back error

218 290 Feature change

369 157 Feature change

426 894 Library change

454 363 Feature change

476 243 Feature change

484 123 Feature change

Table 7.1 – Domain expert comments on the dataset

From the table above, several feature change can be noticed. These are due to the

impact of merges i.e. when a branch is committed into the main trunk. The dataset

under analysis is only the main trunk. Developers were working on branches for a

number of weeks or months and then checking-in the code all at once; thus,

showing large “jumps” in the number of classes.

From the table it can also be noticed that library changes have a large impact on

the number of classes. In fact, out of the 15 largest changes in the source code,

seven of them were library changes. Library changes involve inheriting a number

of classes and subsequently refactoring the code to work with the new library. It

does not entail new feature development but at the same time it is not pure

refactoring activities, it almost falls into a third category (as mentioned in the

previous section). During the period under analysis Quantel did not refactor a

great deal, there were no major refactoring activities that are performed as a

whole. However, there were numerous smaller refactoring activities that are

performed before or after the introduction of new updates, versions or

functionalities.

147

The possibility of furthering the understanding of the evolution of large program

source code is of high importance to Quantel, since bespoke software product

development is one of their core business activities. Also, being able to predict

future changes would greatly enhance their ability to allocate resources, and hence

give them a more competitive and adaptable edge. For future work, the approach

aforementioned in this chapter would need to be developed in order to predict

when the system will be in needs of refactoring. These approaches can be

investigated further to find out whether they can be useful for project team leaders

to predict in advance when maintenance or refactoring sessions should be planned

in the future.

7.3.2 Software Architecture

As shown from the experimentations conducted, the addition of further

functionalities was becoming more difficult as more active classes are being

added to the system. Thus, there is a need for a metric to derive industry to

consider simplifying and refactoring the code as these measures goes up.

Indicating whether the complexity or the structure of the code is stabilising, could

be used as a feedback mechanism to justify to management that a particular way

of code development is actually working. Thus, one particular metric that requires

further investigation is the addition of classes. From the range of adding classes it

might be possible to identify whether the software is in early development or not.

As the software starts to mature the rate of adding classes would gradually slow.

The current dataset covers over four years and four months; however the author

now has access into nine years of data. For future research, the author predicts that

the rate of change would slow as the system is becoming more stable, the rate of

change of graphs would smooth to almost stable as the code gets into maintenance

mode.

The author reversed engineered the initial architecture of the code (from the first

time slice) using modularisation. That matched the designed architecture that

Quantel developers started with. However, as time went forward it seems that the

architecture started to deteriorate. As the software system grows there seemed to

148

be emerging problems and the architecture of the software became more and more

eroded, thus obtaining less and less coherence.

7.3.3 Programmers’ productivity issues and

modularisation

The architecture of the software under analysis took a long time to create (over

four years), with small teams of developers. There were no solid formal design

methods that were used to build the architecture of the system; these were

considered too formal for the developers at Quantel. Instead, developers started

building the code almost straight away to test out ideas, dropping them and

building the code again. Thus, to start with, developers had an overall picture of

the design; this was then communicated to the team members. Team members

came up with an idea on how to code it and passed the design to the development

engineers.

A small group of developers that were in few small teams worked on the

architectural components of the software system, such as, user interface, system

engine and database. Thus, part subsystems are owned by an individual or a pair

i.e. classes are owned by individual developer(s). These are based on the concept

of module assignment first introduced by Parnes (1972) i.e. the allocation of

modules to people. Thus, if we have a software system, parts of this system have

people underneath it that are responsible for individual classes (knowing that

people are working in teams). If there is a program with two people looking at that

particular program, then they are in conflict as they will not be able to edit at the

same time. One way of solving it is to create a header or a class and decline one

person to it whilst the other person being the implementer. This is referred to as

information hiding, a concept also first introduced by Parnes (1972).

According to Brooks (1995), adding more developers to a late software project

can causes it to become later. He argued that as the number of developers rise so

does the complexity and communication costs. His argument has now become

known as Brooks’s Law. Thus, if an individual programmer can produce a certain

149

amount of lines of production code a year; as soon as they are allocated in a large

team their productivity can drops dramatically. This is because the programmers

will keep impeding each other. The more programmers on the team the less each

programmer can develop. Thus, there is a need for a software architecture that can

keep programmers as de-coupled as possible, especially as the software gets more

and more coupled over time. The more coupled the software becomes the less

programmer productivity becomes. As programmer’s comprehension gets worse,

the impact of changes in classes as the software becomes more coupled becomes

broader. In other words, the more lines of code that the software has, the more

impact there is on key headers changing. As people working on branches have to

merge in and there is a substantial amount of change, they cannot merge the code

and thus having to re-implement it. Due to all the increase in these complexities

and coupling effects the programmer’s productivity will get worse. This leads to

the appearance of more bugs due to the merge errors.

All the above indicates to the author that modularisation can also represent how

people work together. The author hypothesises that there is a relationship between

modularisation and how people are grouped into teams. Investigating if

modularisation can show the conflicts that are happening between the ways

individuals are working can be a direct useful application of modularisation and a

direct way of indicating the lack of productivity.

7.4 Summary

This chapter introduced a technique for investigating whether the dataset used for

the modularisation resembles a random graph. Results have demonstrated that the

Quantel time-series dataset does not resemble random graphs except for very

small sections of the datasets where there were large activities i.e. major roll

backs. Thus, from the results it can be seen that the random graph metric can be

used as a tool to focus on and indicate areas of interest in the dataset (without

running the modularisation), such as where the system is starting to decay i.e. if

the link between classes is random or strongly resemble a random graph then the

software is decaying. In addition, results presented in this chapter shows that as

150

the software grows, the architecture of the software gets more eroded and less

coherence. These results were backed up by the senior software architect at

Quantel. Moreover, this chapter discussed the possible applications of the findings

of the research, especially the application of the outcomes of the research in

finding and guiding refactoring activities.

151

Chapter 8: Conclusions

8.1 Thesis Overview

This thesis highlighted and described previous approaches to the problems of

SBSE, software clustering and software architecture. Based on this extensive

research, a number of research objectives were derived for this research. In order

to examine the research objectives of the study, a software tool named Munch was

designed and implemented. It allowed the research questioned to be addressed by

conducting extensive experiments on a large real-world time-series dataset.

The thesis is organised into eight chapters. In this chapter, a summary of the

research objectives and contributions of this thesis is addressed and summarised.

An outline of the research limitations is also provided for future research

directions. The followings summaries the previous seven chapters:

Chapter 1

This chapter provides an introduction to the thesis. An overview of related

research areas is presented in this chapter along with an outline of the main

motivations for the research, and the aim and objectives of this study. It also

described the research approach employed and presented an overview layout of

the thesis.

Chapter 2

This chapter summarised background information in the areas of AI, SE and

SBSE, and presented introductions to the problems to be tackled by this study. It

constitutes of the main motivation and background knowledge behind the research

presented in this thesis.

Chapter 3

This chapter introduced Munch, a clustering tool, used to conduct modularisation

experiments on the dataset under analysis. The design and implementation of the

152

tool, including all of its individual components was illustrated in this chapter. The

individual components of the tool includes the clustering algorithm, fitness

functions, an external validity metric and criterions for measuring the similarity

between these software components. Moreover, it provided a detailed description

of the dataset used in this study that included the pre-processing stages that was

performed on the dataset.

Chapter 4

In this chapter the author presented the modularisation experiments that were

conducted using the Munch tool on the dataset under analysis. It introduced the

concept of seeding and illustrated its use to significantly reduce the runtime of the

modularisation process. The use of previous time slices (software versions) was

used to speed up the modularisation of the next time slice. A number of

techniques for modularising the dataset were introduced in this chapter. This

chapter presented the proof of concept work for the rest of the thesis.

Chapter 5

This chapter improved on the techniques and experimentations conducted in

Chapter 4. It introduced a number of strategies for estimating and evaluating the

stopping conditions of the clustering algorithm, which was in turn used to reduce

the runtime of the modularisation process. The techniques introduced in this

chapter have immensely reduced the runtime of the modularisation process. This

chapter has investigated the clustering algorithm in details and illustrated the

complexity issues of performing a move and the importance of estimating the

average number of clusters during the modularisation run. This analysis was

exploited when introducing the strategies for speeding up the modularisation

process.

