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Multiline Distance Minimization: A Visualized
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Abstract—Studying the search behavior of evolutionary
many-objective optimization is an important, but challenging
issue. Existing studies rely mainly on the use of performance
indicators which, however, not only encounter increasing diffi-
culties with the number of objectives, but also fail to provide the
visual information of the evolutionary search. In this paper, we
propose a class of scalable test problems, called multiline distance
minimization problem (ML-DMP), which are used to visually
examine the behavior of many-objective search. Two key char-
acteristics of the ML-DMP problem are: 1) its Pareto optimal
solutions lie in a regular polygon in the 2-D decision space and
2) these solutions are similar (in the sense of Euclidean geome-
try) to their images in the high-dimensional objective space. This
allows a straightforward understanding of the distribution of the
objective vector set (e.g., its uniformity and coverage over the
Pareto front) via observing the solution set in the 2-D decision
space. Fifteen well-established algorithms have been investigated
on three types of ten ML-DMP problem instances. Weakness
has been revealed across classic multiobjective algorithms (such
as Pareto-based, decomposition-based, and indicator-based algo-
rithms) and even state-of-the-art algorithms designed espe-
cially for many-objective optimization. This, together with some
interesting observations from the experimental studies, suggests
that the proposed ML-DMP may also be used as a bench-
mark function to challenge the search ability of optimization
algorithms.

Index Terms—Evolutionary algorithms, many-objective
optimization, search behavior examination, test problems,
visualization.
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I. INTRODUCTION

EXAMINATION of the search behavior of algorithms is
an important issue in evolutionary optimization. It can

help understand the characteristics of an evolutionary algo-
rithm (e.g., knowing which kind of problems the algorithm
may be appropriate for), facilitate its improvement, and also
make a comparison between different algorithms.

However, search behavior examination can be challeng-
ing in the context of evolutionary multiobjective optimization
(EMO). For a multiobjective optimization problem (MOP),
there is often no single optimal solution (point) but rather
a set of Pareto optimal solutions (Pareto optimal region).
We may need to consider not only the convergence of the
evolutionary population to these optimal solutions but also
the representativeness of the population to the whole opti-
mal region. This becomes even more difficult when an MOP
has four or more objectives, usually called a many-objective
optimization problem [1]–[3]. In many-objective optimization,
the observation of the evolutionary population by the scatter
plot, which is the predominating, most effective visualiza-
tion method in bi- and tri-objective cases, becomes difficult
to comprehend [4]–[8].

In the EMO community, there exist several test problem
suites available for many-objective optimization. Among these,
DTLZ [9] and WFG [10] are representations of continu-
ous problem suites, and knapsack [11], traveling salesman
problem [12] and multiobjective NK-landscapes [13] are rep-
resentations of discrete ones. Recently, researchers have also
presented several new MOPs for many-objective optimiza-
tion [14]–[16]. The above test problems have their own
characteristics, and some of them have been widely used
to examine the performance of many-objective evolutionary
algorithms [17]–[26]. In the performance examination, an
algorithm is called on a test problem and then returns a set of
solutions with high dimensions.

How to assess such a solution set is not a trivial task. The
basic way is to resort to performance indicators. Unfortunately,
there is no performance indicator that is able to fully reflect
the search behavior of evolutionary algorithms. On the one
hand, it is challenging to find (or design) a performance
indicator suited well to many-objective optimization, as a
result of growing difficulties with the number of objec-
tives, such as the requirement of time and space com-
plexity, ineffectiveness of the Pareto dominance criterion,
sensitivity of the parameter settings, and inaccuracy of the
Pareto front’s substitution. Many performance indicators that
are designed in principle for any number of objectives
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may be invalid or infeasible in practice in many-objective
optimization [27].

On the other hand, one performance indicator only exam-
ines one specific aspect of algorithms’ behavior. Even those
performance indicators that aim to examine the same aspect
of the population performance also have their own preference.
For example, two commonly used indicators, inverted gener-
ational distance (IGD) [28] and hypervolume (HV) [11], both
of which provide a combined information of convergence and
diversity of the population, can bring inconsistent assessment
results [29]–[31]. For two populations being of same conver-
gence, IGD, which is calculated on the basis of uniformly
distributed points along the Pareto front, prefers the one having
uniformly distributed individuals, while HV, which is typically
influenced more by the boundary individuals, has a bias toward
the one having good extensity.

More importantly, performance indicators cannot provide
the visual information of the evolutionary search. This matters,
especially for researchers and practitioners with the real-world
application background who typically have no expertise in the
EMO performance assessment—it could be hard for them to
understand the behavior of EMO algorithms only on the basis
of the returned indicator values.

Recently, EMO researchers introduced a class of test prob-
lems (called the multipoint distance minimization problem
(MP-DMP)1 for visual examination of the search behavior
of multiobjective optimizers. As its name suggests, the MP-
DMP problem is to simultaneously minimize the distance of
a point to a prespecified set (or several prespecified sets) of
target points. One key characteristic of MP-DMP is its Pareto
optimal region in the decision space is typically a 2-D mani-
fold (regardless of the dimensionality of its objective vectors
and decision variables). This naturally allows a direct obser-
vation of the search behavior of EMO algorithms, e.g., the
convergence of their population to the Pareto optimal solu-
tions and the coverage of the population over the optimal
region.

Over the last decade, the MP-DMP problem and its
variants have gained increasing attention in the evolution-
ary multiobjective (esp. many-objective) optimization area.
Köppen and Yoshida [33] constructed a simple MP-DMP
instance which minimizes the Euclidean distance of a point to
a set of target points in a 2-D space. This leads to the Pareto
optimal solutions residing in the convex polygon formed by
the target points. Rudolph et al. [38] introduced a variant of
MP-DMP whose Pareto optimal solutions are distributed in
multiple symmetrical regions in order to investigate if EMO
algorithms are capable of detecting and preserving equivalent
Pareto subsets. Schütze et al. [39] and Singh et al. [40] used
the MP-DMP problem to help understand the characteristics
of many-objective optimization, analytically and empirically,
respectively. Ishibuchi et al. [41] generalized the MP-DMP
problem and introduced multiple Pareto optimal polygons
with same [41] or different shapes [42]. Later on, they
examined the behavior of EMO algorithms on the MP-DMP

1The MP-DMP has different names or abbreviations in the literature (such
as the Pareto box problem [32], P∗ problem [33], distance minimization
problem [34], DMP [35], and M-DMP [36]). For the contrast of the work
presented in this paper, we abbreviate it as MP-DMP here [37].

problem with an arbitrary number of decision variables [34],
and also further generalized this problem by specifying ref-
erence points on a plane in the high-dimensional decision
space [43]. Very recently, Zille and Mostaghim [35] used
the Manhattan distance measure in MP-DMPs and found that
this can drastically change the problem’s property and dif-
ficulty. Xu et al. [36] proposed a systematic procedure to
identify Pareto optimal solutions of the MP-DMP under the
Manhattan distance measure and also gave a theoretical proof
of their Pareto optimality. Fieldsend [44] embedded dominance
resistance regions into the MP-DMP problem and demon-
strated that Pareto-based approach can be fragile to dominance
resistance points. Overall, the MP-DMP problems present a
good alternative for researchers to understand the behavior of
multiobjective search. Consequently, they have been frequently
used to visually compare many-objective optimizers in recent
studies [45]–[47].

However, one weakness of the MP-DMP problem is its
inability to facilitate examination of the search behavior in
the objective space. There is no explicit (geometric) similarity
relationship between decision variables’ distribution and that
of objective vectors. Even when a set of objective vectors are
distributed perfectly over the Pareto front, we cannot know
this fact via observing the corresponding solution variables in
the decision space.

As the first attempt to solve the above issue, we recently
presented a four-objective test problem whose Pareto opti-
mal solutions in the decision space are similar (in the sense
of Euclidean geometry) to their images in the objective
space [48]. This therefore allows a straightforward understand-
ing of the behavior of objective vectors, e.g., their uniformity
and coverage over the Pareto front. However, to comply to
the geometric similarity between the Pareto optimal solu-
tions and their objective images, the presented problem fixes
its objective dimensionality to four. This makes it impossi-
ble to examine the search behavior of EMO algorithms in a
higher-dimensional objective space.

