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Abstract 
 

Gene expression is a tightly controlled process that is regulated by the epigenetic 

modifications and a series of interactions between the genes and the proteins across the 

genome. High-throughput technologies such as microarray and chromatin 

immunoprecipitation technique followed by the next generation sequencing (ChIP-seq) 

have enabled researchers to investigate the gene expression profile of large of number 

of genes and the locations of protein bindings and different epigenetic events at the 

genome-wide scale. To understand the underlying complex mechanisms that regulate 

gene expression, the computational biology community has proposed many 

methodologies and tools over the years to integrate the protein binding data; obtained 

by ChIP-seq and the gene expression data; generated by microarray technology.  

However, the integrative analysis is still in its infancy. Effective models that capture the 

complex characteristics of ChIP-seq data and integrate dynamic interactions between 

gene expression and regulatory factors across different genomic features are still 

lacking.  

This thesis aims to provide robust and reliable methodologies to enable investigation of 

the relationship between different regulatory mechanisms and gene expression that 

incorporate the advanced and improved results from the ChIP-seq data and the 

epigenetic phenomena that are closely related to gene regulation. Here, the Markov 

Random Field model has been adapted to analyse the binding regions of proteins and 

epigenetic markers using ChIP-Seq technology where the complex characteristics of the 

data such as spatial dependency, IP efficiency are taken into consideration while 

modelling the data and demonstrated how this model along with the pre-analysis steps 

can improve the binding results. Two models have been proposed where these results 

are then assimilated in the integrative analyses between ChIP-seq and the gene 

expression data. Several classification techniques are also included in one of the models 

to find the association between different epigenetic markers, proteins, genomic features 

and gene expression profile. The models have been applied to public datasets and the 

results have been validated. With the proposed models, it has been shown how the 
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dynamic interactions between the regulatory proteins and gene expression can be 

investigated by integrating sets of genes regulated at successive time-points and 

different biological or experimental conditions as well as protein binding profiles across 

the genome.  

If either the gene expression or the protein binding data is missing as it is often the case, 

studying the relationship between regulatory factors and gene expression with these 

models will help the biologists estimate gene expression from the available epigenetics 

data or assume the underlying epigenetics from the available gene expression data. In 

short, this thesis brings together different biological tools, data processing techniques, 

advanced machine learning techniques to make a systematic approach to advancing the 

state of the art in this important epigenetic field.   
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Chapter 1 

Introduction  

1.1 Background 

In 1953 when American biologist James Watson and English physicist Francis Crick 

declared in a Cambridge pub that they had ‘found the secret of life’, their claim wasn’t 

far from the truth. They indeed had solved the mystery of science of how genetic 

instructions were stored in any organism and transferred from one generation to 

another by discovering the structure of DNA [Watson et al. 1953]. DNA or 

deoxyribonucleic acid is the chemical compound that contains four basic building 

blocks or bases namely: adenine (A), cytosine (C), guanine (G) and thymine (T). The 

orders or the sequences of these bases form the instructions for making all the 

essential proteins in our bodies needed for the development of all living organism. 

These proteins perform essential functions in our body as enzymes, hormones and 

receptors. An organism’s complete set of DNA is called its genome. Figure 1.1 

demonstrates the structure of DNA and its components.  

However, later with the flourish of the new science of epigenetics, researchers have 

realised DNA sequence is not the only factor that controls our biological make-up and 

in addition to nature and nurture, what makes us who we are is also determined by 

some tightly regulated chemical reactions that can switch parts of the genome off and 

on at strategic times and locations. These parts of the genome are genes that contain 

instructions to synthesise the gene products, typically proteins. The process in which 

information of genes is used to synthesis of these gene products is called gene 

expression. The chemical reactions mentioned above and bindings of regulatory 

proteins or transcription factors (TFs) occur at specific sequences of DNA to control 

gene expression so that the exact amount of proteins is produced when they are 

needed. Epigenetics is the study of these reactions and the factors that influences gene 

activity but does not involve a change in underlying DNA sequence.  
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Figure 1.1: The structure of DNA and its components. Gene is a unit of heredity which is 

composed of DNA occupying a fixed position on a chromosome that holds the 

instructions for creating proteins. Genome is defined as a group of all genes comprising 

of a set of chromosomes [Cheng 2006]. 

 

The transcription of the gene specifying a particular protein is a tightly controlled and 

complex process that intimately occurs in a context. To understand the process one 

must investigate what role the context plays in this process. The discovery of the 

complexity of the regulation mechanisms of gene expression has led the scientists to 

review their definition of gene and it is no longer viewed as a solo well-defined unit of 

DNA that contains specific information that is translated into proteins [Michel, 2010]. It 

is now recognised that all the developmental works in our body do not just rely on 

genes for protein production, rather the mechanism is much more complicated. A 

complex set of interactions between genes, RNA molecules, protein (including 

transcription factors) as well as the interactions of genes with their proximal and distal 

environments [Wright 1968] determine when and where specific genes are activated 

and the amount of protein or RNA products is produced.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119494/#R125
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However, for these interactions to happen, first the specific DNA sequence or gene 

needs to be opened up, which otherwise remains in an inactive state because it is 

tightly wound up in a structure called chromatin. Different chemical modifications also 

known as epigenetic mechanisms such as histone modification, DNA methylation and 

acetylation can alter the chromatin structure and make it accessible or inaccessible for 

transcription. These mechanisms occur at specific locations of the genome and these 

regions play important roles in gene regulation too.   

Structural genes that code for proteins involve several different components such as 

introns and exons. Introns are the portions of the gene that do not code for amino acids 

and exons are the portions that do and also collectively determine the amino acid 

sequence of the protein product. There are also regulatory regions of the gene, such as, 

transcription start site, promoter, enhancer and silencer etc. These are the regions 

where different proteins bind and chemical modifications occur to interact with the 

genes to control transcriptional activity. Figure 1.2 shows the structure of eukaryotic 

gene with different regulatory element. Therefore different epigenetic mechanisms and 

other proteins or transcription factor binding patterns around these regions are of 

interest to the researchers to figure out which regions are important for the gene 

regulation.  

 

 

Figure 1.2: Eukaryotic Gene Structure with its component such as promoters, exons, 

introns etc [Eukaryotic gene structure]. 
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Understanding and investigating all these epigenetic factors that regulate genes are 

critical in unravelling the complexity of various biological processes. Undue disruption 

of these processes can also lead to many diseases, some of which are life threatening. 

Therefore it is absolutely vital to study how genes are regulated and what controls gene 

expression. And that is what has made epigenetics a subject that is undergoing intense 

study among scientists. There are many technologies available today for studying 

different epigenetic mechanisms and gene expression. Two such high-throughput 

biological technologies are, microarray, which measures the expression level of large 

number of genes simultaneously, and chromatin immunoprecipitation technique 

followed by next generation sequencing (ChIP-Seq), which investigates the locations of 

proteins or transcriptions factors bindings and epigenetic modifications across genome. 

In ChIP-Seq technology, a protein of interest is usually cross-linked with DNA site it 

binds to in an in vivo environment using formaldehyde. After the crosslinking is done, 

then the DNA is sheared by sonication or other mechanism. The next step is 

immunoprecipitation. From the resulting DNA strands and Protein of interest and DNA 

component, crosslinked DNAs are filtered out with antibody by the 

immunoprecipitation technique. Once the enrichment is convincing, the material is 

ready to be sequenced. The cross-linking of the protein and DNA is reversed and the 

DNA is purified and sequenced. These sequences are then further analysed to find the 

genomic locations that are bound by the protein under study. 

The microarray experiments that analyse expression levels of selected gene involve the 

hybridization of an mRNA molecule to the DNA template from which it is originated. In 

this technique, an array is used where thousands of spotted samples known as probes 

are immobilized on a solid support, typically a microscope glass slide. The amount of 

mRNA bound to each site on the array indicates the expression level of the various 

genes. Finally the data is collected and processed to generate a profile for gene 

expression. Both DNA microarray and ChIP-Seq have become indispensable tools in 

genome research as they both immensely help find out structural and functional 

characteristics of different genomes.  
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Next generation sequencing, no doubt has several advantages over microarray analysis, 

but microarray has its advantages too, which still makes it desirable for many studies. 

Microarray is an established tool with its mature analysis pipeline and it is a 

comparatively low cost experiment too. However, with microarray detailed underlying 

epigenetic landscape cannot be determined. On the contrary, ChIP-Seq offers detailed 

characterization of various types of chromatin marks on a genome-wide scale, but ChIP-

Seq experiments are very costly and the analysis techniques are still evolving. Therefore, 

one might think that microarray will soon be replaced by these new sequencing 

technologies, experts rather think the cost-effectiveness and simplicity will play in its 

favour. Some also have suggested that microarray and ChIP-Seq should be integrated to 

study the gene regulation pattern and investigate whether microarray data alone can be 

used to predict underlying epigenetics. Experts have predicted that in the near future, 

these two technologies may complement each other and form a symbolic relationship 

[Hurd et al. 2009]. Integration of the result of these two technologies is biologically very 

significant as it enables the investigators to study how different epigenetic 

modifications and protein bindings are occurring across genome to control gene 

expression.  

The integration techniques for both technologies are still at its infancy and researchers 

are working relentlessly to come up with different methodologies so that robust 

information can be achieved from such study. With the dawn of ChIP-Seq technology, 

researchers have begun to unravel how different epigenetic mechanisms and bindings 

of regulatory proteins work together to regulate genes. This has opened up possibility 

for not only getting new insights into the functional genomics of every living cell but 

also discovering drugs and treatments to diseases that are caused by disruption of 

normal regulation process.  However, this exciting technological infancy comes at a 

price too.  

ChIP-Seq data has very complex characteristics. To get robust information about protein 

binding locations, these characteristics need to be considered while modelling ChIP-Seq 

data. However, most of the integration methodologies of ChIP-Seq and gene expression 
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data, to date, have used very basic analysis steps which may not capture all the 

information this next generation sequencing technology can offer.  

With the advancements of different genome projects, more and more genomic 

locations are identified and annotated and rich datasets are produced. This progress 

enables researchers to investigate what roles different biological conditions such as 

treatment, non-treatment, time factors and also different genomic locations play role in 

gene regulation. There are still gaps in the literature where all these information are 

incorporated into the methodology to find the relationship between gene expression 

and epigenetic mechanisms. In most of the integrative study, protein binding at very 

common genomic locations such as promoters and transcription start sites are 

investigated, whereas experts have discovered that other genomic features underlie 

epigenetics too [Nott et al. 2003; Heyn et al. 2014]. 

Here in this thesis, the focus is on improved results from ChIP-Seq data and integrating 

the results of microarray and ChIP-Seq to find the relationship between gene 

regulation and epigenetic mechanisms. With this in mind, different methodologies have 

been proposed to study such relationship where advanced analysis techniques of ChIP-

Seq data, proteins bindings at different genomic features, different biological 

conditions and time-factors relevant to underlying epigenetics are incorporated 

effectively.  

1.2 The aim and objectives   

The main aim of this project has been to search for effective ways of integrating protein 

binding and gene expression data to understand the underlying epigenetic 

mechanisms that regulate gene expression. 

When this work began, the research community had already been excited about the 

ChIP-Seq technology and its potential to uncover underlying epigenetics. However as 

more datasets were made publicly available and genomic databases were updated, this 

field showed further potential for advancements to be made in the integrative analysis 

between ChIP-Seq and microarray data. The project started with the primary aim in 
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mind that was to use advanced computational methodology to analyse comparable 

datasets from both technologies, microarray and ChIP-Seq obtained in the same 

biological settings and investigate how to effectively integrate both data to describe 

different epigenetic events that regulates gene expression.  

The main objectives of the thesis are as follows: 

1. Acquiring comparable datasets from both technologies obtained in the same 

biological settings.  

2. Exploring the complex characteristics of ChIP-Seq data to find the most 

appropriate means for data pre-processing and effective modelling 

3. Investigating techniques that integrate protein binding and gene expression 

data to uncover hidden relationships between them.  

4. Understanding whether protein binding profile across genome can be predictive 

of gene expression changes thus finding associations between different 

epigenetic events and gene regulation.  

1.3 Contribution to Knowledge 

In this thesis, ways of modelling ChIP-Seq data have been explored where different 

characteristics of such data are taken into consideration. The Markov Random Field 

(MRF) model has been adapted for the analysis of ChIP-Seq data and comparative 

performance analysis has been carried out between the MRF model and other existing 

methods. One of the characteristics of ChIP-seq count data is that it is known to have 

spatial dependencies between regions. The reason is that a common pre-processing 

step to create count data is to divide the genome into fixed length windows and the 

count of sequences are summarised per window. As a result the bound regions can 

cross between two or more windows and that introduces spatial dependencies in the 

data. Another important characteristic of ChIP-Seq data is IP efficiency. The degree of 

enrichment found from the data depends on ChIP-efficiency or otherwise known as IP 

efficiency that means an efficient experiment will produce better signal to noise ratio 

than a less efficient one. The quality of antibodies plays an important role to determine 

the quality of the data. ChIP-efficiency also varies between data generated in different 
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lab or experiment. Therefore when differential regions are sought between two 

experimental data, not considering efficiency may lead to over or under estimating the 

regions. These characteristics such as spatial dependency and IP efficiency have been 

incorporated in the ChIP-Seq analysis in this thesis which shown to improve the result. 

Pre-processing steps of the ChIP-Seq data before running statistical analysis to find the 

protein binding locations have been demonstrated to have great impact on the overall 

performances. It has been shown how the count correction step can further improve 

the results. The results have been validated using known biological information. 

The next step in the study has been to find the effective way of integrating ChIP-Seq 

protein binding result with complementary microarray expression data. As most of the 

integrative analyses of these two ignore many important characteristics of ChIP-Seq 

data, I have proposed a method to integrate these characteristics of ChIP-Seq with the 

MRF model first. In this model the correlation between the differential binding 

probabilities for different proteins around transcription start sites (TSSs), estimated by 

the MRF model and microarray differential gene expression values associated with 

those TSSs, are investigated together. Using enrichment probabilities directly has the 

advantages of capturing many characteristics of ChIP-Seq data as opposed to using 

count data directly. Also the technique incorporates different biological conditions and 

time factors; therefore it can be applied to rich dataset that includes such variables. I 

have validated our results on the proteins investigated with known biological 

information in the field.   

A novel approach is then proposed to investigate advanced machine learning 

techniques to find relationships between gene expression and protein binding profile 

across a genome where different genomic features such as exons, introns, distal 

intergenic along with promoters are integrated. It has been explored how predictive 

the binding profile of the proteins of interest at different features is of gene activity 

using several classification techniques such as neural network, decision tree and 

random forests. Other biological conditions such as treatment, non-treatment, time 

factors are also included in the model. Feature selection techniques by decision tree 

and random forests have identified important proteins, features and biological factors 
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that mostly correlate with gene regulation among all the variables. Comparative 

analysis of different classifiers is also conducted to determine which one performs best 

at detecting potential relationships. It is anticipated that this study will provide a 

foundation for further opportunities for finding association between protein binding 

and gene expression where it can be investigated thoroughly how different proteins 

binding at different genomic features and the other factors such as time play role in the 

gene regulation mechanism. 

Although the methods described above have been applied to a time-series ChIP-Seq 

data of six proteins and microarray data that are obtained with same biological 

conditions such as treatment and control, the methods can be applied on new datasets 

involving any number of proteins and biological conditions. It is believed with richer 

datasets the underlying epigenetic factors that are regulating gene expression are 

likely to be more apparent and also with this technique, genomic features other than 

promoters and TSS that are commonly used can be investigated for their roles in gene 

regulation. In future as genomic databases are updated and new annotations of more 

genomic feature are made available, this technique can help investigate their 

functionality in our biological process.  

Major contributions of the thesis can be summarised as follows:  

 Important insights have been obtained on how data pre-processing, particularly 

how to prepare the count data of ChIP-Seq experiments, can further improve the 

analysis results.  (Chapter 3) 

 

 The MRF model has been adapted for the analysis of real ChIP-Seq data and a 

comparative study has been conducted between this method and other existing 

algorithms to understand its strengths and weaknesses. (Chapter 3) 

 

 A novel approach has been proposed where advanced analysis result of ChIP-

Seq are incorporated in integrative analysis of protein binding and gene 

expression data to study the relationship between differential expressions and 

differential protein bindings around the transcription start site. In this approach   
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it has been demonstrated how enrichment probabilities estimated by an 

advanced method that first incorporates all the characteristics can be generated 

around any genomic location to study its role in gene regulation. Different 

biological conditions and time factors are also included in the model. (Chapter 

4) 

  

 A methodology has been proposed to investigate how predictive the binding 

profile of different regulatory proteins at different genomic locations across 

genome is of gene activity. Experiments have been conducted using advanced 

machine learning technique to perform predictive analysis using protein 

binding profiles as a predictor and gene expression responses as a response to 

study which proteins at any binding location can best predict the gene status.  

(Chapter 5)   

 

 It has been shown how dynamic interactions between regulatory proteins and 

gene expression may be explained by integrating sets of genes regulated at 

successive time-points and different biological or experimental conditions. This 

technique may help answer not only what proteins might be regulating genes 

but also where, when and at what condition they bind to do so. Comparative 

analysis between the classifiers has also been performed and the results are 

documented. (Chapter 5) 

1.4 Roadmap to the thesis 

The thesis is arranged as follows. 

Chapter 2 provides general background knowledge relevant to each chapter of the 

thesis. It briefly introduces epigenetics, different epigenetic mechanisms and 

technologies that are currently aiding epigenetic studies. Mainly I focus on microarray 

and ChIP-Seq technology which are extensively used in this project to study biological 

phenomena such as gene expression changes and protein binding and also to 

investigate the relationship between them.    
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Chapter 3 gives some background information about the pipeline of ChIP-Seq analysis 

and how different characteristics of ChIP-Seq affect the peak results. Different 

techniques including those for data pre-processing are introduced in this chapter to 

obtain robust results from ChIP-Seq data. A MRF model is adapted for the analysis of the 

ChIP-Seq data used in this project. Experiments detailing the parameter sensitivity on 

the results obtained and those comparing this method with other existing methods are 

reported.  

Chapter 4 presents a methodology that shows how ChIP-Seq data can be analysed 

using advanced methods that deal with different characteristics i.e. spatial dependency, 

overall distribution of the data and how this information in terms of enrichment 

probability can be incorporated in the integrative analysis of protein binding and gene 

expression data. It has also been shown how differential expression and differential 

bindings can be investigated around any genomic locations between different 

conditions such as time, treatment/non-treatment. 

Chapter 5 reports a novel approach where the integrative analysis of protein binding 

and gene expression data incorporates binding locations at different genomic features 

such as exon, intron, promoters, distal intergenic region etc. and also other biological 

conditions such as treatment/non-treatment, time factors etc. The method and results 

show how dynamic interactions between regulatory proteins and gene expression can 

be explained by running predictive analysis on protein binding profiles across genome 

and complementary gene expression results. Several classification techniques, such as 

neural network, decision tree and random forest have been explored to find such 

associations.  

Chapter 6 provides discussions of the work proposed in this thesis and highlights 

future research directions currently under investigation. 



Chapter 2: Background 

 

 

Chapter 2 

Background 

 

In this chapter many of the relevant terminologies, technologies and their respective 

associated analysis techniques will be briefly introduced. It is not in the scope of this 

chapter to present an overall review of the field, rather it is a concise introduction of the 

key biological concepts of the respective relevant subjects to enable an appreciation of 

the key concepts of the respective ‘omics’ technologies . However, references will be 

given throughout the chapter so that anyone who is interested can investigate further.  

This project is focused on studying the relationship between epigenetic mechanisms 

and gene expression using different technologies such as microarray and ChIP-seq. This 

chapter will start with brief introduction of epigenetics, followed by description of those 

technologies and the available analysis techniques.  

2.1 A brief Introduction to Epigenetics 

In the 1950s and 60s when the genetic code and the structure of the genes were 

unravelled, scientists began to see genes as a collection of blueprints for proteins that 

are essential for the development and maintenance of any organism. Genes, can be 

conceptually thought of as a string of DNA that is capable of producing chains of amino 

acids that fold to from functional proteins, Some genes are constitutively active or ‘on’ 

regardless of organism’s environment carrying out essential functions for our body, 

however, not all genes are always on or expressed to produce proteins and they only 

become active by some tightly regulated mechanisms when it is necessary for any 

specific biological process [Hoopes 2008]. Different chemical reactions and bindings of 

regulatory proteins at different genomic locations work together to turn the genes on 

or off at strategic times and locations and control the gene expression mechanism so 

that our body can have the right amount proteins when they are required. Epigenetics 

is the study of all mechanisms that control gene expression levels and the factors that 
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influence them. Genetics and developmental biology were perceived as two separate 

research areas in the past. Developmental biologists or embryologists did not have 

much interest in genes and their roles; towards the middle of the twentieth century 

some leading biologists were waking up to the notion that these two fields were 

actually linked. Waddington being an expert on both fields defined epigenetics linking 

developmental biology and genetics together [Holliday, 2006]. In 1942, Conrad 

Waddington defined the term epigenetics as   “the branch of biology which studies the 

causal interactions between genes and their products, which bring the phenotype into 

being”.  The first concepts of epigenetics can be dated back as far as Aristotle (384-322 

BC) and it continued as a conceptual theme through to the mid-19th century. However, 

slowly epigenetics has emerged to bridge the gap between nature and nurture. Today 

the most common definition describes epigenetics as ‘the study of heritable changes in 

genome function that occur without a change in DNA sequence’ [Riggs et al. 1996]. 

More recently however, Berger et al. [2009] has added a constraint to the definition 

that the initiation of the new epigenetic state should involve a transient mechanism 

separate from the one required to maintain it.  

2.1.1 Epigenetics events 

Deoxyribonucleic acid or DNA is the hereditary material, found in almost every 

organism. The structure of DNA is very complex and large and it is composed of several 

building blocks called nucleotides.   In order to take less space in the cell, DNA is 

wrapped around histone proteins in repeating units of nucleosomes to form a 

structure known as chromatin [Campos et al. 2009; Fedorova et al. 2008]. This 

structure provides the first level of compaction of DNA into the nucleus. To achieve 

higher level of compaction, nucleosomes are sometimes spaced along the genome to 

form a nucleofilament that finally results in the highly condensed metaphase 

chromosome and chromatin is organized into functional territories within an 

interphase nucleus.   

Change in the structure of chromatin plays a crucial role in whether transcription is 

allowed which is basically the first step of gene expression mechanism. In gene 
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transcription process, a particular segment of DNA is copied into RNA (mRNA) by the 

enzyme RNA polymerase. Both RNA and DNA are nucleic acids, which use base pairs of 

nucleotides as a complementary language. Chromatin adopts different conformation in 

different contexts, for example; in different cell types. In simple words, chromatin can 

be in the open form that allows access of the machinery for transcription, and a closed 

form which does not allow transcription. Therefore as alteration of chromatin 

structure control gene expression, the events that are responsible for such alteration 

can be considered epigenetic events.   Figure 2.1 shows how chromatin can be in open 

or closed form to control gene expression.  

 

 

Figure 2.1 Chromatin remains in tight structure not to allow transcription and it opens 

up to initiate transcription [Carmona 2015] 

 

When a specific sequence of DNA or gene is compactly bound with histone, that gene 

remain inactive or "off." However, the area where transcription should occur needs to 

be unbound or open before transcription process can start.  This is a very multifaceted 

process that requires coordination of many mechanisms such as, histone modifications, 
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transcription factor binding and other chromatin remodelling activities. Histone 

modifications is the chemical modification of the histones' NH2-terminal tails and as a 

result of such change, DNA becomes unwound which allows its access to the 

transcriptional machinery [Karlic et al, 2010].  

 

The family of the 

enzymes 

Type of  epigenetic 

modification 

Effect on gene 

expression 

DNMT1, DNMT3L, 

DNMT3A,  DNMT3B 

(DNA 

methyltransferase) 

Maintenance and de novo 

DNA methylation 

Gene expression 

suppression 

TET family (ten eleven 

translocation) 
DNA demethylation 

Induction of gene 

expression 

IDH family (isocitrate 

dehydrogenase) 
DNA demethylation 

Induction of gene 

expression 

HMTs (Histone 

methyltransferase) 

Methylation of lysine in 

histone protein 

H3k4me3  transcription 

activation 

H3K9me or H3K27me  

transcription repression 

HDMs Histone 

demethylase) 

Demethylation of lysine in 

histone protein 

Transcription activation or 

repression based on the 

lysine residue 

HATs (Histone 

acetyletransferase) 
Histone acetylation Transcription repression 

HDACs classes I-IV Histone deacetylation Transcription repression 

 

Table 2.1: Some important enzymes along with the types of modifications they cause 

and their effects on gene expression. 
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The chemical modification of the histone proteins can be caused by methylation and 

acetylation. The common types of such chemical modifications, enzymes involved in 

such modifications and their effect on gene regulation have been summarised in Table 

2.1 [Abdolmaleky et al. 2013]. DNA methylation is a biochemical process that also 

forms the basis of chromatin structure, which enables a single cell to grow into 

different organs or different tissues. This DNA methylation process is important for the 

regulation of cellular differentiation and development, and can also serve as a 

biomarker for several human diseases. The important role of DNA methylation or 

demethylation in developmental biology was first proposed in 1969 [Grifith et al. 

1969]. Scientists then suggested that DNA methylation can affect gene expression 

[Riggs et al. 1975; Holliday et al. 1975]. This mechanism usually appears to be 

coordinated with histone modifications, particularly those that lead to silencing of gene 

expression.  However, when the tails of histone molecules are acetylated it removes 

positive charges, thereby reducing the affinity between histones and DNA thereby 

leaving it more open. In most case histone acetylation enhances transcription. 

Transcriptionally active, “open” chromatin generally has hyperacetylated and 

hypomethylated histones, whereas more inactive heterochromatin tends to be 

hypoacetylated and hypermethylated [Wild et al. 2010].  

In addition to DNA methylation and histone modifications there are other mechanisms 

which also affect gene expression. For example, Eukaryotic genomes transcribe large 

numbers of RNAs that have no coding capacity. These noncoding RNAs include miRNA, 

piRNA etc. Chromosomal regions that are located far from each other can interact, in 

effect leading to the alternation of gene expression. This type of direct interaction can 

contribute to gene activation or repression by facilitating regulatory elements, 

influencing transcriptional state of associated genes [Grimaud et al. 2006; Lonvardas et 

al. 2006]. Therefore; the interactions between these chromosomal regions can be 

termed as epigenetic mechanisms. Figure 2.2 shows different epigenetic mechanisms. 

For example if DNA methylation Methyl marks added to certain DNA bases, it can 

repress gene activity, while histone modifications refer to covalent post-translational 

modification of N-terminal tails of four core histones (H3, H4, H2A and H2B). 
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Eukaryotic genomes also transcribe large numbers of RNAs that have no coding 

capacity.  

 

 

Figure 2.2 Schematic of different epigenetic mechanisms. Histone modification is the 

process in which several types of modification occur to amino terminals of the core 

histones to initiate transcription.  DNA methylation is process by which methyl groups 

are added to DNA to regulate gene expression. RNA mediated gene silencing 

mechanisms also regulate genes [Hagood 2014]. 

 

Once the chromatin is in open form, specific DNA sequences are then accessible for 

specific proteins to bind. These proteins then act as activators or repressors for the 

genes and control gene expression. For a TF that is an activator, the effector region 

recruits RNA polymerase II which is the eukaryotic mRNA-producing polymerase that 

initiates transcription of any corresponding gene. These regulatory proteins bind at 

different locations of the genome, (i.e promoters, that resides just upstream of 
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eukaryotic genes or enhancers, which can be oriented forward or backwards and are 

found upstream or downstream of transcription start sites) and activate gene 

expression. TFs have been observed to concurrently activate and repress multiple 

genes simultaneously.  

