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ABSTRACT 
 
A robust numerical algorithm for the simulation of linear water 
wave propagation over uneven bottom topography is developed. 
The solution strategy is based on a highly efficient reduction of 
the 3D problem to a system of partial differential equations by 
means of a consistent coupled mode series expansion for water 
wave propagation over variable seabed. The main feature of the 
proposed series representation is the incorporation of special 
terms in the vertical expansion basis, accounting for the bottom 
boundary condition of the varying seabed. The formulation of the 
2D system follows from the variations, with respect to the 
expansion coefficients (functions of the horizontal plane spatial 
coordinates), of a suitably chosen energy functional. The 
resulting model is a variable coefficient system of second order, 
with respect to the spatial coordinates, Partial Differential 
Equations (PDEs). Linear triangular finite elements are 
employed for the solution of this PDE system offering flexibility in 
the discretization of complex 2D domains. The numerical 
method developed has been applied to several test cases 
yielding accurate representations of the wave field at relatively 
low computational cost and small execution times. 

 
KEY WORDS:  Water Waves; Variable Bathymetry; Coupled 
Mode Systems; Finite Elements; Transient Analysis.  
 
INTRODUCTION 
 

Water wave propagation in complex three dimensional domains, 
characterised by variable seabed topography, is a subject of 
both theoretical and practical significance (Stoker, 1957; 
Dingemans, 1997). In the case of shallow water conditions, 
Boussinesq type approximation models have been established 
and widely used (e.g. Beji & Battjes, 1994; Madsen et al (2006)). 
For intermediate depths however, where the effects of the 
surface gravity wave – seabed interactions (e.g. shoaling) are 
still significant, the aforementioned models are not appropriate. 
A disadvantage of Boussinesq- type approximations is that the 
vertical structure of the wavefield is given by a chosen function, 
hence failing to account for abrupt changes in bathymetry or the 
presence of localised scatterers. Massel (1993) presented an 
extended version of the mild-slope equations, where the vertical 
structure or the wavefield is given by a local-mode series 
representation. However, the standard spectral representation 
for the wave potential is not consistent with the Neumann 
condition on the sloping seabed boundary. In order to remedy 
this inconsistency an enhanced coupled mode series expansion 
for water wave propagation over variable seabed was introduced 
by Belibassakis & Athanassoulis (2006, 2011). The main feature 
of the proposed series representation is the incorporation of 
special terms in the vertical expansion basis, accounting for the 
bottom boundary condition at the varying seabed and the 
boundary condition on the free surface. The particular 
representation of the wave potential has been proven to be 
rapidly convergent and typically only a few modes are sufficient 
to yield very accurate approximations of the three dimensional 
field.  
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In the present work, a robust numerical algorithm for the 
simulation of linear water wave propagation over uneven bottom 
topography is developed. The consistent coupled mode series 
expansion for the wave potential (Belibassakis & Athanassoulis, 
2006; 2011) is adopted. The formulation of the 2D system 
follows from the variations, with respect to the expansion 
coefficients, of Luke’s functional. The resulting model is a 
variable coefficient system of second order, with respect to the 
spatial coordinates, Partial Differential Equations (PDEs). Linear 
triangular finite elements are employed for the solution of this 
system offering flexibility in the discretization of complex 2D 
domains. Nodal unknowns are the velocity potential coefficients 
of the modal expansion series and the free surface elevation. 
Since all derivatives up to second order are present in the 
system differential operator, a nonconforming approach for the 
stiffness integral calculations is adopted. The variable PDE 
coefficients are calculated at the barycentre of each element and 
one point quadrature is adopted. This selection reduces the 
computational cost, while the error introduced by the low order 
integration rule is insignificant for the selected approximation 
order, as the finite element mesh becomes finer. The numerical 
method developed has been applied to several test cases 
yielding accurate representations of the wave field at relatively 
low computational cost and small execution times.  