In this paper, we significantly extend our previous work
in [48] and propose a class of test problems [called the
multiline distance minimization problem (ML-DMP)] whose
objective dimensionality is changeable. In contrast to the MP-
DMP which minimizes the distance of a point to a set of
target points, the proposed ML-DMP minimizes the distance
of a point to a set of target lines. Two key characteristics of
the ML-DMP are that its Pareto optimal solutions: 1) lie in
a regular polygon in the 2-D decision space and 2) are sim-
ilar (in the sense of Euclidean geometry) to their images in
the high-dimensional objective space. In addition to these, the
ML-DMP has the following properties.

1) It is scalable with respect to the number of objectives—
its objective dimensionality can be set by the user freely.

2) Its difficulty level is adjustable, which allows a
viable examination of diverse search abilities of EMO
algorithms.

3) It provides an interesting dominance structure which
varies with the number of objectives, e.g., for the four-
objective instance there exist some areas dominated only
by one line segment and for the five-objective one there
exist some areas dominated only by one particular point.
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Fig. 1. Tri-objective ML-DMP instance where A1–A3 are the three vertexes
of the regular triangle.

This paper conducts a theoretical analysis of the geomet-
ric similarity of the Pareto optimal solutions and also of their
optimality in the polygon as to the given search space. For
experimental examination, this paper considers ten instances of
the ML-DMP problem with three, four, five, and ten objectives
and investigates the search behavior of 15 well-established
algorithms on these instances. This investigation provides a
visual understanding of the search behavior of EMO algo-
rithms on different objective dimensionality and varying search
space.

The rest of this paper is structured as follows. Section II
describes the proposed ML-DMP and this includes an
analysis of the problem’s geometric similarity and Pareto
optimality. Section III introduces experimental design.
Section IV is devoted to experimental results. Finally,
Section V draws the conclusions and gives possible lines of
future work.

II. MULTILINE DISTANCE MINIMIZATION PROBLEM

The ML-DMP considers a 2-D decision space. For any
point P = (x, y) in this space, the ML-DMP calculates the
Euclidean distance from P to a set of m target straight lines,
each of which passes through an edge of the given regular
polygon with m vertexes (A1, A2, . . . , Am), where m ≥ 3. The
goal in the ML-DMP is to optimize these m distance values
simultaneously. Fig. 1 gives a tri-objective ML-DMP instance.
A1–A3 are the three vertexes of a regular triangle, and

←−→
A1A2,←−→

A2A3, and
←−→
A3A1 are the three target lines passing through the

three edges of the triangle. Thus, the objective vector of a
point P is ( f1, f2, f3) = (d(P,

←−→
A1A2), d(P,

←−→
A2A3), d(P,

←−→
A3A1)),

where d(P,
←→
AiAj) denotes the Euclidean distance from point P

to straight line
←→
AiAj.

It is clear that there does not exist a single point P
on the decision space that can reach minimal value for all
the objectives. For the tri- or four-objective ML-DMP, the
Pareto optimal region is their corresponding regular poly-
gon. But this may not be the case for the ML-DMP with
five or more objectives. The identification of the Pareto

Fig. 2. Illustration of geometric similarity of the ML-DMP on a tri-objective
instance, where a set of uniformly-distributed points over the regular triangle
in the decision space lead to a set of uniformly-distributed objective vectors.
(a) Decision space. (b) Objective space.

optimal solutions of the ML-DMP will be presented in
Section II-B.

A. Geometric Similarity of the ML-DMP

An important characteristic of the ML-DMP is that the
points in the regular polygon (including the boundaries) and
their objective images are similar in the sense of Euclidean
geometry. In other words, the ratio of the distance between
any two points in the polygon to the distance between their
corresponding objective vectors is a constant. Fig. 2 illustrates
the geometric similarity between the polygon points and their
images on a tri-objective ML-DMP. Next, we give the defi-
nition of the geometric similarity for an ML-DMP with any
number of objectives.

Theorem 1: For an ML-DMP problem, the Euclidean dis-
tance between any two solutions that lie inside the regular
polygon (including the boundaries) is equal to the Euclidean
distance between their objective images multiplied by a con-
stant. Formally, for any two interior solutions P1(x1, y1) and
P2(x2, y2) of the polygon of an ML-DMP problem F =
( f1, f2, . . . , fm), we have

‖P1 − P2‖ = k‖F(P1)− F(P2)‖

which can be rewritten as

√
(x1 − x2)

2 − (y1 − y2)2 = k

√√√√
m∑

i=1

( fi(P1)− fi(P2))
2. (1)

Proof: Let us consider the notations as in Fig. 3. Without
loss of generality, it can be supposed that one edge of the
polygon (for instance A1A2) is parallel with x-axis and P1 and
P2 are two points inside the polygon. Let us denote by θ the
angle between the line

←−→
P1P2 and x-axis. Then

f1(P1)− f1(P2) = d
(

P1,
←−→
A1A2

)
− d

(
P2,
←−→
A1A2

)

= l sin θ

where l is the Euclidean distance between P1 and P2 (i.e.,
||P1 − P2|| = l).
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Fig. 3. Illustration for the proof of Theorem 1.

Since the polygon is regular, the same property holds for the
edge

←−→
A2A3, with the difference that the angle between

←−→
A2A3

and x-axis is 2π/m. Thus, we have

f2(P1)− f2(P2) = d
(

P1,
←−→
A2A3

)
− d

(
P2,
←−→
A2A3

)

= l sin(θ − 2π/m).

This can be visualized as rotating the coordinate system
with 2π/m degrees, when the angle between the line

←−→
P1P2

and x-axis in the new coordinate system is θ − 2π/m. Now
we further have

‖F(P1)− F(P2)‖ =
√√√√m−1∑

i=0

(
l sin

(
θ − 2π i

m

))2

. (2)

Using the relation sin2 θ = (1 − cos 2θ)/2, the above
equation can be written as

‖F(P1)− F(P2)‖ = l

√√√√√
m−1∑
i=0

1− cos
(

2θ − 4π i
m

)

2

= l√
2

√√√√m−
m−1∑
i=0

cos

(
2θ − 4π i

m

)
. (3)

If we change the index of the sum from i = 0, 1, . . . , m−
1 to i = 0, 1, . . . , m − 1, m and use the relation cos(2θ −
4πm/m) = cos 2θ , the equation can be expressed as

‖F(P1)− F(P2)‖

= l√
2

(
m+ cos 2θ −

m∑
i=0

cos

(
2θ − 4π i

m

)) 1
2

= l

2

(
2m+ 2 cos 2θ − 2

m∑
i=0

cos

(
2θ − 4π i

m

)) 1
2

= l

2

(
2m+ 2 cos 2θ −

m∑
i=0

(
cos

(
2θ − 4π i

m

)

+ cos

(
2θ − 4π(m− i)

m

))) 1
2

. (4)

According to the relation cos α+cos β = 2 cos [(α + β)/2]·
cos [(α − β)/2], the equation can be further expressed as

‖F(P1)− F(P2)‖

= l

2

⎛
⎝2m+ 2 cos 2θ

−
m∑

i=0

2 cos

(
2θ − 4π i

m

)
+
(

2θ − 4π(m−i)
m

)

2

× cos

(
2θ − 4π i

m

)
−
(

2θ − 4π(m−i)
m

)

2

⎞
⎠

1
2

= l

2

(
2m+ 2 cos 2θ − 2

m∑
i=0

cos

(
2θ − 2πm

m

)

× cos
2π(m− 2i)

m

) 1
2

= l

2

(
2m+ 2 cos 2θ − 2 cos 2θ

m∑
i=0

cos

(
2π − 4π i

m

)) 1
2

= l

2

(
2m+ 2 cos 2θ − 2 cos 2θ

m∑
i=0

cos
4π i

m

) 1
2

= l

2

(
2m+ 2 cos 2θ

− 2 cos 2θ

(
m−1∑
i=0

cos
4π i

m
+ cos

4πm

m

)) 1
2

= l

2

(
2m+ 2 cos 2θ − 2 cos 2θ

(
m−1∑
i=0

cos
4π i

m
+ 1

)) 1
2

= l

2

(
2m− 2 cos 2θ

m−1∑
i=0

cos
4π i

m

) 1
2

. (5)

Now we simplify the above equation. Let us consider
the complex number ω = cos(4π/m) + i sin(4π/m). Then
ωx = cos(4πx/m) + i sin(4πx/m) and ωm = cos(4πm/m) +
i sin(4πm/m) = cos 4π + i sin 4π = 1. We know that
ωm − 1 = 0. Thus (ω− 1)(ωm−1 +ωm−2 + · · · +ω+ 1) = 0.
Since ω �= 1, it holds ωm−1 + ωm−2 + · · · + ω + 1 = 0,
which means that

∑m−1
i=0 (cos(4π i/m) + i sin(4π i/m)) = 0.