Many genes are regulated together therefore studying gene expression across the 

whole genome via microarrays or massively parallel sequencing allows investigators to 

see which groups of genes are co-regulated given any particular biological state. 

Investigating the pattern of epigenetic mechanisms and regulatory proteins bindings 

across genome with next generation sequencing coupled with the gene expression 

study can tell us how exactly these genes are regulated.   

2.1.2 Why Study Epigenetics 

A eukaryotic cell requires different proteins in defined concentration at different times. 

That is why gene expression is one of the most tightly controlled processes in the body 

as any disruption to this protein making process can lead to serious consequences 

including disease conditions.  Therefore it is absolutely vital to study how the genes are 

regulated and what controls gene expression which has made epigenetics such an 

interesting topic among scientists. Epigenetic changes are absolutely vital for our 

normal and healthy development; however they can also be the cause for many disease 

states. If normal epigenetic alterations of any of the systems that contribute to gene 

regulation is disrupted, that can be fatal and cause abnormal activation or silencing of 

genes. Such disruptions have been associated with many life-threatening diseases such 

as, cancer, syndromes involving chromosomal instabilities, and mental retardation 

[Portela et al. 2010]. By studying these epigenetic mechanisms one can understand 

how, why or where these changes are happening, what diseases they are causing, etc.  

Cancer was the first human disease to be linked to epigenetics. Studies performed by 

[Feinberg et al. 1983], using primary human tumour tissues, found that genes of 

colorectal cancer cells were substantially hypomethylated compared with normal 

tissues. Another example can be given about prostate tumour where the enzymes that 
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modify histones behave differently as tumours progress. Scientists can better 

understand potential disease conditions by looking at the way histone tails have been 

systematically modified in tumours from different patients. Apparently patterns of 

global histone modification can serve as an indicator for the future course of disease. 

Such epigenetic profiling of cancers, coupled with our knowledge of functional 

mutations, could pave the way for personalising cancer treatments in the near future. 

 

 

Figure 2.3 Possible mechanisms by which epigenetic modification can lead to cancer. 

(A) An undue methylation of a gene can cause disruption to transcription.  As a result 

cells can be damaged and become cancerous. (B) A gene can also be demethylated when 

it is not required and the demethylation can initiate transcription and cause unnatural 

cell growth [Nelson 2008]. 

Figure 2.3 shows how epigenetic modification can lead to cancer, for example a 

previously unmethylated TS gene can be methylated and thus transcription factor(s) 

(TF) can no longer bind the promoter region, as a result the gene is not expressed, and 

damaged cells are allowed to proliferate and become cancerous. In other occasions, if a 

proto-oncogene can be demethylated, allowing TFs to initiate transcription and express 

the protein product, which can also lead to unnatural cell growth and cancer. 
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As many diseases are related to epigenetic changes, researchers are investigating if it is 

possible to counteract these modifications with epigenetic treatments. The most 

popular of these treatments aim to alter either DNA methylation or histone acetylation. 

Furthermore, epigenetic behaviours are understood to be reversible and therefore 

provide opportunities for novel therapeutic intervention in a number of chronic 

inflammatory diseases. 

In Epigenetics studies, there are a number of issues that must be considered. Firstly, in 

genetic studies, scientists can collect DNA sample from any tissues and analyse them, 

however epigenetics studies are different in that respect. As epigenetic profiles may 

vary depending on the cell types, scientists need to collect samples from tissues and 

organs that are relevant to the phenotype of interest. For example, in order to study 

inflammatory bowel disease, samples must be collected from gut.  Secondly the 

relationship between epigenetics and phenotype are not always straightforward, 

however, studying tissues of affected and unaffected subjects and keeping the study 

perspective may help identify the differences between causal associations and non-

causal associations [Petronis 2010]. Currently there are many technologies are 

available for a close study of these relationships.   

2.1.3 Technologies helping study Epigenetics 

Epigenetics research continues apace in labs investigating a dazzling variety of topics. 

Many Bioinformatics tools have been proposed along with different experimental 

methodologies to analyse the epigenetic mechanisms [Bock et al. 2008; Lim et al. 2010; 

Laird 2010].One interesting direction is the application of high-throughput sequencing 

technologies to the characterization of hundreds of ‘epigenomes’ (epigenetic marks 

across the entire genome). Patterns of DNA methylation, six histone modifications, 

couple with gene activation from various normal and diseased cell types can serve as a 

baseline in many studies to identify changes associated with specific diseases. 

http://www.nature.com/nature/journal/v465/n7299/full/nature09230.html#auth-1
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Figure 2.4: Some technologies available to investigate different epigenetic mechanisms 

[Technologies for studying epigenetics]. 

 

There are many technologies available for studying epigenetic modifications and gene 

expression. Figure 2.4 summarises several technologies that are used to investigate 

different epigenetic mechanisms. For example, methylation-specific PCR(MSP) 

provides the test for the methylation status of CpG dinucleotides in a CpG island 

making the technique applicable for high throughput analysis of clinical samples 

[Herman et al. 1996; Shanmuganathan et al. 2013; Wani et al. 2016], whole genome 

bisulfite sequencing enables differentially methylated sites to be detected on the 

genome at single nucleotide resolution [Frommer 1992], chromatin 

immunoprecipitation technique such as ChIP-on-chip is a microarray method that 

reveals the genome-wide location of DNA-bound proteins [Ren 2000] and MeDIP-seq 

[Jacinto et al. 2008; Down et al. 2008]  is another technology available that can be used 

to detect or analyse DNA methylation.  Microarray technology, which measures the 

expression level of large number of genes simultaneously, has been an established 

platform for studying epigenetic analysis for a long time now. ChIP-Seq, which is 
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comparatively a new technology, produces DNA sequences that are bound by a protein of 

interest or other cellular markers. It offers high resolution mapping of TFs or 

epigenetic modifications’ interaction sites to genomic locations [Furey 2012]. It is now 

an indispensable tool in medical and biological fields. As Microarray and ChIP-Seq are 

the two main technologies used in this thesis to analyse the relationship between gene 

expression and protein binding. A brief introduction of both technologies is given 

below.  

2.2 A Brief Introduction to ChIP-Seq technology 

Chromatin immunoprecipitation (ChIP) followed by massively parallel sequencing 

(ChIP-Seq) is a relatively new technology to map genome-wide protein-DNA interaction. 

It has been extensively used for analysing how protein interacts with DNA and also the 

binding sites of DNA-associated proteins. In order to fully understand the biological 

processes and many disease states it is essential to understand how proteins interact 

with DNA to regulate gene expression. With ChIP-Seq technology, it is possible to 

determine how transcription factors and other chromatin associated proteins influence 

phenotype-affecting mechanisms.  

Chromatin immunoprecipitation technique can isolate specific DNA binding sites that 

are in direct physical contact with transcriptional factor and other proteins. This 

produces a library of target DNA sites bound to protein under study in-vivo. [Gilmour et 

al. 1986] first developed the original ChIP technique, where they used UV irradiation to 

covalently cross-link proteins in contact with neighbouring DNA in intact living cells. 

Subsequently [Solomon et al. 1988] adapted formaldehyde cross-link replacing the UV 

cross-link technique.  

This ChIP assay can then be combined with sequencing technology (ChIP-seq) to 

examine the interaction pattern of any Protein with DNA or the pattern of any 

epigenetic chromatin modifications. First genome-wide maps produced through ChIP-

Seq were created in 2007 [Johnson et al. 2007]. Further studies suggested novel 

functions for histone modification and the importance of combinatorial patterns of 

modifications  [Barski et al. 2007] and examines the correlations among histone 
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modification patterns and their relationship to transcriptional activation [Wang  et al. 

2008]. 

2.2.1 How ChIP-Seq technology works 

In this technique, a protein of interest is cross-linked with DNA site it binds to in an in 

vivo environment. Then the DNA is sheared by sonication or other mechanism. After 

fragmentation, the next step is immunoprecipitation. From the resulting DNA strands 

and Protein of interest and DNA component, crosslinked DNAs are filtered using 

antibody by the immunoprecipitation technique. Finally the cross-linking of the protein 

and DNA is reversed and the DNA is purified. These DNAs are then sequenced, which 

are known as ‘reads’.   

 

Figure 2:5 Schematic representation of ChIP-Seq technology. In Step 1, DNA and the 

protein are crosslinked and the DNA is sheared. In Step 2, DNA-protein complexes are 

obtained using immunoprecipitation technique. In Step 3 DNA and the protein is 

separated and DNA is purified. In Step 4, purified DNA is sequenced and finally in Step 5, 

the DNA sequences are mapped to the whole genome to analyse the location where the 

protein is bound [Szalkowski 2010]. 
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Figure 2.5 shows step by step process of how ChIP-Seq data is produced. The success of 

a ChIP-Seq project depends crucially on strong enrichment of the chromatin specifically 

bound by the protein under study. Before any ChIP-Seq experiment, a number of 

antibodies, if available are evaluated and one is chosen that is with consistently high 

enrichment of DNA at a known binding site.  

2.2.2 ChIP-Seq Analysis step 

ChIP-Seq is a powerful technique that allows us to investigate the physical interaction 

with proteins or transcription factors. It also helps discover and understand the pattern 

of any epigenetic chromatin modification. Once the ChIP-Seq data is generated, the 

sequences are further analysed to determine the binding locations of protein under 

investigation. Figure 2.6 is the workflow diagram for steps involved in ChIP-Seq data 

analysis followed by the brief overview of some of those steps.  

 

 

Figure 2:6 Schematics of analysis steps of ChIP-Seq data. The sequences are produced 

and their quality is checked, they are mapped to the whole genome and a peak-calling 

algorithm is applied to the aligned data to find the regions that are enriched by the 

protein. Further downstream analysis can be performed on the enriched results. 
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The raw data for chromatin immunoprecipitation followed by sequencing is generated 

by next generation platform and such platforms are Illumina 

(http://www.illumina.com/) and ABI SOLiD  [Shah 2009]. The reads yielded by these 

platforms are short reads (typically around 25~30bp in length). However, recent 

platforms can result in longer reads (up to 50 ~ 100 bp) and extreme high throughput 

can result in up 700MB to 1GB per lane. Below each step that is involved in the 

workflow of the ChIP-Seq data analysis is described.  

 Quality Control ChIP-Seq Experiments  

After sequencing, before the sequences are mapped and analysed to find the protein 

bound locations, a number of quality controls can be used to determine if the data is 

worthwhile for any further investigation and validation. Packages such as FastQC 

[Andrews 2010] allow raw sequence quality to be assessed. There are several features 

that are used in assessing the quality of sequence data such as alignment independent 

features.  Most sequencing hardware provides quality score for each base call in the 

read to report the confidence in assigning a specific nucleotide to each base.  

 

Figure 2.7: Per base sequence quality assessed by FastQC. (Left) shows sequence quality 

is unacceptable as good portions of the sequences scores very low in quality check and 

(right) shows good quality sequence data as most of the sequences scores high in 

quality check. In both plots, the X axis shows the position of the bases in read (1 – 99), 

and the Y axis shows the quality score (0 – 40).  
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The quality control software such as FastQC uses these scores to create plots and 

statistical reports about the overall quality of the data. Another feature is the number of 

bases that could not be called i.e the number of ‘N’s in the data also provides some 

insight to the quality of the data.    

Figure 2.7 is an example of outputs by FastQC, which are the assessments of quality of 

per base sequence of two ChIP-Seq data. Read count enrichment can be calculated 

between ChIP and input samples and can help control for biases in the experimental 

methods. Visual inspection of the data allows for a simple but effective tool. 

 Genome Alignment 

ChIP-Seq analysis starts with mapping all the raw reads to the reference genome, the 

uniquely mapped reads from the ChIP experiment. In a typical ChIP-Seq experiment for 

a typical mammalian biological sample/biopsy, tens or even hundreds of millions of 

sequences must be aligned to gigabytes of a reference genome and for that reason; 

alignment is one of the most computationally challenging tasks in the ChIP-Seq data 

analysis process [Trapnell et al. 2009]. For alignment, Bowtie [Langmead et al. 2009], 

ELAND [Bentley et al. 2008], MACS [Zhang et al. 2008] are the most popular choices for 

the ChIP-Seq experiment.  

There are several conditions or issues that need to be considered when choosing a 

mapping algorithm and its parameters. For example, one need to decide whether to 

keep only the reads that are found in unique position in the reference genome or 

whether to include reads that map to multiple locations. Accepting only unique reads, 

some true binding sites may not be found as they may be located in repeats or 

duplicated regions. On the other hand, multireads may improve signals but 

simultaneously may increase false positive rates. Therefore, a balance needs to be 

maintained between increased specificity and sensitivity while choosing the mapping 

algorithm [Pepke et al. 2009]. It also needs to be remembered that sequencing error can 

occur. Therefore alignment of reads should allow for a small number of mismatches 

(typically 2 ~ 3 mismatches).   
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 Identification of enriched region 

After the sequenced reads are aligned to the genome, the next steps of the analysis are   

converting the mapped reads into a representative count number at each position in the 

genome and identification the regions or locations that are enriched significantly with 

reads or tags where significance is estimated from the distribution of the data along the 

genome or part of the genome that has been investigated.  This step where enriched 

regions or peaks are identified is also known as ‘peak calling’. There are several issues 

related to this step. The user needs to be careful while choosing a ‘peak calling 

algorithm’ as different peak callers may deal with different issues and each can be 

suitable for particular type of ChIP-Seq data.  

A major challenge involved in detecting enriched region is that there are three types of 

such regions. Sharp peaks are usually found for protein-DNA binding or histone 

modifications at regulatory elements. Histone modifications marking domains for 

example transcribed or repressed regions usually have broad regions. The regions can 

be mixed as well. Figure 2.8 presents different types of peaks found in different data. 

Most of the available algorithms are designed for sharp peaks, while merging adjacent 

peaks for broad regions [Park et al 2009]. An effective method should take both types of 

regions into account and apply the relevant technique applicable for a given dataset. 

Peak detection algorithm is therefore a key to meaningful interpretation of ChIP-Seq 

data. 

In peak calling, steps can be subdivided into several tasks such as, generating a signal 

profile for individual chromosome, defining the noise or background and true signal, 

identify peaks, assessing significance and finally removing artefacts [Pepke et al, 2008]. 

Different tools adapt different methods for these tasks. 
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Figure 2.8: Different types of enriched regions depending on target proteins 

[Kotwaliwale 2013]. 

 

Building a signal profile is crucial in identifying enriched regions with confidence. Some 

tools slide a fixed length bin or window where each bin has the summation of the count 

at the centre. CisGenome [Ji et al. 2008] and SiSSRs [Jothi et al. 2008] both follow this 

method and also set criteria for consecutive windows to be merged. However, some 

peak calling algorithms take advantage of the direction of the reads. In this approach, 

the fragments are sequenced at the 5′ end and the positions of mapped reads form two 

separate distributions. One on the positive strand and the other on the negative strand 

and both is kept with a consistent distance between the peaks of the distributions. 

However, positive or negative strand peaks do not represent actual location of the 

enriched site.   

To address these issues, some algorithms first construct a smoothed profile on each 

strand and then calculate the combined profile as showed in Figure 2.9. In order to 

achieve that, each distribution can be moved towards the centre or mapped location can 

be extended towards right fragments and fragments can be summed up.   
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Figure 2.9: Forward and reverse (Blue and Red respectively) read density profile is used 

to make a combined density profile (orange) [Valouev et al. 2008]. 

MACS (Model-based Analysis of ChIP-Seq) [Zhang et al. 2008] shifts the read by d
2⁄  

where d is the fragment length, other methods such as FindPeaks [Fejes et al. 2008], 

PeakSeq [Rozowsky et al. 2009] etc. elongate the reads to a size of  d  where d is 

estimated from the actual data.  This methodology should create better profile; 

however, there are some limitations of this approach. One needs a prior estimate of the 

fragment size and should assume that fragment size is uniform.  

From the combined profile, peaks can be estimated.  Random distribution of reads in a 

window of size w modelled using a theoretical distribution. Poisson model for tag 

distribution is a good approach as it takes into consideration both folds ratio and the 

absolute tag numbers. Poisson distribution has just one parameter,  λ. If,  

λ = expected number of reads in window 

k = number of occurences of any read  

Then the probability function takes the form,  
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P(X = k) = e−k λk

k!
  (2.1)

  

Binomial distribution is another good approach which has two parameters.  

p = probability to start a read at particular position  

n = window size  

np = expected number of reads in a window 

Then the probability function takes the form,  

P(X = k) = Cn
kpk(1 − p)n−k (2.2) 

 

 

Figure 2.10: Poisson and Negative Binomial distribution. 

 

However, the Poisson distribution has a single parameter, which is uniquely determined 

by its mean; its variance and all other properties follow from it; in particular, the 

variance is equal to the mean. However, it has been noted [Robinson et al. 2007] that 

the assumption of Poisson distribution is too restrictive as it predicts smaller 



Chapter 2: Background 

 

47 

 

variations than what is normally observed in the data to be investigated. Therefore, the 

resulting statistical test does not control type-I error (the probability of false 

discoveries) as required. To address this so-called over-dispersion problem, it has 

been proposed to model count data with negative binomial (NB) distributions 

[Whitaker, 1914].    

Negative Binomial distribution has 2 parameters.  

p = probability to start a read at particular position  

r = number of sucsesses  

And NB can have large variance.  

Var(XNB) =
X̅

1−p
 (2.3) 

Depending on the underlying statistical model, a significance metric (e.g. p-value, q-

value) is assigned to each putative peak.  

In some experiments enriched regions are compared to a control sample, say where a 

non-specific antibody is used, in other cases differential binding of a protein between 

two or more biological conditions are also investigated.  

There are several packages that are available to identify and analyse the enriched 

regions, all of which address different issues related to ChIP-Seq data analysis.  PeakSeq 

[Rozowsky et al. 2009], Mosaics [Chung et al. 2014], MACS [Zhang et al. 2008], 

CisGenome [Ji et al. 2008], enRich [Bao et al. 2015] are among those tools to name a few. 

User needs to determine which one to choose in order to analyse their data depending 

on the type of the data in hand. Several reviews have been written summarising the 

methods used by different tools and their strengths and weaknesses [Ma et al. 2011; 

Shin et al. 2013; Steinhauser et al. 2016]. In table 2.2 profiling techniques of some of the 

tools along with their strengths and weaknesses are summarised.  
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Peak caller 
Profiling of the 

count data 
Peak 

Selection 

Joint Modelling 
of two data 

together 

Consideration of 
spatial 

dependency in 
adjacent windows 

CisGenome 
Strand specific 
window scan 

Number of 
reads in 
window 

No No 

MACS 
Tag shifted then 

window scan 

Number of 
reads in 
window 

No No 

FindPeaks 
Summation of 

overlapped tags 
Height cut-off No No 

PeakSeq 
Extended tag 

aggression 

Local region 
binomial p 

value 
No No 

SICER 
Sliding through 
windows and 

aggregating counts 

Enrichment 
in relation to 

control 
No Yes 

Mosaics Window scan 
Number of 
reads per 
window 

No Yes 

enRich Window scan 
Number of 
reads per 
window 

Yes Yes 

Table 2.2: Summary of some of the popular peak calling tools.  

 

 Downstream analysis 

After the peak is detected, there are two common downstream analysis tasks:  gene 

annotation of the location of the enriched regions and the discovery of binding sequence 

motifs. Sequence motifs, the short recurring patterns in DNA play important role in 

regulation of gene expression. Different proteins and also RNA molecules bind to these 

motifs to initiate gene expression.  There are several such programs available for motif 

discovery analysis from ChIP-seq data, for example MEME [Timothy et al. 2009], 

Weeder [Pavesi et al. 2004], TAMO [Gordon et al. 2005] etc. These algorithms return the 
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details of potential motifs along with their statistical significance. Several tools for motif 

discovery analysis specifically designed for ChIP-seq data have been reviewed by Lihu 

et al. [2015].  

The University of California Santa Cruz (UCSC) genome browser (genome.ucsc.edu) 

[Kent 2002] is a popular web-based application where alignment data can be visualized 

as signal overage. It also provides genomic annotations including genes (e.g. refseq, 

Ensembl), SNPs, evolutionary conservation, sequence properties, and patterns (e.g., CpG 

islands, repeats), as well as tracks for regulatory elements (e.g., transcription factor 

binding sites, methylation) from the ENCODE consortium [Encode], an international 

collaboration of research groups funded by the National Human Genome Research 

Institute (NHGRI). An analyst can interpret the peaks in the context of functionally 

relevant genomic regions. There are other tools available that annotate peaks in relation 

to some known genomic features, for example, the transcriptional start site (TSS), 

exon/intron boundaries, and the 3′ ends of genes etc. ChIP-peak data can also be tested 

for biological pathways, Gene Ontology terms and other types of gene sets. 

2.2.3 Advantages and limitations of ChIP-Seq technology 

The progress in next-generation sequencing technology has been enormous. Owing to 

this advancement, ChIP-Seq offers higher resolution, less noise and greater coverage 

than its array-based predecessor ChIP–chip [Park et al. 2009]. ChIP-Seq has now 

become an essential technology for studying gene regulation and epigenetic 

mechanisms. Below are the some of the advantages this tool offers: 

1) ChIP-Seq technology can help understand how transcription factor and other 

chromatin-associated proteins influence phenotype affecting mechanisms.  

2) This technology can help determine how Proteins interact with DNA to regulate 

gene expression which is essential for fully understanding many biological 

processes and diseases. 

3) Specific DNA sites in direct physical interaction with transcription factors and 

other proteins can be isolated by chromatin immunoprecipitation. ChIP 
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produces a library of target DNA sites bound to a target in vivo. Massively 

parallel sequence analyses are used in conjunction with whole-genome 

sequence databases to analyse the interaction pattern of any protein with DNA 

[Johnson et al. 2007], or the pattern of any epigenetic chromatin modification.  

 

ChIP-Seq technology has enabled many advantages and opportunities for the 

biomedical field; however the technology is not free from disadvantages. Sequencing 

error has one of the main artefacts of the technology, although the errors have been 

reduced significantly by process improvements. Another current disadvantage for ChIP-

Seq is that the technology is still very expensive; especially for small-scale studies 

where fund is limited, it poses a significant problem. Its availability is thought to be 

another challenging issue.  

The amount of data produced by a single high throughput sequencing run is huge as 

each experiment usually produces hundreds of millions of reads, which currently poses 

challenges for data management, storage and importantly, analysis. As the cost of the 

technology is reduced and availability increase, this problem will occur more frequently. 

The development of effective analysis tools are not advancing at the speed as the 

technology which is creating data bottleneck for the users.  Another major problem is 

that the pipeline for ChIP-Seq data analysis is very complex, and again it is a major 

problem in small studies or in a study where thousands of samples are needed to be 

analysed. The complexity therefore makes using this technology a less cost-effective 

option, if not impossible.  

2.3 A Brief introduction to Microarray technology  

DNA microarray is an effective and rapid approach for analysing gene expression levels, 

at both cellular and organismic level. For last couple of decades, this technology has 

become an indispensable tool for biologists for analysing genome wide gene expression 

levels in organisms. A gene expression study involves analysing expression levels of 

thousands of genes simultaneously in an experiment and these large scale experiments 

have made gene discovery, disease sub-classification and understanding the gene 
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regulatory network possible. Researchers have predicted that the result from DNA 

microarray technology with Next generation sequencing technology such as ChIP-Seq 

can help investigate regulatory mechanisms for gene expression and that can lead to 

many biological discoveries.  

2.3.1 How does Microarray technology work? 

A microarray most generally comprises of a glass slide, on which DNA molecules are 

spotted at specific locations that are called spots or features. A typical microarray can 

contain thousands of such features or spots and each location can have few million 

copies of identical DNA molecules that represent a section (generally the 3’ UTR) of a 

gene. The DNA in a spot can either be genomic DNA or short stretch of oligo-nucleotide 

strands and is complementary to a gene nucleotide sequence. The spots are printed on 

to the microarray either by a robot or are synthesised by the technique of 

photolithography.   

The most common application of DNA/oligonucleotide microarray is gene expression 

analysis. A typical experiment involves comparing expression level of a set of genes 

from a cell or tissue that are collected at a specific condition to the same set of genes 

from a reference cell or tissue that are collected at a normal condition [Lockhart 2000].  

Microarray experiments can use either two-colour or one-colour techniques.  

In two-colour microarrays, firstly, RNA is isolated from both samples as mentioned 

above. Those RNAs are then labelled with two different fluorochromes (generally the 

green cyanine 3 and the red cyanine 5 (Cy3, Cy5)). In the next step, they are hybridised 

to a microarray on which thousands of cDNAs/oligonucleotides are spotted in an 

orderly fashion.  

After the hybridisation, the spots are excited by a laser and a scanner records the 

detection of green dye or red dye at suitable wavelength. The amount of fluorescence 

emitted after the excitation step is related to the amount of bound nucleic acid. If red 

and green dyes are being used in an experiment, a spot will be red or green depending 

whether the corresponding gene is expressed in any of the condition. If gene is 
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expressed in both conditions, the spot will be yellow. If that gene is not expressed in any 

of the condition, the spot will be black.  Therefore at the end of an experiment, image of 

the microarray is made and on that image fluorescence value of each location of the 

microarray that corresponds to a particular gene represents expression level of that 

particular gene.  

Nowadays one-colour microarrays are very popular. One-colour microarrays give 

estimations of the absolute levels of gene expression. If genes from two separate 

conditions are needed to compared, two separate single-dye hybridizations are 

performed. These may be compared to other genes within a sample or to reference 

normalizing probes used to calibrate data across the entire array and across multiple 

arrays.  

One of the advantages of one-colour microarrays over two-colour microarrays is that as 

each array chip is only used for only sample, anomalies from one data cannot affect the 

raw data derived from other samples. There are other advantages of one-colour 

microarrays such as it can reduce costs without compromising sensitivity and 

specificity [Schwarz et al. 2010]. Here, data collected at one experiment can be 

compared with data collected from several experiments.  The absolute values of gene 

expression may be compared between studies conducted months or years apart. 

However, there are drawbacks with one-colour techniques too. Compared to the two-

color system, twice as many microarrays are needed to compare samples within an 

experiment.  

 

2.3.2 Analysis steps of microarray data 

Multiple complicated steps or processes are involved in DNA microarray-based analysis. 

Various specific pieces of equipment are required to generate and analyse the data. 

Analysis requires not only the expertise in molecular biology but also in image analysis, 

computational methodologies and statistics. Figure 2.11 shows a typical microarray 
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experiment. Below each step that is involved in the workflow of the Microarray data 

analysis is described.  

 

Figure 2.11: A typical microarray experiment a) mRNAs are isolated from different two 

samples  and the mRNAs are color-coded using dye b) The DNA copy that is made 

(cDNA) is then spotted on microarray, c) The cDNA binds to complementary base pairs 

in each of the spots on the array in the  hybridization process d) Based on how the DNA 

binds together, each spot will appear red, green, or yellow and the image of the array 

will be analysed to create gene expression profile e) Further computation analysis of the 

gene expression profile is performed to discover biologically meaningful results[Brown 

2003]. 

 Image processing and data normalization  

In microarray experiments level of expression for each gene can be stored as an image. 

Therefore, image processing is the first step of analysis with microarray data. 

Microarray scanners come with their own software. There are following steps involved 

in processing of microarray image files.  