 
LINEAR GRAVITY WAVE PROPAGATION MODEL 
 
In this section, the linear Cauchy-Poisson problem for water 
wave propagation over variable bathymetry domains will be 
briefly presented. Given a scalar function 2( , ) :b x y    , 

an inviscid, incompressible fluid is assumed to occupy domain 
 

 2( , ) , ( ( , ),0)D x y z b x y      ,                       (1) 

 
Assuming irrotational motion, the velocity vector of the fluid is 
related to the scalar potential ( , , ; ) : (0, ]x y z t D T    as 

 

( , , )T

x y zu u u   ,                                                             (2)  

 
Where, for the temporal variable t ,  it is (0, ]t T , T  . In 

the following, the positive constant g denotes the acceleration of 

gravity.  The initial boundary value problem (IBVP), for linear 
water wave propagation to be considered, is to find the water 
velocity potential 3( , , ; ) : (0, ]x y z t D T    and the water free 

surface elevation ( , ; ) : (0, ]x y t T    such that 

 
0  , in D , for all (0, ]t T ,                                         (3) 

 
0bn   , in   and ( , )z b x y  , for all (0, ]t T ,         (4)                 

 

0g
t




 


, in   and 0z  , for all (0, ]t T  and           (5) 

 

0
t z

 
 

 
, in   and 0z  , for all (0, ]t T ,                (6)           

      
where bn  is the unit normal on ( , )z b x y  . Equation 3 

represents the incompressibility of the fluid and irrotationality of 
the flow. Boundary condition 4 expresses the impermeability of 
the seabed. Eqs. 5 and 6, on the free surface, are the dynamic 
condition, i.e. force balance on the surface, and the fact that this 
is a material surface respectively. 
 

 
Fig 1. Water wave propagation over variable bathymetry 
region. 
 
The above equation and boundary conditions are accompanied 
by appropriate initial conditions of the form 
 

( , , ; 0) ( , , )ox y z t x y z     and                                        (7) 

 
( , , 0) ( , )ox y t x y   .                                                      (8) 

 
In the following analysis the value 0o   will be exclusively 

used, while it will be assumed that 0o   only in the region 

o   . The maximum value of the temporal variable T  will 

be always selected such that 
 

0n   , on ( ( ),0)b   , for all (0, ]t T  and      (9)    

 
0  , on  , for all (0, ]t T ,                                       (10)       
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where n  is the unit normal on the boundary of  . These 

specific selections guarantee that the propagating disturbance 
does not reach the boundary of domain   in the examined time 
interval. Thus the problem considered is actually an 
approximation of the Cauchy problem for linear water waves. In 
the case that   simulates a vertical impermeable obstacle 

(e.g. a vertical cliff), Eq. 9 is still valid while Eq. 10 must be 
substituted by 
 

0  , on  .                                                             (11)   

 
These conditions now express full reflection on the vertical 
boundary if now T  is such that the propagating pulses reach 
 . 

 

 
Fig 2. Initial condition for the free surface elevation. 
 
Finally note that Eqs. 5~6, the conditions at 0z   might be 

combined in a single equation for  , as 
 

2

2
0g

zt

  
 


, in   and 0z  , for all (0, ]t T .         (12)    

 
In the following section, a coupled mode system, equivalent to 
the above system of equations will be presented. The variational 
form of this coupled mode system will be the basis for the 
development of robust Finite elements for the numerical 
simulation of water wave propagation over variable bathymetry 
regions. 
 
THE CONSISTENT COUPLED MODE SYSTEM 
 
In the case of constant bathymetry, i.e. ( , )b x y b const  , the 

velocity potential might be represented in a series form as 
 

1

( , , ; ) ( ) ( , ; )j j

j

x y z t Z z x y t




  ,                                     (13)  

 
For the case of variable bathymetry, following (Belibassakis and 
Athanassoulis, 2006) an expansion of the velocity potential of 
the form 
 

1

( , , ; ) ( ; , ) ( , ; )j j

j

x y z t Z z x y x y t




  ,                               (14)  

 
is introduced.  The subset of vertical modes 

 ( ; , ), 3,4,...nZ z x y n   is obtained by solving a Sturm-Liouville 

problem, formulated at the local vertical interval 

   ,b x z x t   . This set contains both hyperbolic and 

trigonometric functions, dependent both on the local depth  h x  

and the (instantaneous) upper surface elevation  ,x t .  