This indicates that both real and imaginary parts equal 0. Thus

m−1∑
i=0

cos
4π i

m
= 0.

If we now go back to (5), we have

‖F(P1)− F(P2)‖

= l

2

(
2m− 2 cos 2θ

m−1∑
i=0

cos
4π i

m

) 1
2

= l

2

√
2m = l

√
m

2
. (6)
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Since ||P1 − P2|| = l, we finally have

‖P1 − P2‖ =
√

2

m
‖F(P1)− F(P2)‖ (7)

where m is the problem’s objective dimensionality. This
completes the proof of Theorem 1.

Note that the polygon of the ML-DMP should be regular;
otherwise, this theorem does not hold.

B. Pareto Optimality of the ML-DMP

To consider the Pareto optimality of the ML-DMP, let us
first recall several well-known concepts in multiobjective opti-
mization: Pareto dominance, Pareto optimality, Pareto optimal
set and Pareto front. Without loss of generality, we consider
the minimization MOP here.

Definition 1 (Pareto Dominance): For an MOP F(P) =
( f1(P), f2(P), . . . , fm(P)), let P1 and P2 be two feasible solu-
tions (denoted as P1, P2 ∈ �). P1 is said to Pareto dominate
P2 (denoted as P1 ≺ P2), if and only if

∀i ∈ (1, 2, . . . , m) : fi(P1) ≤ fi(P2) ∧
∃j ∈ (1, 2, . . . , m) : fj(P1) < fj(P2). (8)

On the basis of the concept of Pareto dominance, the Pareto
optimality and Pareto optimal set (Pareto front) can be defined
as follows.

Definition 2 (Pareto Optimality): A solution P∗ ∈ � is said
to be Pareto optimal if there is no P ∈ �, P ≺ P∗.

Definition 3 (Pareto Optimal Set and Pareto Front): The
Pareto optimal set is defined as the set of all Pareto optimal
solutions, and the Pareto front is the set of their corresponding
images in the objective space.

Next, we discuss the Pareto optimal solutions of the
ML-DMP problem.

Theorem 2: For an ML-DMP (� = R
2) with a regular

polygon of m vertexes (A1, A2, . . . , Am), points inside the
polygon (including the boundary points) are the Pareto opti-
mal solutions. In other words, for any point in the polygon,
there is no point ∈ R

2 that dominates it.
Proof: See Section I in the supplementary material.
This theorem indicates that all points inside the polygon are

the Pareto optimal solutions. However, these points may not
be the sole Pareto optimal solutions of the problem. That is,
there may exist some points outside the polygon that are not
dominated by these points.

Consider a five-objective ML-DMP in Fig. 4, where A1–A5
are the five vertexes of the regular pentagon. Point O is the
intersection point of the two target lines

←−→
A1A2 and

←−→
A4A3, and

A′2 and A′3 are the symmetric points of A2 and A3 with respect
to point O, respectively. As to the two objectives of target lines←−→
A1A2 and

←−→
A4A3, we have that there is no point inside the pen-

tagon that is better than any point in the region bounded by
points A2, A′3, A′2, and A3 (denoted as polygon A2A′3A′2A3A2).
To see this, let us divide polygon A2A′3A′2A3A2 into four trian-
gles: 1) A2OA3A2; 2) A′2OA′3A′2; 3) A3OA′2A3; and 4) A2OA′3A2.
For triangle A2OA3A2, it is clear that its points are not domi-
nated by the pentagon point with respect to the two objectives
of target lines

←−→
A1A2 and

←−→
A4A3. This can be explained by the

Fig. 4. Illustration of some areas outside the polygon being nondominated
areas on a five-objective ML-DMP.

fact that for any point in triangle A2OA3A2 (e.g., P in Fig. 4),
there is no intersection of the two areas of the regular pen-
tagon: one is the area that is better than P for target line

←−→
A1A2

and the other is the area that is better than P for target line←−→
A4A3. On the other hand, according to the structure proper-
ties of the polygon A2A′3A′2A3A2, it is not difficult to obtain
that for any point in the other three triangles: 1) A′2OA′3A′2;
2) A3OA′2A3; and 3) A2OA′3A2, there exists a corresponding
point in triangle A2OA3A2 that has same distance to target
lines

←−→
A1A2 and

←−→
A4A3 (i.e., same value on these two objec-

tives). This includes that when a point is located on boundary
lines A3A′2, A′2A′3 or A′3A2, there exists a corresponding point
on line A2A3. So, for any point inside polygon A2A′3A′2A3A2
(excluding the boundary), there is no point in the regular pen-
tagon (including the boundary) that is better than (or equal to)
it with respect to both target lines

←−→
A1A2 and

←−→
A4A3.

The above discussions indicate that in an ML-DMP if two
target lines intersect outside the regular polygon, there exist
some areas whose points are nondominated with the interior
points of the polygon. Apparently, such areas exist in an ML-
DMP with five or more objectives in view of the convexity of
the considered polygon. However, according to Theorem 1, the
geometric similarity holds only for the points inside the regular
polygon. The Pareto optimal solutions that are located outside
the polygon will affect this similarity property. To address this
issue, we constrain some regions in the search space of the
ML-DMP so that the points inside the regular polygon are the
sole Pareto optimal solutions of the problem.

Formally, consider an m-objective ML-DMP with a regu-
lar polygon of vertexes (A1, A2, . . . , Am). For any two target
lines
←−−→
Ai−1Ai and

←−−→
AnAn+1 (without loss of generality, assuming

i < n) that intersect one point (O) outside the considered
regular polygon, we can construct a polygon (denoted as
�Ai−1AiAnAn+1 ) bounded by a set of 2(n − i) + 2 line seg-
ments: AiA′n, A′nA′n−1, . . . , A′i+1A′i, A′iAn, AnAn−1, . . . , Ai+1Ai,
where points A′i, A′i+1, . . . , A′n−1, A′n are symmetric points of
Ai, Ai+1, ...An−1, An with respect to central point O. We con-
strain the search space of the ML-DMP outside such polygons
(but not including the boundary). Now we have the following
theorem.
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Theorem 3: Considering an ML-DMP with a regular poly-
gon of m vertexes (A1, A2, . . . , Am), the feasible region � =
� ∧ S, where � is the union set of all the constrained poly-
gons and S is a 2-D rectangle space in R

2 (i.e., the rectangle
constraint defined by the marginal values of decision vari-
ables). Then, the points inside the regular polygon (including
the boundary) are the sole Pareto optimal solutions of the
ML-DMP.

Proof: See Section II in the supplementary material.
Note that the feasible region of the problem includes the

boundary points of the constrained polygons, which are typ-
ically dominated by only one Pareto optimal point. This
property can cause difficulty for EMO algorithms to converge.
In addition, unlike MP-DMP where solutions far from the opti-
mal polygon have poor values on all the objectives (as they
are away from all the target vertexes of the polygon), in ML-
DMP solutions far from the optimal polygon will have the best
(or near best) value on one of the objectives when they are
located on (or around) one target line. Such solutions belong to
so-called dominance resistant solutions [49] [i.e., the solutions
with an (near) optimal value in at least one of the objectives but
with quite poor values in the others], which many EMO algo-
rithms have difficulty in getting rid of [49], [50]. Moreover,
for an ML-DMP with an even number of objectives (m = 2k
where k ≥ 2), there exist k pairs of parallel target lines. Any
point (outside the regular polygon) residing between a pair of
parallel target lines is dominated by only a line segment paral-
lel to these two lines. This property of the ML-DMP problem
poses a great challenge for EMO algorithms which use Pareto
dominance as the sole selection criterion in terms of conver-
gence, typically leading to their populations trapped between
these parallel lines.

III. EXPERIMENTAL DESIGN

A. Three Types of ML-DMP Instances

To systematically examine the search behavior of EMO
algorithms in terms of convergence and diversity, three types
of ML-DMP instances are considered. For all the instances,
the center coordinates of the regular polygon (i.e., Pareto opti-
mal region) are (0, 0) and the radius of the polygon (i.e., the
distance of the vertexes to the center) is 1.0.

In type I, the search space of the ML-DMP is precisely the
Pareto optimal region (i.e., the regular polygon). This allows
us to solely understand the ability of EMO algorithms in main-
taining diversity. The search space of type II is [−100, 100]2,
which is used to examine the ability of algorithms in balancing
convergence and diversity. In type III, the search space of the
problem is extended hugely to [−1010, 1010]2. This focuses on
the examination of algorithms’ ability in driving the population
toward the optimal region.