1. Identification of the spots and distinguishing them from spurious signals: In this 

step, spots are identified in the image. As spots are usually systematically 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=JSOvenaVIlXfmM&tbnid=Ba7E-7BNuojKkM:&ved=0CAUQjRw&url=http://www.wjso.com/content/1/1/21/figure/f1?highres=y&ei=RLPQUcvWLIXaPICegdgO&bvm=bv.48572450,d.ZWU&psig=AFQjCNFLhnoEIR2Gft9JNBk1w8sdnrk55Q&ust=1372718197799191
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arranged in microarray, identification of spots is simple. Users specified 

parameters also help software distinguish region as spot or not.  

2. Identification of the spot area to be surveyed and local region to use for 

estimation of the background hybridization: After identification of spots, in this 

step, spot signal and background intensity is calculated.  

3.  Reporting summary statistics and assigning spot intensity after subtracting for 

background intensity: After the spot and background signals are estimated, a 

statistical report for each spot in each channel (red and green) is produced.  

 

 Expression ratios and transformation of expression ratios 

Expression ratio is the commonly used metric that represents the level of gene 

expression. So Expression ratio represents the amount of green or red light that is 

emitted after excitation for each gene.  If expression ratio is represented by Tk, then it is,   

Tk =
RK

Gk
 (2.4) 

For each gene k on the array, RK is the spot intensity metric for the test sample and Gk is 

the spot intensity metric for the reference or control sample. 

Expression ratio is an effective way to find the difference in expression levels of 

different genes. However, depending on whether a gene is up-regulated or down 

regulated, expression ratio could be mapped between 1 and infinity or 0 to 1. By 

performing inverse or logarithmic transformation this inconsistency can be eliminated. 

 Data mining techniques for Gene expression analysis  

After the normalization steps mentioned above, the data is represented in a form of 

numerical matrix, in which each row corresponds to a specific gene and each column 

represents either an experimental variable/condition or specific time points. Activity 

levels of the genes represented by the expression values for any given condition are 

described as the gene expression profile. The expression levels for all genes under one 

particular condition are called sample expression profile where expression data can be 

represented in many ways, such as absolute measurement, as expression ratio, discrete 
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values and so on. One of the main objectives of carrying out microarray data analysis is 

to gain insight into underlying biology by monitoring expression level of genes at a 

genome scale. Using expression profiling it is possible to infer the active cellular 

signalling events under any particular biological or experimental condition.  Over the 

years many statistical and data mining algorithms have been developed to effectively 

classify, or cluster, genes or biological samples into distinct groups based on gene 

expression.  

There are different kinds of data mining methods including two main categories: one is 

supervised and the other is unsupervised technique. In supervised data mining 

techniques, each gene expression profile is labelled with a specific class. For example, 

the expression profile of each sample can be associated with the specific disease and the 

supervised methods make use of the class information in the learning process. While, 

unsupervised data mining methods have no prior knowledge about the label or the class 

information of the genes, they learn the pattern from the data. In the context of gene 

expression analysis, supervised data mining methods include class association rule 

mining and classification, while unsupervised data mining methods mainly refer to the 

various clustering methods. 

(1) Clustering  

In clustering techniques data are organised into clusters based on similarity. Patterns 

within the same cluster are more similar to each other than they are to a pattern 

belonging to a different cluster. In the context of gene expression data analysis, 

clustering methods have been used to find clusters of co-expressed/co-regulated genes 

which can be used to distinguish between diseases that a standard pathology might find 

it difficult to tell apart [Alizadeh 2000]. Clustering methods can also be grouped two 

categories: 1. hierarchical and 2. non-hierarchical clustering [Jain 1999]. A hierarchical 

clustering method builds a hierarchy of clusters or tree-like structure, which is basically 

a nested sequence of partitions. Non-hierarchical produces a particular number of 

clusters at a single step.  K-means algorithm, graph-theoretic approaches via the use of 

minimum spanning trees, evolutionary clustering algorithms, self-organising maps are 

some of the commonly used hierarchical clustering methods just to name a few.  
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In clustering technique proximity to a cluster for each gene is usually measured by a 

distance/dissimilarity matric or a similarity function defined on pairs of patterns. The 

Euclidean distance, Manhattan distance, Minkowski distance are some of the popular 

distance measures techniques and Pearson’s correlation, Spearman’s Rank Correlation 

are some of the similarity measures in the context of gene expression profiling.  

(a) Hierarchical clustering method 

In this technique two types of algorithms are used, one is an agglomerative algorithm 

and divisive algorithm.  Say there are n number of gene expression values across a set of 

arrays into an individual cluster. The agglomerative algorithm keeps merging the two 

most similar groups to form a new cluster and reducing the number of clusters by one 

until all the data fall within a single cluster. A divisive algorithm, on the hand, begins 

with a single group and then keeps dividing groups until there are n groups, each of a 

single individual. Agglomerative clustering algorithms are popular choices due to its 

computational efficiency. Hierarchical agglomerative clustering algorithms use different 

distance or similarity matrices for measuring the distance between two clusters where 

a cluster may consist of only a single object at a time. The most commonly used inter-

cluster measures are described in Equations [2.5 - 2.7]. 

dAB = mini∈A
j∈B

(dij) (2.5) 

dAB = maxi∈A
j∈B

(dij) (2.6) 

dAB =
1

nAnB
∑ ∑ dijj∈Bi∈A  (2.7) 

Where dAB is the dissimilarity between two clusters A and B and dij is the dissimilarity 

between two individual patterns i andj. nA and nB are the number of individuals in 

clusters A and B respectively. 

(b) Non-hierarchical clustering method 

In non-hierarchical clustering method a single partition of the data is created which is 

computationally less costly than hierarchical methods.  The square error is the most 
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commonly used criterion which is optimized to obtain the cluster. K-means is one of the 

popular choices which uses this criterion where the square error for each cluster j, 

j = [1,2,3 … . . K] is the sum of the squared Euclidean distances between each pattern xi
(j)

 

in the cluster j and its centre, or mean vector, of  the cluster, m(j). 

Ej = ∑ d
xim(j)
2nj

i=1
 (2.8) 

Where, 

 m(j) =
∑ Xi

(j)nj
i=l

nj
 (2.9) 

Where Ej  is referred to as the within-cluster variation or sum of squares for cluster j 

and nj  is the number of patterns within cluster j, and   is the Euclidean distance from 

pattern xi, to the centre of the cluster to which it is assigned. Therefore the total square 

error for the entire clustering with K clusters is the sum of the within-cluster sum of 

squares: 

(2) Classification technique 

Classification is an important supervised data mining approach for gene expression 

analysis.  Over the years, many classification techniques such as decision tree [Quinlan 

1993], KNN (K-nearest neighbour) [Pan 2004], SVM (Support Vector Machine) 

[Cristianini 2000], neural network [Good 2001], have been applied to analyse gene 

expression data. A classifier is first built on training samples, and then its performance 

is tested on test samples. If the performance is at an acceptable level, the classifier 

should be able to classify samples of unknown class label.  SVM and Neural network 

have gained popularity for gene classification and associative classification [Liu et al. 

1998, Li et al. 2001] has been proposed which makes the decision with the most 

significant class association rules.  

Many different approaches for clustering and classification of gene expression data are 

available these and among them one might be more efficient than the others. However, 

one approach cannot be uniformly called superior to others. While choosing an 
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algorithm, goals of the analysis, the background knowledge and the specific 

experimental constraints are needed to be taken into consideration [Garrett-Mayerand 

2004].  

 Differential expression analysis 

Many microarray studies are designed to detect genes that act differently in different 

biological conditions such as diseased and healthy cells. In some experiments, genetic 

mechanisms are also perturbed with various treatments to understand the effects of 

those treatments. Measurement of gene expressions on different genes are usually 

independent, however due to the high dimension of gene expression space and our lack 

of understanding of all biological mechanisms, most of the techniques take on gene by 

gene approach. One of the approaches could be to select genes using a fold-change 

criterion. However due to the presence of biological and experimental variation, which 

may differ from gene to gene, it is important to use statistical tests to assess differential 

expression. To scale the data, sometimes the logarithmic scale is used in order to make 

the distribution of replicated measurements per gene roughly symmetric and close to 

normal. A variance stabilizing transformation derived from an error model for 

microarray measurements are also applied to make the variance of the measured 

intensities independent of their expected value [Huber et al. 2002]. 

In the most popular R package limma [Smyth 2004], an Empirical Bayes approach is 

implemented that employs a global variance estimator s0
2 computed on the basis of all 

genes’ variances. The resulting test statistic is a moderated t-statistic, where instead of 

the single-gene estimated variances sg
2, a weighted average of sg

2 and s0
2 is used. Under 

certain distributional assumptions, this test statistic can be shown to follow a t-

distribution under the null hypothesis with the degrees of freedom depending on the 

data [Smyth, 2004]. 

2.3.3 Advantages and limitations of Microarray  

Microarray permits parallel analysis of thousands of genes which has opened new 

opportunity for genomic studies and for epigenetic research as well. Although gene 
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expression profiling is the main application of this technology, microarray-based 

methods have been adapted to reveal localization patterns of DNA-binding proteins and 

DNA methylation. It can also help predict protein interactions and protein functions. It 

has been shown that genes with similar expression profiles are more likely to produce 

proteins that interact with each other [Ge et al. 2001; Jansen et al. 2001]. The cost of 

running a microarray investigation has reduced significantly over the years, making it a 

very affordable method for many investigators.  

Microarray technology has several disadvantages too. One of the main drawbacks is that 

before running a microarray experiment, some prior knowledge about the genome in 

question is required. Biological question regarding selected genes can only be answered 

by this technology. Another problem with this technology is the background 

hybridization which occurs due to repetitive DNA sequences. This cross-hybridization 

makes it difficult to identify differentially expressed genes, especially lower-abundant 

messages.   

2.4 Integration of Microarray and ChIP-Seq data and challenges 

Both DNA microarray and ChIP-Seq have played a crucial role in genome research. A 

variety of phenotypic changes important in normal development and in diseases are 

temporally and spatially controlled by chromatin-coordinated gene expression [Nowak 

et al. 2005].  Protein binding data collected by ChIP-Seq and gene expression data 

generated by microarray experiments can be combined to study the relationship 

between epigenetic mechanisms and transcriptional activation.  

Studying epigenetic modifications that occur together with a change in gene 

transcription can also lead to understanding the underlying mechanism how genes are 

regulated and identification of additional functional genomic elements that impact gene 

expression. Different regulatory proteins bind at specific loci of the genome at different 

time to regulate gene expression.  Exploring different protein binding patterns or the 

chromatin structures at different biological conditions can also help us understand the 

overall mechanism of gene regulation and it can also open the door for identifying 

previously unknown functional genomic elements that impact gene expression.  
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There are other advantages of integrating these two data types. Next generation 

sequencing is a new advanced technology for studying epigenetics mechanisms in 

genomic level and it has several advantages over microarray analysis. Many have 

predicted it will take over the job of microarray. In fact, the mature and established 

analysis pipeline and cost effectiveness still make microarray a viable option for small 

studies or studies where thousands of samples are involved. However, the underlying 

epigenetic landscape cannot be fully realised given such data as it is with next 

generation sequencing data such as ChIP-Seq. The general view of the scientific 

community is that these technologies should form a relationship [Hurd et al. 2009] and 

from such integrative analysis it can also be investigated if comparatively cheaper 

option microarray alone can be used to study epigenetic landscape.  

The computational biology community has made several attempts to combine protein 

binding and mRNA expression data over the years. Several methodologies have been 

proposed to study the relationship between bindings of protein at different genomic 

locations and gene expression changes [Markowetz et al. 2010; Qin et al. 2011; Hoang et 

al. 2011; Guan et al. 2014]. In general, it is essential to measure the level of epigenetic 

modifications and probability of enrichment for proteins in any location accurately in 

order to find possible relationships between ChIP-Seq and gene expression data.  

ChIP-Seq data analysis steps are very complicated and there are several characteristics 

of ChIP-Seq data that are needed to be considered while modelling such data. For 

example, in immunoprecipitation technique, along with protein bound sequences, some 

random sequences are also picked up which creates noise in the data. Therefore, if two 

datasets need to be compared i.e. differential protein binding location need to be 

investigated, IP efficiencies between the datasets need to be considered. Another issue 

is that once the protein bound sequences or reads are mapped back to the whole 

genome, most of the statistical techniques divide the whole genome into fixed length 

windows and generate number of reads per window data. Then an overall distribution 

of count is considered to find a cut-off to call a location bound by the proteins. However 

as binding may cross windows it introduces spatial dependency. The ChIP-Seq count 

data is also usually overdispersed. 
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 The tools those are available today to call peaks deals with different aspects of ChIP-seq 

data. As discussed earlier in this chapter, some tools uses simple Poisson model that 

fails to recognise overdispersion that is observed in the count data of ChIP-seq, some 

utilises a negative binomial distribution which takes into account overdispersion or 

deals with spatial dependency but fails to take into IP efficiency into consideration 

while modelling the data. While investigating association between protein bindings and 

gene regulation, it is very important that the model used to analyse the data deals with 

all the characteristics of the data as much as possible to get robust information about 

protein binding locations, especially if different proteins and biological conditions are 

involved in the study.   

Most integrative methods to date find the relationship between protein binding and 

gene expression at one biological condition [Qin et al. 2011; Guan et al. 2014]. The 

studies that investigate how differential bindings of proteins may correlate with 

differential gene expression at different biological conditions have used very primitive 

analysis of ChIP-seq data thus ignore lots of characteristics such as overall distribution 

of counts, spatial dependencies of counts for neighbouring regions of the genome and 

the different efficiencies of individual ChIP-Seq experiments as mentioned above. In 

some studies per-gene ChIP-seq enrichment has been estimated to find relationship 

between gene expression and protein binding where simply tags or sequences are 

counted associated with a given gene or promoter region of each gene [Yu et al. 2008; 

Karlic et al. 2010]. Some studies have used only control samples to deduct the noises 

and determine enrichment around transcription start sites (TSS) [Hoang et al. 2011; 

Markowetz et al. 2010; Nicodeme et al. 2010]. These methods have several limitations, 

firstly tag counting methods within a fixed region do not consider spatial component of 

the data. Secondly, basic enrichment estimation methods will not consider the 

distribution of the data throughout the genome thus may over or underestimate the 

significance of enrichment.  

Advancement of ChIP-Seq and genome databases available today have allowed 

biologists to investigate how protein binds at different genomic features and it has been 

concluded in several literatures how these genomic features underlie epigenetics 
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[Bernstein et al. 2012]. The computational biology community that has proposed 

methodologies and tools to integrate protein binding and gene expression data to find 

relationship between the two mostly focus on protein binding at some common 

genomic features such as promoters or transcription start sites [Markowetz et al. 2010; 

Qin et al. 2011; Guan et al. 2014]. However, epigenetic mechanisms that regulate gene 

expression do not just occur in any particular area such as promoters and transcription 

start sites, therefore how other features may play into regulation of gene mechanism 

needs to be investigated and should be accommodated in the integrative analysis. 

2.5 Summary 

Integrating protein binding data obtained by ChIP-Seq and gene expression data 

obtained by microarray experiments to study the relationship between transcriptional 

activation and its regulation mechanisms has much significance. However, as an 

emerging field, it retains many problems and challenges too as discussed in the previous 

section. With these problems in mind, the next chapters explore possible ways to 

analyse ChIP-Seq data that improves protein binding results and also propose 

methodologies where these improved results can be incorporated in the integrative 

analysis of protein binding and gene expression data. The relationship between protein 

binding profile at different genomic locations and biological conditions and 

transcriptional activity is further investigated using advanced machine learning 

techniques. The corresponding experimental results are validated in various ways. It is 

envisaged that from these, future directions into the processing of ChIP-Seq and 

microarray data and their integration can be embarked upon. 
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Chapter 3 

Adapting Markov Random Field for 

ChIP-seq data modelling 

3.1 Introduction  

Chromatin immunoprecipitation (ChIP) is an important experimental technique for 

studying interactions between specific proteins and DNA in the cell and determining 

their position on a specific genomic locus [Ren et al. 2000; Lieb et al. 2001; Iyer et al. 

2001; Weinmann et al. 2002]. In recent years, the combination of ChIP with the next 

generation DNA-sequencing technology (ChIP-seq) has expanded the scope of these 

studies to identify binding locations of many transcription factors, histone modifications 

and other chromatin-associated proteins across genome with high resolution. In ChIP-

seq technology, a protein of interest is usually cross-linked with DNA site it binds to in 

an in vivo environment using formaldehyde. After the crosslinking is done, the DNA is 

sheared by sonication or other mechanism. From the resulting DNA strands, DNA 

sequences crosslinked with the protein are filtered out with antibody by the 

immunoprecipitation technique. Then the cross-linking of protein and DNA is reversed 

and the DNA is purified. The DNA is then sequenced, which are known as ‘reads’. Finally, 

the short sequenced fragments (known as reads or tags) are computationally mapped 

by an alignment algorithm to a reference genome and regions of enriched tag counts are 

identified in the step known as peak-calling.  

ChIP-seq experiments produces enormous amount of data and the analysis of the data is 

very complex, which involves several steps. Figure 3.1 demonstrates the ChIP-seq data 

analysis steps.  To get the most out of these experiments, it is absolutely vital to choose 

most appropriate computational analysis methods and tools which take different 

aspects of ChIP-seq data into account.  
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Figure 3.1: Flow scheme of the main steps in the ChIP-seq procedure. Using 

immunoprecipitation technique protein bound DNA sequences obtained and library is 

constructed. The DNA sequences are aligned to the whole genome and using 

appropriate peak calling method, the binding locations of the protein are found. After 

that, the bound regions can be visualised or further downstream analysis can be 

performed on the location information [Liu 2010].  

 

In a ChIP-seq experiment, while generating the data, some random DNA sequences are 

also collected with the bound sequences which are usually scattered across the genome 

and considered as background noise. Also the background to signal ratio or ChIP-

efficiency varies experiment to experiment. The antibodies that are used for specific 

transcription factors or protein in the immunoprecipitation technique have their own 

specificity for generating different signal to background ratios as well. Even with the 

same antibody, the technical or the biological replicates can have different specificity. 

When there are two or more experiments involved and the data from different 

conditions need to be compared, these issues may lead to over or under estimation of 

the overlapped or differential bound regions.  

Once the sequences bound by the protein are mapped back to the whole genome, the 

next step is to find the enriched regions. That means, a peak calling algorithm considers 



Chapter 3: Adapting Markov Random Field for ChIP-seq data modelling 

 

65 

 

the distribution of the tags or reads across the genome and finds out regions that are 

truly bound by the protein of interest. One of the most common methods is to divide the 

genome in question into fixed sized windows/bins and then summarise the counts per 

window. After the count data is summarised and prepared, a statistical model is used to 

filter out the windows with significant amount of counts that can be considered as 

enriched regions. However, an enrichment profile can cross between the neighbouring 

windows and thus spatial dependencies are introduced in the data.  

Another characteristic of the data is that, as most of the regions in the genome do not 

have binding of the protein, there are excess numbers of zero counts in the background. 

Also, ChIP-seq data usually has over-dispersed per-bin read count distributions. It does 

not match with the existing computational method assumptions such as that read 

counts are generated according to a Poisson distribution with a local mean, so using a 

Poisson model for such data may result in incorrect assumption of statistical 

significance and eventually erroneous result [Hashimoto et al. 2014]. In this chapter, 

Markov Random Field model has been adapted to analyse ChIP-seq data to address 

some of these issues, such as spatial dependencies, excess zeros, overdispersion in the 

count data and joint modelling of replicates.  

This chapter is organised as follows. In Section 3.2 some existing analytical methods for 

ChIP-seq data and their limitations are discussed. In Section 3.3, the ChIP-seq data 

analysis steps that have been adapted in this study are presented and Markov Random 

Field model is introduced. Section 3.4 is devoted to experimental studies and finally, the 

work is summarised in Section 3.5. 

3.2 Background 

There are several tools which deal with different aspects of ChIP-seq data. MACS [Zhang 

et al. 2008] is probably the most popular one to analyse ChIP-seq data. This model uses 

peak shifting mechanism to shift the forward and the reverse strands to create a 

combined profile and calls the peaks on the combined tags using a Poisson model 

through sliding windows. As mentioned earlier, because of the constraint of mean and 
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variance equality in the Poisson distribution, this distribution fails to model peak data if 

the variability of tag counts far exceeds the mean.  

CisGenome [Ji et al. 2008], another popular method, utilises a negative binomial 

distribution rather than a Poisson distribution to call peaks.  MACS and CisGenome do 

not account for IP efficiencies or spatial dependencies in the data.  

SCICER [Zang et al. 2009] uses a method that does not utilise fixed sized windows. 

Rather it scans the genome and identifies clusters of spatial signals that are unlikely to 

appear by chance and thus takes into account the issues with spatial dependencies and 

repeat regions that are not mappable by uniquely mapped reads.  

MOSAiCS [Chung et al. 2011] deals with the reads that are randomly picked up by the IP 

technique and biases that are introduced in the data such as GC content [Dohm 2008] 

and mappability [Rozowsky 2008]. Later this model has been extended in MOSAiCS-

HMM [Chung et al. 2014] to account for spatial dependency in ChIP. However, these 

models do not consider joint modelling of the data.  

To overcome variability in ChIP-efficiency when two or more ChIP-seq data are 

investigated, Bao et al. [2013] has proposed a mixture model where multiple 

experiments can be modelled together where efficiency of each experiment is taken into 

consideration which leads to more accurate detection of enriched and differentially 

bound regions. The problems related to spatial dependency and excess zeroes are 

addressed in the approach proposed by Bao et al. [2015]. In this proposed method, 

Markov random Field (MRF) model has been implemented that accounts for the spatial 

dependencies in the ChIP-seq data and the large portion of zeroes are modelled using 

zero-inflated mixture distributions. The model also allows joint modelling of multiple 

experiments which deal with different ChIP efficiencies. 

Here, this Markov Random Field (MRF) model has been adapted for the analysis of the 

ChIP-seq data to demonstrate how incorporating the characteristics such as spatial 

dependency, IP efficiency and excess zeroes can improve the result.  The comparative 

performance analysis has been carried out between MRF and other existing methods. It 

has also been demonstrated how the pre-processing steps of the ChIP-seq data before 
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running statistical analysis, such as the count correction step, can have great impact on 

the overall performances.  

3.3 Method 

ChIP-seq data analysis has several steps. The steps taken in the pre-processing of the 

data have significant effects on the overall binding result. Therefore those steps are also 

as important as modelling the data. After generating the ChIP-seq data for a particular 

protein, the analysis begins by aligning the raw data to the whole genome to obtain 

location information of each sequence in Step 1. The aligned data are usually converted 

into suitable formats such as, Sequence Alignment Map (SAM) or Binary Alignment Map 

(BAM). The chromosomes are usually modelled separately; therefore in Step 2, the 

aligned data is divided into different chromosomes. Using the length of each 

chromosome, an index is created where each entry is a fixed-size window with its co-

ordinate information. Once the index is created, counts of sequences are generated per 

window from the aligned data. In Step 3, if there is any bias detected in the count data, it 

is corrected and the count data is updated before the modelling.  After the correction, in 

Step 4, the data is modelled using MRF model and binding regions are identified using 

the chosen cut-off. The main steps involved in the analysis of one ChIP-seq data are 

illustrated in Algorithm 3.1. 

 

Algorithm 3.1: Pseudocode for analysis of ChIP-seq data 

Inputs 

 

ChIP-seqData:  a ChIP-seq dataset 

CutOff: an integer 

 

Output 

BindingRegions: A list of bound regions by the protein of 

interest with their location information.   

 

Function:- AnalyseChIP-seq(ChIP-seqData): BindingRegions  
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1. Align the ChIP-seqData to the genome. 

2. Separate the chromosomes and generate count data per 

chromosome. 

3. Perform count correction if needed.  

4. Apply MRF model on each chromosome and using CutOFF 

identify binding regions and save them to BindingRegions 

 

Step 1: Aligning the data  

The sequences obtained in the ChIP-seq experiment are aligned in this step using an 

aligner that is capable of handling such data. The outputs are chronologically listed all 

the sequence reads with their genomic locations in terms of co-ordinates. A sequence 

can be mapped to different locations. Here, only uniquely mapped reads are retained to 

remove ambiguity.  Two mismatches are allowed also in the algorithm for alignment. 

The aligned data is usually in SAM or BAM format.  

Step 2: Separate the chromosomes and generate the count data 

In this step, the aligned data is processed and count data is generated. The 

chromosomes are modelled separately, so from the aligned data, separate chromosome 

files are created. The lengths of the chromosomes are obtained from a genomic database 

and the size of the window is selected. Then, an index file is created per chromosome 

using the length information. The length of the chromosome is divided by the size of the 

window to get the number of windows per chromosome.  Each entry of the index 

represents a window by its start and end co-ordinate.  Finally, the counts of the 

sequences are generated per window using the co-ordinate information of each window 

from the aligned data. The steps are illustrated in Algorithm 3.2. 

 

Algorithm 3.2: Pseudocode for generating count data 

Inputs 

ChIP-seqData:  an aligned ChIP-seq data 
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n: The number of chromosomes 

l: An array containing the length of N chromosomes. 

windowSize: An integer 

 

Output 

CountData: n number of m*3 matrix where m represents the 

number of fixed-length windows. The 3 columns represent the 

start and end co-ordinates of each window and the number of 

sequences found in them.   

 

Function:- GenerateCountData(AlignedChIP-seqData): CountData  

1. Separate the genome into n number of chromosomes and save 

them in ChromosomeList 

2. For each chromosome c in ChromosomeList 

Obtain length from l of chromosome c 

Divide the length by windowSize to get w 

Generate an index with w entries with start and end 

co-ordinate and name of the chromosome 

Save the index in IndexList 

End For 

3. For each index in IndexList 

For each window in index  

Generate the number of sequences found in that 

window using the co-ordinates 

End For 

 Save it to CountData 

 End For 

 

Step 3: Count correction 

In regions of elevated GC content, the numbers of reads are sometimes increased [Dohm 

2008] and there are biases that come from the mapping algorithm as well. Some 
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sequences can be mapped to multiple locations. It has also been observed that in some 

of the genomic regions abnormally a high number of sequences are mapped. These can 

be caused by a few factors, such as uneven chromatin structures or biased PCR 

amplification [Shen 2013]. These high counts may distort the background estimation. 

Therefore, in this count correction step, looking at the distribution of each count data, if 

some unusual high counts (i.e outliers or variance is too big) are found in any 

concentrated areas, it is assumed that they have come from the biases. Therefore, those 

counts are removed and replaced by 0 in the method.   

Step 4: Modelling the data with the MRF model 

After the count data is prepared, the proposed methodology by Bao et al. [2015] for the 

analysis of ChIP-seq data has been followed for finding the enriched regions of the 

protein of interest. Given the count data, MRF model considers the distribution of the 

counts across the genome in question and associates a probability to each window of it 

being enriched or not. Additional information such as enrichment information of 

neighbouring regions is also considered while calculating this probability to incorporate 

spatial dependency. A brief overview of the model is given below.  

In the MRF model, let 𝑀 be the number of total bins in the regions of interest in a 

particular chromosome. Let, 𝑌𝑚𝑐 be the counts in the 𝑚th bin, (𝑚 = 1, 2, 3, … . , 𝑀) and 𝑐, 

the condition (time points or control/sample). The counts can be from either 

background (non-enriched region) or from the signal (enriched regions). So, given the 

data, the interest is in inferring the state of the latent variable 𝑋𝑚𝑐.  