Chapter 6

This chapter investigated and evaluated the starting clustering arrangements of the

clustering algorithm of Munch. It has introduced two new starting clustering

arrangements: The first is a pseudo–random clustering arrangement i.e. the

153

clusters are generated randomly using a computer. Whereas, the second is a

uniformly random starting clustering arrangement i.e. the clusters are randomly

generated using a distribution model. Since generating a uniformly random

clustering arrangement is non-trivial, it was discussed in length among the

validation techniques that were used for verifying it. In addition, this chapter has

explained and presented an overview of the search space and how it can be

exploited using these techniques. The search spaces of the starting clustering

arrangement was visualised and discussed for illustration purposes.

Chapter 7

This chapter consists of two main sections. The first part of this chapter presents a

technique that provides a different perspective of looking at the dataset. It

investigated whether the Quantel dataset used for the modularisation resembles a

random graph, and measured the degree of this randomness and how it is

represented throughout the life of the software system under analysis. The second

part of the chapter provides industrial feedback of the research of this thesis,

including the detection of refactoring activities, and discusses the possible

applications of the findings of this research in industrial settings.

8.2 Research Contributions

The intention of this work is to widen and explore the scope of analysing the

inter-class dependencies of software system using SBSE techniques and to

demonstrate that these techniques can be valuable when solving software project

maintenance problems. There are a number of contributions for this thesis and

they are as follows:

8.2.1 Munch Tool

One of the main contributions of this research is the implementation of Munch

tool for the experimentation of software clustering. It takes in an MDG as an input

and produces a partition of the MDG as an output. It partitions the system

154

dependencies into clusters. It incorporates software clustering algorithm, a number

of fitness functions and a number of evaluation methods for analysing and

evaluating the clustering decompositions. Munch was used to conduct

modularisation experiments on the time-series dataset in order to further

understand the inter-class relationships of the system under analysis and to

examine a number of techniques and strategies that were introduced for speeding

up the process of modularisation. Munch was implemented in a way that it can be

extended with ease to assess further clustering algorithms and fitness functions as

well as validity metrics. It can also be easily utilised to examine further data

sources.

8.2.2 Large Bespoke Software System

According to the author’s knowledge this thesis is the only study that applies

modularisation and SBSE techniques on a large time-series bespoke software

system. The large dataset used for this study consists of information about

different versions of a software system over time. It was provided by the

international company Quantel Limited. The data source for this study is from

processed source code of a product line architecture library that has delivered over

15 distinct products, it is the persistence engine used by all products, comprising

of over 0.5 million lines of C++.

8.2.3 Time-series Dataset and AVD Metric

Due to the time-series nature of the dataset employed for this study and the fact

that there are only few days of developments between each check-in in the

dataset, the author has introduced a metric, AVD, for displaying the similarity

between subsequent graphs. Displaying the AVD values of the whole dataset can

provide information on the system without the need to perform modularisation or

other longer techniques. It can be used as a quick statistics to determine the

similarities between the software versions, and thus reducing the computational

complexity from hours to seconds. Although this statistic does not provide

information on where the modules are or what is related together, it can be used to

155

display and possibly indicate areas of interest. This thesis has highlighted how this

simple metric can be used to identify areas of where extension or refactoring

activities has occurred. Moreover, it can also be used to locate areas where there

were no refactoring activities, on the basis that there were very few changes

between subsequent classes.

8.2.4 The Concept of Seeding and the Modularisation

Process Speed Up

The main contribution of this study is the introduction of the seeding concept and

its use in reducing the runtime of the modularisation process. Since it has been

established that the dataset is a time-series and that subsequent software versions

are similar (as there are only few days of developments in-between), the seeding

concept was introduced to exploit this feature. The dataset was not treated as 503

separate modularisation problems, but instead results of the previous time slice is

used to speed up the search process of the next time slice. Thus, achieving

considerable speed up on the modularisation process. There were various

strategies and techniques that were introduced in this thesis and they were used to

estimate the stopping conditions of the clustering algorithm and optimise the

search algorithm by altering the number of iterations that Munch runs for (or that

the algorithm need to converge for each of the graphs in the dataset); and as a

result reducing the modularisation process considerably. Using the best of these

techniques the author has managed to speed up the modularisation process by over

500 times compared to modularising the graphs individually, with minimal loss in

the quality of the decomposition.

8.2.5 Randomness of Graphs

Another contribution for this research is the use of a technique to investigate the

randomness of the dataset being used i.e. whether the dataset used for the

modularisation resembles random graph. Results of the findings have

demonstrated that the Quantel dataset does not resemble a random graph except

for very small periods of time where there were large activities. Thus, the random

156

graph metric introduced in this thesis can be used to indicate areas of interest in

the dataset without the need to run the modularisation. From the results, the author

was also able to illustrate how the system is decaying overtime, as there is a

gradual but slow increase in the randomness of the graphs.

8.2.6 Industrial Feedback (including refactoring

detection)

In this study the author attempted to identify areas in the dataset that has been

radically extended or refactored. However, since the data obtained from Quantel

does not allow for the automated distinction between the two types, industrial

feedback from the software architect was needed to help with this distinction.

Quantel has provided the author with a detailed classification of the classes and

the check-in comments for the whole dataset. This allowed for the modularisation

to be mapped back to the architecture of the system. Discussions with the senior

architect at Quantel have also helped to clarify and identify the large changes in

the number of classes in the dataset. The author was able to define and categorise

the major changes in the code as new functionalities or activities that involves

refactorings. Thus, providing further analysis and discussions regarding the

techniques and strategies that were introduced in this study and how they can be

used and further expanded in an industrial setting.

The problem of controlling and maintaining software system is non-trivial. The

presented research in this thesis is not the only possible solution in solving this

problem, however this study has shown that there is a great deal of potential in

helping stakeholders of the software system to create abstract perspectives of the

structure of the system in specific how inter-class relationships change over time.

The approaches introduced here can allow developers and maintainers to gather

further information on these dependency information, which can then be utilised

when designing and maintaining further development in the system. As a result,

this is a key contribution to the domain knowledge in this field.

157

Future work on this project may have the potential to impact on practitioners. The

possibility of furthering the understanding of the evolution of large program

source code is of high importance to Quantel, since bespoke software product

development is one of their core business activities. Also, being able to predict

future changes would greatly enhance their ability to allocate resources, and hence

give them a more competitive and adaptable edge.

The development process at Quantel involves subsystems or classes being owned

by individual(s) developers. Thus, modularisation of the dataset represents how

people work together. The author hypothesises that there is a relationship between

the modularisation and how people are grouped into teams. A software

architecture that keeps developers as de-coupled as possible is needed in order for

them to not impede on each other. The more coupled the software become the less

the programmer’s productivity, and as programmers’ comprehension gets worse

things such as the impact of changes in classes emerges and bugs will re-appear

because of merge errors.

8.3 Threats to Validity and Future Work

Results of the current study are subject to limitations which are inherent in any

empirical investigation. It is important to consider the threats to validity in order

to indicate the effect to which it is possible generalise the results. Moreover,

through the literature review and the studies conducted for this thesis, there are

various promising future work opportunities for the applications of search-based

techniques in the fields of software clustering and software architecture. The

author was not able to pursue these due to the time constraints. Thus, this section

sets out the threats to validity and limitations of this study, and highlights and

discusses the significant research extensions that can be implemented for future

work.

158

8.3.1 Application of Munch to Further Datasets

For this thesis, one large real-world time-series dataset, provided by Quantel

Limited, was used when conducting the empirical studies. The author has shown

the applicability of the software clustering approach implemented in this field and

has also featured sufficient variety of approaches to confirm that this approach is

feasible with other software systems of different sizes and structures. However,

the relevance can be limited if the findings cannot be applied to larger

environments. Due to time constraints and the size of the dataset the author was

not able to verify the results and outcomes with other large datasets. Munch tool is

not limited to software systems that are implemented in a particular language, nor

is restricted on the size of the software system. For future work, the Munch tool

can be applied to other software systems to verify the theories and approaches

introduced. Further analysis and application of other real software systems would

provide a more concrete proof for this research. Moreover, although, this dataset

is from the industry and the information is considerably more realistic, it would be

interesting to makes use of a large open source dataset of software versions

(releases) to assess the validity of the techniques introduced. This was not initially

used due to the lack of feedback that can be obtained from the developers. Unlike

what was achieved in this study, it is very difficult to obtain any qualitative

feedback from the developers.