However, the boundary conditions satisfied by these local 
vertical eigenfunctions are not compatible with the boundary 
conditions of the problem at the bottom surface, if the bottom is 
not horizontal or mildly sloping, and at the upper surface. In 
order to overcome the mild-slope bottom approximation and to 
consistently satisfy the upper-surface boundary conditions, the 
present set has been enhanced by including the two additional 
modes  1 2( ; , ), ( ; , )Z z x y Z z x y   

with unknown amplitudes     1 2, , ,x t x t  . 

The latter are the additional degrees of freedom required for the 
consistent satisfaction of the upper-surface and the sloping-
bottom boundary conditions, respectively. The idea of the 
sloping-bottom mode has been presented by Athanassoulis & 
Belibassakis (1999) for the propagation of linearised waves in 
general bathymetry regions. The latter work has been extended 
to second-order Stokes waves (in the frequency domain) by 
Belibassakis & Athanassoulis (2002), where also the necessity 
of a free-surface additional mode has been discussed for the 
satisfaction of the (second-order) free-surface boundary 
condition. Accordingly, 1( , ; )x y t  is termed the free-surface 

mode, 2 ( , ; )x y t  the slopping bottom mode, 3( , ; )x y t  is the 

propagating mode and ( , ; )j x y t , 4,5,...j   are evanescent 

modes. 
 
Retaining only the free-surface, slopping bottom, the 
propagating and 1m   evanescent nodes, an approximation 

of the wave potential is defined as 
 

2

1

( , , ; ) ( ; , ) ( , ; )
m

j j

j

x y z t Z z x y x y t




  .                                     (15) 
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The governing Consistent Coupled Mode System (CCMS) is 
obtained by introducing expression (15) into Luke’s functional, 
 

 2

1

1 2 2

( , ; ) 21

( , )

( , ) ( , ,..., , )

         2

m

t x y t

t
t b x y

gz dzdxdydt


    







 

   

       
 ,     (16) 

 
considering the variational equations 
 

1 2 2( , ,..., , ) 0mI      ,                                                  (17a) 

 

1 2 2( , ,..., , ) 0
j mI      , 1,2,..., 2j m                            (17b) 

 
and retaining only the linear terms resulting in Eqs. 17. Adopting 
indicial notation with the standard summation convention (and 
dropping the hat from the approximations of  , j   for 

convenience), the CCMS finally reads 
 

2

1

0
m

j

j

g
t









 


 , in  , for all (0, ]t T  and                     (18) 

 

 , ,

( ) , ( ) ,

( , )

     ( , ) ( , ) ( , ) 0

i ij j xx j yy

ij x j x ij y j y ij j

l a x y
t

b x y b x y c x y


 

  


  



  

,              (19) 

in  , for  all (0, ]t T . 

 
where 1il  , 1,2,..., 2i m   and 

 
0

( , )
( , ) ( ; , ) ( ; , )ij i j

b x y
a x y Z z x y Z z x y dz


  ,                         (20a) 

 
0

( ) ,
( , )

,

( , ) 2 ( ; , ) ( ; , )

                 ( ) ( )

ij x i j x
b x y

x i j

b x y Z z x y Z z x y dz

b Z b Z b




  

 ,                  (20b) 

 
0

( ) ,
( , )

,

( , ) 2 ( ; , ) ( ; , )

                 ( ) ( )

ij y i j y
b x y

y i j

b x y Z z x y Z z x y dz

b Z b Z b




  

 ,                  (20c) 

 

 

0

( , )

, , , , , , 0

( , ) ( ; , ) ( ; , )

            .

ij i j
b x y

x j x y j y j z i j z zz b

c x y Z z x y Z z x y dz

b Z b Z Z Z Z





 

         


      (20d)   

 

The derivation and exact form of the local basis jZ , with the 

additional free surface and slopping bottom mode has been 
presented formally and in detail by Belibassakis and 
Athanassoulis (2006). The interested reader is referred to the 
aforementioned study and the references therein. 
         