That is 𝑋𝑚𝑐 = 1 if enriched, 𝑋𝑚𝑐 = 0 if not enriched, so the joint mixture model for 𝑌𝑚𝑐 

is as follows:   

 𝑌𝑚𝑐~𝑝𝑐𝑓(𝑦, 𝜃𝑐𝑟
𝑆 ) + (1 − 𝑝𝑐)𝑓(𝑦, 𝜃𝑐𝑟

𝐵 )  (3.1) 

Where 𝑝𝑐 = 𝑃(𝑋𝑠𝑐 = 1) is the mixture portion of the signal component and 𝑓(𝑦, 𝜃𝑐𝑟
𝑆 )and 

𝑓(𝑦, 𝜃𝑐𝑟
𝐵 ) are the signal and background densities, respectively. Using this model, the 

enriched regions can be detected by controlling false discovery rate (FDR).  
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One of the characteristics that make this model attractive is that the probability 𝑝𝑐 of a 

region being enriched does not depend on ChIP efficiencies. However, the parameters 

signal and background distributions 𝜃𝑐𝑟
𝑆  and 𝜃𝑐𝑟

𝐵  depend on ChIP efficiencies of 

replicates r. As the signal and background densities can take any form, the signal can be 

modelled using Poisson or Negative Binomial and their zero-inflated extensions to 

account for the excess number of zeros typical of this type of data. 

So for the mixture components 𝑓(𝑦, 𝜃𝑆) and 𝑓(𝑦, 𝜃𝐵),  

 𝑌𝑚𝑐|𝑋𝑚𝑐 = 0~𝑍𝐼𝑃(𝜋𝑐, 𝜆0𝑐) 𝑜𝑟 𝑍𝐼𝑁𝐵(𝜋𝑐, 𝜇0𝑐, 𝜙0𝑐), (3.2) 

 𝑌𝑚𝑐|𝑋𝑚𝑐 = 1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1𝑐) 𝑜𝑟 𝑁𝐵(, 𝜇1𝑐, 𝜙1𝑐)  (3.3) 

The latent variable 𝑋𝑚𝑐, which represents the binding profile is assumed to satisfy 1D 

Markov properties. Given the adjacent bins states, 𝑋𝑚−1,𝑐 = 𝑖, 𝑋𝑚+1,𝑐 = 𝑗 with 𝑖, 𝑗 ∈ {1,0} 

 𝑌𝑚𝑐|𝑋𝑚−1,𝑐 = 𝑖, 𝑋𝑚+1,𝑐 = 𝑗~𝑝𝑐,𝑖𝑗𝑓(𝑦, 𝜃𝑐
𝑆) + (1 − 𝑝𝑐,𝑖𝑗)𝑓(𝑦, 𝜃𝑐

𝐵)  (3.4) 

Thus, the enrichment of a region depends on the state of the two adjacent regions. All 

the parameters in this model are estimated using Bayesian approach.  

Finally to decide whether a region is enriched or not, a user can set a threshold on these 

probabilities. Different criteria can be used to set this cut-off, whereby each region is 

assigned to the state with the highest posterior probability.  

If 𝐷 is the set of declared enriched regions corresponding to a particular cut-off on the 

posterior probabilities, then the estimated false discovery rate for this cut-off is given 

by: 

 𝐹𝐷�̂� =
∑ �̂�(𝑋𝑚𝑐=0|𝑌)𝑚𝜖𝐷

|𝐷|
  (3.5) 
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3.4 Results 

3.4.1 Data 

In this experiment, time-series ChIP-seq datasets for Histone protein H3, RNA 

Polymerase II (RNA PolII) and Cyclin-dependent kinase 9 (CDK9)  [Nicodeme et al. 

2010] have been used. The data was collected from bone-marrow derived macrophages 

(BMDMs) stimulated with lipopolysaccharide (LPS). The data was also collected from 

LPS stimulated samples that are treated with a synthetic compound (I-BET) that, by 

'mimicking' acetylated histones, disrupts chromatin complexes responsible for the 

expression of key inflammatory genes in activated macrophages. The LPS stimulated 

data are described as ‘control’ in this chapter and the data that are LPS stimulated and 

also treated with IBET compound are described as ‘drug’. The ChIP-seq data were 

collected at three time points: 0, 1 and 4 hours (which are described as 0H, 1H and 4H 

respectively in this chapter).  

H3 is one of the main histone proteins. The reason behind using this data is that it has 

two technical replicates per biological condition, which has given the opportunity to 

assess the strength of joint modelling of the data. As RNA polymerase (RNA PolII) has 

known to be bound at the specific locations such as the promoter sequences of the 

genome to initiate gene regulation, the ChIP-seq datasets for RNA PolII have been used 

to validate the results biologically.  

3.4.2 Pre-processing of the data 

Alignment 

The ChIP-seq datasets are in the FASTAQ format that contains the raw sequences. The 

alignment tool, Bowtie, has been used for aligning the ChIP-seq data used in the 

experiment. Bowtie is an ultrafast, memory-efficient short read aligner that can align 
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very large sets of short DNA sequences or tags to large genomes in a very short period 

of time. As a reference genome, Bowtie requires indexed DNA sequences. The 

bowtie-build function can build an index in the form of six output files. These six 

files together are called the index and they are needed to align the reads to the 

reference genome. The algorithm that is used to build the index is based on the 

blockwise algorithm of Karkkainen.  

Indexed mouse genome (mm9) has been used as the reference genome for the ChIP-seq 

data to be aligned. The reference genome obtained from UCSC Genome Browser 

[https://genome.ucsc.edu/]. This version was released in July 2007. Nicodeme et al. 

(2010) has used this version of the genome in their analysis, so this pre-processing step 

was kept similar so that the validation was easier if required. The aligned data produced 

by Bowtie is in standard SAM format.  Due to some unusual findings in chromosome 2, 

where a large number of sequences are found to be aligned in a concentrated small 

region, some datasets have also been aligned using BWA to perform a comparative 

analysis. It has been concluded that both tools produce the similar results, as the 

unusual reads have also been reported by BWA. After the alignment with Bowtie, it 

produces some information about the whole alignment run including the total number 

of reads that were processed and the percentage of total reads for which Bowtie found 

at least one alignment.  

  

Condition 

Proteins 

Brd4 H3 H3K4me3 H4ac RNA PolII CDK9 RNA PolII S2 

0H minus 74.43 78.00 78.53 73.55 83.26 78.67 76.09 
0H plus 74.52 64.16 82.80 74.05 82.17 75.80 82.98 
1H minus 70.24 82.57 73.35 78.61 81.50 70.35 83.40 
1H plus 78.03 64.05 73.07 77.74 82.69 80.89 80.03 
4H minus 75.90 65.33 80.18 76.88 82.48 80.18 79.08 
4H plus 60.86 62.24 79.05 71.35 81.18 69.79 76.89 

Table 3.1: Percentage of sequences that are aligned per ChIP-seq dataset using Bowtie 



Chapter 3: Adapting Markov Random Field for ChIP-seq data modelling 

 

74 

 

 

Table 3.1 summarises the percentage of sequences that are aligned to the reference 

genome mm9 for all proteins/markers (used in different experiments throughout the 

thesis) at each condition by Bowtie. There is no consensus about the acceptability of 

the alignment percentage and it also depends on the number mismatches that are 

allowed for alignment. If allowed too little, the percentage goes down and lots of 

information can be thrown away, however if allowed too big, the result could be 

misleading. As large datasets have been compared for several proteins in this thesis, 

default number of mismatches that Bowtie allows has been used, which is 2. Allowing 

two mismatches only, it has been observed that the alignment scores are at the higher 

end for most of the datasets that have been used in this thesis.    

Generating count data 

After the alignment step, the genome in question is needed to be divided into fixed size 

windows or bins to generate the count profile, so that the distribution of the data can be 

analysed to find the true enriched regions. To do so, a couple of information is required 

about the genome, such as, how many chromosomes there are in the genome, the length 

of each chromosome etc. The species in question, the mouse has 21 chromosomes 

including the X and the Y chromosome. The X and the Y chromosomes haven’t been used 

in any of the experiments, therefore, 19 chromosomes are divided into separate files 

except X and Y. The lengths of all 19 chromosomes have been downloaded from UCSC. 

A function written in python has been used for dividing each chromosome length into 

fixed size windows and creating an index per chromosome. The function takes a text file 

containing the length information of each chromosome and user-chosen size of the 

window or bin as input. The program then outputs text files, containing windows (start 

position and end position of each window) for each chromosome.  In this experiment, 

the 200 base pair (bp) window size has been chosen (the reason for this decision is 

described at the end of this chapter).   

In the next step, the number of counts is summarised per window and the count data is 

prepared.  A function written in python has been used for this task. The function has 
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been automated such a way so that several ChIP-seq data can be run together. For each 

dataset, it loops through all 19 chromosomes and produces a count data for each 

chromosome. The count data is a text file that contains the information of the numbers 

of tags per window, with the location information of the window in terms of the co-

ordinate and the name of the chromosome that window comes from. Both of these 

python program are the implementation of Algorithm 3.2 for generating count data.   

Figure 3.2 shows a tabular representation of the count data that is resulted in this post-

alignment process for chromosome 19 generated from ChIP-seq data of H3.  There are 

four columns in the file. The column, ‘Chromosome’ contains the name of the 

chromosome where the reads have come from. The columns, ‘Start’ and ‘Stop’ contains 

the location information of the regions in terms of co-ordinates and finally, the column 

‘Counts’ contains the number of sequences found in each region. This count data is then 

provided to a model to find out the regions that are significantly enriched by the protein 

of interest.  

 

 

Figure 3.2: A tabular representation of the count data that is given as the input to the 

statistical model to analyse the enriched regions 
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Applying MRF model 

After the pre-processing step, the resulting count data can be used to find the locations 

of the genome that is likely to be bound by a protein in question. The MRF model for 

analysing the peaks of the ChIP-seq data is implemented in R. MRF model along with 

mixture model previously developed by Bao et al. [2013] can be found in R package 

called enRich. This tool also provides joint statistical modelling of ChIP-seq data, 

accounting for technical/biological replicates, multiple conditions and different ChIP 

efficiencies of the individual experiments. 

To apply the MRF model on the count data, the mrf function provided by the R package 

enRich has been used.  

The function uses an MCMC algorithm to fit a one-dimensional Markov random field 

model for the latent binding profile from ChIP-seq data. The emission distribution of the 

enriched state (signal) can be either Poisson or Negative Binomial (NB), while the 

emission distribution of the non-enriched state (background) can be either a Zero-

inflated Poisson (ZIP) or a Zero-inflated Negative Binomial (ZINB) as described in the 

method section. As input, the count data is provided. Negative Binomial has been used 

as the method in this experiment that refers to the densities of the mixture distribution. 

It means a ZINB distribution has been used for the background and a Negative Binomial 

for the signal. 2000 for MCMC iteration steps and 1000 for burn-in steps have been used 

for modelling the data. The function outputs the estimates of the parameters. It also 

produces a sample matrix drawing from the posterior distributions of the parameters. 

The samples are collected one from every ten steps right after burn-in step. The 

posterior probability list for each window of being enriched is also produced. For the 

joint modelling of two or more ChIP-seq datasets that are either biological/ technical 

replicates or that needs to be analysed for differential enrichment are modelled using 

mrf.joint function. In joint modelling the model allows the splitting of the background 

and signal components of the data that gives different efficiency ratio for individual 

dataset. When data are modelled jointly these ratios are taken into account to detect 
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enriched regions found jointly in multiple datasets or differentially enriched regions 

[Bao et al. 2013].  

After the data is analysed, the locations that are enriched or bound by the protein of 

interest are extracted. For this purpose enrich.mrf function has been used that detects 

the enriched and differentially bound regions for fitting results of mrf and mrf.joint by 

controlling a given FDR level. enrich.mrf also calculates the IP efficiencies for each 

experiment. The input for this function is the output of mrf or mrf.joint. The user can also 

choose the FDR for identifying enriched regions. As the cut-off value, 0.5 has been used 

for identifying the enriched regions in this experiment.  

For comparative analysis, the datasets are also analysed using a mixture model with 

Negative Binomial distribution. In that case, the function mix has been used on the count 

data that adopts an EM algorithm to fit the data by a latent mixture model with two 

components. One component is the signal density and the other is the background 

density. Function mix can deal with more than one experiment at the same time. In this 

case, it fits individual models to each experiment. For joint modelling function mix.joint 

has been used. After modelling the data, enrich.mix has been used to identify enriched 

regions at the chosen FDR.  Below are the examples of some commands that are run to 

call these functions on the ChIP-seq count data.  

Say, there is ChIP-seq data for protein, P and the count file generated for chromosome 1 

from this dataset is called P_chr1_countData. The count file has 4 columns, where first 

three columns represent the name of the chromosome and the regions and the fourth 

column has the count data as seen in Figure 3.2. To find the enriched regions by 

modelling this count data with the MRF model at 5% FDR (which is a cutoff typically 

used in most of the statistical analysis), the following commands are called in R console.  

1. library(enrich) 

2. P_chr1=list() 

3. P_chr1$region= P_chr1_countData [,1:3] 

4. P_chr1$count= P_chr1_countData [,4] 

5. P_chr1_mrf= mrf(P_chr1, method="NB", exp="P chr1", 

Niteration=2000, Nburnin=1000, cr=0.05) 

6. P_chr1_enrich=enrich.mrf(P_chr1_mrf, analysis="separate") 
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If there are two technical replicates for protein P and the count files for the replicates of 

chromosome 1 of P are called P_rep1_chr1_countData and P_rep2_chr1_countData 

respectively, joint modelling can be on the data and get the enriched regions by running 

the following commands in R.  

1. P_replicates_chr1=list() 

2. P_replicates_chr1$region= P_rep1_chr1_countData [,1:3] 

3. P_replicates_chr1$count=cbind(P_rep1_chr1_countData [,4], 

rep2= P_rep1_chr2_countData [,4]) 

4. P_replicates_chr1_mrf =mrf.joint(P_replicates_chr1, 

method="NB", exp=c("rep1", "rep2"), rep.vec=c(1,1), 

p.vec=c(1,1), Niteration=2000, Nburnin=1000, cr=0.05) 

5. P_replicates_chr1_enrich=enrich.mrf(P_replicates_chr1_mrf

) 

 

To model the data with the negative binomial distribution, mrf can be replaced with 

mix in the above commands.  

3.4.3 Comparative analysis of the MRF model and the Negative 

binomial distribution model 

The ChIP-seq datasets for histone protein H3 have been analysed with both the latent 

mixture model and the MRF model in order to evaluate the performances of both 

models.  Each biological condition has two technical replicates; therefore, it has been 

also possible to investigate the strength of the joint modelling of the data. The 

comparative performance has been conducted and the results have been published in 

[Ferdous et al 2015]. The result is also given below. For each condition, Table 3.2 shows 

the number of regions bound by H3 at 5% FDR by both MRF model and the mixture 

model with negative binomial (NB) distribution. At each biological condition, two 

replicates have been modelled jointly to get the bound regions.  
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Conditions 
MRF Mixture model with NB 

Number of enriched regions (200 bp) at 5% FDR 

0H control 3604 3113 
1H control 3412 3006 
4H control 4886 2962 
0H drug 4448 2793 
1H drug 3783 3181 
4H drug 3921 2978 

Table 3.2: The number of 200bp enriched regions found by the MRF and the mixture 

models with NB at 5% FDR 

From Table 3.2, it can be observed that in each condition, MRF produces more regions 

than the other method. Observing differentially bound regions between two models, it 

has been found that MRF assigns a high probability to a region that has low tag counts 

but has neighbouring regions with some significant number of counts as it incorporates 

spatial dependency in the model. On the other hand, the mixture model assigns a very 

low enrichment probability to those regions, thus, may discard lots of useful 

information [Zang et al. 2009]. Table 3.3 shows the number of regions uniquely bound 

by each method, that is, these regions are bound by one method but ignored by the 

other.   

 

Conditions MRF Mixture model with NB 
Unique regions (200 bp) at 5% FDR 

0H minus 1262 771 
1H minus 1160 754 
4H minus 2630 706 
0H plus 2347 692 
1H plus 1549 947 
4H plus 1756 813 

Table 3.3: Number of unique regions found by the MRF and the Mixture model with 

mixture with NB models 
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Some of the bound regions uniquely found by just one model have been observed in the 

integrated genome browse viewer (IGV) to investigate why these regions may be 

considered as enriched by one model while ignored by the other. Figure 3.3 (Left) 

shows an island of counts shown in IGV which has been reported as enriched by the 

MRF model but not by the mixture model. Due to the spatial dependency, all the small 

counts in that island are given high probabilities by the MRF model. However, as the 

Negative Binomial (NB) distribution does not account for spatial dependency, these 

small counts are given low probabilities individually and as a result are not considered 

enriched. In Figure 3.3 (Right) it shows a window that has a high count of sequences 

and has been considered bound by the NB model. Due to the lack of counts in the 

neighbouring regions, this window has been ignored as non-bound regions by the MRF. 

 

          

Figure 3.3: Integrated genome browser view of count data in some selected regions 

(Left) A region that is reported as significant by the MRF model due to spatial 

dependency but ignored by the NB model. (Right) A stand-alone high count that is 

reported as significant by the NB method but ignored by the MRF model due to lack of 

counts in the adjacent bins. 

3.4.4 Biological Validation 
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In order to verify the result biologically, the ChIP-seq dataset for RNA PolII has been 

also analysed using both methods. Table 3.4 summarises the number of regions found 

by the MRF and the latent mixture model using NB for two chromosomes. In this case, it 

has been noted that the difference between the numbers of enriched regions found by 

two different methods is very large.  The mixture model with negative Binomial picks 

up only sharp peaks, whereas the MRF model considers the spatial dependency, 

therefore broad peaks are identified and more regions are reported than the other 

model.  

 

 

 
Chromosome 

MRF Mixture model with NB 
Number of enriched regions (200 bp)  at 5% 

FDR 
Chr1 45,560 8950 
Chr19 17027 3805 

Table 3.4: The number of enriched regions found for RNA PolII reported by the MRF and 

the mixture model with NB models  

 

 
Chromosome 

Mixture model with 
NB 

MRF 

Percentage of  Promoters 
Chr1 31.24% 21.27% 
Chr19 41.59% 31.75% 

Table 3.5: Percentage of promoters found in enriched regions of RNA PolII  reported by 

the mixture model with NB and the MRF models 

 

RNA polymerase II is known to bind to the promoter sequences and initiate 

transcription. The R package ChIPseeker has been used to summarise the enriched 

regions obtained by two different methods in terms of the percentages of different 

genomic features they fall into (Table 3.5 and Figure 3.4). It has been investigated which 
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model yields more bound regions in the promoter area. The percentage of promoters is 

higher in the enriched regions generated by the mixture model (NB), however as MRF 

produces more enriched regions, it yields more promoters in the enriched regions than 

the mixture model. 

 

 

Figure 3.4: (Top) Distribution of the enriched regions of chromosome 1 of RNA PolII (a) 

reported by the NB model (b) reported by the MRF model 

(Bottom) Distribution of the enriched regions of chromosome 19 of RNA PolII (c) 

reported by the NB model (d) reported by the MRF model 
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(a) (b) 

  

(c) (d) 

Figure 3.5: (Top) The distribution of binding probabilities of RNA PolII around TSSs in 

chromosome 1 (a) by the NB model (b) by the MRF model. (Bottom) The distribution of 

binding probabilities of RNA PolII around selected TSSs that are significantly enriched 

(c) by the NB model (d) by the MRF model 
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Promoter sequences are typically located directly upstream or at the 5' end of the 

transcription start sites (TSS). As RNA PolII is known to bind at promoters, which 

resides around the transcription start sites, enrichment probabilities have been 

generated (reported by both model) at the start sites and 5kb upstream and 

downstream (upstream and downstream represented as minus and plus in the 

heatmaps) from the probability results yielded by both models. The heatmaps in Figure 

3.5 show the distribution of binding probability of RNA PolII around the TSSs in 

chromosome 1. Figure 3.5(a) and Figure 3.5(b) show binding probabilities at all TSS 

sites in chromosome 1 reported by NB and MRF respectively. There are some TSSs 

which are not bound by RNA PolII where genes are inactive (represented by red). In 

Figure 3.5(c) and Figure 3.5(d) the bound TSS are only selected to observe the 

distribution. The heat maps in Figure 3.5 show that the portions of transcription start 

sites that are bound by RNA PolII, where the bindings in the surroundings of those TSSs 

are very smooth and obvious with the MRF result. However, with the mixture 

modelling, it is not so apparent. 

 Joint model Vs individual modelling (H3) 

To check the merit of the joint modelling technique, the technical replicates have been 

analysed separately to investigate how the results of binding regions differ from the 

experiments where the replicates are modelled jointly. For this experiment, the ChIP-

seq data for H3 protein has been used for three time points (0H, 1H and 4H) for two 

experimental conditions (drug and control).  

For separate modelling, two replicates at each condition have been modelled 

individually and overlapped regions from both replicates found after modelling at 5% 

FDR have been recorded. For joint modelling, both replicates have been modelled 

jointly, while IP efficiency of both replicates are taken into consideration and one peak 

list per condition has been generated by the model. For both experiments, Markov 

random Field model has been used with the negative binomial method and others 

parameters have been kept the same for both joint and separate modelling. 
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The result shows that the joint modelling produces more enriched regions at each 

experiment at 5% FDR than if the replicates are modelled separately and overlapped 

regions are taken. Joint modelling has produced 622, 336, 2260, 1912, 929 and 1230 

more regions respectively in six experiments than separate modelling. The results of the 

number of regions produced in both experiments and time taken to model the data have 

been summarised in Table 3.6. The experiments have also been timed. On a computer 

with 8 GB RAM and duel processors, timewise, the models do not show any significant 

differences.  

 

Conditions 

Number of enriched regions Time taken to model the data 

Joint modelling 
Separate 

modelling 
Joint modelling 

Separate 

modelling 

0H control 3604 2982 2.54 2.62 
1H control 3412 3076 2.34 2.69 
4H control 4886 2626 2.68 2.28 
0H drug 4448 2536 2.40 2.51 
1H drug 3783 2854 2.35 2.65 
4H drug 3921 2691 2.45 2.55 

 

Table 3.6: The comparative analysis results between joint and separate modelling 

techniques of the ChIP-seq data. 

 

 Count correction 

In all of the ChIP-seq datasets, an abnormally high number of sequences is mapped at 

some highly concentrated genomic regions in some of the chromosomes. As an example, 

in Figure 3.6, the histograms shows the read distribution of count data in the 

chromosome 2 in ChIP-seq data for CDK9, obtained at 4 hour time point from drug data. 

On the right, the distribution includes the regions that have more than 20 but less than 

200 counts. On the left, the histogram shows an overall read distribution in the regions 
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with more than 200 counts. And it has been observed that a very small number of 

regions has abnormally high counts. Figure 3.7 shows a tabular representation of the 

count data at those genomic regions. From genomic co-ordinate 98502200 to 

98507400, 1124474 sequences have been mapped. 

 

 

Figure 3.6 In chromosome 2 (Left) Frequency of counts, in the range of 0 and 200 per 

200 bp  (Right) Frequency of counts, larger than 1000 per 200bp  

 

 
 

Figure 3.7: A tabular representation of the tag counts at the genomic position from co-

ordinate 98502200 bp to 98507400 bp at chromosome 2 of ChIP-seq data for protein 

CDK9.  
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The datasets have been modelled with these high counts removed and it has been found 

that at each experiment, more enriched regions have been found by the model than if 

the data has been modelled with those unusually mapped tags still in place. Table 3.7 

summarises the numbers of enriched regions found by modelling chromosome 2, 9 and 

12. Abnormal high counts are found in all of those chromosomes. The count data has 

been modelled with and without those high counts and it has been observed how that 

affects the number of enriched regions reported by the MRF model. 

 

 
 
 

Chromosome 
 

 
Count 

corrected data 

 
Original 

count data 
 

 
Count 

corrected data 
 

 
Original 

count data 
 

No. of 200 bp enriched 
regions 

Time needed to model the 
data 

Chromosome 2 12072 6788 1.363841 1.327059 
Chromosome 9  9178 8027 1.013104 53.37 
Chromosome 12 10585 7903 57.7018 55.63262 
 

Table 3.7: The enriched regions found by the MRF model at 5% FDR in the ChIP-seq 

data with and without the unusual counts in the concentrated regions.  

 

The experiments have been timed and it does not show any significant difference in 

terms of length of time to model the data with or without the high counts.  

3.5 Summary  

In this chapter, the Markov Random Field model that has been adapted to analyse the 

binding regions from ChIP-seq data has been described. The model incorporates spatial 

dependency between adjacent regions and also accounts for excess zeroes that are 

common in ChIP-seq data. It has been investigated here how the final list of bound 

regions can be improved by incorporating spatial dependency in the algorithm to model 

ChIP-seq data and how this can identify broad peak regions even if the adjacent 

windows have small counts which otherwise would have been ignored.  
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The MRF model has been compared with the mixture model using the negative binomial 

method. The performances of the methods have been compared in terms number of 

peaks generated and the quality of the peaks. Observing the bound regions produced by 

the two models, it has been found that the MRF model has produced more regions than 

the other method in all of the six experiments that have been conducted using different 

datasets. In six experiments, on average it has produced 34% more regions than the 

negative binomial method in the experiments conducted on histone protein H3. With 

RNA PolII, the MRF model produces around 80% more regions than the NB method. It is 

due to the fact that RNA PolII is known to have broad regions therefore, it is apparent 

without incorporating spatial dependency a model will ignore a vast number of bound 

regions for the proteins or markers like RNA PolII. Also, when enrichment probabilities 

have been generated around TSSs where RNA PolII is known to have bound to regulate 

gene expression, the enrichment profile estimated by the MRF looks smoother in those 

regions than the NB model.  

It has been observed that the MRF assigns a higher probability to a region that has low 

tag counts but has neighbouring regions with some significant number of counts, but 

the mixture model assigns a very low enrichment probability to those regions, thus 

discards lots of regions that should have been identified as bound regions.   

Bao et al (2015) compared the MRF model and NB distribution in their paper where 

they proposed MRF model, however they made the comparison on data they simulated 

and also on two transcription factors that are known to have broad enriched regions, 

whereas in this thesis the comparison has been applied on real datasets of different 

proteins (variable shaped peaks), generated in different biological and experimental 

conditions. The result of comparison has also been validated using known biological 

information. 

It has also been showed how the joint modelling of the replicates where the IP efficiency 

of both replicates are taken into account can produce more bound regions together than 

if the replicates are modelled separately and the overlapped regions are considered. It 

has been demonstrated how removing the high (over-dispersed) counts found in a 
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concentrated region caused by some kind of bias from the data, can significantly affect 

and improve the peak lists that are reported by the chosen model.  

 The parameters such as, size of the windows has been constant throughout this 

experiment. Counts summarised per fixed sized windows help analyse the distribution 

of the data and find out the true enriched regions. However, there is no universal rule 

for choosing the window size. It controls the compromise between count size and 

spatial resolution. For example, large window size can yield higher read counts but 

spatial features can no longer be distinguished [Lun et al. 2015]. Humberg et al. [2011] 

recommended 150 bp window size for histone markers, however as different types of 

epigenetic markers or proteins have been used in this thesis, 200 bp window size has 

been used for consistency. For spatial dependency only adjacent windows are 

considered for simplicity. However, in future this method can be extended for higher 

order spatial dependency.  
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Chapter 4 

Relationship between gene expression 

and protein binding  

4.1 Introduction 

Epigenetic mechanisms such as histone modifications, DNA methylation coupled with 

other transcriptional regulatory events such as transcription factors bindings at 

different genomic locations control gene activity in different cell types [Jones et al. 

2007; Jaenisch et al. 2008]. Transcription factors, proteins that initiate and regulate the 

transcription of genes, have DNA-binding domains that give them the ability to bind to 

specific sequences of DNA called enhancer or promoter sequences near the 

transcription start site (TSS) as depicted in Figure 4.1.  