The current dataset is over four years and the architecture of the system itself has

taken around three years to build. The author currently has over nine years of data

i.e. another four years of data. This was not available at the start of the project.

For future research the author looks to apply the techniques and strategies that

were introduced in this thesis to the new dataset and investigate the rate of change

of the classes and whether they would slow as the code gets into more

maintenance mode. Further understanding of the deterioration of the software

system over time has the potential to improve the efficiency of the development

and maintenance stages of the system.

159

8.3.2 Thorough Evaluations of Clustering Output

The author would like to acknowledge that thorough developer evaluations of the

clustering results were not performed. It was difficult to perform these evaluations

as some of the developers have left, the software system under analysis was

developed from 2000 to 2005. Time constraints issues among other practical

limitations made this task difficult. Instead, feedback and comments from the

software architects at Quantel and the check-in comments were used to provide

constructive feedback on large changes in the code in order to obtain clarifications

and explanations on the activities that have caused these large changes and to

classify them accordingly.

8.3.3 Usage of Reverse Engineered Structures

The author would also like to acknowledge that reverse engineered structures

were used in the analysis rather than the original structure of the system, as

developers were reluctant to give the initial structure of the system. This

information was considered an advantage for competitors and was not covered by

the non-disclosure agreement initially signed with the developers of the dataset.

8.3.4 Evaluation and Validity Metrics

The fitness function, EVM metric, was used to score the clustering arrangements.

Simply said, it explores all possible relationships within a cluster and rewards the

relationship that exists within the MDG and penalises those that does not exists.

However, the author was aware that the fitness function by itself might not be a

good indicator for the quality of the modularisation and as a result an external

metric of validity, HS, was introduced in this study. HS is not a new metric; it is

based on the Coupling Between Objects (CBO) metric. It is essentially a count of

the coupling links i.e. the difference between the intra and inter coupling. Due to

the nature of the dataset being used, a large number of cluster validity metrics

were ruled out. A large number of these metrics require the original data. The

dataset contains the distance metric and it produces a binary graph, which limits

160

the validity methods that can be employed. However, as part of future work, other

metrics can be investigated in order to further verify the techniques introduced in

this study.

8.3.5 Other Metaheuristic Techniques

This study has illustrated the applicability of the heuristic search algorithm, HC,

chosen for this project. Based on previous studies, the Bunch clustering algorithm

(which employs HC) was shown to be extremely efficient. For this reason, among

its ease of implementation and flexibility when conducting experimentation, it

was chosen for this study. This project has looked at empirically evaluating the

effectiveness of using the search-based techniques on the development and

maintenance phases of the software development lifecycle. The author is aware

that HC is not necessarily the most effective search technique, nevertheless, since

one of the core contributions of this thesis is the adaption of the algorithm to time-

series code and the introduction of strategies and techniques for speeding up the

process of modularisation; it was suitable for this purpose. Other algorithms were

initially investigated. For example, SA and similar algorithms are difficult to

adapt into the seeding concept as it discards away the seed. In addition, for GA

and similar algorithms, the EVMD fitness function (the updated version of the

EVM fitness function) cannot be used, and the use of EVM fitness function would

cause an immense increase in complexity and runtime. Thus, these types of

algorithms were not appropriate for this type of time-series analysis. However, for

future work, other search techniques such as RRHC and the Restricted Growth

Function Genetic Algorithm (RGFGA) can be employed to further verify the

outcomes of the research.

8.3.6 Refactoring Prediction

As mentioned earlier, another important aim of this project was to be able to

identify areas of major change i.e. large extensions or refactoring activities, from

the source code. Since the data does not allow for the distinction between these

activities, feedback from the software architect and the check-in comments was

161

used to provide constructive feedback on these activities from the dataset. For

future work, the approach aforementioned in this thesis can be developed and

extended in order to predict when the system will be in needs of refactoring.

Predicting the likely changes a system will undergo, based on previous

development time, makes it possible to estimate developer effort required and to

allocate resources appropriately. Thus, allowing project managers to more

usefully coordinate refactoring activities, and software development and project

management in general. Furthermore, it is very useful to have access to the

system’s fault logs and another way to extend this work is by predicting these

faults.

For future work, this work can be expanded further by collecting the non-

comment lines of code and other details to help determine the type of change

occurring. If there have been major changes in the dependency graph and the

number of code lines remained roughly the same, then there had not been major

functionality added. It would be useful to look at source code analysis software

that would try to detect Fowler’s 72 refactorings (Fowler et al, 1999), in order to

detect whether something has occurred. Moreover, it can be investigated further

by looking at the change in the number of classes, by comparing the class IDs that

each time slice has in common and using this as a measure.

8.3.7 Other Industrial Impact

External validity is the degree to which the findings of the study can be

generalised to, in this case, industrial practice. This section provides other ways

that this thesis can be expanded outside of the current experimental setting.

The clustering being performed on the dataset involves all class relations that are

aforementioned in Section 3.4.2.2. For this study, the class relations were merged

together to form the whole system at that particular time slice. However, as part of

future work, it is possible to calculate the impact of specific class relations such as

inheritance on the graph (from the dataset), which will account for a small

percentage of the actual MDG.

162

In addition, the author hypothesises that there is a relationship between

modularisation and how developers work together, since subsystems or classes are

owned by individual developer(s). Thus, as part of future work, it is interesting to

investigate the impact of these measures changing on programmer productivity

and analyse the architectural decision on team productivity.

When the view of the analysis was fed back to the programmers at Quantel, they

were surprised on how the results of certain periods of development resembled

more randomness. However, they felt that future research work (beyond the

current dataset under analysis) is needed to be able to predict and show that the

rate of change is slowing as the code matures. Since, the author has another

dataset containing the next couple of years of the software system, it is very

interesting to investigate the rate of change of the classes. For future work, it is

appealing to investigate whether the complexity and the structure of the code

stabilises over time and look to explore whether that could be used as a feedback

mechanism to justify to management that a particular way of developing the code

actually works.

In conclusion, the approaches and techniques presented in this thesis provide

promising direction for future work. However, the author would like to

acknowledge that the work conducted in this thesis will not change the process of

how a large software company such as Quantel operates, yet the techniques

introduced in this study could be the start.

163

References

Abd-El-Hafiz, S., (2000). Identifying Objects in Procedural Programs Using

Clustering Neural Networks. Automated Software Engineering, 7(3), pp.

239-261.

Aguilar-Ruiz, J. S., Ramos, I., Riquelme, J. C. & Toro, M., (2001). An

evolutionary approach to estimating software development projects.

Information and Software Technology, 43(14), pp. 875-882.

Aksoy, S. & Haralick, R. M., (1999). Graph-theoretic clustering for image

grouping and retrieval. In: Computer Vision and Pattern Recognition,

1999. IEEE Computer Society Conference on IEEE.

Alba, E. & Chicano, J. F., (2007). Software project management with GAs.

Information Sciences, 177(11), pp. 2380-2401.

Altaf-Ul-Amine, M., Nishikata, K., Korna, T., Miyasato, T., Shinbo, Y.,

Arifuzzaman, M., Wada, C., Maeda, M., Oshima, T. & Mori, H., (2003).

Prediction of protein functions based on k-cores of protein-protein

interaction networks and amino acid sequences. Genome Informatics, 14,

pp. 498-499.

Altman, D. G., (1997). Practical statistics for medical research: Chapman and

Hall.

Alvarez-Valdes, R., Crespo, E., Tamarit, J. M. & Villa, F., (2006). A scatter

search algorithm for project scheduling under partially renewable

resources. Journal of Heuristics, 12(1-2), pp. 95-113.

Andreopoulos, B., An, A., Tzerpos, V. & Wang, X., (2007). Clustering large

software systems at multiple layers. Information and Software Technology,

49(3), pp. 244-254.