 
VARIATIONAL FORM OF THE CCMS 
 
Introducing the nondimensional variables 
 

1( , ) ( , )x y B x y , 1/2 1/2t g B t  and                                 (21) 

 
1B  , 1/ 2 3/ 2

j jg B   ,                                             (22)    

 
where ( , )max ( , )x yB b x y , the CCMS may be written (after 

dropping tildes for simplification), in the following 
nondimensional form 
 

2

1

0
m

j

j t









 


 , in B , for all (0, ]Bt T  and                   (23) 

 

 1

, ,

( ) , ( ) ,

( , )

 ( , ) ( , ) ( , ) 0

i ij j xx j yy

ij x j x ij y j y ij j

l B a Bx By
t

b Bx By b Bx By Bc Bx By


 

  


  



   

, 

in B , for all (0, ]Bt T .                                                  (24)    

   
where 1/ 2 1/ 2

BT g B T  and B  is   scaled by a factor of B . 

 
In the following, the standard notation 2 ( )BL  , 1( )BH   will be 

used for the Lebesque square-integrable functions defined in 

B  and the Lebesque square-integrable functions with square-

integrable first derivatives respectively. For every Hilbert space 

W and n , the compound space nW  is defined as 

 

times

.........n

n

W W W W    .                                                  (25)  

 
Multiplying Eq. 23 by 2 ( )Bw L  , Eq. 24 by 1 2( )m

i Bv H   , 

applying the Green-Gauss theorem to the higher order term in 
Eq. (20), using the fact that , 0

Bj k kn    for all 1,2,..., 2j m  , 

,k x y , and assuming sufficient regularity of the unknown 

fields, the variational equivalent of the presented problem is to 
find  , j  such that 

 



Published in the Proceedings of the International Offshore and Polar Engineering Conference 
2016-January (pp.1363-1370) 

 

 

2

1

0
B B

m
j

j

w dxdy w dxdy
t






 



 


  ,                                       

for all 2 ( )Bw L  , a.e. in (0, ]BT  and                                 (26) 

 

1
, ,

( ) , ,   ( ) 0

B B

B B

i i ij i k j k

ij k ij k i j k ij i j

l v dxdy B a v dxdy
t

b a v dxdy B c v dxdy




 



 

 






   

 

 
,         

for all 1 2( )m

i Bv H   , a.e. in (0, ]BT .                               (27)         

   
 
SEMI-DISCRETIZARION WITH LINEAR TRIANGLES 
 
In this section, discretization of the variation form with linear 
triangle Finite Elements (FE) will be performed. Introducing a 
quasi-uniform triangulation Τ  of the domain B  and 

1( )h h

Bu V H   , such that for all KΤ , the restriction of hu  in 

K  satisfies 
 

1( )h

K
u P K ,                                                                  (28) 

 
where 1( )P K  is the set of all polynomials of degree at most one,  

defined in K , the discrete variational form reads 
 

2

1

0
B B

hm
jh h h

j

w dxdy w dxdy
t






 



 


  ,                                  

for all 2 ( )h h

Bw V L   , a.e. in (0, ]T  and                         (29) 

1
, ,

( ) , ,   ( ) 0

B B

B B

h
h h h

i i ij i k j k

h h h h
ij k ij k i j k ij i j

l v dxdy B a v dxdy
t

b a v dxdy B c v dxdy




 



 

 






   

 

 
,       

for all 2 1 2( )h m m

i h Bv V H    , a.e. in (0, ]T .                        (30) 