Three-, four-, five-, and ten-objective ML-DMP problems
are considered in the experimental studies. In the three-
objective ML-DMP, there are no parallel target lines and
constrained areas. It is expected that EMO algorithms can
relatively easily find the optimal polygon. The four- and five-
objective ML-DMPs have parallel target lines and constrained
areas, respectively, which present difficulties for Pareto-based

algorithms to converge. The ten-objective problem has a lot of
parallel target lines and constrained areas. This should provide
a big challenge for EMO algorithms in guiding the population
into the optimal region.

B. Examined Algorithms

Fifteen EMO algorithms are examined, including clas-
sic EMO algorithms (such as Pareto-based, decomposition-
based, and indicator-based algorithms) and also those designed
specially for many-objective optimization. Next, we briefly
describe these algorithms.

1) Nondominated Sorting Genetic Algorithm II
(NSGA-II) [51]: As one of the most popular EMO
algorithms, NSGA-II is characterized as the Pareto
nondominated sorting and crowding distance in its
fitness assignment.

2) Strength Pareto Evolutionary Algorithm 2 (SPEA2) [52]:
SPEA2 is also a prevalent Pareto-based algorithm, which
uses a so-called fitness strength and the nearest neighbor
technique to compare individuals during the evolutionary
process.

3) Average Ranking (AR) [53]: AR is regarded as a good
alternative in solving many-objective optimization prob-
lems [12]. It first ranks solutions in each objective and
then sums up all the rank values to evaluate the solu-
tions. However, due to a lack of diversity maintenance
mechanism, AR often leads the population to converge
into a subarea of the Pareto front [18], [64].

4) Indicator-Based Evolutionary Algorithm (IBEA) [54]:
As the pioneer of indicator-based EMO algorithms,
IBEA defines the optimization goal in terms of a binary
performance measure and then utilizes this measure to
guide the search. Two indicators, Iε+ and IHV , were con-
sidered in IBEA. Here, Iε+ is used in our experimental
studies.

5) ε-Dominance Multiobjective Evolutionary Algorithm
(ε-MOEA) [55]: Using the ε dominance [65] to
strengthen the selection pressure, ε-MOEA has been
found to be promising in many-objective optimiza-
tion [19], [45]. The algorithm divides the objective space
into many hyperboxes and allows each hyperbox at
most one solution according to the ε dominance and
the distance from solutions to the utopia point in the
hyperbox.

6) S Metric Selection EMO Algorithm (SMS-EMOA) [56]:
SMS-EMOA, like IBEA, is also an indicator-based algo-
rithm. It combines the maximization of the HV contribu-
tion with the nondominated sorting. Despite having good
performance in terms of both convergence and diversity,
SMS-EMOA suffers from an exponentially increasing
computational cost. In this paper, when the number of
the problem’s objectives reaches five, we approximately
estimate the HV contribution of SMS-EMOA by the
Monte Carlo sampling method used in [59].

7) Multiobjective Evolutionary Algorithm Based on
Decomposition (MOEA/D) [57]: As one of the most
well-known algorithms developed recently, MOEA/D
converts a multiobjective problem into a set of scalar
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TABLE I
PARAMETER SETTING AND THE SOURCE OF THE TESTED ALGORITHMS

Fig. 5. Best solution set of the 15 algorithms on a tri-objective ML-DMP instance where the search space is precisely the optimal polygon, and its
corresponding IGD result. The associated index of the algorithm represents the number of runs (out of all ten runs) in which the obtained solutions have a
good coverage over the optimal polygon. (a) NSGA-II (10) IGD = 5.78E−2. (b) SPEA2 (10) IGD = 4.26E−2. (c) AR (0) IGD = 1.06E−1. (d) IBEA (10)
IGD = 4.76E−2. (e) ε-MOEA (10) IGD = 4.24E−2. (f) SMS-EMOA (10) IGD = 4.12E−2. (g) MOEA/D-TCH (10) IGD = 7.00E−2. (h) MOEA/D-PBI
(10) IGD = 4.05E−2. (i) DMO (10) IGD = 5.65E−2. (j) HypE (10) IGD = 7.38E−2. (k) GrEA (10) IGD = 4.36E−2. (l) Two_Arch2 (10) IGD = 4.27E−2.
(m) AGE-II (10) IGD = 4.25E−2. (n) NSGA-III (10) IGD = 4.05E−2. (o) SPEA2+SDE (10) IGD = 4.42E−2.

optimization subproblems by a set of weight vectors
and an achievement scalarizing function, and then
tackles them simultaneously. Here, two commonly-
used achievement scalarizing functions, Tchebycheff
and penalty-based boundary intersection, are consid-
ered in this paper (denoted as MOEA/D-TCH and
MOEA/D-PBI).

8) Diversity Management Operator (DMO) [58]: DMO
is an attempt of using a diversity management opera-
tor to adjust the diversity requirement in the selection
process of evolutionary many-objective optimization.
By comparing the boundary values between the cur-
rent population and the Pareto front, the diversity

maintenance mechanism is controlled (i.e., activated or
inactivated).

9) Hypervolume Estimation Algorithm (HypE) [59]: As
a representative indicator-based algorithm for many-
objective optimization, HypE adopts the Monte Carlo
simulation to approximate the exact HV value, thereby
significantly reducing the time cost of the HV
calculation.

10) Grid-Based Evolutionary Algorithm (GrEA) [60]: GrEA
explores the potential of the use of the grid in many-
objective optimization. In GrEA, a set of grid-based cri-
teria are introduced to guide the search toward the opti-
mal front, and a grid-based fitness adjustment strategy
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Fig. 6. Best solution set of the 15 algorithms on a ten-objective ML-DMP instance where the search space is precisely the optimal polygon, and its
corresponding IGD result. The associated index of the algorithm represents the number of runs (out of all ten runs) in which the obtained solutions have a
good coverage over the optimal polygon. (a) NSGA-II (10) IGD = 6.01E−2. (b) SPEA2 (10) IGD = 4.65E−2. (c) AR (9) IGD = 8.11E−2. (d) IBEA (10)
IGD = 4.98E−2. (e) ε-MOEA (10) IGD = 5.40E−2. (f) SMS-EMOA (10) IGD = 6.18E−2. (g) MOEA/D-TCH (0) IGD = 1.30E−1. (h) MOEA/D-PBI
(0)IGD = 1.51E−1. (i) DMO (10) IGD = 6.00E−2. (j) HypE (0) IGD = 2.62E−1. (k) GrEA (10) IGD = 4.87E−2. (l) Two_Arch2 (10) IGD = 4.78E−2.
(m) AGE-II (10) IGD = 4.69E−2. (n) NSGA-III (0) IGD = 9.03E−2. (o) SPEA2+SDE (10) IGD = 4.84E−2.

TABLE II
POPULATION SIZE, THE ε SETTING IN ε-MOEA, THE NUMBER

OF REFERENCE POINTS/DIRECTIONS (h) ALONG EACH

OBJECTIVE IN THE DECOMPOSITION-BASED ALGORITHMS

MOEA/D-TCH, MOEA/D-PBI, AND NSGA-III

to maintain an extensive and uniform distribution among
individuals.

11) Two-Archive Algorithm 2 (Two_Arch2) [61]: As a
bi-population evolutionary algorithm, Two_Arch2 con-
siders different selection criteria in the two archive sets,
with one set being guided by the indicator Iepsilon+ (from
IBEA [54]) and the other by Pareto dominance and a
Lp-norm-based distance measure, where p is set to 1/m.

12) Approximation-Guided Evolutionary Algorithm II
(AGE-II) [62]: AGE-II incorporates a formal notion
of approximation into an EMO algorithm. To improve
the original AGE algorithm [66] suffering from heavy
computational cost, AGE-II introduces an adaptive
ε-dominance approach to balance the convergence

speed and runtime. Also, the mating selection strategy
is redesigned to emphasize the population diversity.

13) NSGA-III [63]: NSGA-III is a recent many-objective
algorithm whose framework is based on NSGA-II
but with significant changes in the selection mecha-
nism. Instead of the crowding distance, NSGA-III uses
a decomposition-based niching technique to maintain
diversity by a set of well-distributed weight vectors.

14) SPEA2 With Shift-Based Density Estimation
(SPEA2+SDE) [46]: Shifting individuals’ position
before estimating their density, SDE can make Pareto-
based algorithms work effectively in many-objective
optimization. In contrast to traditional density estima-
tion which only involves individuals’ distribution, SDE
covers both distribution and convergence information
of individuals. The Pareto-based algorithm SPEA2
has been demonstrated to be promising when working
with SDE.