 

Figure 4.1: A general structure of a eukaryotic gene with all its elements including 

transcription start and stop sites [Pearson Education, Inc. 2014].   

 

Other regulatory sequences also reside within thousands of base pairs upstream or 

downstream from TSS [Maston et al. 2006]. That makes TSS a very vital feature to 

investigate in many biological, disease and developmental studies that explore the 

relationship between binding of proteins and gene regulation. Next generation 

sequencing technology such as ChIP-seq providing information about localization of 
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binding of proteins and microarray experiment exhibiting gene expression information 

are both used to study such relationship. 

Several attempts have been made to identify correlation between these two data 

platforms. Some methods concentrate on specific genomic features such as TSS, 

promoter, enhancer etc [Hoang et al. 2008; Markowetz et al. 2009; Nicodeme et al. 

2010], while others take binding regions and gene expression data from one biological 

condition only [Qin et al. 2011; Guan et al. 2014]. To date the comparative analyses to 

determine how differential bindings are correlated with differential expression between 

two conditions have used very basic techniques to analyse ChIP-seq data, where 

absolute tag counts are used for enrichment estimation, or peak signals are collected by 

subtracting background using control data and thus have omitted important 

characteristics of ChIP-seq data. In this chapter a novel approach has been proposed to 

integrate gene expression and protein binding data that addresses these issues.   

This chapter is organised as follows. In Section 4.2 some existing methods for 

integrative analysis between protein binding and gene expression data and their 

limitations are discussed. In Section 4.3, a novel approach has been proposed where 

advanced analysis result of ChIP-Seq  are incorporated in the integrative analysis of 

protein binding and gene expression data to study the relationship between differential 

expressions and differential protein bindings around the transcription start sites. 

Section 4.4 is devoted to experimental studies where the proposed model is applied to a 

set of ChIP-seq and microarray data obtained at different biological and experimental 

conditions and the results are discussed. And finally, the work is summarised in Section 

4.5. 

4.2 Background 

The wider research community has made several attempts to integrate protein binding 

and gene expression data to identify the mechanisms that control or regulate gene 

expression [Markowetz et al. 2010; Qin et al. 2011; Geevan et al. 2012; Guan et al. 2014]. 

Transcription start site has been studied extensively by biologists to investigate how 
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different epigenetic mechanisms around this genomic region regulate genes [Roh et al. 

2006; Bernstein et al. 2005; Heintzman et al. 2007].   

Correlation of histone acetylation around TSS with gene expression data has been 

studied by Markowetz et al. [2010], however the acetylation level has been measured 

using the ChIP-ChIP technology and it has been concluded in the study that ChIP-seq 

will give greater resolution of  histone acetylation profiles.  

A web-server based solution called ChIParray performs an integrative analysis of ChIP 

technology and microarray data, to detect direct and indirect target genes regulated by 

a TF, using the details of the bound regions of a targeted TF under a given biological 

condition as input [Qin et al. 2011]. The model is limited in that it does not include 

differential binding information between different biological conditions.  

Another web-based server, PTHGRN, analyses interaction between transcription factors 

and their effect on gene expression, using information on bound and non-bound regions 

for one biological condition [Guan et al. 2014].  

A method called GEMULA, proposed by Geevan et al. [2012] uses linear models to 

predict TF-gene expression association or TF-TF interaction. However, they 

implemented binding affinity values as the predictor for classification of genes. Other 

attempts have also been made to infer relationship between gene expression and 

histone modification where absolute tag counts around a feature, such as promoter, are 

considered.  

Several methods have estimated ChIP-seq enrichment levels for particular genes, where  

the Multivariate Adaptive Regression Splines (MARS) algorithm [Friedman 1991] have 

been applied for each estimation method using the estimation of enrichment levels as 

predictors and gene expression levels as responses. However, to determine enrichment 

levels these methods used model based methods including absolute tag counts. Each of 

these methods concluded that instead of tag counting method, incorporating model 

based approach that includes spatial distribution of enrichment improves the result of 

integrative studies [Hoang et al. 2011].  
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Most integrative methods investigate protein binding data and gene expression data in 

one biological condition but fail to consider how differential bindings of proteins 

between biological conditions may correlate with respective differential expression 

values. Although a number of studies have investigated such correlations, they have 

implemented imprecise analysis of ChIP-seq data by ignoring several important 

characteristics, such as overall distribution of counts, spatial dependencies of counts for 

neighbouring regions of the genome and the different efficiencies of individual ChIP-seq 

experiments. These, if not accounted for, can lead to false results, especially where 

differential bindings of proteins are considered between different conditions [Bao et al. 

2013; Bao et al. 2015].  Several studies have suggested that it is absolutely vital to 

measure the ChIP-seq enrichment accurately to optimise integrative analysis, therefore 

a model to analyse ChIP-seq data must account for these issues.  

In this study, these issues have been addressed by analysing the ChIP-seq data with an 

adaption of the Markov Random Field method proposed by Bao et al. [2015] that 

incorporates spatial dependency and ChIP-efficiency, while modelling the ChIP-seq 

data. After modelling the ChIP-seq data, the model estimates enrichment probabilities 

per fixed-length windows across genome of those factors mentioned above. After 

retrieving the TSS location information of each gene from the UCSC genome browser, 

enrichment probabilities around per transcription start site is generated and its 

correlations with associated gene expression values investigated. This approach 

demonstrates how results from advanced analysis of ChIP-seq data better define the 

relationship between protein binding and gene expression incorporating information 

from different conditions. This approach produces robust information that describes 

the binding profile in more detail than previously observed, and may elucidate aspects 

of cellular signalling mechanisms more effectively.  

4.3 Method 

In the proposed methodology, microarray technology is used to define the differential 

expression status of a set of genes between two biological or experimental conditions. 

Differential expression analysis is conducted on the microarray datasets and genes are 
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identified with significant variance of expression level between two conditions. For 

these genes the differential expression changes are calculated.  If there are technical or 

biological replicates available, the mean values of expression of the replicates are 

considered for each gene. To obtain the values denoting differential expression, the log2 

normalised expression values of each gene under one condition is deducted from the 

respective value reported for the second condition. Therefore, given two conditions, a 

gene can be defined as upregulated, downregulated or unchanged.   

Once the differentially expressed genes are defined, the differential bindings of a set of 

proteins in proximity (5000 bp up and downsteam) to the TSSs of these genes are 

investigated to determine significant associations with the differential expressions, 

between the two conditions. To extract the differential binding information, the ChIP-

seq datasets for the proteins are analysed using Markov Random Field (MRF) model. 

The model yields posterior probability of binding per fixed-length region of the genome. 

Note that the size of the window is chosen by the investigator. Transcription start site 

information was obtained along with the precise location co-ordinates provided by the 

Ensemble genome database. From this list, TSSs of those selected genes are identified. 

Next a binding probability profile of the proteins close to the TSSs is created. For each 

TSS, the enrichment probability is determined from the probability result, mentioned 

above. Using the genomic co-ordinates, the window that includes the start coordinate is 

selected. The probability of that window is assigned to the start point of the TSS. For 5 

Kilo base (KB) upstream and downstream regions from the start site, the mean 

probability of those regions is derived from the probability results. Once the profile has 

been estimated, the differential probability is then obtained by deducting the 

probability observed under one condition from the second condition, for each region. 

The differential expression and differential probability results are then integrated to 

further evaluate the correlations. Figure 4.2 gives a schematic representation of the 

proposed model demonstrating the correlation between differential expression of genes 

and differential bindings of proteins around TSS.  
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Figure 4.2: Proposed model to find correlation between differential expression and 

differential binding. 

 

The major steps of the model are illustrated in Algorithm 4.1.  In step 1, differential 

expression analysis is carried out between two microarray datasets to identify a set of 

upregulated or downregulated genes. In step 2, the ChIP-seq datasets of any protein 

obtained at the same biological conditions are analysed using the MRF model, and 

binding probabilities of fixed-length windows are estimated. In the following step, TSS 

information of the identified genes is obtained and probability of binding is assigned to 
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each of them. Differential expression and differential probability between two 

conditions for each gene are calculated and correlation between them investigated.  

 

Algorithm 4.1: Pseudocode for implementation of the major steps of the model 

Inputs  

Microarray data: Two Microarray datasets obtained at two 

conditions 

ChIP-seq data: Two ChIP-seq datasets of a protein obtained at 

same biological conditions as microarray data 

TSS: Transcription start site information of the genome of 

interest.  

Output 

Correlation: Correlation between differential expression of a 

list of genes and differential binding probability of a 

protein around TSS. 

 

Function:- ObserveCorrelation(Microarray data, ChIP-seq data, 

TSS): Correlation  

1. Run differential expression analysis on microarray 

datasets to determine a list of up or down regulated 

genes and save them in GeneList 

2. Analyse ChIP-seq datasets using MRF model and obtain 

binding probability per FixedLengthWindow across genome 

and save them in BindingResult with their co-ordinates.   

3. Select TSS for each gene in GeneList and assign binding 

probabilities to start point, 5KB upstream and 5 KB 

downstream regions from BindingResult using co-

ordinates.  

4. Calculate differential expression value per gene and 

differential binding probability per TSS between 

conditions. 
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5. Integrate differential expression and differential 

probability result and observe correlation.  

 

 

Step 1: Analysis of Microarray data 

Microarray data can be obtained at two different biological or experimental conditions 

and each experiment may have any number of biological/technical replicates. 

Differential expression analysis is carried out between the two conditions to identify up 

and down regulated genes. The pseudocode in algorithm 4.2 illustrates the 

implementation of differential expression analysis between two microarray datasets.  

 

Algorithm 4.2: Pseudocode for analysis of the microarray data 

Inputs 

MicroarrayData: Two Microarray datasets 

Method: A method to run differential expression analysis 

Threshold: an integer to choose the cutoff for significantly 

differentially expressed genes. (i.e fold2 change or pvalue) 

Output 

GeneList: A list of genes whose expressions have changed 

significantly (decided by the threshold) between two 

conditions 

Function:- AnalyseMicroarrayData(MicroarrayData, Method, 

Threshold): GeneList 

  

1. For each gene in microarray data 

 Run differential expression analysis between 

 datasets using Method 

2. End For  
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3. Select genes whose expressions have changed at least by 

the threshold. 

4. Save genes in Genelist 

  

Step 2: Analysis of the ChIP-seq data 

ChIP-seq data for all the proteins of interest are analysed in this step. The proposed 

model incorporates any number of proteins. However, the biological conditions must be 

the same as microarray data. A MRF model (described in Chapter 3) has been used to 

analyse each ChIP-seq data. The output of this step is the binding probability per fixed-

length region across genome. Algorithm 4.3 presents the pseudo implementation of one 

ChIP-seq data analysis steps. R code that implements this algorithm is attached in 

Appendix 1.  

 

Algorithm 4.3: Pseudocode for analysis of ChIP-seq data 

 

Inputs 

ChIP-seqData:  A ChIP-seq dataset 

WindowSize: An integer to specify the size the window.  

Output 

BindingProbability: A m*3 matrix where m represents the number 

of WindowSize length windows. The 3 columns represent the 

start and end co-ordinates of each window and the associated 

binding probability yielded by MRF.  

Function:- AnalyseChIP-seq(ChIP-seqData): BindingProbability  

1. Align ChIP-seqData 

2. Separate the chromosomes 

3. For each chromosome 

 Divide the chromosome length into WindowSize windows 
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 Generate count of sequences per window and save in 

countData 

 Model the countData with MRF model 

 Obtain binding probability per window 

 Save them to BindingProbability 

End For 

4. Return BindingProbability 

 
Step 3: Generating the enrichment probability around TSS 

In this step, TSS information is obtained from the latest release of the UCSC genome 

database [https://genome.ucsc.edu/] along with their precise associated co-ordinates. 

The TSSs are selected for the each of the differentially expressed genes identified by the 

investigation in the microarray analysis step. If a gene has multiple TSSs with the same 

start point, only one is kept and all others are discarded. For each TSS, the window is 

searched from binding probability result where transcription start coordinate lies and 

probability of that window is assigned to the start point. For 5Kb up and downstream 

regions from the start point, the mean probability of those regions is assigned. 

Algorithm 4.4 presents the pseudo implementation of generating the enrichment 

probability around TSS steps.   R code that implements this algorithm is attached in 

Appendix 1.  

 

Algorithm 4.4: Pseudocode for generating the enrichment probability 

around TSS 

 

Inputs 

GeneList: A list of genes 

BindingProbability: A matrix containing binding probability 

per WindowSize length window across genome 
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Outputs 

BindingProfileTSS: A m x 4 matrix where m is the number of 

TSSs and 4 columns represents gene name, binding probability 

at start co-ordinate, 5KB upstream and 5 KB downstream regions  

 

Function:- CreateBindingProbabilityTSS(GeneList, 

BindingProbability): BindingProbabilityTSS 

 

1. Download TSS information from a genome database 

2. Select TSSs associated with genes in GeneList and save 

them in TSSList 

3. For each gene in GeneList 

If(number of TSS with same starting point > 1) 

 Keep 1 and discard the rest 

 update TSSList 

End For 

4. For each TSS in TSSList 

 Take start co-ordinate 

 Search BindingProbability for the window where the 

 co-ordinate lies 

 Assign bindingProabability of the window to 

 startPoint 

 Take mean probability of 5KB windows upstream and 

 assign it to 5KBupstreamPobability  

 Take mean probability of 5KB windows downstream and 

 assign it to 5KBdownstreamPobability 

End For 

5. Return BindingProbabilityTSS 
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Step 4: Calculating the differential binding probability and the differential 

expression  

The binding probability yielded by the MRF model incorporates the overall distribution 

of the data and spatial dependency. In order to generate differential binding probability 

between two conditions at any genomic location (i.e transcription start point) the 

difference is determined by subtracting one binding probability from another.  

   𝐷𝑝𝑟𝑜𝑏 = 𝑃𝑟𝑜𝑏𝑝𝑔𝑥 − 𝑃𝑟𝑜𝑏𝑝𝑔𝑦  (4.1) 

Where 𝑝 is the protein of interest, 𝑔 is the genomic location, and 𝑥 and 𝑦 represent two 

biological/experimental conditions.  

The expression values that are used in this experiment are log2 normalized. For each 

condition, if there are replicates, the mathematical mean of expression values for each 

gene is used. To determine differential expression values, for each gene, the log2 

normalized expression value is subtracted from one condition to another.  

  𝐷𝑒𝑥𝑝𝑟 = 𝐸𝑥𝑝𝑟𝑔𝑥 − 𝐸𝑥𝑝𝑟𝑔𝑦  (4.2) 

Where 𝑔 is the gene and 𝑥 and 𝑦 represent two biological conditions.  

 

Step 5: Integrating the differential expression and probability result and 

observing correlations 

Once the differential expression result and differential binding probability result around 

TSS are ready, the two data are integrated using the official gene names. Each gene has a 

differential expression value associated with it. However as any gene can have more 

than one TSS, it may also have more than one differential binding probability result 

associated with it. From this result, correlation is observed using plots and other 

methods.  
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4.4 Results  

4.4.1 Data 

In this experiment, the described methodology has been applied to time-series ChIP-seq 

and microarray data provided by Nicodeme et al. [2010]. Both data have been collected 

from bone-marrow derived macrophages (BMDMs) stimulated with lipopolysaccharide 

(LPS) and also from samples that are stimulated with LPS but pre-treated with a 

synthetic compound (I-BET) that, by 'mimicking' acetylated histones, disrupts 

chromatin complexes responsible for the expression of key inflammatory genes in 

activated macrophages. The LPS stimulated datasets have been described as ‘control’ 

and IBET treated datasets as ‘drug’ throughout this chapter. 

The time-series ChIP-seq datasets have been obtained for 6 proteins/markers. They are 

Bromodomain-containing protein 4 (Brd4), Acetylated Histone H4 (H4ac), Histone H3 

lysine 4 tri-methylation (H3K4me3), RNA Polymerase II (RNA PolII), subunit of RNA 

polymerase II (RNA PolII S2) and Cyclin-dependent kinase 9 (CDK9). The ChIP-seq data 

have been collected at three hourly time points (0H, 1H and 4H) and microarray data at 

four time points (0H, 1H, 2H and 4H). For each marker/protein, ChIP-seq data has only 

one replicate per condition; however, microarray data has 3 replicates per condition.  

The main reason for choosing these datasets has been that the study has been very 

extensive that includes lots of different experimental conditions such as time points and 

drug and control. The study also includes 6 epigenetic markers for ChIp-seq experiment 

and complimentary microarray data which is very suitable for the experiments in this 

thesis.  

4.4.2 Data Pre-processing 

Microarray Data analysis 

Illumina beadarray gene expression datasets have been pre-processed using 

beadarray R package [Dunning et al., 2007]. After the pre-processing steps, the 
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differential expression analysis has been performed on the expression profile using the 

R package limma [Smyth 2005].  

First the data is prepared for analysis using a normalisation function that is applied to 

the data so that any systematic trends which arise from the microarray technology, 

rather than from differences between the probes or between the target RNA samples 

hybridized to the arrays, can be removed from the expression values. In the next step, 

limma fits a linear model to the expression data for each probe/gene. The resulting 

coefficients of the fitted model describe the differences between the RNA sources 

hybridized to the arrays.  

Finally the empirical Bayes method [Smyth 2005] has been applied to compute 

moderated t-statistics, moderated F-statistic, and log-odds of differential expression by 

empirical Bayes shrinkage of the standard errors towards a common value. These 

functions are used to rank genes in order of evidence for differential expression.  The 

empirical Bayes method is used to shrink the probe-wise sample variances towards a 

common value and to augment the degrees of freedom for the individual variances.  

In this analysis, the differential expression value for each gene between drug and 

control datasets at each time point has been investigated. The differential expression 

analysis has also been performed to check how LPS changes the expression values of the 

genes between 0 and other (1, 2 and 4 hour) time points. The design of the analysis is as 

follows.  

To find out the effect of LPS, the LPS induced samples taken at 1, 2 and 4 hour have been 

compared with sample taken at 0 hour. To observe the effect of IBET treatment on LPS 

induced genes, LPS+IBET treated samples have been compared with control samples 

(LPS only) at each time point.   

From 25,000 genes/probes, the genes that have changed at least 2-fold between two 

conditions have been selected as significantly differentially expressed genes. From the 

analysis 836 genes were defined as up regulated by LPS at 4 hour time point. Among 

these, 183 genes were identified as downregulated by IBET treatment. 4 hour time 

point has been selected as the number of genes affected by the LPS and IBET are greater 
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at this time point than the previous time point. These subsets of genes are the genes 

that are further investigated in this analysis. Figure 4.3 shows the number of 

differentially expressed genes found in different experiments at 1 and 4 hour time 

points. 

 

Figure 4.3:  Upregulated and downregulated genes by LPS and IBET at 1 hour (left) and 

4 hour (right) time points. 

 

ChIP-seq data analysis 

The ChIP-seq datasets were each aligned against mouse genome (version mm9) using 

bowtie [Langmead et al. 2009] and only the uniquely mapped reads have been 

retained for further analysis. The reference genome was obtained from UCSC Genome 

Browser. Note that all chromosomes have been analysed separately, as the count of 

sequence distribution varies across genome. For each dataset, all 19 chromosomes have 

been separated and each chromosome has been divided into 200bp long windows. The 

counts of sequences have been then generated per window. This count data has been 

supplied as the input for MRF model and analysed as described in Chapter 3. The model 

estimates posterior probability of enrichment per 200bp region. The 
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enrichment/binding probability results of all 19 chromosomes have been assembled 

together for each dataset. 

Generating enrichment probability around TSS 

The transcription start site (TSS) information of chromosome 1 to 19 of mouse genome 

using NCBI mm9 assembly has been downloaded from UCSC database. Each TSS has its 

location information in terms of the txStart (transcription start coordinate) and the 

txEnd (transcription end coordinate) and also the associated gene information attached 

to them. Many genes have several TSSs with the same txStart co-ordinate. In that case, 

only one TSS is retained.  For 19 chromosomes, information about 55419 TSSs has been 

downloaded from UCSC. After the selection process, 37351 TSSs have been used for the 

subsequent experiments. From this list, the TSSs have been selected that are associated 

with the genes that are identified in the microarray data analysis step.  The enrichment 

probability has been then assigned to each start point of the TSS and also to the regions, 

5 KB upstream and downstream from the start point as described in Algorithm 4.4. Each 

TSS is associated with a gene and the official gene symbols are used to integrate this 

data with microarray result.  

Integration of the data  

From Microarray data the log2 normalized expression values of 836 genes that are up 

regulated by LPS at 4 hour time point and 183 of those genes that are downregulated by 

IBET treatment have been selected for investigation for this study. Each microarray 

experiment has 3 replicates and averaged expression value of three replicates per 

probe/gene has been considered. To determine the differential expression values, 

equation 4.2 has been used for each gene. From the TSS result, the differential 

probability has been also calculated per TSS using equation 4.1. These two data are then 

integrated using the official gene symbols.  
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4.4.3 The results of observing correlations 

In order to understand how all the proteins bind around transcription start sites of the 

genes, binding regions of each protein around transcription start and upstream and 

downstream of TSS have been plotted. R package ChIPseeker [Yu et al. 2015] has 

been used to create these plots [Figure 4.4].  

From the microarray data, it has been observed that LPS has upregulated the most 

number of genes at 4 hour time point. That is why ChIP-seq data for all markers 

collected in the same biological condition are selected for these plots to visualise how 

these proteins bind around TSS at that particular condition. The peaks have been 

obtained by modelling the ChIP-seq data by MRF model as described above. Table 4.1 

shows the number of 200 bp long peaks that are found at 5% FDR for each protein.  

 

Proteins The number of enriched regions  

RNA Polymerese II 705177 
RNA Polymerese II S2 1282471 
H3k4me 327854 
H4ac 218960 
Brd4 135101 
CDK9 105905 

 

Table 4.1: The number of the enriched regions found at 5% FDR at LPS stimulated data 

at 4 hour time point. 

To calculate the profile of ChIP peaks binding to the TSS regions, the data has been 

processed in the following ways. In ChIPseeker, the tagMatrix (frequency of counts in 

any given genomic location) generated for such plots is not restricted to just TSS 

regions, and the user can define the upstream and downstream areas they want to 

include in the plots. For these plots, 5kb upstream and 5Kb downstream regions from 

the transcription start have been selected to be included in the plots. ChIPseeker 
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plotting function aligns the peaks that are mapped to these regions and generate the 

tagMatrix.  

  

PolII S2 PolII 

  

H4ac H3K4me3 

  

Brd4 CDK9 



Chapter 4: Relationship between gene expression and protein binding 

 

108 

 

Figure 4.4: Average profile of the ChIP peaks binding of 6 proteins to TSS region at 4 

hour time point with LPS. 

 

In Figure 4.4, it has been observed that the peaks of RNA PolII, RNA PolII S2, H3K4me 

and H4ac show smooth profiles around the TSSs. Brd4 and CDK9 show significant 

percentage of peaks binding around TSS, but the numbers of peaks observed with these 

two markers are generally less than that observed for the other four markers. Also the 

peaks around TSS for CDK9 and Brd4 are not as smooth as other 4 markers. 

After creating the binding profile for all proteins in question around TSS as described 

above, how these bindings correlate with gene expression data has been investigated. 

The primary objective is to determine whether differential expression i.e upregulation 

or downregulation of genes between different biological conditions significantly 

correlates with upregulation or downregulation of bindings around TSS for these 

proteins.  

First the 183 LPS induced genes downregulated by IBET treatment were investigated. 

As some genes have more than 1 TSS, 227 transcription start sites were associated with 

the 183 genes.  These genes are downregulated from control data at 4H to drug data at 

4H by IBET, therefore, the differential binding probabilities at transcription start points, 

5Kb downstream and 5 Kb upstream regions, have been calculated by subtracting 

binding probabilities found at control data from the probabilities found at drug data at 4 

hour time point. For each region, if the difference is positive, the binding probability has 

gone up from drug to control data, but if the difference is negative then the overall 

binding has been downregulated from control to drug data.  

 

 
Proteins 

5Kb upstream Transcription start 5Kb downstream 

RNA PolII 179 183 195 
RNA PolII S2 199 199 201 
H3K4me3 149 117 174 
H4ac 114 129 127 
Brd4 212 211 213 
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CDK9 129 107 128 
 

Table 4.2: The number of sites around TSSs associated with downregulated genes that 

show downregulation of bindings of proteins. 

 

Table 4.2 summarises the result of the number of regions that show downregulation of 

probabilities for each protein. From this result, it has been observed that, the overall 

count has decreased for Brd4 in most of the 227 TSS regions for the downregulated 

genes, followed by RNA PolII S2 and RNA PolII.  Which suggest positive correlation 

between protein binding around TSS and gene expression for these markers. 

Secondly the LPS induced upregulated genes have been investigated. After the samples 

were stimulated with LPS, 836 genes were reported to be upregulated from 0 hour to 4 

hour time-point. 989 TSSs associated with these genes were identified. Again it has been 

investigated how many sites correlate in terms of upregulation of gene expression. The 

differential binding at transcription start points, 5Kb downstream and 5Kb upstream 

regions are calculated by subtracting binding probabilities of control data from 4 hour 

to 0 hour time point.  The number of sites is searched that show positive enrichment 

changes around the TSSs associated with the upregulated genes. From Table 4.3, it can 

be observed that the overall count has increased for RNA PolII S2 around most of the 

TSSs. For other 5 markers, significant number of TSSs associated with upregulated 

genes show upregulation of enrichment around them, which suggests positive 

correlation between protein binding around TSS and gene expression. 

 

 
Proteins 

 
5Kb upstream Transcription start 5Kb downstream 

RNA PolII 666 670 711 
RNA PolII S2 852 885 891 
H3K4me3 684 509 801 
H4ac 541 591 582 
Brd4 598 553 626 
CDK9 645 531 667 
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Table 4.3: The number of sites around TSS associated with upregulated genes that show 

upregulation of bindings of proteins. 

 

  

PolII PolII S2 

  

H3K4me H4ac 
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Brd4 CDK9 

 

Figure 4.5: Plots to show the correlation between downregulation of genes with 

downregulations of bindings.  

The number of sites that shows positive association between up or downregulation of 

enrichment of regulatory proteins and up or downregulation of gene expression gives 

us partial information about the relationship between gene expression and protein 

binding. The genes have been selected with criteria of at least 2-fold change between 

two conditions. To quantify how significantly protein bindings change around TSS, 

relative to the change in expression values, differential enrichment and differential 

expression have been plotted. To visualise overall change in probability, the start site, 

5KB upstream and downstream regions are plotted together.  

In the plots in Figure 4.5, the x axis represents the differential expression values. 

Though the genes that are downregulated are selected between drug and control data; 

absolute values are used illustrate the degree of changes. In the y axis, the difference of 

probability of bindings range from 1 to -1 to show changes in both directions (up or 

down).  

 

Proteins 5Kb upstream Transcription start 5Kb downstream 

RNA PolII 0.023  0.152 0.175 
RNA PolII S2 0.036  0.126 0.185  
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H3K4me3 0.107 0.220 0.342 
H4ac 0.216 0.269 0.232 
Brd4 -0.039 -0.005 -0.023 
CDK9 -0.052 0.001 -0.041 

 

Table 4:4: The correlation results for differential expression and differential 

probabilities around TSSs for downregulated genes at 4 hour time point. 

 

It is evident from the plots in Figure 4.5 that RNA PolII and RNA PolII S2 show 

significant downregulation of enrichment at transcription start and 5KB upstream and 

downstream regions that are associated with the genes that are downregulated by 2-

fold due to IBET treatment at 4 hour time point. The enrichment probability of H3K4me 

and H4ac also show significant downregulation for some of those genes. However, 

though the enrichment probability around TSS for Brd4 and CDK9 change in the same 

direction for most of the sites as it has been seen in previous results, the change is 

insignificant and it can be concluded that the bindings of these two proteins do not 

show a significant correlation between differential expression and differential 

enrichment around TSS. 