 
The system unknowns at node r , 1,2,3r   of element K  are 

arranged in a vector rU as 

 

 1 2 1 2, , ,..., , ,
T

r r r r r r
r m m mU        .                                 (31) 

 
Given the considered ansatz, the approximation of the unknown 
fields inside element K  are denoted as 
 

3

1

h
r r

K
r

U L U


 ,                                                              (32) 

 

where, denoting K  the measure of K , the linear shape 

functions are  
 

 1 2 3 3 2 2 3 3 2

1
( , ) ( ) ( ) ( )

2
L x y x y x y y y x x x y

K
      ,    (33a)   

 

 2 3 1 1 3 3 1 1 3

1
( , ) ( ) ( ) ( )

2
L x y x y x y y y x x x y

K
      ,      (33b) 

 

 3 1 2 2 1 1 2 2 1

1
( , ) ( ) ( ) ( )

2
L x y x y x y y y x x x y

K
      ,     (33c)          

 
where ( , )r rx y , 1,2,3r   are the coordinates of the vertices of 

K .  

 
Fig 3. CCM-based Linear Triangle FEM and nodal degrees of 
freedom. One of the three shape functions is plotted. 
 
 
Introducing the compound vector of nodal unknowns 
 

 1 2 3, ,
T

T T T

K U U UU , it is                                                 (34) 

 
h

KK
U  NU ,with  ( 3) (3 9) 1 3 2 3 3 3m m m m mL L L     N I I I , (35) 

 
where 3mI  is the unit matrix of dimension 3m . 

Inserting form (35) into the restriction of the discrete variational 
form (29)-(30) into element K , the matrix element equation 
 

( 3) 10K

K K K m

d

dt
  

U
M Κ U ,                                             (36) 

 
is obtained. In Eq. (36) it is  
 

T

K
K

dxdy M N mN ,                                                       (37a) 
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 x y

Κ N aN N aN

N b N N b N N cN
 ,                  (37b) 

 
where 
 

1 ( 2)

( 2) 1 2

0 m

m m

l
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m
0

, 
1 ( 2)

1
( 2) 1

0 0

0

m

m ijB a
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1 ( 2)

1
( 2) 1 ( ) ,

0 0

0

m

m ij x ij xb B a

 


 

 
  

  
xb , 

1 ( 2)

1
( 2) 1 ( ) ,

0 0

0

m

m ij y ij yb B a

 


 

 
  

  
yb , 

     

1 ( 2)

( 2) 1

1 0

0

m

m ijBc

 

 

 
  
 

c  .  

 
 
IMPLEMENTATION AND TIME INTEGRATION 
 
Implementation issues of the proposed Finite Element (FE) 
scheme and numerical time integration of the resulting system of 
Ordinary Differential Equations (ODEs) will be the subjects of 
this section. 
 
Implementation Issues of the FE scheme 
 
The calculation of the element matrix equation, Eq. (36), 
involves the computation of several surface integrals as dictated 
by Eqs.37. These integrals will be approximated by the 
Gaussian Quadrature of degree 1 as 

 

1
( , ) ( , ) ( , )

2

T
K m m m m m mK x y x y x yM N m N .                   (38a) 

 

 

 

, , , ,

, ,

1
( , ) ( , )

2

1
( , ) ( , ) ( , )

2

1
( , ) ( , ) ( , )

2

T T
K x m m x y m m y

T
m m m m x m m y

T
m m m m m m

K x y x y

K x y x y x y

K x y x y x y

 

 



x y

Κ N a N N a N

N b N b N

N c N

.        (38b) 

 
where 
 

3 3

1 1

1
( , ) ,

3
m m r r

r r

x y x y
 

 
  

 
  , 

 
are the coordinates of the barycenter of K .  
 
Assembly of the element contributions expressed through matrix 
Eq. 36 for all KΤ  yields a system of ODEs of the form 
 

d

dt
 

U
M ΚU 0 .                                                              (39) 

 
Numerical time integration of the above system will be the 
subject of the subsequent paragraph.        
 