Andritsos, P. & Tzerpos, V., (2003). Software clustering based on information

loss minimization. In: 2013 20th Working Conference on Reverse

Engineering (WCRE) IEEE Computer Society, pp. 334-334.

Andritsos, P. & Tzerpos, V., (2005). Information-theoretic software clustering.

Software Engineering, IEEE Transactions on, 31(2),pp. 150-165.

Anquetil, N., (2000). A comparison of graphs of concept for reverse engineering.

In: Program Comprehension, 2000. Proceedings. IWPC 2000. 8th

International Workshop on IEEE, pp. 231-240.

164

Anquetil, N. & Laval, J., (2011). Legacy software restructuring: Analyzing a

concrete case. In: Software Maintenance and Reengineering (CSMR),

2011 15th European Conference on IEEE, pp. 279-286.

Anquetil, N. & Lethbridge, T., (1997). File clustering using naming conventions

for legacy systems. In: Proceedings of the 1997 conference of the Centre

for Advanced Studies on Collaborative research IBM Press, pp. 2.

Anquetil, N. & Lethbridge, T., (1999). Experiments with clustering as a software

remodularization method. In: Reverse Engineering, 1999. Proceedings.

Sixth Working Conference on, IEEE, pp. 235-255.

Antoniol, G., Di Penta, M. & Harman, M., (2004). A robust search-based

approach to project management in the presence of abandonment, rework,

error and uncertainty. In: Software Metrics, 2004. Proceedings. 10th

International Symposium on IEEE, pp. 172-183.

Antoniol, G., Di Penta, M. & Harman, M., (2005). Search-based techniques

applied to optimization of project planning for a massive maintenance

project. In: Software Maintenance, 2005. ICSM'05. Proceedings of the

21st IEEE International Conference on IEEE, pp. 240-249.

Antoniol, G., Di Penta, M., Masone, G. & Villano, U., (2003). XOgastan: XML-

oriented gcc AST analysis and transformations. In: Proceedings. Third

IEEE International Workshop on Source Code Analysis and Manipulation,

2003 IEEE, pp. 173-182.

Arthur, D., & Vassilvitskii, S., (2007). k-means++: The advantages of careful

seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium

on Discrete algorithms, pp. 1027-1035.

Arzoky, M., Swift, S., Counsell, S., & Cain, J., (2014c). An Approach to

Controlling the Runtime for Search Based Modularisation of Sequential

Source Code Check-ins. In Advances in Intelligent Data Analysis XIII.

Springer International Publishing, pp. 25-36.

Arzoky, M., Swift, S., Counsell, S., & Cain, J., (2014b). A Measure of the

Modularisation of Sequential Software Versions Using Random Graph

Theory. In Agile Methods. Large-Scale Development, Refactoring,

Testing, and Estimation. Springer International Publishing, pp. 105-120.

Arzoky, M., Swift, S., Counsell, S., and Cain, J., (2014a). The use of random

graph theory to assess the quality of sequential source code check-ins.

Reftest2014, a co-located workshop with XP2014.

Arzoky, M., Swift, S., Tucker, A. & Cain, J., (2012). A Seeded Search for the

Modularisation of Sequential Software Versions. Journal of Object

Technology, 11(2), pp. 6:1-27.

165

Arzoky, M., Swift, S., Tucker, A. & Cain, J., (2011). Munch: An efficient

modularisation strategy to assess the degree of refactoring on sequential

source code checkings. In: Software Testing, Verification and Validation

Workshops (ICSTW), 2011 IEEE Fourth International Conference on

IEEE, pp. 422-429.

Bader, G. D. & Hogue, C. W., (2003). An automated method for finding

molecular complexes in large protein interaction networks. BMC

bioinformatics, 4(1), pp. 2.

Bagnall, A. J., Rayward-Smith, V. J. & Whittley, I. M., (2001). The next release

problem. Information and Software Technology, 43(14), pp. 883-890.

Bandyopadhyay, S., Maulik, U. & Pakhira, M. K., (2001). Clustering using

simulated annealing with probabilistic redistribution. International

Journal of Pattern Recognition and Artificial Intelligence, 15(02), pp. 269-

285.

Barabási, A.-L. & Albert, R., (1999). Emergence of scaling in random networks.

science, 286(5439), pp. 509-512.

Barabási, A.-L., Albert, R. & Jeong, H., (2000). Scale-free characteristics of

random networks: the topology of the world-wide web. Physica A:

Statistical Mechanics and its Applications, 281(1), pp. 69-77.

Baresel, A., Sthamer, H. & Schmidt, M., (2002). Fitness Function Design To

Improve Evolutionary Structural Testing. In: Genetic and Evolutionary

Computation Conference (GECCO), pp. 1329-1336.

Bass, L., Clements, P. & Kazman, R., (2003). Software architecture in practice

(2nd ed.): Reading, Massachusetts: Addison-Wesley Professional.

Basu, S., Banerjee, A., & R Mooney., (2002). Semi-supervised clustering by

seeding. In Proceedings of 19th International Conference on Machine

Learning (ICML-2002).

Bauer, M. & Trifu, M., (2004). Architecture-aware adaptive clustering of OO

systems. In: Software Maintenance and Reengineering, 2004. CSMR 2004.

Proceedings. Eighth European Conference on IEEE, pp. 3-14.

Beck, K., (1999). Extreme Programming Explained: Embrace Change. Addison-

Wesley.

Beck, F., (2009). Improving software clustering with evolutionary data, Ph D

Thesis, University of Trier.

166

Bell, E.T., (1934). Exponential polynomials, Amer. Math. Monthly 41. pp. 258-

277.

Bennett, K., (1996). Software evolution: past, present and future. Information and

Software Technology, 38(11), pp. 673-680.

Berndt, B.C., (2011). Ramanujan reaches his hand from his grave to snatch your

theorems from you, Asia Pac. Math. Newsl. 1, no. 2, pp. 8–13.

Beyer, D. & Noack, A., (2005). Clustering software artifacts based on frequent

common changes. In: Program Comprehension, 2005. IWPC 2005.

Proceedings. 13th International Workshop on IEEE, pp. 259-268.

Birattari, M., (2004). The problem of tuning metaheuristics as seen from a

machine learning perspective. Amsterdam: IOS Press Publication.

Booch, G., Maksimchuk, R., Engle, M., Young, B., Conallen, J. & Houston, K.,

(1994). Object-oriented analysis and design with applications: Reading,

Massachussets: Addisson-Wesley Professional.

Borg, I. & Groenen, P., (2005). Modern Multidimensional Scaling: theory and

applications (2nd ed.). New York: Springer-Verlag.

Bosch, J., (2004). Software architecture: The next step. In Software architecture.

Springer, pp.194-199.

Bouktif, S., Antoniol, G., Merlo, E. & Neteler, M., (2006). A novel approach to

optimize clone refactoring activity. In: Proceedings of the 8th annual

conference on Genetic and evolutionary computation ACM, pp. 1885-

1892.

Bouktif, S., Sahraoui, H. & Antoniol, G., (2006). Simulated annealing for

improving software quality prediction. In: Proceedings of the 8th annual

conference on Genetic and evolutionary computation ACM, pp. 1893-

1900.

Bridges, D. S., (1994). Computability. New York: Springer-Verlag.

Brooks, F. P., (1995). The Mythical Man-Month: After 20 Years, IEEE Software,

12(5), pp. 57-60.

Brooks, R., (1999). Towards a theory of the cognitive processes in computer

programming. International Journal of Human-Computer Studies, 51(2),

pp. 197-211.

Brown, W. J., Mccormick, H. W., Mowbray, T. J. & Malveau, R. C., (1998).

AntiPatterns: refactoring software, architectures, and projects in crisis.

167

Burch, M. & Diehl, S., (2008). TimeRadarTrees: Visualizing dynamic compound

digraphs. In: Computer Graphics ForumWiley Online Library, pp. 823-

830.

Burch, M., Diehl, S. & Weißgerber, P., (2005). Visual data mining in software

archives. In: Proceedings of the 2005 ACM symposium on Software

visualization ACM, pp. 37-46.

Burd, E. & Munro, M., (1998). Investigating component-based maintenance and

the effect of software evolution: a reengineering approach using data

clustering. In: Software Maintenance, 1998. Proceedings., International

Conference on IEEE, pp. 199-207.