To confirm this result, Pearson correlation coefficients have been calculated for 

differential expression values for these downregulated genes and differential 

probabilities of each protein around associated TSSs. The results are summarised in 

Table 4.4 and the reported values suggest that, differential probabilities of H3K4me3 in 

the downstream region are most correlated with the gene expression variation between 

the conditions, while Brd4 shows negative correlation. 

In the plots in Figure 4.6, with expression changes for 836 upregulated genes between 0 

and 4 hour time point are in the x axis and differential bindings are in the y axis. Again it 

appears that both the RNA PolII and RNA PolII S2 values represent a significant 

upregulation of enrichment probability at transcription start and 5KB upstream and 

downstream regions. Enrichment probability of H3K4me and H4ac also show 

upregulation for some of those genes. As with the previous analysis, no significant 

changes can be observed in the bindings of Brd4 and CDK9 in and around TSS. 
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Again Pearson correlation coefficients have been calculated for differential expression 

values for these downregulated genes and differential probabilities of each protein 

around the TSSs. The result is summarised in Table 4.5 where it is evident that, 

differential probabilities of H3K4me3 in the downstream region are most correlated 

with the gene expression variation between the conditions, while Brd4 shows the least 

correlation.  

 

 

 

  
PolII PolII S2 

  

H3K4me H4ac 
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Brd4 CDK9 

Figure 4.6: Plots to show the correlation between upregulation of genes with 

upregulations of bindings for 6 proteins. 

 

Proteins 5Kb upstream Transcription start 5Kb downstream 

RNA PolII 0.304 0.233 0.327 
RNA PolII S2 0.223 0.173 0.206 
H3K4me3 0.304 0.273 0.439 
H4ac 0.223 0.202 0.331 
Brd4 -0.020 0.0362 0.0360 
CDK9 0.011 0.140 0.174 
 

Table 4:5: The correlation values between differential expression and differential 

probabilities around TSSs for upregulated genes at 4 hour time point. 

 

Comparing the plots and correlations coefficient results, a simple focus on the direction 

of change in protein binding probabilities may lead us to wrong conclusions concerning 

those proteins/markers most significantly associated with gene expression changes. For 

example, the RNA PolII and RNA PolII S2 plots highlight a greater change in 

probabilities, while correlation estimates indicate that the binding probability changes 

for H3K4me3 in downstream region most strongly correlate with the gene expression 

changes.  
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Proteins LPS upregulated genes IBET downregulated genes 

RNA PolII 0.144 -0.279 
RNA PolII S2 0.313 -0.394 
H3K4me3 0.056 -0.058 
H4ac 0.089 -0.046 
Brd4 -0.001 -0.002 
CDK9 -0.001 -0.001 
 

Table 4.6: The average changes in protein binding probabilities around TSSs of 

upregulated and downregulated genes at 4 hour time point. 

 

Therefore, in order to look at the overall changes in protein binding around TSS 

associated with the genes that have been investigated, average change of probability 

around TSS for each protein has been generated. Table 4.6 summarises the result. The 

mean changes of the bindings of the proteins support the same conclusion that that 

have been summarized from the plots. It can be concluded that, average probability 

changes of RNA PolII S2 around TSSs are greater than any other 5 markers for both 

upregulated and downregulated genes followed by RNA PolII. Brd4 shows the least 

change in probabilities around TSSs for both upregulated and downregulated genes.  

4.5 Summary 

The methodology presented in this chapter clearly illustrates how the analysis result of 

ChIP-seq data obtained by using an advanced method that incorporates important 

characteristics of such data i.e spatial dependency, overall distribution etc. can be 

incorporated in the integrative analysis of protein binding and gene expression data. 

The method demonstrates how the information retrieved from the ChIP-seq in terms of 

enrichment probability can be used to investigate the correlation between differential 

expression and differential bindings. The enrichment probability has been generated 

around genomic feature, TSS in the study. However, given location information, the 
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proposed model can be used for any number of genomic features to study the 

relationship between gene regulation and protein binding around them. Different 

biological conditions such as time, treatment/non-treatment are also incorporated in 

the study. 

The method has been applied to a rich set of ChIP-seq data of six proteins and 

microarray data that includes a range of different biological and experimental 

conditions. From the results it can be concluded that the bindings of RNA PolII and RNA 

PolII S2 around TSS show the most correlation with both upregulation and down 

regulation of gene expression. Histone methylation and histone acetylation, represented 

by bindings of H3K4me3 and H4ac, also show positive correlation. Pearson correlation 

estimates indicate that differential probabilities of H3K4me3 around 5Kb downstream 

show the most correlation with gene expression variation for both upregulated and 

downregulated genes.  However, bindings of Brd4 and CDK9 around TSS do not show 

significant correlation with either up or down regulation of gene expression.  

 These findings are in agreement with several literature reports that describe how that 

RNA PolII and RNA PolII S2 both are observed to be correlated with active genes. High 

enrichment of RNA PolII and RNA PolII S2 are also observed around TSS of active genes 

[Sun et al. 2011]. Histone acetylation (H4ac) and histone methylation (H3K4me3) are 

considered reliable epigenetic regulator of transcriptional activation. It has also been 

reported that H3K4me3 binds heavily around the transcriptional start sites (TSSs) of 

genes, while the enrichment of H4ac is slightly lower around the area.  Enrichment of 

both H3K4me3 and H4ac around TSSs are positively related to the extent of gene 

activity.  Furthermore, enrichment of H3K4me3 occurs just downstream from the TSS, 

with lower levels of enrichment of H4ac occurring farther downstream [Koch et al. 

2007].   

In summary, these combined literature observations support the results obtained in this 

experiment. 88% of TSSs associated with downregulated genes and 90% of TSSs 

associated with upregulated genes have shown downregulation and upregulation of 

RNA PolII S2 bindings respectively. 82% of TSSs associated with downregulated genes 

and 69% of TSSs associated with upregulated genes have shown downregulation and 
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upregulation of RNA PolII bindings respectively. Both H3K4me3 and H4ac markers also 

exhibit positive correlation with gene expression around TSS and the enrichment of 

H3K4me3 and H4ac change more in the downstream regions from TSS with the 

upregulation of gene expression as suggested in the literature.  
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Chapter 5  

Prediction of gene activity using protein 

binding profile  

5.1 Introduction 

Structural genes, that code for amino acid sequences, can be described in terms of 

several integral components such as introns, exons, transcription start sites, promoters, 

enhancers and silencers.  The pattern of epigenetic modification distributions across the 

genome and within different mammalian cells indicates that these genomic features 

combine with biochemical modifications of the DNA molecule define epigenetic 

mechanisms. To understand the gene regulation mechanisms and biological significance 

of epigenetic marks, it is necessary to identify the distribution of epigenetic 

modifications and bindings of different regulatory proteins. This means that where they 

occur (globally or regionally at which genomic features) among different tissue or cell 

types and when they occur (different biological conditions such as normal development 

or disease processes) need to be investigated. Studying the binding profiles of different 

proteins and gene expression together can tell us how different genomic features and 

also other factors such as biological conditions and time factors play the part in the 

regulation of genes. Figure 5.1 shows how regulatory proteins and transcription factors 

bind to different components of the genome such as promoters and enhancers to 

initiate gene expression.  
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Figure 5.1 Schematic representation of how regulatory proteins bind at different 

genomic locations to initiate the transcription [Initiation of the transcription].  

 

The field of gene regulation has made significant advancement recently as different 

large-scale genome projects have made progress in annotating genome wide protein 

coding regions of different species and have made these annotation databases available 

to the research community [Douglas 2009]. With the advancement of next generation 

sequencing technology, biologists can now look closely at how regulatory proteins 

binding at different features such as promoters, exons, introns, enhancers may impact 

on gene regulation. The computational biology community has also proposed 

methodologies and tools to integrate protein binding and gene expression data to 

identify causal relationships between the two, however those methods primarily focus 

on protein binding located at common genomic features such as promoters or 

transcription start sites.  Furthermore, analysis of next generation sequencing data have 

been very basic in those studies that do not fully exploit most of the information the 

NGS can offer [Li et al. 2015]. Some studies [Markowetz et al. 2010; Geevan et al 2012] 
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have shown how classification techniques may be used to find relationship between 

epigenetic mechanism and gene expression, but again focusing on only one single 

feature.  

This chapter is organised as follows. In Section 5.2, methodologies and tools for 

integrative analysis between protein binding and gene expression data as well as the 

gap in the field are discussed. In Section 5.3, a methodology has been proposed to 

investigate how predictive the binding profile of different regulatory proteins at 

different genomic locations across genome is of gene activity that integrates different 

advanced machine learning techniques. Section 5.4 is devoted to experimental studies 

where the proposed model is applied to a set of ChIP-seq and microarray data obtained 

at different biological and experimental conditions and the results are discussed. 

Finally, the work is summarised in Section 5.5. 

5.2 Background 

Several groups have reported methods to integrate protein binding and gene expression 

data to identify the mechanisms that control or regulate gene expression. For example, 

the correlations of histone acetylation around TSS with gene expression data have been 

explored by Markowetz et al. [2010]. Though differential bindings and differential 

expressions between different biological conditions are considered in the study, the 

acetylation level has been measured using the ChIP-ChIP technology and it has been 

concluded ChIP-seq will give greater resolution about the histone acetylation profile.  

Some web-based server solutions are also available today that look for interactions 

between transcription factors and their effect on gene expression, by using information 

on bound and non-bound regions. However these approaches have only considered the 

binding at promoter and transcription sites [Qin et al 2011; Guan et al 2014].  

A linear model called GEMULA has been proposed by Geevan et al. [2012] and the model 

predicts TF-gene expression association or TF-TF interactions from the experimental 

data. It has been suggested in the literature that high-throughput techniques such as 

ChIP-ChIP or ChIP-Seq can be very useful to study transcription factors and their 
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interaction with target genes, however, these techniques are very expensive and there is 

a practical need for methods that can predict TF–TF interactions from gene expression 

or DNA sequence data alone. Using TF binding affinity at gene promoter, the model 

describes underlying gene expression variation, hence finds out association between 

how TFs interacts to regulate gene. However the approach too, only considers the 

genomic location promoter.  

Along with transcriptions start sites, promoters and enhancers, biologists have 

suggested that other genomic regions such as introns and exons are very important for 

gene regulation. Importance of the number and length of exons and introns as 

regulatory players has been described in several studies [Nott et al. 2003; Heyn et al. 

2014] Current opinion is that after the transcription is initiated, elongation of RNA PolII 

can be influenced by density of exons which is due to the fact that RNA PolII pauses over 

exons during gene regulation [Heyn et al. 2014]. It has also been found that the first 

exons are shown to have more defined peaks of activating histone marks closer to the 

transcription start sites (TSS) and enhance the transcription accuracy. It is evident that 

to fully understand the mechanism of how the genes are regulated by the bindings of 

proteins, binding locations at exons, introns, promoters along with other genomic 

features should be included in subsequent molecular models of transcription.  

Here, a technique has been proposed where integrative analysis of protein binding and 

gene expression data includes binding locations at different genomic features such as 

exon, intron, promoter, distal intergenic region etc. It has also been shown how dynamic 

interactions between regulatory proteins and gene expression can be explained by 

integrating sets of genes regulated at successive time-points and different biological or 

experimental conditions which makes it possible to answer not only what proteins 

might be regulating genes but also where and when they bind to do so.  Several 

classification techniques have been used to find out the associations between protein 

binding profiles across genome and underlying gene expression variations.  
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5.3 Method 

In the proposed methodology microarray technology is used to identify expression 

status of a set of genes at a biological or experimental condition. A gene can be ‘active’ 

or ‘inactive’. However, in comparison to another biological condition, it can be 

‘upregulated’ or ‘downregulated’. Then ChIP-Seq data is used to create binding profiles 

of a set of proteins for those genes at the same condition. The binding profiles indicate 

whether the proteins bind at those genes and if they do, which the genomic features 

they bind to. The binding profile and gene status data are integrated and modelled using 

different classification techniques. How well the protein binding profiles can predict the 

gene status is then investigated. Observing the performance of different models, 

proteins and genomic features performing well in predicting gene status among all the 

variables are identified. Figure 5.2 gives a schematic representation of the proposed 

model demonstrating the relationship between gene expression and protein binding.  

The model is illustrated as pseudo code in Algorithm 5.1. In Step 1, microarray data is 

analysed to identify a set of genes with their activity status. In Step 2, the ChIP-Seq 

datasets for a list of proteins obtained under the same biological conditions are 

analysed to identify their binding regions. In Step 3, protein binding profiles at different 

genomic locations for the selected genes are created from the annotated binding regions 

or peaks.  In Step 4, these two sets of data are modelled with different classification 

techniques and finally in Step 5, the corresponding prediction performances are 

observed and evaluated where the proteins and genomic features closely related to 

gene expression are identified.  
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Figure 5.2: Proposed model to predict gene response from binding profile of proteins at 

different genomic features. 

 

Algorithm 5.1: Pseudocode for implementation of the major steps of the model 

Input 

Microarray data: A list of Microarray datasets 

ChIP-Seq data: A list of ChIP-Seq datasets 

Output 

ImportantFeatures: A list features (proteins and genomic 

features) that can predict gene response. 



Chapter 5: Prediction of gene activity using protein binding profile 

 

124 

 

 

Function:- IndentifyRelationship(Microarray data, ChIP-Seq 

data): ImportantFeatures 

1. ANALYSE microarray data to get status of a set of genes 

and save them in GeneList 

2. ANALYSE ChIP-SEQ data of all proteins in ProteinList 

to get annotated peaks  

3. CREATE BindingProfile for each protein in ProteinList 

for all Genes in GeneList 

4. RUN classification using BindingProfile as preditor and 

status of genes in GeneList as response 

5. Identify features that can predict gene status well  

observing classification performance and save them in 

ImportantFeatures 

 

Step 1: Analysis of Microarray data 

Microarray data can be obtained at different biological conditions and each experiment 

can have any number of biological/technical replicates. Differential expression analysis 

is carried out between two biological conditions to identify up and down regulated 

genes.  Based on a single data set, genes can also be classified as active or inactive.  For 

each gene in the list a class, 0 or 1 is assigned to represent its status (i.e. 

upregulated/downregulated or active/inactive).  The status of these genes is used as 

response variable in the classification step. The pseudocode in Algorithm 5.2 illustrates 

the implementation of differential expression analysis between two microarray 

datasets. 

 

Algorithm 5.2: Pseudocode for analysis of microarray data 

Inputs 

MicroarrayData: Two microarray datasets 
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Method: A method to run differential expression analysis 

Threshold: an integer 

Output 

GeneMatrix: n x 2 matrix with n number of genes with their 

status.  

 

Function:- AnalyseMicroarrayData(MicroarrayData, Method, 

Threshold): GeneMatrix  

1. For each gene in microarray data 

 Run differential expression analysis between 

 datasets 

End For  

2. Use Threshold to select genes that is significantly 

changed between conditions i.e foldchange or pvalue 

3. Assign status to those genes 

4. Save the genes along with their status to GeneMatrix 

5. Return GeneMatrix 

 

Step 2: Analysis of ChIP-Seq data 

ChIP-Seq data for all the proteins of interest are analysed in this step. The proposed 

model can incorporate any number of proteins. However, the biological conditions need 

to be the same as the microarray data. A peak calling method of choice is used to locate 

the genomic regions that are bound by the protein in each ChIP-Seq data. The peak 

calling method should consider all the characteristics of ChIP-Seq data such as spatial 

dependency, IP efficiency, excess zeroes while modelling the data. Once the binding 

regions of all proteins are identified by the model, they are annotated to their proximal 

genes and genomic features using a genomic database. Algorithm 5.3 presents the 

implementation of ChIP-Seq data analysis steps.  
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Algorithm 5.3: Pseudocode for analysis of ChIP-Seq data 

 

Inputs 
 

ChIP-SeqData:  A list of aligned ChIP-Seq datasets 
Method: A method to model the data 
GenomicDatabase: A database containing loci information of 

genes and genomic features. 
 

Output 

AnnotatedPeakList: A list of annotated peaks of all ChIP-Seq 

data in ChIP-SeqData 

Function:- AnalyseChIP-Seq(ChIP-SeqData, Method, 

GenomicDatabase): AnnotatedPeaks  

1. For each dataset in ChIP-SeqData 

Model the data with Method 

Select peaks 

Annotate the peaks with nearest genomic features 

(i.e promoter, exon, intron, TSS etc.) and genes 

using GenomicDatabase 

Save the peaks in AnnotatedPeakList 

End For 

2. Return AnnotatedPeakList 

 

Step 3: Creating Binding profile of proteins 

Once the protein binding regions are identified and annotated, the binding profile of the 

proteins for data integration is generated. The method for creating the binding profile is 
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as follows. Assume a set of 𝑚 genes to have been selected in the microarray data 

analysis step in a biological condition 𝑐.  Say, annotated binding regions of 𝑝 proteins 

are identified in the ChIP-Seq analysis step. Each binding region is annotated to the 

nearest gene, represented by gene symbol and genomic feature. Again let 𝑓, the 

number of genomic features, be included in the study. The binding profiles of 𝑝 proteins 

for 𝑚 genes and 𝑓 genomic features are created that take the form 𝑋1, … … , 𝑋𝑝 where, 

𝑋𝑖𝑗𝑘𝑐 represents binding status (1 or 0) of protein 𝑗 to the feature 𝑘 of gene 𝑖 at an 

biological condition 𝑐. The implementation of the step of creating the binding profile is 

illustrated in Algorithm 5.4. 

 

Algorithm 5.4: Pseudocode for creating binding profile of proteins 

 

Inputs 

AnnotatedPeakList: A list of annotated peaks of proteins to be 

investigated 
GeneList: A list of genes for which binding profile of 

proteins need to be created 

GenomicFeatureList: A list of genomic features      

 

Outputs 

BindingProfile: A m x p*f matrix where m is the number of 

genes, p is the number of proteins and f is the number of 

features included in the experiment.  

 

Function:- CreateBindingProfile (AnnotatedPeakList, GeneList, 

GenomicFeatureList): BindingProfile 

 

1. Populate BindingProfileMatrix  

2. For each Genomicfeature in GenomicFeatureList  

For each Annotatedpeaks in AnnotatedPeakList 

For each gene in GeneList 
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Populate BindingProfile    

    If a peak in Annotatedpeaks found in 

near gene and GenomicFeature  

             put 1  

Else  

             put 0   

End For 

End For 

End For 

3. Return BindingProfile 

 

Step 4: Run classification 

 For classification purpose, the binding profile of the 𝑝 proteins for 𝑚 genes and 

𝑓genomic features is used as predictor and status of 𝑚 genes is considered as response 

variable. Note that this model could be extended to include more than one biological 

condition. In such a scenario, assume that there are 𝑐 number of biological conditions 

and from each there is a set of genes with their activity status. For each set 𝑠𝑙, where 𝑙 

represents the experimental condition, the binding profile of the proteins need to be 

created from the same biological condition 𝑙. The binding can then be integrated with 

their complementary gene status for classification.  Algorithm 5.5 demonstrates the 

classification process, in accordance with the proposed model, using the integrated 

data.  

 

Algorithm 5.5: Pseudocode for running classification techniques 

Inputs 

Predictor: it is an m x n matrix where each column represents 

a protein, binding at a genomic feature in a biological 

condition and each row represents a gene. 
Response: This is a matrix with same index (genes) Predictor, 

but with 1 column. The column represents status of the gene 
Classifier: A classifier of choice 
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Outputs 

Performance: How well Predictor can predict Response in 10-

fold cross validation. 
ImportantFeatures: The important features in Predictor among 

all features that can predict the gene status well.  

 

Function:- RunClassification(BindingProfile, GeneStatus, 

Classifier): (Accuray, ImportantFeature) 

 

1. Divide the dataset in 10 Subsets. 

2. For each set in Subsets 

Run classifier with binding profile as the predictor    

and gene status as the response with remaining 9 sets 

Test the model with set and observe performance 

Save performance in a list 

End For 

3. Performance = mean(performances in the list) 

4. Select Feature/Features that can predict the response 

well with a threshold accuracy and save them to 

ImportantFeature 

5. Return Performance, ImportantFeature 

 

General working principles of classification techniques are described below. The 

proposed model is attractive in that it could be implemented with most classification 

techniques. In this thesis, three popular classifiers namely neural network, decision tree 

and random forest have been used to demonstrate the model. Neural network is very 

good at finding pattern in the data and decision tree and random forest do feature 

selection which is very useful when many variables are available and manual selection 

is not possible. Also, with decision tree and random forest, one can visualise the 

association between variables of the data. Description of the three classifiers used in 
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this study, is given in this section. Approaches to observe the performance of the 

classifiers are also included below.  

 

Classification techniques 

Classification is a data mining or machine learning technique to discover pattern and 

relationship in large data set. It is also a systematic approach that is used to predict 

class labels for data instances. Examples include decision tree classifiers, rule-based 

classifiers, neural networks, support vector machines, and Naïve Bayes classifiers. 

Briefly, each technique employs a learning algorithm to identify a model that best fits 

the relationship between the attribute set and class label of the input data.  

 

 

(a) 

 

(b) 

Figure 5.3: (a) Workflow of building a classification model. (b) A general Approach of 

how to evaluate performance of a classification model. 

 

To have any utility the model generated by a learning algorithm should both fit the 

input data well and correctly predict the class labels of records of an independent test 
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dataset. Therefore a key objective of the learning algorithm is to build models with a 

strong generalisation capability, i.e models that accurately predict the class labels of 

previously unknown data. Figure 5.3 shows a general approach for solving classification 

problems. 

Generally, for classification, a training set consisting of records whose class labels are 

known must be provided. The training set is used to build a classification model, which 

is subsequently applied to the test set, which consists of records with unknown class 

labels. Below key features of the classification techniques used in this analysis have 

been described.  

Neural Network 

An artificial neural network (ANN) or neural network (NN) [McCulloch et al. 1943] is a 

non-linear statistical data modelling tool that is inspired by the way brain processes 

information. The novel structure of its information processing system is capable of 

learning relationships among variables and finds patterns in the data. A neural network 

consists of an interconnected group of units and like biological systems; learning 

involves adjustments to the connections between these units. Figure 5.4 shows a 

connected multilayer neural network with one input layer, four hidden layers and one 

output layers.  

In a typical neural network, the input units receive various forms of information and as 

it passes through the inner layers, the network learns, recognises and processes this 

information and then produces a signal to the output units. Most neural networks 

are fully connected, which means each input unit and each output unit is connected to 

every unit in the layers either side. The connections between units are represented by a 

number called a weight.   

This common design of neural network is called a feedforward network. Each unit 

receives inputs from the units to its left, and the inputs are multiplied by the weights of 

the connections they move along. Every unit adds up all the inputs it receives in this 

way and reports an output.  The neural network learns by a method called 

backpropagation [Werbos 1975]. In backpropagation algorithm the output generated by 
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the model is compared with desired output. Weights are updated from the outer layer to 

inner layer according to the difference between actual and desired output. This is an 

iterative process and in time backpropagation causes the network to learn, as the 

difference between produced and desires output is reduced.  

 

 

Figure 5.4: A fully connected neural network is made up of input units (red), hidden 

units (blue), and output units (yellow). 

 

Let,  𝑗  and 𝑖 are two units in the output and input layers respectively.  Firstly, the unit in 

the output layer computes the total weighted input 𝑥𝑗using the formula,  

 𝑥𝑗 = ∑ 𝑦𝑖𝑤𝑖𝑗𝑖    (5.1) 

Where 𝑦𝑖 is the activity is level of the 𝑖th unit in the previous layer and 𝑤𝑗𝑖  is the weight 

of the connection between the 𝑖th and 𝑗th unit.  

Secondly, the unit calculates the activity 𝑦𝑗  using some function, usually sigmoid 

function, of the total weighted input.  
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 𝑌𝑗 =
1

1+𝑒
−𝑥𝑗

  (5.2) 

Once the result of all the output units have been calculated, the error 𝐸 is computed 

using the following equation,   

  𝐸 =
1

2
∑ (𝑦𝑗 − 𝑑𝑗)2

𝑗   (5.3) 

Where 𝑦𝑗 is the activity level of the 𝑗th unit in the top layer and 𝑑𝑗  is the desired output 

of the 𝑗th unit.  The calculated error is backpropagated to adjust the weight for next 

iteration. Once the network has been sufficiently trained usually determined the error 

reaching to a threshold given by the user, it is tested with a new set of unseen examples 

and the performance is evaluated.   

Decision Tree 

Decision tree is a recursive partitioning method that helps explore the structure of a set 

of data and visualise decision rules for prediction of the outcome. The tree has three 

types of nodes: A root node that has no incoming edges and zero or more outgoing edge. 

Each internal node has exactly one incoming edge and two or more outgoing edges and 

each leaf or terminal node has exactly one incoming edge and no outgoing edges. In 

decision tree, each leaf node is assigned a class label. The non-terminal nodes, which 

include the root and other internal nodes, contain attribute test conditions to separate 

records that have different characteristics.  

The main algorithms used for learning decision tress are ID3 algorithm (Quinlan 1986) 

and C4.5 (Quinlan 1993). The main steps of the algorithms are as follows: Let, there be a 

set of training samples T: 

Step 1: If all examples in 𝑇 are positive, then create YES node and stop. 

If all instances in 𝑇 are negative, create a NO node and stop. 

Otherwise select a feature, 𝐹 with values 𝑣1 … … … … . 𝑣𝑛 and create a decision node. 
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Step 2: Divide the training examples in 𝑇 into subsets 𝑇1 , 𝑇2 … … … . 𝑇𝑛 according to the 

values of  𝑉. 

Step 3: apply the algorithm recursively to each of the sets 𝑇𝑖. 

The algorithm incorporates feature selection methods. It searches and identifies the 

attribute that best partitions the data. If any attribute perfectly classifies the training 

sets then the algorithms halts, if not it carries on until it identifies the best set of 

attributes that partitions the data among the classes.  The feature selection method is 

called information gain. This method calculates how well each attribute partitions the 

data. Attribute with the highest information gain is selected. Amount of information in 

each attribute is measure by entropy.  

Given a collection 𝑆 of 𝑐 outcomes,  

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ∑ −𝑝(𝐼)𝑙𝑜𝑔2𝑝(𝐼)  (5.4) 

Where 𝑝(𝐼) is the proportion of 𝑆 belonging to class 𝐼.  

𝐺𝑎𝑖𝑛(𝑆, 𝐴) is information gain of example set 𝑆 on attribute 𝐴 is defined as,  

 𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑((
|𝑆𝑣|

|𝑆|
) ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣))  (5.5) 

Where,  

𝑆𝑣 = subset of 𝑆 for which attribute 𝐴 has value 𝑣 

|𝑆𝑣|= number of elements in 𝑆𝑣 

|𝑆|= number of elements in 𝑆 

Random Forests 

Random Forests [Breiman et al. 2001] is an ensemble learning method used for 

classification and regression where methods generate many classifiers and aggregate 

their results.  It is an extension of tree methods, where a number of independent trees 

are generated with the subset of input variables. Generally in standard tree methods, 

each node is split using the best split among all variables. However, in random forests 
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method, each node is split using the best among a subset of predictors randomly chosen 

at that node, chosen using the least squared error.  

 

The method of growing each tree is as follows:  

Say there are 𝑁 numbers of cases in the training set, and this set will be used to grow 

the tree.  