C. General Experimental Setting

A crossover probability pc = 1.0 and a mutation probability
pm = 1/n (where n denotes the number of decision variables)
were used. The operators for crossover and mutation are sim-
ulated binary crossover and polynomial mutation with both
distribution indexes 20. For newly-produced individuals which
are located in the constrained areas of the ML-DMP, we simply
reproduce them until they are feasible.
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Fig. 7. Best solution set of the 15 algorithms on a tri-objective ML-DMP instance where the search space is [−100, 100]2, and its corresponding generational
distance (GD) and IGD results. The associated indexes (I1, I2) of the algorithm, respectively, represent the number of runs (out of all ten runs) in which all
obtained solutions converge into (or are close to) the optimal polygon and the number of runs in which the obtained solutions have a good coverage over
the optimal polygon. (a) NSGA-II (10, 10) GD = 3.10E−3, IGD = 6.38E−2. (b) SPEA2 (10, 10) GD = 1.25E−3, IGD = 4.28E−2. (c) AR (10, 0) GD =
2.65E−3, IGD = 1.16E−1. (d) IBEA (10, 0) GD = 2.24E−4, IGD = 1.05E−1. (e) ε-MOEA (10, 10) GD = 0.00E+0, IGD = 4.32E−2. (f) SMS-EMOA
(10, 10) GD = 2.98E−5, IGD = 4.16E−2. (g) MOEA/D-TCH (10, 10) GD = 2.51E−5, IGD = 6.45E−2. (h) MOEA/D-PBI (10, 10) GD = 4.01E−5, IGD
= 4.17E−2. (i) DMO (9, 10)GD = 2.43E−3, IGD = 6.17E−2. (j) HypE (10, 10) GD = 1.37E−4, IGD = 8.09E−2. (k) GrEA (10, 7) GD = 5.07E−6, IGD
= 4.53E−2. (l) Two_Arch2 (10, 10) GD = 1.89E−3, IGD = 4.64E−2. (m) AGE-II (10, 10) GD = 0.00E+0, IGD = 4.27E−2. (n) NSGA-III (10, 10) GD
= 2.88E−4, IGD = 4.06E−2. (o) SPEA2+SDE (10, 10) GD = 1.96E−4, IGD = 4.37E−2.

The termination criterion of the examined algorithms was
15 000, 30 000, and 60 000 evaluations for types I–III of the
ML-DMP instances, respectively. In the decomposition-based
algorithms, the population size, which is determined by the
number of reference points/directions (h) along each objective,
cannot be specified arbitrarily. In the experimental studies, we
set h to 14, 7, 5, and 3 for the three-, four-, five-, and ten-
objective ML-DMP, respectively. In addition, for some of the
tested algorithms, such as NSGA-II and NSGA-III, the pop-
ulation size needs to be divisible by 4. In view of these two
requirements, we specify the population size (and the archive
set) to 120, 120, 128, and 220 for the three-, four-, five-, and
ten-objective ML-DMPs. In ε-MOEA, the size of the archive
set is determined by parameter ε. For a fair comparison, we set
ε such that the archive set is approximately of the same size
as that of the other algorithms. Table I summarizes parameter
settings as well as the source of all the algorithms. The setting
of these parameters in our experimental studies either follows
the suggestion in their original papers or has been found to
enable the algorithm to perform better on the ML-DMP.

IV. EXPERIMENTAL RESULTS

In this section, we examine the search behavior of the 15
EMO algorithms by demonstrating their solution sets in the
2-D decision space for the three types of ML-DMP instances
described in the previous section. Each algorithm was exe-
cuted ten independent runs, from which we displayed the best

solution set (determined by the IGD indicator [28]) of one run.
For a quantitative understanding, the GD [67] and IGD results
of the best solution set were also included in the figures. GD
and IGD are two popular performance indicators which assess
a solution set’s convergence and comprehensive performance
(i.e., both convergence and diversity), respectively. To calcu-
late GD, we considered the average Euclidean distance of
the solutions to the optimal polygon. That is, if a solution
is inside the optimal polygon the distance is zero; otherwise,
it is the distance from the solution to its closest edge of
the polygon. For IGD, we randomly generated 50 000 points
inside the optimal polygon and then calculated the average
Euclidean distance from these points to their closest solution
in the considered solution set.

In addition, to examine the stability of the algorithms in
terms of convergence and diversity individually, we provide
two number indexes I1 and I2, with I1 being the number of
runs (out of all ten runs) in which the final solutions obtained
by the tested algorithm converge into (or are very close to)
the optimal polygon and I2 being the number of runs in
which the solutions have a good coverage over the optimal
polygon. These two indexes are determined by GD and IGD,
respectively.

A. Type I ML-DMP

Fig. 5 shows the best one-run solution sets obtained by the
15 algorithms on the tri-objective type I ML-DMP instance
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Fig. 8. Best solution set of the 15 algorithms on a four-objective ML-DMP instance where the search space is [−100, 100]2, and its corresponding GD and
IGD results. The associated indexes (I1, I2) of the algorithm, respectively, represent the number of runs (out of all ten runs) in which all obtained solutions
converge into (or are close to) the optimal polygon and the number of runs in which the obtained solutions have a good coverage over the optimal polygon.
(a) NSGA-II (0, 0) GD = 4.20E+1, IGD = 5.45E−1. (b) SPEA2 (0, 0) GD = 3.63E+1, IGD = 4.92E−1. (c) AR (0, 0) GD = 3.81E+0, IGD = 1.42E−1.
(d) IBEA (10, 0) GD = 1.70E−4, IGD = 2.72E−1. (e) ε-MOEA (10, 10) GD = 0.00E+0, IGD = 5.32E−2. (f) SMS-EMOA (10, 10) GD = 3.21E−5,
IGD = 5.78E−2. (g) MOEA/D-TCH (0, 0) GD = 8.03E−1, IGD = 9.63E−2. (h) MOEA/D-PBI (0, 10) GD = 6.71E−2, IGD = 7.66E−2. (i) DMO (0, 0)
GD = 7.60E+0, IGD = 1.50E−1. (j) HypE (10, 10) GD = 2.83E−4, IGD = 8.44E−2. (k) GrEA (5, 0) GD = 2.72E−2, IGD = 1.56E−1. (l) Two_Arch2
(0, 0) GD = 1.53E+1, IGD = 2.11E−1. (m) AGE-II (10, 10) GD = 0.00E+0, IGD = 5.36E−2. (n) NSGA-III (0, 0) GD = 4.88E+0, IGD = 1.23E−1.
(o) SPEA2+SDE (10, 10) GD = 0.00E+0, IGD = 5.34E−2.

where the search space is precisely the optimal triangle.
This allows an independent examination of the algorithms’
performance in maintaining diversity. As can be seen in
the figure, the solutions of all the algorithms except AR
are widely distributed over the triangle, which verifies their
ability in diversifying the population on the tri-objective
problem. Among these algorithms, however, some fail to
maintain the uniformity of distribution, leading to the solu-
tions crowded (or even overlapping) in some areas but sparse
in some others. Such algorithms includes NSGA-II, DMO,
HypE, and MOEA/D-TCH; the last one, interestingly, has
a regularly-distributed solution set. In contrast, the solutions
obtained by ε-MOEA and AGE-II have an excellent unifor-
mity, but cannot cover the boundary of the triangle. SPEA2,
IBEA, GrEA, Two_Arch2, and SPEA2+SDE are the algo-
rithms which achieve a good balance between uniformity and
extensity. In addition, three well-known algorithms, SMS-
EMOA, MOEA/D-PBI, and NSGA-III, tend to have a perfect
performance on this problem, with their solutions being highly
uniform over the whole triangle.