Burgess, C. J. & Lefley, M., (2001). Can genetic programming improve software

effort estimation? A comparative evaluation. Information and Software

Technology, 43(14), pp. 863-873.

Cain, J., (2004). Debugging with the DIA SDK. Visual System Journal of

computer and system sciences.

Cain, J., Counsell, S., Swift, S. & Tucker, A., (2009). An Application of

Intelligent Data Analysis Techniques to a Large Software Engineering

Dataset. In Advances in Intelligent Data Analysis VIII. Springer, pp.261-

272.

Chang, C. K., Chao, C., Nguyen, T. T. & Christensen, M., (1998). Software

project management net: a new methodology on software management. In:

Computer Software and Applications Conference, 1998. COMPSAC'98.

Proceedings. The Twenty-Second Annual International IEEE, pp. 534-539.

Chang, C. K., Jiang, H.-Y., Di, Y., Zhu, D. & Ge, Y., (2008). Time-line based

model for software project scheduling with genetic algorithms.

Information and Software Technology, 50(11), pp. 1142-1154.

Chatfield, C., (2013). The analysis of time series: an introduction: CRC press.

Chidamber, S. R. & Kemerer, C. F., (1994). A metrics suite for object oriented

design. Software Engineering, IEEE Transactions on, 20(6), pp. 476-493.

Chikofsky, E. J. & Cross, J. H., Ii, (1990). Reverse engineering and design

recovery: a taxonomy. IEEE Software, 7(1), pp. 13-17.

Chiricota, Y., Jourdan, F. & Melançon, G., (2003). Software components capture

using graph clustering. In: Program Comprehension, 2003. 11th IEEE

International Workshop on IEEE, pp. 217-226.

168

Clarke, J., Dolado, J. J., Harman, M., Hierons, R., Jones, B., Lumkin, M.,

Mitchell, B., Mancoridis, S., Rees, K. & Roper, M., (2003). Reformulating

software engineering as a search problem. IEE Proceedings-software,

150(3), pp. 161-175.

Comon, P., & Jutten, C. (2010). Handbook of blind source separation. Elsevier, 1,

pp. 35-48.

Counsell, S., Swift, S., Tucker, A. & Mendes, E., (2006). Object-oriented

cohesion subjectivity amongst experienced and novice developers: an

empirical study. ACM SIGSOFT Software Engineering Notes, 31(5), pp. 1-

10.

Cox, T.F. & Cox, M.A.A., (2001). Multidimensional Scaling. Chapman and Hall.

Czibula, I. G. & Serban, G., (2006). Improving systems design using a clustering

approach. IJCSNS International Journal of Computer Science and

Network Security, 6(12), pp. 40-49.

Czibula, I. G. & Serban, G., (2008). A Partitional Clustering Algorithm for

Improving The Structure of Object-Oriented Software Systems. Univ.

Babes-Bolyai. Informatica, LIII(2), pp. 105-114.

Czibula, I. G. & Şerban, G., (2008). Hierarchical Clustering Based Design

Patterns Identification. In: Proceedings of the International Conference on

Computers, Communications and Control, Oradea, Romania, pp. 248-252.

Darcy, D. & Kemerer, C., (2002). Software complexity: Toward a unified theory

of coupling and cohesion. In: International Conference on Software

Engineering (ICSE), Orlando, Florida, USA, pp. 19-25.

Davidson, R. & Harel, D., (1996). Drawing graphs nicely using simulated

annealing. ACM Transactions on Graphics (TOG), 15(4), pp. 301-331.

Deursen, A. V. & Kuipers, T., (1999). Identifying objects using cluster and

concept analysis. In: Proceedings of the 21st international conference on

Software engineering, Los Angeles, California, USA: ACM, pp. 246-255.

Devroye, L., (1986). Non-Uniform Random Variate Generation: Springer-Verlag,

New York.

Di Lucca, G. A., Fasolino, A. R., Pace, F., Tramontana, P. & De Carlini, U.,

(2002). Comprehending web applications by a clustering based approach.

In: Program Comprehension, 2002. Proceedings. 10th International

Workshop on IEEE, pp. 261-270.

Dorigo, M., (1992). Optimization, learning and natural algorithms. Ph.D. Thesis,

Politecnico di Milano, Italy.

169

Dorigo, M. & Stutzle, T., (2004). Ant colony optimization. Massachusetts: The

MIT Press, 1(4), pp. 28-39.

Doval, D., Mancoridis, S. & Mitchell, B. S., (1999). Automatic clustering of

software systems using a genetic algorithm. In: Software Technology and

Engineering Practice, 1999. STEP'99. Proceedings IEEE, pp. 73-81.

Droste, S., Jansen, T. & Wegener, I., (2002). On the analysis of the (1+ 1)

evolutionary algorithm. Theoretical Computer Science, 276(1), pp. 51-81.

Eberhart, R. C. & Kennedy, J., (1995). A new optimizer using particle swarm

theory. In: Proceedings of the sixth international symposium on micro

machine and human science New York, NY, pp. 39-43.

Enright, A. J., Van Dongen, S. & Ouzounis, C. A., (2002). An efficient algorithm

for large-scale detection of protein families. Nucleic acids research, 30(7),

pp. 1575-1584.

Erdős, P. & Rényi, A., (1960). On the evolution of random graphs. Publ. Math.

Inst. Hungar. Acad. Sci, 5, pp. 17-61.

Etzkorn, L. H. & Davis, C. G., (1997). Automatically identifying reusable OO

legacy code. Computer, 30(10), pp. 66-71.

Faugeras, O. D., (1983). Fundamentals in Computer Vision: an advanced course:

Cambridge University Press.

Fenton, N. & Melton, A., (1990). Deriving structurally based software measures.

Journal of Systems and Software, 12(3), pp. 177-187.

Fowler, M., Beck, K., Brant, J., Opdyke, W. & Don, R., (1999). Refactoring:

improving the design of existing code 1st edn: Massachusetts: Addison-

Wesley.

Gall, H., Jazayeri, M. & Krajewski, J., (2003). CVS release history data for

detecting logical couplings. In: Software Evolution, 2003. Proceedings.

Sixth International Workshop on Principles of, pp. 13-23.

Gall, H., Jazayeri, M. & Riva, C., (1999). Visualizing software release histories:

The use of color and third dimension. In: Software Maintenance,

1999.(ICSM'99) Proceedings. IEEE International Conference on IEEE,

pp. 99-108.

Ge, Y. & Chang, C., (2006). Capability-based project scheduling with genetic

algorithms. In: Computational Intelligence for Modelling, Control and

Automation, 2006 and International Conference on Intelligent Agents,

Web Technologies and Internet Commerce, International Conference on

IEEE, pp. 161-161.

170

Gilbert, E. N., (1959). Random graphs. The Annals of Mathematical Statistics, pp.

1141-1144.

Glorie, M., Zaidman, A., Hofland, L. & Van Deursen, A., (2008). Splitting a large

software archive for easing future software evolution-an industrial

experience report using formal concept analysis. In: Software Maintenance

and Reengineering, 2008. CSMR 2008. 12th European Conference on

Athens, Greece: IEEE, pp. 153-162.

Glover, F., (1986). Future paths for integer programming and links to artificial

intelligence. Computers & operations research, 13(5), pp. 533-549.

Glover, F. & Kochenberger, G. A., (2003). Handbook of metaheuristics: Springer

Science & Business Media.

Good, I., (1977). The botryology of botryology. In: Classification and Clustering:

Proceedings of an Advanced Seminar conducted by the Mathematics

Research Center, The University of Wisconsin-Madison, pp. 73-94.

Gueorguiev, S., Harman, M. & Antoniol, G., (2009). Software project planning

for robustness and completion time in the presence of uncertainty using

multi objective search based software engineering. In: Proceedings of the

11th Annual conference on Genetic and evolutionary computation ACM,

pp. 1673-1680.

Hall, M. J., (2013). Improving Software Remodularisation: PhD thesis, University

of Sheffield.

Hamming, R. W., (1950). Error detecting and error correcting codes. Bell System

technical journal. 29(2), pp. 147-160.