If the number of input variables is 𝑀, then a number 𝑚 which is less than 𝑀 (𝑚 < 𝑀), is 

specified and at each node, 𝑚 variables are selected at random out of the 𝑀. The best 

split on these 𝑚 is used to split the node. During the forest growing process, the value of 

𝑚 is held constant.  

Each tree is grown to the largest extent possible. There is no pruning. 

Random forest has been a very useful method for detecting variable interactions. With 

this method importance of variables can be observed for classification techniques, it 

proves very efficient when large databases and large set of variables are involved 

[Ziegler et al. 2014]. The Random forest is a particularly suitable method as it can 

readily incorporate thousands of input variables without variable deletion. Protein-

protein interactions, gene expression analysis and other image processing analysis 

routinely use this method [Bosch et al. 2007; Kruppa et al. 2013; Qi 2012]. 

In this technique, the importance of attributes is measured by two ways, one is ‘mean 

accuracy decrease’, which tests how worse the model becomes without each variable, 

and therefore a high decrease in accuracy would be expected for variables that are 

important for prediction. The  ‘mean decrease Gini’  measures how pure the nodes are 

at the end of the tree so again it tests to determine the result if each variable is taken out 

and a high value indicates the variable is important.  

Step 5: Evaluation of the performance of the classifiers  
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Evaluation of the performance of a classification model is based on the counts of test set 

correctly and incorrectly predicted by the model. These counts are tabulated in a table 

known as a confusion matrix. Each entry 𝑓𝑖𝑗  in such table denotes the number of records 

from class 𝑖 predicted to be of class 𝑗. For instance, 𝑓01 is the number of records from 

class 0 incorrectly predicted as class 1. Based on the entries in the confusion matrix the 

total number of incorrect predictions made by the model is (𝑓11 + 𝑓00) and the number 

of incorrect predictions is (𝑓10 + 𝑓01).  

Summarizing this information with a single number would make it more convenient to 

compare the performance of different models. This can be done using performance 

metric such as accuracy, which is defined as follows:  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑓11+ 𝑓00

𝑓11+𝑓10+𝑓01+𝑓00

   (5.6) 

Equivalently, the performance of a model can expressed in terms of its error rate, which 

is given by the following equation:  

 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑓10+ 𝑓01

𝑓11+𝑓10+𝑓01+𝑓00

  (5.7) 

Most classification algorithms seek models that attain the highest accuracy, or 

equivalently, the lowest error rate when applied to the test set.  

Cross-validation 

Cross validation is the procedure where the experiment is repeated a specific number of 

times, say n. The original datasets are partitioned n number of times randomly, and each 

time different samples are used as training set and testing set. At the end the n results 

are again averaged (or otherwise combined) to produce a single estimation. In this 

experiment 10-fold cross validation has been used. The accuracies and errors estimated 

from each run are then averaged at the end to evaluate the performance of the model. 

5.4 Results  

5.4.1 Datasets 
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In this experiment, the proposed model has been applied on the time-series ChIP-seq 

data for Bromodomain-containing protein 4 (Brd4), Acetylated Histone H4 (H4ac), 

Histone H3 lysine 4 tri-methylation (H3K4me3), RNA Polymerase II (RNA PolII), 

subunit of RNA polymerase II (RNA PolII S2) and Cyclin-dependent kinase 9 (CDK9) 

proteins/markers and gene expression data provided by Nicodeme et al. [2010] as 

described in Chapters 3 and 4.  In this study LPS stimulated ChIP-Seq datasets (control 

data) obtained at 0 hour and 4 hour time points and IBET treated datasets (drug data) 

obtained at 4 hour time point have been used. The complementary microarray data 

provided by Nicodeme et al. [2010] obtained at the same biological conditions have also 

been used to investigate at the gene expression profile.   

5.4.2 Data Pre-processing 

Microarray Data analysis 

The microarray data analysis method is described in chapter 4. Gene expression data 

produced by Illumina beadarray technology have been pre-processed using 

beadarray, an R package [Dunning et al., 2007] and then analysed using linear 

models to define differentially expressed gene transcripts using the R package limma 

[Smyth 2005]. The design of the analysis is as follows. To define the effect of LPS, LPS 

stimulated expression profiles obtained at 1, 2 and 4 hour time points are compared 

with the expression profile at 0 hour. To define the effect of IBET treatment on LPS 

induced genes, LPS+IBET treated samples have been compared with control samples 

(LPS only) at each time point. Out of the 25,000 gene transcripts estimated in the 

expression profile (for simplicity probes are refered as gene transcripts throughout this 

chapter) the genes that have changed at least 2-folds at 4 hour time point have been 

selected. The analysis reported that 836 genes were up regulated by LPS between 0 and 

4 hour time points. Among them 183 genes are downregulated by IBET treatment. For 

integrative analysis the probes have been annotated with the official gene symbols and 

these gene symbols have been used to integrate the data with ChIP-Seq.  

ChIP-seq data analysis 
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The ChIP-seq reads have been aligned against mouse genome (version mm9) using 

Bowtie [Langmead et al. 2009] and only uniquely mapped reads have been retained for 

further analysis. As distribution of the counts of sequences varies from chromosome to 

chromosome, all chromosomes have been modelled separately. After the alignment 

process, 19 chromosomes have been separated and after obtaining the lengths of the 

chromosomes from UCSC, the counts of sequences have been generated per 200 bp 

region for each chromosome. The count data of each chromosome has been analysed 

using the MRF model as described in the chapter 3. The regions that are found enriched 

at 5% FDR have been selected. Table 5.1 reports the number of binding regions (200bp) 

found at 5% FDR for the proteins of interest at the three biological conditions used in 

this experiment.  

 

Proteins 
LPS stimulated at 0H LPS stimulated at 4H IBET treated at 4H 

Number of 200 bp enriched regions at 5% FDR 
RNA Polymerese II 1132284 705177 625282 
RNA Polymerese II S2 1020916 1282471 666159 
H3K4me3 293266 327854 318679 
H4ac 170087 218960 166806 
Brd4 151048 135101 38831 
CDK9 166600 105905 122004 

 

Table 5.1: The number of enriched Regions found at 5% FDR from LPS stimulated data 

at 0 and 4 hour and IBET treated data at 4 hour time-point. 

 

Annotation of the Peaks 

All ChIP-seq datasets have been analysed using MRF model, and the results of bound 

genomic regions (200 bp long) obtained. These regions are then annotated with the 

nearest gene names and genomic features. For this purpose R package ChIPseeker 

[Yu et al. 2015] has been used. The input for the package is binding regions of the ChIP-

Seq data in BED format [https://genome.ucsc.edu/FAQ/FAQformat.html#format1]. 
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Using the annotation database for the species in question, the peaks are annotated with 

the gene symbol, gene name and genomic feature. For instance, if a peak is located in 

5’UTR of a gene, it will be annotated with 5’UTR and the name or symbol of the gene. 

Annotated genomic features are promoter, exon, 5’ UTR, 3’ UTR, intron, and distal 

intergenic. The TxDb object containing the transcript-related features of a particular 

genome is used to generate the annotations which can be prepared using information 

from UCSC and BioMart data resources. R package 

TxDb.Mmusculus.UCSC.mm9.knownGene [Carlson et al.] has been used in the 

study that contains TxDb object of mouse species, genome version mm9. 
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BRD4 CDK9 

 

Figure 5.5: Feature distribution of the binding regions of the proteins. 

 

The feature distributions have been plotted to compare summary of the peaks for each 

protein. Figure 5.5 shows the distribution of different features in the peaks that have 

been found for different proteins in IBET treated samples at 4 hour time points. The 

legends, attached with each pie chart summarise the percentage of features bound by 

the specific protein. From the plots, it is apparent that H3K4me3 and H4ac are mostly 

bound at promoters, CDK9 and Brd4 are mostly bound at distal intergenic. And most of 

the bound regions by RNA PolII and RNA PolII S2 fall in the intron regions. 

Generation of protein binding profile and integration of both datasets 

After annotating the peaks, the binding profile of each protein has been generated at 

four genomic features at different biological conditions using Algorithm 5.4. Firstly, 652 

unique genes have been selected that are upregulated by LPS at 4 hour time points and 

classified as expressed. Their expression values are at the upper end in the profile 

(>9.52). They have been assigned to class 1. Another 609 genes whose expression 

values are at lower end in the profile (<5.72) at 4 hour time points have also been 

selected as lowly/non expressed genes and they have been assigned to class 0.  

 

Proteins Promoter distal intergenic Exon Intron 

RNA Pol II 0.525 0.429 0.525 0.524 

RNA PolII S2 0.491 0.384 0.483 0.465 

H3k4me 0.274 0.184 0.198 0.275 

H4ac 0.384 0.273 0.222 0.290 

Brd4 -0.002 -0.003 0.039 0.029 

CDK9 0.029 -0.003 0.047 -0.013 

 

Table 5.2: Correlation values of binding profile of different proteins at different genomic 

features with state of the genes. 
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The binding profile for these 1261 genes created using the annotated peak file for 

genomic features, promoter, exon, intron and distal intergenic region. The integrated 

data containing the binding profile of proteins along with the status of genes have been 

modelled using different classifiers. Prior to that, the Pearson correlation coefficients 

were calculated between each input variable and output. This way it can be checked 

how binding and non-binding of a protein/marker at a certain genomic feature is 

correlated to gene regulation.  

Table 5.2 shows the correlation values for all proteins. From this it can be concluded 

that the bindings of RNA Polymerese II at promoter, intron, exon and distal intergenic 

show most correlations with gene regulation and Brd4 shows the least correlation.  

5.4.3 Results of running classification on the data 

Result from Neural Network 

The integrated data from both ChIP-Seq and Microarray has been modelled with neural 

network to check whether the binding profile of the protein can identify the class of the 

genes.  The nnet is an R package that implements feed-forward neural networks with a 

single hidden layer. In this study, R package e1071 and its wrapper function for nnet 

package has been used to model the data with neural network and run 10-fold cross 

validation. There are options to choose the different parameter in nnet package, 

however as there are many variables in the data, the default option has been used to 

keep the model simpler. No initial weights were provided, and they were chosen 

randomly. The range of hidden layers have been 5, at the end model keeps the structure 

that gives the least error.   Different combinations of proteins have been selected as 

predictors of the gene status for modelling with neural network.  Some combinations 

are presented here that show the highest accuracy. The results are summed up at Table 

5.3. 
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From Table 5.3, it can be observed that the binding profile of RNA PolII, RNA PolII S2 

and H4ac bound at promoter classify the data most accurately. For all combinations, the 

feature promoter does better than the rest of the features.  The binding profile at distal 

intergenic regions does the prediction least accurately among the features.  

 

 

 
Combination of variables 

Genomics features 

Promoter Exon Intron Distal Intergenic 

PolII+PolII_S2+H4ac 83.16 81.90 82.18 80.35 
PolII+PolII_S2+H3K4me+H4ac 82.36 82.35 82.30 80.37 
PolII+H4ac 82.48 82.16 81.96 80.07 
PolII+PolII_S2 82.67 81.76 82.03 80.40 
PolII+PolII_S2+H3K4me 81.82 81.33 80.20 79.87 
PolII_S2 + H4ac 81.97 80.19 80.88 79.44 
H3K4me+H4ac 79.99 76.76 78.39 77.18 

Table 5.3: Performance of neural network in terms of accuracy (%) after 10-fold cross 

validation. 

The data containing protein binding profile at promoter, exon, intron and distal 

intergenic for the genes that are upregulated at 4H (LPS only) and then downregulated 

by IBET at 4H (LPS + IBET) has been also modelled using the neural network. There are 

366 (183 +183) data points here. The protein binding profile for upregulated 182 genes 

has been generated from LPS induced ChIP-seq results obtained from LPS induced 

samples and class/status of the genes has been assumed as 1 (upregulated).  For the 

same genes, the protein binding profile has also been generated from IBET treated 

ChIP-seq peaks and these genes have been classed as 0 (downregulated).  

 

Combination of variables 
Genomic Features 

Promoter Exon Intron Distal Intergenic 

PolII+PolII_S2+H4ac 77.20 78.34 78.98 76.36 
PolII+PolII_S2+H3K4me+H4ac 77.39 78.56 77.02 75.46 
PolII+H4ac 75.34 77.89 76.91 76.07 
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PolII+PolII_S2 77.40 78.90 78.04 76.80 
PolII+PolII_S2+H3K4me 77.09 78.68 78.45 76.73 
PolII_S2 + H4ac 78.90 78.23 78.67 76.05 
H3K4me+H4ac 75.74 75.67 75.08 75.86 

Table 5.4: Performance of neural network in terms of accuracy (%) after 10-fold cross 

validation. 

 

The combined data has been modelled with neural network to check whether binding 

profile of the protein can identify the classes of the genes. Same combinations of 

proteins have been used here as above. In this case, most of the experiments show 

similar accuracies (around 75-78%). However, as different combinations of predictors 

at different features produce the similar results, it is difficult to identify which proteins 

or features predict better than the rest of the variables.  The results are summarised up 

in Table 5.4. 

Results from Decision tree 

To model the data with the decision tree, the dataset with 1261 genes with classes has 

been used. The R package, rpart has been used to fit the data that implements 

recursive partitioning and regression Trees. Here too, the class of the genes has been 

used as the response variable and the binding profile of the six proteins at promoter for 

those genes as the predictors. The Package rpart creates the tree with only important 

variables that can classify the response well. There are options to specify different 

parameters before running rpart. The default parameter values has been used for this 

experiment. No initial weights, maximum size of the tree or method have been provided. 

Firstly the binding profile of all proteins at promoter has been used as the input. The 

tree is depicted in Figure 5.6.  
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Figure 5.6: Resulted tree where leaf nodes represent class of the genes and the root 

node and internal nodes represent binding of protein at promoter region. 

 

The variables that have been used to construct the tress are the bindings of RNA PolII, 

H4ac and RNA PolII S2 at promoter. The tree indicates that if RNA PolII binds at a gene 

promoter, the gene will be active, however if it does not but H4ac binds at promoter, 

that gene will be active, else if PolII S2 binds at the promoter the gene will be active. The 

gene is classified as inactive for other status of the protein. The accuracy for 10-fold 

cross validation is 83.94%.  
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Figure 5.7: Resulted tree where leaf nodes represent class of the genes and the root 

nodes and internal nodes represent binding of protein at different gnomic region 

(promoter, exon etc). 

 

Next, the profile of all the proteins bound at different genomic features, such as 

promoter, exon, intron, distal intergenic for all 1261 genes have been combined and the 

data has been modelled with the decision tree. In this case, the tree has been 

constructed with the features, the bindings of RNA PolII, H4ac, RNA PolII S2 at promoter 

regions and RNA PolII at exon. Here the tree concludes that when RNA PolII is not 

bound at promoter for a gene, the tree appears similar to that above Figure 5.6, but the 

right side of the tree suggests that RNA PolII bindings at promoter and exon would 

classify a gene as active. The tree is depicted in the Figure 5.7.  
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Figure 5.8: Resulted tree where leaf nodes represent the class of the genes and the root 

node and internal nodes represent binding of protein at promoter at different time 

points.  

 

Next how protein binding across times points affects gene expression is investigated. 

Epigenetic mechanism and gene expression might not happen at the same time for the 

former to regulate the latter. For this experiment, the feature promoter has been 

selected and the profiles of all proteins bound at promoter at different time points have 

been combined, such as 0, 1 and 4 hour time points (0H, 1H and 4H respectively) for all 

1261 chosen genes. The tree is depicted in Figure 5.8.  

In this case, the tree has been constructed with the features/variables such as, the 

bindings of RNA PolII, H4ac, RNA PolII S2 at promoter at 1H and 4H time points. The 
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tree suggests that if RNA Polll binds at promoter at 4H or 1H hour, or PolII S2 binds at 

promoter at 1H or H4ac binds at promoter at 4H time point the gene will be active, else 

the gene will be inactive at 4H time point.  In the tree 0, 1 or 4 hour time-points are 

denoted as 0H, 1H and 4H respectively. 

Result from Random Forests  

To apply the Random Forests method for the classification of the data, R package 

randomForest [Liaw et al. 2002] has been used.  

As input the same dataset mentioned above is used. Here too, the class of the genes is 

used as the response variable and the binding profile of the six proteins at different 

genomic locations as the predictors. In Figure 5.9, the importance of different variables 

obtained by the random forests method has been presented.  

When only binding at promoter is considered, in terms of mean accuracy and mean Gini, 

RNA PolII, H4ac and RNA PolII S2 are at the top of the table with more than 40% 

importance.  However, when the binding profile of all the variables are aggregated, RNA 

PolII, H4ac and RNA PolII S2 bindings at promoter and PolII binding at exon are selected 

as the most important features with more than 40% importance from the mean 

decrease accuracy results. This results match with the features that are selected by the 

decision tree in the previous section.  
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(a)                                                                                  (b) 

 

 

(c) 

Figure 5.9: Importance of variables by random forests. (a) result from protein binding 

profile at promoter. (b) result from protein binding profile at different features, exon 

(ex), intron (in), promoter (pr), distal intergenic (ds). (c) result from protein binding 

profile at promoter at different time points (0H, 1H and 4H). 

5.4.4 Comparative performance between three classifiers 

After looking at the performance of individual classifier, comparative analysis among all 

the classifiers has been performed. Different combinations of variables have been 

selected for this experiment (e.g the variables that are used to draw the decision tree or 
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reported as important by random forest etc). The combinations of variables used for 

this experiment are as follows: 

1. RNA PoIII, RNA PolII S2 and H4ac at promoter (pr) 

2. RNA PoIII, RNA PolII S2 and H4ac at promoter and RNA PolII at exon (ex) 

3. RNA PolII and H4ac at promoter at 4 hour time point (4H) and RNA PolII and 

RNA PolII S2 at promoter at 1 hour time point (1H) 

 

 

Predictors 
Neural 

Network 
Decision 

Tree 
Random 

Forest 

Accuracy (%) 
PolII_pr + H4ac_pr + PolII_S2_pr 80.02 84.08 78.83 
PolII_pr + PolII_ex H4ac_pr + PolII_S2_pr 82.93 84.75 78.43 
PolII_1H + PolII_4H+ H4ac_4H + PolII_S2_1H 83.48 84.70 80.41 

Table 5.5: The performances of different classifiers in terms of accuracy after the 10-

fold cross validation.  

 

From Table 5.5 it is observed that for all combinations of variable, decision tree 

performs the best among three classifiers and neural network is the second best in 

terms of accuracy. Decision trees have several advantages over neural networks and 

random forests. Firstly, decision trees are very interpretable as it provides visual 

representation of the data. For example, here from the tree itself it is very apparent 

which variables are responsible for gene activation. Neural networks can predict the 

response from the unknown data well, but it remains unknown which states of the 

predictors are responsible for each response class.  

A decision tree based classification model also automatically selects features that are 

important for the prediction and discards those input features that are not useful to the 

prediction. However, a neural network based model does not report feature selection 

automatically; therefore it uses all the features that are provided. Unless a user 

manually implements feature selection as a pre-processing step, with large set of 

variables, neural networks often provide a poor prediction if there are features in the 
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dataset that are not useful.  Random forests method also provides the feature selection 

steps.  

For this reason, when the binding profiles of all proteins at all the genomic features and 

the protein binding profiles at promoters at different time-points have been used for 

prediction, only decision tree and random forests technique have been used as these 

datasets have 26 variables, and neural network has been excluded from the following 

comparative study.   

A comparative performance analysis between decision tree and random forests has 

been performed on the datasets that include:  

1. The binding profile of all proteins at promoters 

2. The protein binding profiles of all protein at all the genomic features  

3. The binding profiles of all proteins at promoters at different time-points  

 

The accuracy results of these two classifiers for the selected datasets are summarised in 

Table 5.6. Again decision tree performs better than random forests in each instance.  

 

 
Predictors 

 

Decision Tree Random Forest 

Accuracy (%) 
Promoter only 83.94 79.38 
All genomic features combined 83.80 79.70 
Promoter at different time-points 85.01 80.73 

Table 5.6: The performances of decision tree and random forests in terms of accuracy 

after the 10-fold cross validation.  

5.5 Summary 

In this study, the central question has been whether protein binding at different 

genomic features can be predictive for gene expression changes. The proposed 

methodology described in this chapter illustrates how different genomic locations, 

biological and experimental conditions can be incorporated in the predictive study to 
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identify associations between protein bindings at different locations and gene 

regulation events. To demonstrate the model, the protein binding profiles at four 

genomics features have been generated for six proteins and these have been integrated 

with gene expression results. Different classification approaches have been used to 

understand how these profiles describe the underlying gene expression variations. 

Different time-points and biological conditions have also been included in the 

investigation.  

The results show that the binding profiles of different proteins at different genomic 

features can describe variations in the underlying gene expression. Among the six 

markers/proteins, RNA PolII, RNA PolII S2, H3K4me3 and H4ac have been found to be 

the most predictive of the gene expression profile. Among the features, classification 

with neural network proposes that the promoter feature performs best as the binding 

location for proteins for predicting gene expression. However, for some combination of 

proteins other genomics features also provide acceptable prediction of 80% accuracy, 

which suggests protein binding profiles at genomic features correlate strongly with 

gene regulation.  Protein binding profiles at all four genomic features have been 

combined and the data has been modelled using the decision tree and random forests 

methods to identify the most important features predictive of the response value. Both 

classifiers have identified the same set of variables as important for predictions as 

neural network, however as combined profiles of proteins at different genomic 

locations have been used here, both classifiers have identified RNA PolII binding at exon 

as an important feature to describe the underlying gene expression profile.  

It is known that epigenetic events may not occur simultaneously with gene expression 

changes, so how proteins bindings at promoter at different time-points correlate with 

gene expression activity has also been investigated. The decision tree suggests that, the 

gene activity at 4 hour time-point is correlated with RNA PolII and H4ac binding at 4 

hour time point and RNA PolII and RNA PolII  S2 binding at 1 hour time point. The 

random forests method also identifies these variables as mostly correlated with the 

gene activity.  
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The comparative analyses of the performances of the classifiers have been performed 

on the variables that are selected by decision tree and random forests as important 

features. In each case, decision tree has classified the data with most accuracy, followed 

by neural network. The combined protein binding profiles at all genomic features and at 

three time points at promoters have been used to observe the performance of decision 

tree and random forests. Again, decision tree performs better than the random forests 

in terms of accuracy. 

The findings confirm existing knowledge on how genes are regulated by different 

regulatory proteins binding at different features. The proposed approach has given  new 

insights how other regulation factors can be integrated such as different genomic 

locations, time points and biological conditions to find out dynamic regulation of gene 

expression.  

Next generation data is expensive. It is not always possible to generate epigenetic data 

in clinical trials where thousands of samples are involved; therefore it is not possible for 

the biologist to know the underlying epigenetic profile that is causing the gene 

expression changes.  On the other hand, there are times when epigenetic data is 

available but the gene expression data is missing when it is difficult to know how the 

epigenetic changes between conditions are affecting gene expression.  These machine 

learning based models could feel that gap, by finding the association between gene 

expression and regulatory mechanisms. Once the association between up and down 

regulation of genes with epigenetics changes is created, it will be possible to predict one 

from the other.   
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Gene expression that produces the essential proteins that maintain and support normal 

cellular development and functioning of the eukaryotic cell is a tightly controlled 

biological process. Disruption to this process may present as a variety of disease 

conditions and therefore, investigating all the mechanisms such as epigenetics events 

and transcription factor regulation that control gene expression; have generated 

considerable interest among scientists.  

Recently, several pivotal gene regulation studies have made significant progress and 

this field is currently expanding very rapidly. High-throughput technologies such as 

chromatin immunoprecipitation technique followed by the next generation sequencing 

(ChIP-seq) and microarray expression studies enable researchers to investigate the 

relationships between different epigenetic mechanisms and gene regulation on a 

genome-wide scale. Several attempts at integrative analyses have identified a number of 

direct relationships between the two processes; however, a comprehensive 

understanding of the regulatory events remains elusive.   

It is anticipated that high-throughput sequencing technologies such as ChIP-seq will 

prove to be of immense value to biomedical research, though they are currently 

hampered by a scarcity of robust analytical methods. For example, current integration 

methodologies have implemented basic analysis steps of ChIP-Seq data which do not 

fully leverage all the information this sequencing technology can offer. There are also 

gaps in the literature regarding how differential expression and differential binding 

change together between biological or experimental conditions and how time factors 

and distant genomic locations coalesce to direct gene regulation events.   
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The primary objective of this thesis has been to acquire complementary ChIP-Seq and 

microarray datasets and provide robust and reliable methodologies that will 

contribute to the investigation of the relationship between epigenetic mechanisms and 

gene regulation. It has also been the goal of this thesis to explore whether protein 

binding profile across genome can be predictive of gene expression changes thus 

finding associations between different epigenetic events and gene regulation. However, 

before finding the association another important goal has been to study the complex 

characteristics of ChIP-Seq data to find the most appropriate means for data pre-

processing and effective modelling.   

In this thesis these goals have been achieved by incorporating the advanced and 

improved results of ChIP-seq data, the protein binding profiles at different genomic 

features, different biological conditions and time-factors relevant to underlying 

epigenetics effectively within integrative analyses to detail putative causal 

relationships. Thus, the Markov Random Field model has been adapted to analyse the 

binding regions of ChIP-Seq data where the complex characteristics of the data are 

taken into consideration while modelling the data. Two methodologies have been 

proposed where the advanced analysis methods can be used in the integrative analyses. 

Various classification methods are also included in the model to determine the 

relationship between different epigenetic markers, proteins, genomic features and gene 

expression profile.  

Often in biological study either the gene expression or the protein binding data is 

unavailable. I believe that the studying the relationship between regulatory factors and 

gene expression with these models will help the biologists estimate gene expression 

from the available epigenetics data or assume the underlying epigenetics from the 

available gene expression data.   

The models have been applied to the time-series ChIP-seq datasets for 6 

proteins/markers and the complementary microarray datasets. The ChIP-Seq datasets 

are for Bromodomain-containing protein 4 (Brd4), Acetylated Histone H4 (H4ac), 

Histone H3 lysine 4 tri-methylation (H3K4me3), RNA Polymerase II (RNA PolII), a 

subunit of RNA polymerase II (RNA PolII S2) and Cyclin-dependent kinase 9 (CDK9). 



Chapter 6: Conclusion and Future Direction 
 

 

155 

 

Both ChIP-Seq and microarray data have been obtained at various biological and 

experimental conditions, for example, the data have been collected at consecutive time 

points after stimulating the biological samples with different compounds.  

 

6.1 ChIP-Seq data analysis 

In this thesis, the Markov Random Field (MRF) model has been adapted for the analysis 

of ChIP-Seq data where complex characteristics of the data have been considered while 

modelling the data to accurately locate binding loci of a protein (Chapter 3). 

Comparative performance analysis has been carried out between the MRF and other 

existing methods and it has been shown that incorporating the characteristics such as 

spatial dependency, IP efficiency and excess zeroes in the model can improve the final 

list of bound regions. It has also been demonstrated how steps taken in the pre-

processing of the ChIP-Seq data such as count correction before running the statistical 

analysis to find the protein binding locations can  affect the performance of the model.   

The MRF model has been compared with the mixture model using the negative binomial 

method on six ChIP-Seq datasets for histone protein, H3. The performances of the 

methods have been compared in terms of the number of peaks generated and also the 

quality of the peaks. In all six experiments, it has been found that the MRF model has 

produced on average 34% more regions than the negative binomial method. 