The above observations show that most of the tested EMO
algorithms are able to effectively maintain solutions’ diversity
on the tri-objective instance. So, how do they perform when
more objectives are involved? Fig. 6 gives the results of the
best solution sets of the 15 algorithms on the ten-objective

Fig. 9. Illustration of the difficulty for EMO algorithms to converge on
the four-objective ML-DMP problem. where A1–A4 are the four vertexes of
the optimal polygon. The shadows are the regions that dominate P1 and P2,
respectively.

type I instance. We here do not show the results on four-
and five-objective instances since the algorithms perform very
similarly on all the type I instances with more than three objec-
tives. As shown in the figure, most of the algorithms have the
similar pattern as in the tri-objective instance. This means that
their ability of maintaining diversity does not degrade with
the increase of the number of objectives. That is, if there are
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Fig. 10. Best solution set of the 15 algorithms on a five-objective ML-DMP instance where the search space is [−100, 100]2, and its corresponding GD and
IGD results. The associated indexes (I1, I2) of the algorithm, respectively, represent the number of runs (out of all ten runs) in which all obtained solutions
converge into (or are close to) the optimal polygon and the number of runs (out of all ten runs) in which the obtained solutions have a good coverage over the
optimal polygon. (a) NSGA-II (0, 0) GD = 2.48E+0, IGD = 2.40E−1. (b) SPEA2 (0, 0) GD = 1.59E+0, IGD = 1.01E−1. (c) AR (0, 0) GD = 1.16E−1,
IGD = 1.12E−1. (d) IBEA (10, 0) GD = 2.73E−4, IGD = 4.36E−1. (e) ε-MOEA (10, 10) GD = 0.00E+0, IGD = 5.78E−2. (f) SMS-EMOA (10, 10) GD
= 1.81E−4, IGD = 6.97E−2. (g) MOEA/D-TCH (0, 10) GD = 2.50E−1, IGD = 7.76E−2. (h) MOEA/D-PBI (10, 10) GD = 0.00E+0, IGD = 7.33E−2.
(i) DMO (0, 0) GD = 2.76E−1, IGD = 1.15E−1. (j) HypE (10, 10) GD = 0.00E+0, IGD = 8.57E−2. (k) GrEA (9, 9) GD = 0.00E+0, IGD = 6.53E−2.
(l) Two_Arch2 (0, 7) GD = 6.30E−1, IGD = 7.77E−2. (m) AGE-II (10, 10) GD = 0.00E+0, IGD = 5.77E−2. (n) NSGA-III (0, 0) GD = 6.23E−1, IGD
= 1.08E−1. (o) SPEA2+SDE (9, 10) GD = 0.00E+0, IGD = 5.80E−2.

sufficient well-converged solutions being produced during the
evolutionary process, these algorithms can diversify them well
even in the high-dimensional space.

Nevertheless, there do exist some algorithms which scale up
badly with the number of objectives. They include ε-MOEA,
SMS-EMOA, MOEA/D-TCH, MOEA/D-PBI, HypE, and
NSGA-III. It is worth mentioning that all of these algorithms
do not use directly density-based methods in diversity main-
tenance. ε-MOEA maintains the population diversity by the
ε dominance, SMS-EMOA and HypE rely on the HV indi-
cator, and MOEA/D-TCH, MOEA/D-PBI, and NSGA-III use
the decomposition-based strategy. The failure of ε-MOEA in
obtaining a uniformly-distributed solution set suggests the dif-
ficulty that the ε dominance faces in the high-dimensional
space. One possible explanation of SMS-EMOA and HypE’s
underperformance on the ten-objective instance is that an
approximate estimation of the HV contribution may affect the
performance of the algorithms. In addition, it is not surprising
that the three decomposition-based algorithms cannot maintain
solutions’ diversity on this instance since the ML-DMP with
more than three objectives has a degenerate Pareto front (i.e.,
the dimensionality of the Pareto front is less than the number
of objectives), on which decomposition-based algorithms com-
monly struggle [31], [63]. Finally, an interesting observation is
that AR which does not use any diversity maintenance scheme

during the evolutionary process performs better than some
of the other algorithms (such as MOEA/D-TCH and HypE).
This indicates that random selection could even pick out
more diversified individuals than some decomposition-based
or indicator-based selection in high-dimensional ML-DMP
problems.

B. Type II ML-DMP

The search space of the type II ML-DMP problem is
[−100, 100]2, significantly larger than the optimal region
(<[−1, 1]2), thus providing a challenge for EMO algorithms
to achieve a balance between convergence and diversity. Fig. 7
shows the best one-run solution sets obtained by the 15
algorithms on the tri-objective instance. As shown, all the
algorithms have a good convergence, with their individuals
inside (or very close to) the optimal triangle. Also, the solu-
tion sets obtained by most algorithms are distributed similarly
as on the type I ML-DMP. One exception is IBEA, which
performs significantly worse than on the type I instance since
many of its solutions are overlapping. This indicates that the
measure of IBEA’s indicator prefers overlapping solutions to
poorly-converged ones.

The above results show the ability of the examined
algorithms in balancing convergence and diversity on the
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Fig. 11. Best solution set of the 15 algorithms on a ten-objective ML-DMP instance where the search space is [−100, 100]2, and its corresponding GD and
IGD results. The associated indexes (I1, I2) of the algorithm, respectively, represent the number of runs (out of all ten runs) in which all obtained solutions
converge into (or are close to) the optimal polygon and the number of runs in which the obtained solutions have a good coverage over the optimal polygon.
(a) NSGA-II (0, 0) GD = 7.03E+1, IGD = 1.11E+0. (b) SPEA2 (0, 0) GD = 5.62E+1, IGD = 8.44E−1. (c) AR (0, 0) GD = 6.21E+0, IGD = 1.19E−1.
(d) IBEA (10, 0) GD = 0.00E+0, IGD = 3.70E−1. (e) ε-MOEA (10, 10) GD = 0.00E+0, IGD = 5.31E−2. (f) SMS-EMOA (0, 0) GD = 5.75E+0, IGD
= 1.02E−1. (g) MOEA/D-TCH (0, 0) GD = 1.86E−1, IGD = 1.39E−1. (h) MOEA/D-PBI (10, 0) GD = 0.00E+0, IGD = 1.54E−1. (i) DMO (0, 0)
GD = 1.05E+1, IGD = 4.97E−1. (j) HypE (10, 0) GD = 0.00E+0, IGD = 2.56E−1. (k) GrEA (0, 0) GD = 2.35E+0, IGD = 1.44E−1. (l) Two_Arch2
(0, 0) GD = 5.24E+1, IGD = 5.06E−1. (m) AGE-II (10, 10) GD = 0.00E+0, IGD = 4.76E−2. (n) NSGA-III (0, 0) GD = 6.30E+0, IGD = 1.55E−1.
(o) SPEA2+SDE (10, 10) GD = 0.00E+0, IGD = 4.79E−2.

tri-objective ML-DMP. Then, how do they perform on the
problem with more objectives? Fig. 8 shows the solution sets
obtained by the 15 algorithms on the four-objective type II
ML-DMP. As shown, only five algorithms, ε-MOEA, SMS-
EMOA, AGE-II, SPEA2+SDE, and HypE, perform well on
this problem, from which ε-MOEA has an excellent uniformity
and SMS-EMOA, AGE-II and SPEA2+SDE have a good bal-
ance between uniformity and extensity. Most of the remaining
algorithms are unable to guide their population to converge
into the optimal rectangle, with their solution sets typically
distributed in the form of a cross.

Fig. 9 gives an illustration to explain why this happens.
P1 and P2 are two solutions for a four-objective ML-DMP
problem with four vertexes A1–A4. P1 resides between two
parallel target lines

←−→
A1A4 and

←−→
A2A3, and P2 in the right upper

area to the optimal square. As seen, the region that Pareto
dominates P1 is a line segment, far smaller than that domi-
nating P2, although P1 is farther to the optimal polygon than
P2. In fact, any solution (outside the optimal polygon) located
between a pair of parallel target lines is dominated by only
a line segment parallel to these two lines; an improvement of
its distance to the one line will lead to the degradation to the
other. This property poses a big challenge not only for the
algorithms who use Pareto dominance as the main selection

criterion, such as NSGA-II, SPEA2, DMO, Two_Arch2 and
NSGA-III, but also for some other modern algorithms, such
as MOEA/D-TCH and GrEA. The solutions obtained by these
algorithms can easily be distributed crisscross in the space.

Fig. 10 shows the solution sets obtained by the 15 algo-
rithms on the five-objective instance. Similar to the situation
on the four-objective instance, the Pareto-based EMO algo-
rithms struggle to converge. This is because solutions in some
regions (i.e., the boundary of the constrained polygons) are
only dominated by one point in the pentagon. One differ-
ence from the four-objective situation is that all the solutions
obtained by MOEA/D-PBI and GrEA can converge into the
optimal region. This indicates that the difficulty of the ML-
DMP problem does not certainly increase with the number of
objectives.