Hand, D. J., Mannila, H., and Smyth, P., (2001). Principles of data mining. MIT

press.

Hannan, E. J., (2009). Multiple time series: John Wiley & Sons.

Harman, M., (2007). The current state and future of search based software

engineering. In: 2007 Future of Software EngineeringIEEE Computer

Society, pp. 342-357.

Harman, M., (2010). Why the virtual nature of software makes it ideal for search

based optimization. In Fundamental Approaches to Software Engineering.

Springer, pp.1-12.

Harman, M., Burke, E., Clark, J. A. & Yao, X., (2012). Dynamic adaptive search

based software engineering. In: Empirical Software Engineering and

Measurement (ESEM), 2012 ACM-IEEE International Symposium on

IEEE, pp. 1-8.

171

Harman, M. & Clark, J., (2004). Metrics are fitness functions too. In: Software

Metrics, 2004. Proceedings. 10th International Symposium on Chicago,

Illinois, USA: IEEE, pp. 58-69.

Harman, M., Hierons, R. M. & Proctor, M., (2002). A New Representation And

Crossover Operator For Search-based Optimization Of Software

Modularization. In: GECCO Morgan Kaufmann Publishers, pp. 1351-

1358.

Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A. & Roper,

M., (2004). Testability transformation. Software Engineering, IEEE

Transactions on, 30(1), pp. 3-16.

Harman, M. & Jones, B. F., (2001). Search-based software engineering.

Information and Software Technology, 43(14), pp. 833-839.

Harman, M., Mansouri, S. A. & Zhang, Y., (2012). Search-based software

engineering: Trends, techniques and applications. ACM Computing

Surveys (CSUR), 45(1), pp. 11.

Harman, M., Swift, S. & Mahdavi, K., (2005). An empirical study of the

robustness of two module clustering fitness functions. In: Proceedings of

the 2005 conference on Genetic and evolutionary computation ACM, pp.

1029-1036.

Harman, M. & Tratt, L., (2007). Pareto optimal search based refactoring at the

design level. In: Proceedings of the 9th annual conference on Genetic and

evolutionary computation London, England, UK: ACM, pp. 1106-1113.

Harper, L., (1967). Stirling behavior is asymptotically normal. The Annals of

Mathematical Statistics, pp. 410-414.

Hart, E., Ross, P. & Corne, D., (2005). Evolutionary scheduling: A review.

Genetic Programming and Evolvable Machines, 6(2), pp. 191-220.

Hartuv, E. & Shamir, R., (2000). A clustering algorithm based on graph

connectivity. Information processing letters, 76(4), pp. 175-181.

Hindi, K. S., Yang, H. & Fleszar, K., (2002). An evolutionary algorithm for

resource-constrained project scheduling. Evolutionary Computation, IEEE

Transactions on, 6(5), pp. 512-518.

Holland, J. H., (1975). Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and artificial

intelligence: The University of Michigan Press.

172

Hu, X. & Han, J., (2003). Discovering clusters from large scale-free network

graph. In: ACM SIG KDD Second Workshop on Fractals, Power Laws and

Other Next Generation Data Mining Tools.

Hutchens, D. H. & Basili, V. R., (1985). System structure analysis: Clustering

with data bindings. Software Engineering, IEEE Transactions on, (8), pp.

749-757.

IEEE Computer Society. Software Engineering Technical Committee,

(1990):IEEE standard glossary of software engineering terminology.

IEEE.

Jahnke, J. H., (2004). Reverse engineering software architecture using rough

clusters. In: Processing NAFIPS'04. IEEE Annual Meeting of the Fuzzy

Information, 2004IEEE, pp. 4-9.

Jiang, T., Gold, N., Harman, M. & Li, Z., (2008). Locating dependence structures

using search-based slicing. Information and Software Technology, 50(12),

pp. 1189-1209.

Johnson, D. S., Papadimitriou, C. H. & Yannakakis, M., (1988). How easy is local

search? Journal of computer and system sciences, 37(1), pp. 79-100.

Johnson, D. S. & Trick, M. A., (1996). Cliques, coloring, and satisfiability:

second DIMACS implementation challenge, October 11-13, 1993:

American Mathematical Soc.

Kanellopoulos, Y. & Tjortjis, C., (2004). Data mining source code to facilitate

program comprehension: experiments on clustering data retrieved from

C++ programs. In: Program Comprehension, 2004. Proceedings. 12th

IEEE International Workshop on IEEE, pp. 214-223.

Kaufman, L. & Rousseeuw, P. J., (1990). Finding Groups in Data: An

Introduction to Cluster Analysis. Wiley, New York.

Kennedy, J., Eberhart, R. C. & Shi, Y., (2001). Swarm intelligence. Kaufmann,

San Francisco, 1, pp. 700-720.

Khoshgoftaar, T. M., Liu, Y. & Seliya, N., (2004). A multiobjective module-order

model for software quality enhancement. Evolutionary Computation, IEEE

Transactions on, 8(6), pp. 593-608.

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M., (1983). Optimization by simmulated

annealing. science, 220(4598), pp. 671-680.

Kirkpatrick, S. & Vecchi, M., (1983). Optimization by simmulated annealing.

science, 220(4598), pp. 671-680.

173

Kirsopp, C., Shepperd, M. J. & Hart, J., (2002). Search heuristics, case-based

reasoning and software project effort prediction. In: Genetic and

Evolutionary Computation Conference (GECCO), pp. 1367–1374.

Koenemann, J. & Robertson, S. P., (1991). Expert problem solving strategies for

program comprehension. In: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems ACM, pp. 125-130.

Kolisch, R. & Hartmann, S., (2006). Experimental investigation of heuristics for

resource-constrained project scheduling: An update. European journal of

operational research, 174(1), pp. 23-37.

Kuhn, A., Ducasse, S. & Girba, T., (2005). Enriching reverse engineering with

semantic clustering. In: Reverse Engineering, 12th Working Conference on

IEEE, pp. 10.

Langdon, W. B., (1996). Scheduling maintenance of electrical power transmission

networks using genetic programming. In: Late Breaking Papers at the GP-

96 Conference, pp. 107–116.

Langdon, W. B. & Nordin, J., (2000). Seeding genetic programming populations.

In: Proceedings of the European Conference on Genetic Programming

(EuroGP) Springer, pp. 304-315.

Lano, K. & Haughton, H., (1993). Reverse engineering and software

maintenance: a practical approach: McGraw-Hill, Inc.

Legg, S. & Hutter, M., (2007). A collection of definitions of intelligence.

Advances in Artificial General Intelligence: Concepts, Architectures and

Algorithms, Amsterdam, NL: IOS Press. , 157, pp. 17-24.

Lethbridge, T. C., Singer, J. & Forward, A., (2003). How software engineers use

documentation: The state of the practice. Software, IEEE, 20(6), pp. 35-39.

Lewis, H. R. and Papadimitriou, C. H., (1997). Elements of the Theory of

Computation. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall.

Li, S. & Tahvildari, L., (2006). JComp: A reuse-driven componentization

framework for Java applications. In: Program Comprehension, 2006.

ICPC 2006. 14th IEEE International Conference on IEEE, pp. 264-267.

Lindig, C. & Snelting, G., (1997). Assessing modular structure of legacy code

based on mathematical concept analysis. In: Proceedings of the 19th

international conference on Software engineering ACM, pp. 349-359.

Lloyd, S., (1982). "Least squares quantization in PCM". IEEE Transactions on

Information Theory, 28(2), pp. 129–137.

174

Lung, C.-H., (1998). Software architecture recovery and restructuring through

clustering techniques. In: Proceedings of the third international workshop

on Software architecture ACM, pp. 101-104.

Mahdavi, K., Harman, M. & Hierons, R. M., (2003). A multiple hill climbing

approach to software module clustering. In: Software Maintenance, 2003.

ICSM 2003. Proceedings. International Conference on IEEE, pp. 315-324.

Maletic, J. I. & Marcus, A., (2001). Supporting program comprehension using

semantic and structural information. In: Proceedings of the 23rd

International Conference on Software Engineering IEEE Computer

Society, pp. 103-112.