Considering spatial dependency provides the MRF model the strength to identify 

regions with low tag counts that have neighbouring regions with significant numbers of 

counts. It has been demonstrated that a model that does not incorporate spatial 

dependency will overlook those counts as insignificant, and focus only on the overall 

distribution. RNA Polymerase II is known to bind at promoter regions around the 

transcription start sites (TSS) to control gene expression. It has been demonstrated that 

the enrichment probabilities produced by the MRF model show a smooth profile of 

bindings around TSSs, whereas with the negative binomial method, the binding profiles 

in proximity to the TSSs are not so apparent.   
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The count correction step taken while pre-processing the data can also significantly 

improve the results. If unusually large counts are found in a concentrated region, it is 

assumed to have come from an undisclosed bias. If these counts are removed the results 

improve significantly. Three chromosomes (2, 9 and 12) have been found to have those 

high counts of sequences in a very concentrated region. With those counts removed, the 

model identifies 5284, 1151 and 2682 more bound regions respectively than if the 

counts were retained.   

6.2 Integrative analysis between ChIP-Seq and microarray 

 In this thesis, two models (Chapters 4 and 5) have been proposed for integrative 

analysis of the protein binding and the gene expression data.  

Most of the integrative analyses to date have used very basic analysis steps to obtain 

information from ChIP-Seq data while ignoring many important characteristics of the 

data.  A Method has been proposed in this thesis to find the correlation between the 

differential binding probabilities for different proteins around transcription start sites 

and differential gene expression values associated with those TSSs. The binding 

probabilities are estimated by the MRF model and thus capture all the complex 

characteristics of the data. The probabilities are then generated around TSS to 

integrate the data with the gene expression results from the microarray data.   This 

model also incorporates different biological conditions such as time factors, treatment 

etc., therefore, it can be applied to rich datasets that include such variables. The results 

have been validated on the proteins investigated using known biological characteristics.   

The methodology exemplifies how extended information about the ChIP-Seq data such 

as spatial dependency, overall distribution can be incorporated in terms of enrichment 

probability in the integrative analysis of protein binding and gene expression data and 

illustrates how such analysis can investigate the correlation between differential 

expression and differential bindings of different proteins.  

The method has been applied to the datasets described above that include ChIP-Seq 

data of six markers/proteins and microarray data obtained at different biological and 
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experimental conditions. The result concludes that the bindings of RNA PolII and RNA 

PolII S2 around TSS are significantly correlated with both upregulation and down 

regulation of gene expression. Histone methylation and histone acetylation, represented 

by bindings of H3K4me3 and H4ac also show a positive correlation. However, bindings 

of Brd4 and CDK9 around TSS are weakly correlated with either up or down regulation 

of gene expression, while Brd4 is negatively correlated. From the experimental results it 

has also been demonstrated how binding events upstream or downstream of TSS also 

correlate with gene expression changes.  

In this study the enrichment probability is generated around TSS. However, with the 

proposed model, any number of genomic features could be investigated their location. 

The applied model also allows us to incorporate any number of biological or 

experimental conditions.   

A novel approach has also been proposed where the integrative analysis of the protein 

binding and the gene expression data includes binding locations of proteins and 

epigenetic markers at different genomic features such as exon, intron, promoter, distal 

intergenic region etc. It has been shown how the dynamic interactions between the 

regulatory proteins and gene expression can be investigated by integrating sets of genes 

regulated at successive time-points and different biological or experimental conditions 

and protein binding profile across the genome. This method also makes it possible to 

not only identify those proteins or markers that might be regulating genes but also 

where and when they bind to do so.  Several classification techniques have been used to 

define the association between the protein binding profiles across the genome and the 

underlying gene expression variations. To demonstrate the utility of the model, the 

protein binding profiles at four genomics features have been generated for 6 proteins 

and this data has been integrated with gene expression results. Different time-points 

and biological conditions are also included in the investigation. A comparative 

performance analysis between the classification techniques has also been performed to 

determine which classification technique better predicts gene expression status from 

the protein binding profile.  
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Our results show, that among the proteins investigated, RNA PolII, RNA PolII S2, 

H3K4me3 and H4ac correlate with gene expression. Results from the neural network 

modelling indicate that the promoter performs best as the binding location for proteins 

to predict gene expression, but the bindings at other features can also predict the gene 

expression status with 70-75% accuracy.  

The combined protein binding profile at all four genomic features are modelled using 

both decision tree and random forests to identify the most important features for 

predicting the status of the gene. The results confirm that the same variables that 

perform well with the neural network are again identified as important for predictions 

by these two methods. From the combined profile, RNA PolII binding at exon is 

identified as an important feature along with bindings of RNA PolII, RNA PolII S2 and 

H4ac at promoter to describe the underlying gene expression profile.  

Of course epigenetic events may not occur at the same time as the gene expression 

changes, so how protein bindings at promoters at the different time-points correlate 

with gene expression activities has also been investigated. The decision tree reports 

that gene activity at the 4 hour time point is correlated with RNA PolII and H4ac binding 

at the 4 hour time point, and that RNA PolII and RNA PolII  S2 binding at the 1 hour time 

point. The random forests method also identifies these variables as mostly correlated 

with the gene activity. The comparative analyses on the performances of all three 

classifiers have shown that the decision tree has classified the data with most accuracy, 

followed by the neural network model.  

Our findings confirm existing knowledge on how genes are regulated by different 

regulatory proteins binding at different features. Furthermore, the proposed approach 

has given us new insights on how other regulation factors can be integrated such as 

different genomic locations, time points and biological conditions to better describe the 

dynamic regulation of gene expression. These models will help the scientist explore 

deeper into epigenetic regulations. It will also help discover new relationships between 

proteins, gene regulation and different genomic features.  
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6.3 Future work 

In this thesis, effective ways of modelling ChIP-Seq data to improve results for the 

integrative analysis of protein binding and gene expression data has been investigated. 

Although considering all the complex characteristics gives us the opportunity to 

evaluate most of the available information that this type of next generation sequencing 

technology can offer, it remains challenging to assess its full potential with one method. 

Even after 10 years of its adaptation, artefacts are still discovered today and also as 

sequencing technologies are making advancement continuously, it is difficult to 

standardise the analysis techniques of ChIP-seq profile [Park et al. 2013; Teytelman et 

al. 2013; Cusco et al. 2016].  The shapes of the ChIP-seq peaks vary protein to protein. 

The peaks can be either sharp or broad and some peaks are in mixed mode. Most of the 

peak callers have been designed to deal with just one specific kind of peak. If an 

experiment involved ChIP-seq data of different proteins and markers, different peak-

calling strategies are required for different shapes. Prior knowledge about the shape of 

the proteins or markers will help chose the peak callers. However, one can also adapt 

the multi-tool approach using several peak callers to generate consensus peak lists. This 

way it will be possible to use the strengths of different peak callers together and thus, 

the result of the peaks would be more robust.  

Integrative analyses between ChIP-seq data and other types of genomic assays, such as, 

gene expression require both types of data to be obtained from the same samples in the 

same biological and experimental conditions. ChIP-seq and other next generation 

sequencing data are very expensive to generate and that is why it is not always possible 

to find a single experiment that generates ChIP-seq data along with complementary 

gene expression data. In this thesis the data provided by Nicodeme et al. [2010] which 

includes ChIP-seq data for seven markers obtained at different conditions and also 

microarray data obtained at the same conditions has been used. The models proposed 

in this thesis has applied to analyse these datasets; however it will be interesting to 

apply the learned classifiers to similar kind of datasets to check the robustness of the 

model that includes ChIP-seq data for different combinations proteins, epigenetic 

markers and transcription factors. Projects like ENCODE and other genome projects are 
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producing rich datasets nowadays which will open up the opportunity to do so in the 

future. The ChIP-seq data obtained for the same proteins or markers used in this thesis 

but in different conditions can also be investigated along with complementary gene 

expression data to verify our conclusion.  It will also be very interesting to compare our 

models with existing methods to investigate if the same biological findings can be 

achieved. It will not only validate our models but also will provide confidence for the 

biologists about the result found by the model.  

Four genomic features, namely exon, intron, promoter and distal intergenic have been 

explored in our model, but there are several other important features that have close 

association with the gene regulation. For example, databases now also have annotation 

information on the positions of the exon and intron, such as first exon, first intron etc.   

It has been mentioned in the literature, first exon or first introns have a close 

relationship with gene expression. Therefore, the relationship of those features with 

gene regulation also needs to be investigated. Furthermore, there are other 

classification techniques that can be investigated to check whether the performances of 

those classifiers are better than the classifiers investigated in this thesis.  
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ANN   Artificial neural network  

BED   Browser Extensible Data 

BRD4   Bromodomain-containing protein 4 

BWA   Burrows-Wheeler aligner 

CDK9   Cyclin-dependent kinase 9 

ChIP   Chromatin immunoprecipitation 

ChIP-Seq  ChIP sequencing 

DNA   Deoxyribonucleic acid 

ENCODE  Encyclopaedia of DNA elements 

FDR   False discovery rate 

H3K4me3  Histone H3 lysine 4 tri-methylation 

H4ac   Acetylated Histone H4 

BET   Bromodomain and extra-Terminal motif 

LPS   Lipopolysaccharide 

MRF   Markov Random Field Model 

mRNA   Messenger RNA 

NN   Neural Network 
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RNA PolII  RNA Polymerase II 

RNA PolII S2  subunit of RNA polymerase II 

SAM   Sequence alignment map 

TF   Transcription factor 

TSS   Transcription start site 

UCSC   University of California Santa Cruz 
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This section provides the functions that implements Algorithm 4.3 and 4.4 mentioned 

in Chapter 4 in the method section.  

 

Code: 

**************************************************************************************** 

Given a ChIP-seq count data of any chromosome for a protein, this function models the 

data with the MRF model using the R package enRich and returns the enrichment 

probability result per window estimated by the model 

Input/s 

1. The ChIP-seq count data of a protein 

Output 

1. The enrichment probability result per window for given chromosome 

*************************************************************************************** 

Find_ProbabilityResult_oneChr <- function (countData) 

{ 

 library(enrich) 

countData <- read.table(countData, header = T) 

"Preapare the count data" 

countDataList =list() 

countDataList$region = countData [,1:3] 

countDataList$count = countData [,4] 

"Model the data with mrf function with 2000 iteration and 1000 burnin value" 
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result_mrf= mrf(countDataList, method="NB", 

Niteration=2000, Nburnin=1000, cr=0.05) 

“Generate enrichment probability result per window that are estimated by the model”  

result_mrf_allPP <- data.frame(start = result_mrf 

$data$region$Start, end = result_mrf$data$region$Stop, 

count = result_mrf$data$count, PP = result_mrf$PP) 

 

 

**************************************************************************************** 

Given the path to the directory where all ChIP-seq count data of all chromosomes for a 

protein are stored, this function models each count data with the MRF model and 

returns the enrichment probability per window for all chromosomes together.  

Input/s 

1. Path to the directory where all count data are saved. 

Output 

1. The enrichment probability result per window for all chromosomes together 

************************************************************************************** 

Find_ProbabilityResult <- function(filePath) 

{ 

"Set the path to the directory where count data are saved" 

setwd(filePath) 

"Read the name of the files in the folder and assign them to a variable" 

files = (Sys.glob("*.txt")) 

"Create an empty vector to hold the enriched regions" 

vec = vector() 

"For each file in the variable files do:" 
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for (i in 1:length(files))  

{ 

"Call the function Find_ProbabilityResult_oneChr on each count data" 

enrichmentProb = 

Find_ProbabilityResult_oneChr(files[i]) 

"Save the enrichment probability result in the vector" 

vec = rbind(vec, enrich) 

  } 

"Return the enrichment probability result for all cromosomes" 

vec 

} 

 

**************************************************************************************** 

Given the path to the directory of where TSS information are saved, prefix of the file 

names (up to chromosome number) and the number of chromosomes,  this function 

reads all the TSS information into the R workspace and assign them to appropriate 

variables.  

Input/s 

1. The path to the directory where TSS data are saved 

2. The prefix of the TSS file names  

3. The number of the chromosomes 

Output 

1. Reads the TSS information into the workspace 

*************************************************************************************** 

GetTSSinfo <- function (filePath, fileExt, chrN)  

{ 

for (j in 1:chrN)  
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{ 

tss_file = paste(filePath, fileExt, j,".txt", 

sep="") 

“Read TSS file into the workspace” 

tss <- read.table(tss_file, header=T, sep="\t") 

“Remove the TSSs that have same startsite” 

tss <- tss[!duplicated(tss$mm9.knownGene.txStart),] 

“Create the name of the variable to hold the TSS information” 

tss_chr = paste("tss_chr",j, sep="") 

“Assign the TSS to a variable created above” 

assign(tss_chr, tss) 

} 

} 

*************************************************************************************** 

Given loci of TSSs of any chromosome and the enrichment probability result per fixed 

length window for that chromosome obtained by the MRF model, this function returns a 

matrix with enrichment probability profile around TSS 

Input/s  

1. TSS information of any chromosome 

2. Enrichment probability results for that chromosome, obtained by the MRF model 

Output 

1. Enrichment probability profile around TSS  

*************************************************************************************** 

FindRegionAroundTSS <- function(TSS, enrichProb) 

{ 

“Number of TSS regions” 

len1 = dim(TSS)[1]         
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“Creating empty vectors to hold the probability results around start site”  

TSS_0 = numeric() 

plus1Kb = numeric() 

minus1Kb = numeric() 

plus2Kb = numeric() 

minus2Kb = numeric() 

plus3Kb = numeric() 

minus3Kb = numeric() 

plus4Kb = numeric() 

minus4Kb = numeric() 

plus5Kb = numeric() 

minus5Kb = numeric() 

vec = numeric() 

 

“For each TSS do:” 

for(i in 1:len1) 

{ 

tss_start = TSS$mm9.knownGene.txStart[i] 

“Calculate index/row number from proabability result that matches index of 

transcription start”   

   j = (tss_start%/%200) + 1 

“Assign the probability result for the regions 5KB up and downstream around TSS”  

TSS_0[i] = enrichProb$PP[j] 

plus1Kb[i] = mean(c(enrichProb$PP[j+1], 

enrichProb$PP[j+2], 

enrichProb$PP[j+3],enrichProb$PP[j+4], 

enrichProb$PP[j+5])) 
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minus1Kb[i] = mean(c(enrichProb$PP[j-1], enrichProb$PP[j-

2], enrichProb$PP[j-3],enrichProb$PP[j-4], 

enrichProb$PP[j-5])) 

plus2Kb[i] = mean(c(enrichProb$PP[j+6], 

enrichProb$PP[j+7], 

enrichProb$PP[j+8],enrichProb$PP[j+9], 

enrichProb$PP[j+10])) 

minus2Kb[i] = mean(c(enrichProb$PP[j-6], enrichProb$PP[j-

7], enrichProb$PP[j-8],enrichProb$PP[j-9], 

enrichProb$PP[j-10])) 

plus3Kb[i] = mean(c(enrichProb$PP[j+11], 

enrichProb$PP[j+12], 

enrichProb$PP[j+13],enrichProb$PP[j+14], 

enrichProb$PP[j+15])) 

minus3Kb[i] = mean(c(enrichProb$PP[j-11], 

enrichProb$PP[j-12], enrichProb$PP[j-13],enrichProb$PP[j-

14], enrichProb$PP[j-15])) 

plus4Kb[i] = mean(c(enrichProb$PP[j+16], 

enrichProb$PP[j+17], 

enrichProb$PP[j+18],enrichProb$PP[j+19], 

enrichProb$PP[j+20])) 

minus4Kb[i] = mean(c(enrichProb$PP[j-16], 

enrichProb$PP[j-17], enrichProb$PP[j-18],enrichProb$PP[j-

19], enrichProb$PP[j-20])) 

plus5Kb[i] = mean(c(enrichProb$PP[j+21], 

enrichProb$PP[j+22], 

enrichProb$PP[j+23],enrichProb$PP[j+24], 

enrichProb$PP[j+25])) 

minus5Kb[i] = mean(c(enrichProb$PP[j-21], 

enrichProb$PP[j-22], enrichProb$PP[j-23],enrichProb$PP[j-

24], enrichProb$PP[j-25])) 

} 

“Put the enrichment profile together in a matrix” 

vec = cbind(TSS$mm9.knownGene.txStart,minus5Kb, minus4Kb, 

minus3Kb, minus2Kb, minus1Kb, TSS_0, plus1Kb, plus2Kb, 

plus3Kb, plus4Kb, plus5Kb) 
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“Return matrix with enrichment probability profile around TSS” 

vec 

} 

*************************************************************************************** 

Given the path to the directory where enrichment probabilities (obtained by modelling 

the ChIP-seq data with MRF model) of a number of chromosomes is stored, prefix of the 

name of the file (before the number of the chromosome and the number of 

chromosomes, this function returns a vector that holds enrichment probability profiles 

around TSS for all chromosomes of a protein.  

Input/s 

1. The path to the directory of enrichment probability results   

2. The prefix of the names of files of probability results (before the number of the 

chromosome)  

3. The number of chromosomes 

Output 

1. Enrichment probability profiles around TSS for all chromosomes of a protein  

 *************************************************************************************** 

GetProbabilityProfile <- fucntion(filePath, fileExt, chrN)  

{ 

“Create an empty vector to hold the enrichment probability profile” 

TSSProfileofProtein = c() 

“For each chromosome do:” 

for (j in 1:chrN) 

{ 

“Read the enrichment probability file for chromosome j into the workspace” 

PP_file = paste(filePath, fileExt, j, sep="") 

PP_chr =  read.table(PP_file, header = T) 

chr = paste("tss_chr", j, sep="") 

“Call the function FindRegionAroundTSS on chromosome j” 
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region_tss = findRegionAroundTSS(get(chr), PP_chr )      

“Annotate the enrichment profile with gene symbol” 

region_tss_annotated <- data.frame(region_tss, Genes 

= get(chr)$mm9.kgXref.geneSymbol, chr = 

paste("chr",j,sep="")) 

TSSProfileofProtein = rbind(TSSProfileofProtein, 

region_tss_annotated) 

} 

“Return the enrichment probability profile around TSS” 

TSSProfileofProtein 

} 

 

*************************************************************************************** 

Given enrichment probability profile of all chromosomes of a ChIP-seq data and a list of 

genes, this function returns a matrix that holds enrichment profile around TSS 

associated with the genes provided.  

Input/s 

1. Enrichment profile of a protein around all TSSs   

2. A list of genes 

Output 

1. Enrichment profile around TSS associated with the genes provided 

*************************************************************************************** 

Integrate_Marray_ChIP-seq <- function(TSSProfile, listOfgenes) 

 { 

 TSS_gene <- data.frame(Genes= TSSProfile$Genes, 

 as.is=TRUE) 

“Create an empty matrix  to hold the result” 

  TSSProfileSelected <-matrix(,nrow=0, ncol=1)  

for (j in 1:dim(TSS_gene)[1])  

{ 
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         found <- match(TSS_gene[j,1], listOfgenes[,1]) 

if(!is.na(found)) 

{  

TSSProfileSelected <-rbind(TSSProfileSelected, 

TSS[j,]) 

}   

} 

TSSProfileSelected 

} 

 

*************************************************************************************** 

If there is a list of genes and the enrichment probability profiles of a protein at two 

biological conditions around TSSs associated to those genes are needed to be 

investigated, following codes can be run to create enrichment probability profile around 

selected TSSs for both datasets. Once the profiles are created, it can be studied with the 

gene expression result of those genes.    

*************************************************************************************** 

“Read TSS file into the workspace” 

GetTSSinfo(filePath1, fileExt1, chrN) 

“Create enrichment probability profile for the protein in two conditions” 

Protein_con1 <- getProbabilityProfile(filePath2, fileExt2, 

chrN) 

Protein_con2 <- getProbabilityProfile(filePath3, fileExt3, 

chrN) 

“Create enrichment probability profile for the protein in two conditions for selected 

genes” 

Protein_con1_selected <- Integrate_Marray_ChIP-

seq(Protein_con1, listOfgenes) 

Protein_con2_selected <- Integrate_Marray_ChIP-

seq(Protein_con2, listOfgenes)
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Appendix 2 

 

This section provides the functions that implements Algorithm 5.3 and 5.4 mentioned 

in Chapter 5 in the method section.  

 

Code: 

**************************************************************************************** 

Given a ChIP-seq count data of any chromosome for a protein this function models the 

data with the MRF model using the R package enRich and returns the enriched regions 

found by the model.  

Input/s 

1. The ChIP-seq count data of one chromosome 

Output 

1. The list of the enriched regions  

*************************************************************************************** 

Find_enrichedRegions_oneChr <- function (countData) 

{ 

 library(enrich) 

countData <- read.table(countData, header = T) 

"Format the count data to provide it as input to the model" 

countDataList =list() 

countDataList$region = countData [,1:3] 

countDataList$count = countData [,4] 

"Model the data with mrf function from enRich with 2000 iteration and 1000 burnin" 



Appendix 2 

xii 

 

result_mrf= mrf(countDataList, method="NB", 

Niteration=2000, Nburnin=1000, cr=0.05) 

"Find the enriched regions at 5% FDR" 

enrich_regions = enrich.mrf(result_mrf, 

analysis="separate") 

"Return the enriched regions found by the model" 

enrich_regions$enrich[[1]] 

} 

 

**************************************************************************************** 

Given the path to the directory where ChIP-seq count data for a set of chromosomes of a 

protein are saved, this function models each count data with the MRF model and returns 

the enriched regions of all chromosomes together in a vector.  

Input/s 

1. Path to the directory where the count data of a number of chromosomes are 

saved. 

Output 

1. The list of the enriched regions found in the given chromosomes 

 

************************************************************************************** 

Find_enrichedRegions <- function(filePath) 

{ 

"Set the path to the directory where count data are saved" 

setwd(filePath) 

"Read the name of the files in the folder and assign them to a variable" 

files = (Sys.glob("*.txt")) 
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"Create an empty vector to hold the enriched regions" 

vec = vector() 

"For each file in files do:" 

for (i in 1:length(files))  

{ 

"Call the function Find_boundRegions_oneChr on each count data" 

enrich = Find_boundRegions_oneChr(files[i]) 

"Save the enriched regions in the vector" 

vec = rbind(vec, enrich) 

  } 

"Return the enriched regions found in all the chromosomes together" 

vec 

} 

 

**************************************************************************************** 

Given a list of regions enriched by a protein, a TxDb object where annotation 

information are stored and an annotation package for a particular organism, this 

function annotates the regions with gene symbols and genomic features using the R 

package ChIPseeker. 

Input/s 

1. A list of enriched Regions 

2. TxDb object 

3. An annotation package 

4.  

Output 

1. Enriched regions annotated with gene symbols and genomic feature.  
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*************************************************************************************** 

Annotate_enrichedRegions <- function(enrichedRegions, txDb, 

annoDb) 

{  

library(ChIPseeker) 

"Annotate the enriched regions" 

peakAnno <- annotatePeak(enRichedRegions, TxDb=txdb, 

annoDb=annoDb) 

"Convert the annotation result into appropriate format"  

peakAnno <- as.GRanges(peakAnno) 

peakAnno <- as.data.frame(peakAnno) 

"Return annotated enriched regions" 

peakAnno 

} 

 

*************************************************************************************** 

Given annotated enriched regions of a protein and a genomic feature, this function finds 

the bound regions annotated with gene symbols that fall in the given genomic feature 

and returns the list of those genes. 

Input/s 

1. Annotated bound regions of a protein from ChIP-seq data 

2. A genomic feature 

Output 

1. List of regions enriched by a protein in the given genomic feature 

****************************************************************************************   
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Enrichment_near_feature <- function(Annotation_file, feature) 

{ 

"Read the annotated enriched regions into the workspace" 

anno_file <- read.table(Annotation_file, header=T, 

sep="\t", fill=TRUE) 

"Select the regions that are bound by the given feature"  

anno_file <- anno_file[grep(feature, anno_file$annotation),] 

"Return the name of the genes that are bound by the protein in the feature" 

genes <- data.frame(SYMBOL = anno_file$SYMBOL) 

genes  

} 

 

****************************************************************************************

Given path to the directory that contains annotated enriched regions of number of 

proteins this function writes names of the genes bound by each protein in given 

genomic feature in separate files in a directory. 

Input/s 

1. Path to the directory where all the annotated files are 

2. A genomic feature 

Output 

1. Create files containing the name of the genes that are bound by all proteins in the 

given feature 

 

************************************************************************************ 

Enrichment_nearFeature_all <- function (filePath, feature) { 

"Set the path to the given directory" 
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setwd(filePath) 

"Read the name of the files in the folder and assign them to a variable”  

files = (Sys.glob("*.txt")) 

"Create a new directory to write the results" 

dir.create(feature) 

"For each file in files do:" 

for (i in 1:length(files))  

{ 

"Call function Enrichment_near_feature on each file" 

enrich <- Enrichment_near_feature(files[i], 

feature) 

 "Create file name for the result to be written into. Write the gene names on the file and 

save it to the directory created for this feature" 

         name <- strsplit(files[i], "[.]") 

       fname <- name[[1]][1] 

fname = paste(feature, "\\", fname, "_", feature, 

".txt", sep="") 

write.table(unique(enrich$SYMBOL), fname, 

col.names=TRUE, row.names=FALSE, quote=FALSE, 

sep="\t")        

          } 

} 
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**************************************************************************************** 

Given path to the directory that contains annotated enriched regions of number of 

proteins, a genomic feature and a list of genes, this function returns a biding profile of 

each protein near the feature for those genes 

 Input/s 

1. Path to the directory where all the annotated files are 

2. A genomic feature 

3. A list of genes  

 

Output 

1. The binding profile of each protein near the feature for given genes 

 

*************************************************************************************** 

Feature_profile <- function (filePath, feature, listOfGenes)  

{ 

"Call the function Enrichment_nearFeature_all to create separate files for each 

protein that will contain the name of the genes if the protein is bound to it in the given 

feature" 

Enrichment_nearFeature_all(filePath, feature) 

"Set the directory to a folder created for feature" 

setwd(feature) 

"Read the name of the files into a variable" 

files = (Sys.glob("*.txt")) 

"Create an empty matrix to hold the binding profile" 

profile <- matrix(ncol = length(files), nrow = 

length(listOfGenes$Genes)) 

"Set the name of the genes as index for the matrix" 
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row.names(profile)= listOfGenes$Genes 

"Create an empty vector" 

vec = vector() 

"Set the names of the columns of the matrix" 

"For each file in the folder do:" 

for (i in 1:length(files))  

{  

name <- strsplit(files[i], "[_]") 

cname <- name[[1]][1] 

vec = rbind(vec, cname)  

} 

     colnames(profile)= vec 

"Create the binding profile for each protein saved in the given directory" 

for (i in 1:length(files))  

{ 

"Read the file into the workspace" 

       genes <- read.table(files[i], header = T) 

"For each gene in the listOfgenes do: if the gene is bound by the protein in the feature  

put 1 in the corresponding  cell else put 0" 

       for (j in 1:length(listOfGenes$Genes))  

{ 

found <- match(listOfGenes$Genes[j], 

genes[,1]) 

              if (is.na(found))  
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{                  

 profile[j, i] = 0 

               } 

              else profile[j, i] = 1 

           }   

} 

"Return the binding profile" 

bindingProfile <- as.data.frame(profile, col.names=TRUE, 

row.names=FALSE, quote=FALSE) 

bindingProfile <- data.frame(Genes = listOfGenes$Genes, 

bindingProfile, status = listOfGenes$status) 

  bindingProfile 

} 

 

********************************************************************************** 

Say there are annotated binding regions created for n proteins using the function 

Find_enrichedRegions and Annotate_enrichedRegions. Say, the annotation 

files are in a folder whose full path is assigned to a variable called, filePath. If binding 

profile needs to be created for these proteins for a feature, say “feature1” using a set of 

genes saved in a vector called listOfGenes. The following command can be run to create 

the binding profile.   

*********************************************************************************** 

profile_promoter <- Feature_profile(filePath, "feature1", 

listofGenes) 

 