When the considered objective dimensionality of the ML-
DMP is 10, both parallel target lines and constrained areas
are involved in the problem. This naturally leads to bigger
challenges for EMO algorithms to balance the convergence
and diversity. As can be seen in Fig. 11, only three algorithms,
ε-MOEA, AGE-II, and SPEA2+SDE, work well on the ten-
objective instance. The solution sets of IBEA, MOEA/D-PBI,
and HypE can converge into the optimal region but fail to
cover the whole polygon.
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Fig. 12. Best solution set of the 15 algorithms on a tri-objective ML-DMP instance where the search space is [−1010, 1010]2, and its corresponding GD and
IGD results. The associated indexes (I1, I2) of the algorithm, respectively, represent the number of runs (out of all ten runs) in which all obtained solutions
converge into (or are close to) the optimal polygon and the number of runs in which the obtained solutions have a good coverage over the optimal polygon.
(a) NSGA-II (2, 4) GD = 6.12E−3, IGD = 7.08E−2. (b) SPEA2 (2, 3) GD = 1.46E−3, IGD = 4.36E−2. (c) AR (0, 0) GD = 4.31E+1, IGD = 4.72E+2.
(d) IBEA (0, 0) GD = 2.18E+1, IGD = 1.31E+2. (e) ε-MOEA (7, 0) GD = 0.00E+0, IGD = 5.06E−1. (f) SMS-EMOA (3, 3) GD = 8.15E−5, IGD =
4.31E−2. (g) MOEA/D-TCH (0, 0) GD = 8.40E+1, IGD = 2.99E+2. (h) MOEA/D-PBI (0, 0) GD = 7.19E+2, IGD = 1.99E+3. (i) DMO (5, 2) GD =
4.01E−4, IGD = 7.60E−2. (j) HypE (4, 2) GD = 7.19E−4, IGD = 8.75E−2. (k) GrEA (4, 0) GD = 3.61E−4, IGD = 1.60E−1. (l) Two_Arch2 (5, 5) GD
= 3.50E−3, IGD = 5.05E−2. (m) AGE-II (4, 1) GD = 0.00E+0, IGD = 5.36E−2. (n) NSGA-III (4, 2) GD = 3.70E−4, IGD = 4.25E−2. (o) SPEA2+SDE
(8, 5) GD = 2.33E−4, IGD = 4.98E−2.

C. Type III ML-DMP

Type III ML-DMP hugely extends the problem’s search
space ([−1010, 1010]) to test the algorithms’ ability of leading
solutions to converge toward the Pareto optimal region. Fig. 12
shows the best one-run solution sets obtained by the 15 algo-
rithms on the tri-objective instance. An interesting observa-
tion is that different decomposition-based and indicator-based
algorithms behave rather differently, such as IBEA versus
SMS-EMOA and HypE, and MOEA/D versus NSGA-III. One
explanation for this is that the Pareto dominance criterion
can effectively guide the population into the optimal region—
the decomposition-based and indicator-based algorithms which
use Pareto dominance as the primary selection criterion (i.e.,
SMS-EMOA, HypE, and NSGA-III) perform much better
than those not using the Pareto dominance criterion (i.e.,
IBEA, MOEA/D-TCH, and MOEA/D-PBI). This has also been
proven by the fact that some classic Pareto-based algorithms
work well on this problem, such as NSGA-II and SPEA2. In
addition, note that only one solution is obtained by ε-MOEA.
In fact, no matter how the ε value of the algorithm is set, there
is always a sole solution left in the final archive set when the
problem’s search space becomes huge. This applies to all the
type III ML-DMP instances with any number of objectives.
Finally, it is worth mentioning that there is none of the tested
algorithms able to obtain a stable performance in terms of
both convergence and diversity, as shown by the two indexes
I1 and I2 in the figure. This indicates that the proposed problem

poses great challenges for EMO algorithms even in the
3-D space.

Consider the four- and five-objective instances shown in
Figs. 13 and 14, respectively. Only AGE-II and SPEA2+SDE
are able to find a well-converged, well-distributed solution set
on both instances. HypE performs fairly well on the four-
objective instance, and SMS-EMOA occasionally converges
for the five-objective instance. Interesting observations regard-
ing the five-objective results are from SPEA2 and Two_Arch2
which sometimes have a good coverage over the optimal pen-
tagon, but cannot lead all of their solutions into the optimal
region.

The type III ten-objective ML-DMP is the hardest problem
that we tested in this experimental study. As can be seen in
Fig. 15, only SPEA2+SDE can obtain a good convergence
and diversity on nearly half of the ten runs. Among the other
algorithms, IBEA and ε-MOEA can occasionally converge, but
their solutions concentrate in either several boundary points or
the central point of the polygon.

D. Summary

On the basis of the investigation on the three types of ten
ML-DMP instances, the following observations of the 15 EMO
algorithms can be made.

1) Despite failing on the ML-DMP with two parallel
target lines, the conventional Pareto-based algorithms
NSGA-II and SPEA2 have shown their advantage on
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Fig. 13. Best solution set of the 15 algorithms on a four-objective ML-DMP instance where the search space is [−1010, 1010]2, and its corresponding
GD and IGD results. The associated indexes (I1, I2) of the algorithm, respectively, represent the number of runs (out of all ten runs) in which all obtained
solutions converge into (or are close to) the optimal polygon and the number of runs in which the obtained solutions have a good coverage over the optimal
polygon. (a) NSGA-II (0, 0) GD = 4.67E+9, IGD = 6.87E−1. (b) SPEA2 (0, 0) GD = 4.34E+9, IGD = 6.85E−1. (c) AR (0, 0) GD = 2.92E+9, IGD =
4.40E+1. (d) IBEA (0, 0) GD = 2.76E+0, IGD = 3.50E+0. (e) ε-MOEA (10, 0) GD = 0.00E+0, IGD = 5.68E−1. (f) SMS-EMOA (0, 0) GD = 1.32E+3,
IGD = 2.94E+1. (g) MOEA/D-TCH (0, 0) GD = 6.99E+2, IGD = 7.00E+2. (h) MOEA/D-PBI (0, 0) GD = 2.84E+4, IGD = 2.84E+4. (i) DMO (0, 0)
GD = 1.08E+9, IGD = 2.19E+6. (j) HypE (4, 3) GD = 1.08E−4, IGD = 8.90E−2. (k) GrEA (0, 0) GD = 1.40E+8, IGD = 5.29E−1. (l) Two_Arch2
(0, 0) GD = 1.52E+9, IGD = 4.63E−1. (m) AGE-II (10, 10) GD = 0.00E+0, IGD = 5.35E−2. (n) NSGA-III (0, 0) GD = 1.00E+8, IGD = 7.77E−1.
(o) SPEA2+SDE (10, 10) GD = 0.00E+0, IGD = 5.34E−2.

the low-dimensional instances. They clearly outperform
some of the decomposition-based or indicator-based
algorithms (e.g., MOEA/D-TCH, MOEA/D-PBI, and
IBEA) on the three-objective type III ML-DMP.

2) Due to the lack of diversity maintenance, AR is the
algorithm with poor performance on all the instances
but the ten-objective type I, where AR is superior to
MOEA/D-TCH and HypE in terms of diversity.

3) The performance of IBEA varies, with its solutions dis-
tributed well on the type I instances, concentrating into
the boundaries of the polygon on the type II instances,
and being generally far from the optimal region on the
type III instances.

4) ε-MOEA performs well on all the types I and II
instances, but cannot diversify its solutions on the
type III instances. An interesting observation is that
ε-MOEA struggles to maintain the uniformity on the
ten-objective ML-DMP. This is in contrary to some
previous studies [19], [68], where the ε dominance has
been demonstrated to work well in this respect in the
high-dimensional space.

5) SMS-EMOA performs excellently on many relatively
easy ML-DMP instances (e.g., on all the three-objective
instances). However, when the number of objectives
reaches ten, SMS-EMOA fails to provide a good balance
between convergence and diversity.

6) MOEA/D-TCH struggles to maintain the uniformity
of the solutions over the optimal polygon. This, as
explained in [63], is because in the Tchebycheff met-
ric a uniform set of weight vectors may not lead to
a uniformly-distributed solutions. In addition, in most
cases MOEA/D-TCH cannot guide all of its solutions
to converge into the optimal region, although the algo-
rithm performs significantly better than most of the
tested algorithms in terms of convergence on the type III
instances.

7) The performance of MOEA/D-PBI has a sharp con-
trast on different instances. It performs perfectly on
the three-objective types I and II ML-DMPs, but can-
not maintain the uniformity on the other type II
instances and promote the convergence on all the type III
instances.