Time Integration of the FEM system 
 
For tN   the number of time increments and a constant step 

size /B tT N  , a uniform partition of [0, ]BT  having the form 

 

1 2 10 ...
t tN N Bt t t t T      , 

 
is defined. For the time integration of the ODE system defined in 
Eq. 39, the Crank-Nicolson scheme is adopted. Given the initial 
value 1 (0) ( )h

o o U U U , the solution update is 

 
1

1 1 1

2 2

n n 



    
     
   

U M K M K U ,                                (40) 

 
for 1,2,3,..., tn N . 

 
 
NUMERICAL RESULTS AND DISCUSSION    
 
The CCMS-based 3-node triangle for linear water wave 
propagation in variable bathymetry domains has been 
implemented in MATLAB. In this section, the proposed 
numerical scheme is applied to the simulation of an initial free-
surface disturbance propagation. The initial elevation has the 
form of a Gaussian distribution, i.e. 
 

 2 2 2( , ) exp ( ) mo cx y A f x y    ,                                (41) 

 
inside the domain 2 2

cx y R  , and is zero if 2 2

cx y R  . The 

bathymetry is selected so as to represent a shoaling topography 
with respect to the spatial variable x , uniformly with respect to 

y . The particular form 
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( , ) 4 2 tanh(0.1 ) mb x y x  ,                                            (42) 

 
has been adopted. In that manner, the water depth ranges 
smoothly between the values 2 m  and 6 m . In order for the 

linear theory to apply, we select 0.3 mcA   and thus 

/ 0.3 / 6 0.05 1cA B    . Radius cR  is set to 15cR m  so that 

the non-dimensional diameter of the initial pulse is 30/6=5 a 
value in the intermediate depth range. Finally the value 

2 0.075f   is selected, while the initial value of the velocity 

potential is zero. This value ensures that the initial disturbance is 
practically zero just before 2 2

cx y R  .  

 
 

 
 
 

 
 
 

 
 

 
Fig 4. Snap-shots of the free surface elevation at 
nondimensional time instances 0, 20, 40, 60. The first plot 
corresponds to the selected initial condition. Due to the 
symmetry with respect to the x  axis, the solution domain is 

a subset of the upper half-plane. 
 
The IBVp of the propagating pulse has been solved with a 
sequence of three mesh refinements termed henceforth MESH I, 
MESH II and MESH III. Due to the symmetry of the domain and 
initial condition with respect to the x  axis, only half of it needs to 

be discretized. In this particular example, domain B  is the 

rectangle [ 80, 80] [0, 80]  . The maximum time step used is 

0.5  . MESH I consists of 2736 Triangles and 1435 nodes. 

MESH II contains a total of 10944 Triangles and 5605 nodes. 
Finally, MESH III, has 43.774 elements and 22.153 nodes. 
Solutions with an increasing number of modes have been 
obtained until convergence has been established. A total of five 
to six modes have been found to be adequate for convergence. 
 
Figure 4 presents function   at three different nondimensional 

time instances, namely 1/ 2 1/ 2 0,20,40,60g B t  . The first of these 

values corresponds to the /o B  distribution along B . The 

pulse propagates faster along the positive x  axis, which is to be 

expected since the depth increases towards this direction. 
Towards the opposite direction, the pulse propagation is slower 
and the amplitude of the waveform increases due to shoaling. 
These phenomena are more evident in Figure 5, where the time 
profile of the pulse at three different locations along the x  axis is 

plotter. The first diagram corresponds to the coordinates 
( / , / ) (0,0)x B y B  . The second and third diagrams correspond 

to ( / , / ) ( 15,0)x B y B    and ( / , / ) (15,0)x B y B  , respectively. 