Mancoridis, S., Mitchell, B. S., Chen, Y. & Gansner, E. R., (1999). Bunch: A

clustering tool for the recovery and maintenance of software system

structures. In: Software Maintenance, 1999.(ICSM'99) Proceedings. IEEE

International Conference on IEEE, pp. 50-59.

Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y.-F. & Gansner, E. R., (1998).

Using Automatic Clustering to Produce High-Level System Organizations

of Source Code. In: IEEE Proceedings of the 1998 Int. Workshop on

Program Understanding (IWPC'98) IEEE Press, pp. 45-52.

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random

variables is stochastically larger than the other. The annals of

mathematical statistics, pp. 50-60.

Manning, C. and Schütze, H., (1999). Foundations of Statistical Natural

Language Processing. MIT Press. Cambridge, MA.

Maqbool, O. & Babri, H. A., (2007). Hierarchical clustering for software

architecture recovery. Software Engineering, IEEE Transactions on,

33(11), pp. 759-780.

Mardia, K. V., Kent, J. & Bibby, J., (1979). Multivariate analysis (probability and

mathematical statistics): Academic Press London.

Marek, A., Smart, W. D. & Martin, M. C., (2003). Learning visual feature

detectors for obstacle avoidance using genetic programming. In: Computer

Vision and Pattern Recognition Workshop, 2003. CVPRW'03. Conference

on IEEE, pp. 61-61.

Massey Jr, F. J., (1951). The Kolmogorov-Smirnov test for goodness of fit.

Journal of the American statistical Association, 46(253), pp. 68-78.

175

Matsumoto, K.-I., Inoue, K., Kikuno, T. & Torii, K., (1988). Experimental

evaluation of software reliability growth models. In: Fault-Tolerant

Computing, 1988. FTCS-18, Digest of Papers., Eighteenth International

Symposium on IEEE, pp. 148-153.

McMinn, P., Harman, M., Binkley, D. & Tonella, P., (2006). The species per path

approach to search based test data generation. In: Proceedings of the 2006

international symposium on Software testing and analysis ACM, pp. 13-

24.

Michalewicz, Z. & Fogel, D. B., (2004). How to solve it: modern heuristics:

Springer Science & Business Media.

Mihaila, I. F., (1996). Design coloring algorithms: National Library of Canada.

Miller, W. & Spooner, D. L., (1976). Automatic generation of floating-point test

data. IEEE Transactions on Software Engineering, 2(3), pp. 223-226.

Milligan, G. W. & Cooper, M. C., (1985). An examination of procedures for

determining the number of clusters in a data set. Psychometrika, 50(2), pp.

159-179.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P. & Bhattacharjee, B.,

(2007). Measurement and analysis of online social networks. In:

Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement ACM, pp. 29-42.

Mitchell, B. S., (2002). A heuristic approach to solving the software clustering

problem, PhD thesis, Drexel University.

Mitchell, B. S. & Mancoridis, S., (2001). Comparing the decompositions

produced by software clustering algorithms using similarity

measurements. In: Proceedings of the IEEE International Conference on

Software Maintenance (ICSM'01) IEEE Computer Society, pp. 744.

Mitchell, B. S. & Mancoridis, S., (2001). Craft: a framework for evaluating

software clustering results in the absence of benchmark decompositions

[clustering results analysis framework and tools]. In: Reverse Engineering,

2001. Proceedings. Eighth Working Conference on IEEE, pp. 93-102.

Mitchell, B. S. & Mancoridis, S., (2002). Using Heuristic Search Techniques To

Extract Design Abstractions From Source Code. In: Proceedings of the

Genetic and Evolutionary Computation Conference GECCO02, pp. 1375-

1382.

Mitchell, B. S. & Mancoridis, S., (2006). On the automatic modularization of

software systems using the bunch tool. IEEE Transactions on Software

Engineering, 32(3), pp. 193-208.

176

Mitchell, B. S. & Mancoridis, S., (2008). On the evaluation of the Bunch search-

based software modularization algorithm. Soft Computing, 12(1), pp. 77-

93.

Mitchell, M., Holland, J. H. & Forrest, S., (1994). When will a genetic algorithm

outperform hill-climbing? Advances in neural information processing

systems, pp. 51-51.

Müller, H. A., Orgun, M. A., Tilley, S. R. & Uhl, J. S., (1993). A reverse

engineering approach to subsystem structure identification. Journal of

Software Maintenance: Research and Practice, 5(4), pp. 181-204.

Müller, H. A. & Uhl, J. S., (1990). Composing subsystem structures using (k, 2)-

partite graphs. In: In Proceedings of the Conference on Software

Maintenance, pp. 12-19.

Newman, M. E. J., (2003). Random graphs as models of networks. In: Handbook

of Graphs and Networks, S. Bornholdt and H. G. Schuster, eds., Wiley-

VCH, Berlin, pp. 35–68.

O'keeffe, M. & Cinnéide, M. O., (2006). Search-based software maintenance. In:

Software Maintenance and Reengineering, 2006. CSMR 2006.

Proceedings of the 10th European Conference on IEEE, pp. 10 pp.-260.

Opdyke, W. F., (1992). Refactoring object-oriented frameworks. PhD Thesis,

University of Illinois at Urbana-Champaign.

Parnas, D. L., (1972). On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15(12), pp. 1053-1058.

Parnas, D. L., (1994). Software aging. In: Proceedings of the 16th international

conference on Software engineering IEEE Computer Society Press, pp.

279-287.

Petchey, O. L. & Gaston, K. J., (2002). Functional diversity (FD), species richness

and community composition. Ecology Letters, 5(3), pp. 402-411.

Pham, D., Dimov, S. & Nguyen, C., (2004). A two-phase k-means algorithm for

large datasets. Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science, 218(10), pp. 1269-

1273.

Pietrek, M., (2002). Under the Hood. MSDN Magazine, 17(3).

Praditwong, K., Harman, M. & Yao, X., (2011). Software module clustering as a

multi-objective search problem. IEEE Transactions on Software

Engineering, 37(2), pp. 264-282.

177

Pressman, R. S., (1982). Software Engineering: A Practitioner's Approach, 5th

ed.: McGraw-Hill.

Pressman, R. S. & Ince, D., (2000). Software Engineering: A Practitioner's

Approach: European Adaptation, 5th ed.: McGraw-Hill Publishing

Company.

Przulj, N., (2004). Graph theory approaches to protein interaction data analysis.

Knowledge Discovery in High-Throughput Biological Domains.

Interpharm/CRC, 120, pp. 000.

Pržulj, N., Wigle, D. A. & Jurisica, I., (2004). Functional topology in a network of

protein interactions. Bioinformatics, 20(3), pp. 340-348.

Quantel, (2014). Quantel. Available from: www.quantel.co.uk/. [Accessed: 10
th

December 2014]

Rayside, D., Reuss, S., Hedges, E. & Kontogiannis, K., (2000). The effect of call

graph construction algorithms for object-oriented programs on automatic

clustering. In: Program Comprehension, 2000. Proceedings. IWPC 2000.

8th International Workshop on IEEE, pp. 191-200.

Reinke, V., (2002). Defining development through gene expression profiling.

Current Genomics, 3(2), pp. 95-109.

Riordan, J., (1980). An Introduction to Combinatorial Analysis. New York:

Wiley.

Rommelse, J., Lin, H. & Chan, T., (2004). Efficient active contour and K-means

algorithms in image segmentation. Scientific Programming, 12(2), pp.

101-120.

Roth, C., Kang, S. M., Batty, M. & Barthelemy, M., (2012). A long-time limit for

world subway networks. Journal of The Royal Society Interface, 9: pp.

2540-2550.

Rusell, S. & Norvig, P., (2003). Artificial intelligent: A modern approach 2nd

edn: , Pearson Education.

Russell, S. & Norvig, P., (1995). Artificial Intelligence: A modern approach 1st

Edition.

Russell, S. & Norvig, P., (2009). Artificial Intelligence: A modern approach 3rd

Edition.

Schneidewind, N. F., (1992). Methodology for validating software metrics.

Software Engineering, IEEE Transactions on, 18(5), pp. 410-422.

178

Schreiber, S. B., (2001). Undocumented Windows 2000 secrets: a programmer's

cookbook: Addison-Wesley Reading.