8) DMO performs similarly to NSGA-II in most cases.
However, due to the adaptive control of the diversity
maintenance mechanism, DMO has a better conver-
gence than NSGA-II on some relatively hard ML-DMP
instances such as the type II instances with more than
three objectives.

9) HypE works fairly well on most of the ML-DMP
instances. This includes the two low-dimensional
type III ML-DMPs. However, for the ten-objective type
I ML-DMP whose search space is precisely the optimal



LI et al.: MULTILINE DISTANCE MINIMIZATION: VISUALIZED MANY-OBJECTIVE TEST PROBLEM SUITE 75

Fig. 14. Best solution set of the 15 algorithms on a five-objective ML-DMP instance where the search space is [−1010, 1010]2, and its corresponding GD
and IGD results. The associated indexes (I1, I2) of the algorithm, respectively, represent the number of runs (out of all ten runs) in which all obtained solutions
converge into (or are close to) the optimal polygon and the number of runs in which the obtained solutions have a good coverage over the optimal polygon.
(a) NSGA-II (0, 0) GD = 5.41E+0, IGD = 5.08E−1. (b) SPEA2 (0, 2) GD = 1.63E+0, IGD = 7.22E−2. (c) AR (0, 0) GD = 4.00E+2, IGD = 4.01E+2.
(d) IBEA (0, 0) GD = 1.94E+3, IGD = 1.50E+3. (e) ε-MOEA (3, 0) GD = 0.00E+0, IGD = 5.97E−1. (f) SMS-EMOA (2, 1) GD = 0.00E+0, IGD =
8.81E−2. (g) MOEA/D-TCH (0, 0) GD = 4.30E+3, IGD = 2.16E+3. (h) MOEA/D-PBI (0, 0) GD = 1.76E+4, IGD = 1.73E+4. (i) DMO (0, 0) GD =
4.14E+0, IGD = 5.12E−1. (j) HypE (0, 0) GD = 4.33E+2, IGD = 1.61E+1. (k) GrEA (1, 0) GD = 0.00E+0, IGD = 4.55E−1. (l) Two_Arch2 (0, 2) GD
= 5.09E−2, IGD = 6.60E−2. (m) AGE-II (1, 2) GD = 0.00E+0, IGD = 5.87E−2. (n) NSGA-III (1, 0) GD = 1.80E−2, IGD = 3.19E−1. (o) SPEA2+SDE
(5, 7) GD = 0.00E+0, IGD = 5.88E−2.

polygon, HypE struggles to diversify its solutions over
the boundary of the polygon.

10) GrEA performs well on part of the ML-DMP problems.
For the three- and five-objective type II instances, GrEA
achieves a good performance in terms of both conver-
gence and diversity. For the type III instances with the
same dimensions, GrEA can occasionally have a good
convergence, but its solutions fail to cover the whole
optimal region. For the other types II and III instances,
the algorithm cannot lead all of its solutions to converge
into the optimal polygon.

11) Due to using the Pareto dominance criterion in the
output archive (diversity archive), Two_Arch2 performs
similarly to NSGA-II and SPEA2. That is, it works well
on all the three-objective instances, but cannot converge
when more objectives are involved. However, since the
indicator Iε+ is used to guide the population in the other
archive (convergence archive), Two_Arch2 has a better
convergence than the conventional Pareto-based algo-
rithms on some of the many-objective ML-DMPs, such
as the five-objective types II and III instances.

12) AGE-II demonstrates its promise on the ML-DMP, with
its solutions achieving a good performance in terms of
convergence and diversity (esp. uniformity) on most of
the tested instances. One exception is the ten-objective
type III instance which has a huge search space as well
as both parallel target lines and constrained areas.

13) Similar to MOEA/D-PBI, NSGA-III is able to perfectly
maintain solutions’ diversity for the three-objective ML-
DMP which has a nondegenerate Pareto front, but
struggles on the problem with a degenerate Pareto
front. However, NSGA-III shows a clear advantage over
MOEA/D-PBI on the three-objective type III instance,
but performs worse in terms of convergence for the
instances with more objectives. This is probably due
to the Pareto dominance criterion which works well
on three-objective MOPs but typically fails to pro-
vide the selection pressure in a higher-dimensional
space.

14) SPEA2+SDE is the only algorithm that is able to
obtain a good performance on all the tested instances,
despite some not in all the ten runs. Considering
both convergence and diversity in its density esti-
mator, SPEA2+SDE can be outperformed by some
EMO algorithms in terms of maintaining uniformity
on some low-dimensional ML-DMPs, such as SPEA2,
ε-MOEA, SMS-EMOA, MOEA/D-PBI, Two_Arch2,
AGE-II, and NSGA-III. However, this property enables
SPEA2+SDE to be promising on those ML-DMPs
with the high-dimensional objective space and hard to
converge.

Some discussions about the relation between the proposed
ML-DMP and existing test problems have been given in
Section III of the supplementary material.
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Fig. 15. Best solution set of the 15 algorithms on a ten-objective ML-DMP instance where the search space is [−1010, 1010]2, and its corresponding GD and
IGD results. The associated indexes (I1, I2) of the algorithm, respectively, represent the number of runs (out of all ten runs) in which all obtained solutions
converge into (or are close to) the optimal polygon and the number of runs in which the obtained solutions have a good coverage over the optimal polygon.
(a) NSGA-II (0, 0) GD = 4.51E+9, IGD = 1.11E+1. (b) SPEA2 (0, 0) GD = 4.45E+9, IGD = 1.16E+1. (c) AR (0, 0) GD = 2.16E+0, IGD = 3.19E+0.
(d) IBEA (1, 0) GD = 0.00E+0, IGD = 5.07E−1. (e) ε-MOEA (4, 0) GD = 0.00E+0, IGD = 6.60E−1. (f) SMS-EMOA (0, 0) GD = 1.98E+6, IGD =
8.93E−1. (g) MOEA/D-TCH (0, 0) GD = 3.68E+1, IGD = 2.83E−1. (h) MOEA/D-PBI (0, 0) GD = 3.87E+4, IGD = 3.64E+4. (i) DMO (0, 0) GD =
4.07E+6, IGD = 6.80E+3. (j) HypE (0, 0) GD = 1.18E+3, IGD = 2.62E+2. (k) GrEA (0, 0) GD = 1.13E+2, IGD = 9.27E−1. (l) Two_Arch2 (0, 0) GD
= 2.22E+9, IGD = 4.42E−1. (m) AGE-II (0, 0) GD = 1.46E+1, IGD = 1.32E−1. (n) NSGA-III (0, 0) GD = 3.22E+1, IGD = 3.18E+1. (o) SPEA2+SDE
(4, 5) GD = 0.00E+0, IGD = 4.97E−2.

V. CONCLUSION

This paper presents a class of many-objective test prob-
lems, called MLs-DMP, to visually examine EMO algorithms.
Fifteen well-established EMO algorithms have been system-
atically investigated on three types of 10 ML-DMP instances.
Some insights with respect to the design of EMO algo-
rithms have been gained from the investigation, including the
followings.

1) Density-based diversity maintenance approaches are
suitable for MOPs with a degenerate Pareto front.
Indicator-based approaches, as with decomposition-
based ones, encounter difficulties in diversifying their
population over the degenerate Pareto front.

2) Distinct decomposition-based (or indicator-based) algo-
rithms can behave totally differently. Their combination
with Pareto dominance tends to be promising, especially
on those low-dimensional MOPs which have a huge
search space.

3) Conventional Pareto-based algorithms may completely
fail on a four-objective MOP. However, even for many-
objective optimization, it is probably better for EMO
algorithms to consider the Pareto dominance criterion
first and then another criterion involving both con-
vergence and diversity (or multiple criteria relating to
convergence and diversity separately).

4) A small change (relaxation) of the Pareto dominance
criterion can be well suited in some many-objective

problems. However, this may lead to the loss of the
boundaries of the Pareto front to some extent.

The proposed ML-DMP problem differs greatly from the
existing ones in the literature. In addition to the geometric sim-
ilarity, the ML-DMP has the interesting dominance structure
which varies with the number of objectives. These character-
istics enable it to be a challenge function for EMO algorithms
to lead the population toward the Pareto optimal region.

One direction for further study is to extend the number of
decision variables of the ML-DMP. A potential way for this
can follow the method of the MP-DMP’s dimension extension
in [34] and [43]. In addition, constructing dynamic ML-DMP
problems is also one of our subsequent directions. In this
regard, some properties of the ML-DMP can be set to change
over time, such as the location of the target lines, the size of
the polygon, and even the shape of the polygon (i.e., number
of the target lines).
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