In these coordinates the time profile of the waves generated by 
the propagation of the same initial disturbance over constant 
bathymetry 6mb   are also plotted.  
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Figure 5. Time profile of the wave field at three different 
locations along the x  axis. The solution corresponding to 

propagation over constant depth (6 m) is also plotted. 
 
The effect of shoaling in also depicted in figures 6, 7, 8, 9. In 
Figures 6, 7 the upper surface elevation for nondimensional time 
25 and 50 is plotted. Figures 8 and 9 are the contours of / B , 

corresponding to the upper surface elevation of figure 6 and 
figure 7 respectively. The contours of the same pulse 
propagating over constant depth 6 m is plotted with a gray line. 
These contours are circles due to the axial symmetry of the 
particular problem for constant bathymetry. Lower propagation 
speed in shallower water makes the respective contours for the 
variable bathymetry case distorted. 
 
Figure 10 demonstrates the performance of the present 
numerical procedure. A comparison of the solution quality for the 
three meshes is carried out by comparing the free surface 
elevation time profile at three locations along the x  axis.  

 

 
Fig 6. Upper surface elevation at nondimensional time 25 
and the seabed profile defined by Eq. 41. The upper surface 
elevation is multiplied by a factor of 50. 
 
 

 
Fig 7. Upper surface elevation at nondimensional time 50 
and the seabed profile defined by Eq. 41. The upper surface 
elevation is multiplied by a factor of 50. 
 
The three lines in figure 10, depict the free surface elevation 
time profile at the coordinates ( / , / ) (0,0)x B y B  , 

( / , / ) (15,0)x B y B   and ( / , / ) ( 15,0)x B y B    respectively. 

Each plot contains three curves associated to the solution 
obtained by the triangulations MESH I, MESH II, MESH III. Error 
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reduction is observed when finer discretization is adopted. 
Figure 11 is a plot of the error indicator 
 
Er( / , / )

             max ( / , / ) ( / , / , )

o o

j o o j e o o j

x B y B

x B y Bt x B y B t 




,       (43)   

 
 
 

 
Fig 8. Contour of the upper-surface elevation corresponding 
to figure 6. Isoclines of the free surface elevation in the case 
of constant bathymetry 6 m are also plotted (thin blue line).  
 
 

 
Figure 9. Contour of the upper-surface elevation 
corresponding to figure 7. Isoclines of the free surface 
elevation in the case of constant bathymetry 6 m are also 

plotted (thin blue line). 
 
where e  is a reference solution obtained with a finer mesh 

(MESH IV) consisting of 89190 elements and 45016 nodes. The 
first point in Figure 11 corresponds to a very coarse mesh of 684 
elements and 376 nodes. The other points correspond to 
meshes MESH I, MESH II and MESH III. 
 
The method described can be easily applied to the construction 
of higher order Lagrange Elements for linear water wave 
propagation. It is also worth mentioning that the presented 
procedure constitutes the basis for the development of similar 
techniques for the solution of nonlinear water wave propagation 
problems. 
 
 
CONCLUSIONS 
 
A robust Finite Element procedure for the numerical simulation 
of transient, linear water wave propagation over variable 
bathymetry regions is presented. The method utilises a coupled 
mode system based on an enhanced series expansion of the 
water wave potential introduced by Belibassakis & Athanassoulis 
(2006, 2011). The solution of the weak form of this rapidly 
convergent Coupled Mode System is realised with the Finite 
Element Method. Linear triangles are employed and time 
integration of the resulting system of ordinary differential 
equations is performed by means of the Crank-Nicolson 
scheme. The proposed solution strategy is applied to the study 
of the propagation of an initial disturbance at the free surface. 
The good performance of the method is demonstrated and the 
transient motion of the free surface interacting with shoaling 
seabed topography is analysed.  
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Fig 10. Performance of the FEM solution at three different 

nodes for quasi-unifrom mesh refinement.  
 
 
 

 
Fig 11. Plot of the error indicator Er  at three different nodes 
for quasi-uniform mesh refinement, as a function of the 
number of elements employed.  
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