Schwanke, R. W., (1991). An intelligent tool for re-engineering software

modularity. In: Software Engineering, 1991. Proceedings., 13th

International Conference on, pp. 83-92.

Schwanke, R. W., (1991). An intelligent tool for re-engineering software

modularity. In: Software Engineering, 1991. Proceedings., 13th

International Conference on Austin, TX, USA: IEEE, pp. 83-92.

Schwanke, R. W. & Platoff, M. A., (1989). Cross references are features. In: ACM

SIGSOFT Software Engineering Notes ACM, pp. 86-95.

Schwefel, H.-P., (1981). Numerical optimization of computer models: John Wiley

& Sons, Inc.

Seng, O., Bauer, M., Biehl, M. & Pache, G., (2005). Search-based improvement

of subsystem decompositions. In: Proceedings of the 7th annual

conference on Genetic and evolutionary computation ACM, pp. 1045-

1051.

Seng, O., Stammel, J. & Burkhart, D., (2006). Search-based determination of

refactorings for improving the class structure of object-oriented systems.

In: Proceedings of the 8th annual conference on Genetic and evolutionary

computation ACM, pp. 1909-1916.

Shepperd, M., (2007). Software project economics: a roadmap. In: Future of

Software Engineering, 2007. FOSE'07 IEEE, pp. 304-315.

Shneiderman, B. & Mayer, R., (1979). Syntactic/semantic interactions in

programmer behavior: A model and experimental results. International

Journal of Computer & Information Sciences, 8(3), pp. 219-238.

Shtern, M. & Tzerpos, V., (2004). A framework for the comparison of nested

software decompositions. In: Reverse Engineering, 2004. Proceedings.

11th Working Conference on Washington, DC, USA: IEEE, pp. 284-292.

Siff, M. & Reps, T., (1999). Identifying modules via concept analysis. Software

Engineering, IEEE Transactions on, 25(6), pp. 749-768.

Smith, S. F., (1980). A learning system based on genetic adaptive algorithms.

PhD thesis, University of Pittsburgh.

Sommerville, I., (1995). Software Engineering 5th edition: Addison-Wesley.

Stevens, W. P., Myers, G. J. & Constantine, L. L., (1974). Structured design. IBM

Systems Journal, 13(2), pp. 115-139.

179

Stroggylos, K. & Spinellis, D., (2007). Refactoring--Does It Improve Software

Quality? In: Proceedings of the 5th International Workshop on Software

Quality, Washington, DC: IEEE Computer Society, pp. 10.

Suresh, L., Simha, J. B. & Velur, R., (2010). Seeding cluster centers of K-means

clustering through median projection. In: Complex, Intelligent and

Software Intensive Systems (CISIS), 2010 International Conference on

IEEE, pp. 217-222.

Swift, S., Tucker, A., Vinciotti, V., Martin, N., Orengo, C., Liu, X. & Kellam, P.,

(2004). Consensus clustering and functional interpretation of gene-

expression data. Genome biology, 5(11).

Syswerda, G., (1989). Uniform crossover in genetic algorithms. In: Proceedings

of the Third International Conference on Genetic Algorithms Morgan

Kaufmann, pp. 10-19.

Tagoug, N., (2002). Object-oriented system decomposition quality. In: High

Assurance Systems Engineering, 2002. Proceedings. 7th IEEE

International Symposium on IEEE, pp. 230-235.

Temme, N. M., (1993). Asymptotic estimates of Stirling numbers. Studies in

Applied Mathematics, 89(3), pp. 233-243.

Torgerson, W. S., (1952). Multidimensional scaling: I. Theory and method.

Psychometrika, 17(4), pp. 401-419.

Tucker, A., Swift, S., & Crampton, J., (2007). Efficiency updates for the restricted

growth function GA for grouping problems. In Proceedings of the 9th

annual conference on Genetic and evolutionary computation. ACM. pp.

1536-1536.

Tucker, A., Swift, S. & Liu, X., (2001). Variable grouping in multivariate time

series via correlation. Part B: Cybernetics, IEEE Transactions on Systems,

Man, and Cybernetics, 31(2), pp. 235-245.

Tzerpos, V. & Holt, R. C., (1999). MoJo: A distance metric for software

clusterings. In: Reverse Engineering, 1999. Proceedings. Sixth Working

Conference on Washington, DC, USA: IEEE, pp. 187-193.

Tzerpos, V. & Holt, R. C., (2000). ACDC: An Algorithm for Comprehension-

Driven Clustering. Proceedings of the Seventh Working Conference on

Reverse Engineering (WCRE'00). IEEE Computer Society, pp.258-267.

Van Der Hofstad, R., (2014). Random graphs and complex networks. Available

from: http://www. win.tue.nl/rhofstad/NotesRGCN.pdf. [Accessed: 15th

July 2014]

180

Van Deursen, A., Moonen, L., Van Den Bergh, A. & Kok, G., (2001). Refactoring

test code.

Van Dongen, S. M., (2002). Graph clustering by flow simulation, Simulation.

PhD thesis, University of Utrecht.

Vanya, A., Hofland, L., Klusener, S., Van De Laar, P. & Van Vliet, H., (2008).

Assessing software archives with evolutionary clusters. In: Program

Comprehension, 2008. ICPC 2008. The 16th IEEE International

Conference on IEEE, pp. 192-201.

Voinea, S. & Telea, A., (2006). Cvsgrab: Mining the history of large software

projects. In: Proceedings of the Eighth Joint Eurographics- IEEE VGTC

conference on Visualization Eurographics Association, pp. 187-194.

Waeselynck, H., Thévenod-Fosse, P. & Abdellatif-Kaddour, O., (2007).

Simulated annealing applied to test generation: landscape characterization

and stopping criteria. Empirical Software Engineering, 12(1), pp. 35-63.

Weissgerber, P., (2009). Automatic refactoring detection in version archives, PhD

Thesis, University of Trier.

Weissgerber, P. & Diehl, S., (2006). Identifying refactorings from source-code

changes. In: Automated Software Engineering, 2006. ASE'06. 21st

IEEE/ACM International Conference on IEEE, pp. 231-240.

Wen, Z. & Tzerpos, V., (2003). An optimal algorithm for MoJo distance. In:

Program Comprehension, 2003. 11th IEEE International Workshop on,

Washington, DC, USA: IEEE, pp. 227-235.

Wen, Z. & Tzerpos, V., (2004). Evaluating similarity measures for software

decompositions. In: Software Maintenance, 2004. Proceedings. 20th IEEE

International Conference on Washington, DC, USA: IEEE, pp. 368-377.

Wierda, A., Dortmans, E. & Somers, L., (2006). Using version information in

architectural clustering - a case study. In: Software Maintenance and

Reengineering, 2006. CSMR 2006. Proceedings of the 10th European

Conference on IEEE, pp. 214-228.

Wiggerts, T. A., (1997). Using clustering algorithms in legacy systems

remodularization. In: Reverse Engineering, 1997. Proceedings of the

Fourth Working Conference on IEEE, pp. 33-43.

Wu, J., Hassan, A. E. & Holt, R. C., (2005). Comparison of clustering algorithms

in the context of software evolution. In: Software Maintenance, 2005.

ICSM'05. Proceedings of the 21st IEEE International Conference on,

Washington, DC, USA: IEEE, pp. 525-535.

181

Wu, Z. & Leahy, R., (1993). An optimal graph theoretic approach to data

clustering: Theory and its application to image segmentation. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 15(11), pp.

1101-1113.

Xing, Z. & Stroulia, E., (2006). Refactoring detection based on umldiff change-

facts queries. In: Reverse Engineering, 2006. WCRE'06. 13th Working

Conference on IEEE, pp. 263-274.

Xu, X., Lung, C.-H., Zaman, M. & Srinivasan, A., (2004). Program restructuring

through clustering techniques. In: Source Code Analysis and

Manipulation, 2004. Fourth IEEE International Workshop on IEEE,pp.

75-84.

Yourdon, E. & Constantine, L. L., (1979). Structured design: Fundamentals of a

discipline of computer program and systems design: Prentice-Hall

Englewood Cliffs, NJ.

Zuse, H., (1991). Software complexity. NY, USA: Walter de Cruyter.

