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Abstract—This paper presents a new chromosomal representation and associated genetic 

operators for the evolution of highly nonlinear cellular automata that generate 

pseudorandom number sequences with desirable properties ensured. This chromosomal 

representation reduces the computational complexity of genetic operators to evolve valid 

solutions while facilitating fitness evaluation based on the DIEHARD statistical tests.  

 

Index Terms— cellular automata, random number generation, incremental evolution. 

 

I. INTRODUCTION 

The theory for cellular automata (CA) based pseudorandom number generators (PRNG) 

is well developed [1,2] and n -bit linear CA can be designed to generate sequences with 

desirable properties: maximum period 2 1np = − , uniform distribution of n-bit tuples and 

balanced distribution of ‘1’ and ‘0’. These so-called m-sequences cannot be used directly 

due to their linear structure while the theory for nonlinear CA are less developed since it 



 

is difficult to ensure desirable sequence properties [8]. For cryptographic applications, a 

nonlinear Boolean function must be applied to destroy the linearity within these m-

sequences. The Boolean functions used must possess high nonlinearity, high algebraic 

degree, correlation-immunity etc [8]. Cryptographic Boolean functions are usually very 

complex and large. Recently, heuristic methods have been gaining popularity in the 

search for such Boolean functions [6]. In this paper, we evolve nonlinear CA by viewing 

the linear CA and nonlinear Boolean function as a single entity. 

 

In another direction, researchers focused on a variety of genetic algorithm (GA) based 

techniques to improve the randomness quality of CA generated sequences – typically 

verified though empirical testing with the DIEHARD statistical test suite [7]. The cellular 

programming approach [3] is used to evolve the linear transformation function of 

individual registers in the CA so that the generated sequences pass all 19 DIEHARD test 

results. In [4], the above approach is extended to consider nonlinear functions with up to 

five inputs. In [5], multi-objective genetic algorithm is used for evolving the minimum 

cost CA to pass all 19 DIEHARD tests. Due to complex CA models evolved, it is 

generally difficult to apply analysis to properties such as period length for these CA 

designs.  

 

Approaches combining GA and CA have shown tremendous potential in various 

disciplines [12,13]. In our context, CA based PRNG that pass DIEHARD have been 

successfully evolved via GA [3-5]. However, such GA derived solutions currently lack 



 

the theoretical support possessed by the m-sequences generated by linear CA. Our 

objectives thus follow:  

i) to provide an efficient chromosomal representation and genetic operators that 

ensure evolved solutions have desirable sequence properties: long period, balanced  

distribution of ‘1’ and ‘0’, uniform distribution of n-bit output, 

ii) to evolve solutions that pass all 19 DIEHARD tests. 

 

II. CELLULAR AUTOMATA 

An -bitn  CA is an array of n binary registers whose state at time ( )t  can be denoted by 

( ) ( ) ( ) ( )
1 2 0[ , , , ]'t t t t

n nS s s s− −= …  (see Fig. 1). Each CA register si has a transformation function 

fi(.) to compute its next state, i.e. ( ) ( )
2 3 1

t t
f s s= ⊕  in Fig. 1. The CA can be equivalently 

viewed as a vector Boolean function 1 2 0[ (.), (.), , (.)] 'n nF f f f− −≡ �  which maps the 

current CA state to the next state, i.e. ( 1) ( )( )t t
S F S

+ = . In Fig. 1, if ( ) [1,1,1,1]'t
S = , we 

have ( 1) [0,0,1,0]'t
S

+ = . The states of a CA during each discrete time step can be 

successively sampled to form a pseudorandom n-bit word sequence (0) (1) (2){ , , , }S S S … . 

 

 

 

 

 

 

Fig. 1. A 4-bit linear CA using only XOR gates 
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A symmetric neighborhood is often used to denote the surrounding CA registers that can 

be used as inputs for each register. For example, with neighborhood radius r=1, the CA 

in Fig. 1 has ( ) ( ) ( ) ( )
1 1( , , ),  0 1t t t t

i i i i is f s s s i n− += ≤ ≤ − . We only consider CA with null 

boundary conditions where the leftmost/rightmost registers’ function receive a fixed "0"  

input from its “supposed” left/right neighbors respectively, i.e. ( ) ( ) ( )
0 0 0 1( , )t t t

is f s s +=  and 

( ) ( ) ( )
1 1 2 1( , )t t t

n n n ns f s s− − − −= . Null boundary conditions avoid long connection wires routing 

across the whole length of the CA when periodic boundary conditions are used 

 

Denote 
( )t

S  as the n-bit output from the CA at time (t). Consider the sequence 

(1) (2) (2 1)
{ , , , }

n

S S S
−

…  where each unique n-bit 
( )t

S  appears exactly once. It is clear that 

there are (2 1)!n −  such sequences that can be generated - these include both the linear m-

sequences generated by CA as well as nonlinear sequences (generated by a system with 

nonlinear functions). Ideally, these sequences should form the complete search space for 

genetic algorithms to locate solutions that pass all DIEHARD tests. However, in previous 

approaches [3-5], solutions are not searched specifically within this solution space due to 

the chromosomal representation used.  

 

In [3-5], the chromosomal representation used for evolving CA-based PRNG [3-5] is the 

concatenated binary string containing the truth tables of each CA registers’ 

transformation functions 1 2 0[ (.), (.), , (.)] 'n nF f f f− −≡ � . These individual functions fi(.) 

are constrained to use r=1 neighborhood. This means only 
122

r+
 functions can be 



 

represented by this truth table. This reduces the size of the chromosome (concatenated 

truth tables) to 12r
n

+⋅  bits and the evolutionary search space is focused on CA candidates 

with simple local inter-connections. There are also some works that extends this 

neighboring radius r to 5 so that a larger search space can be exploited [4]. Nevertheless, 

it is possible to evolve CA that passes all DIEHARD tests as shown in prior work, but if 

desirable sequence properties are required, the present chromosomal representation is not 

appropriate. Information about the sequence properties is not readily present in the truth 

table. In the following section, we introduce a more appropriate chromosomal 

representation that avoids the decision for the constraint r. 

 

III. THE GENETIC ALGORITHM 

A variety of heuristic methods, including genetic algorithm, simulated annealing, hill 

climbing etc., has been examined [6] to search for Boolean functions satisfying several 

desirable cryptographic properties. The evolved functions located possess properties 

which compares favorably with functions built from analytical approaches [10].  

 

A. Chromosomal Representation 

All n-input Boolean functions can be represented by two commonly used chromosomal 

representations: truth table representation (TTR) and algebraic normal form 

representation (ANFR) [9]. The TTR is simply the column vector for the truth table 

output over all possible inputs in lexicographical order. The ANFR is defined as the 

vector of coefficients from the algebraic normal form (XOR sum of AND terms) of the 



 

Boolean function [8]. Both representations use 2n  bits for an n-input Boolean function 

and an efficient transform between these two representations is given in [9].  

 

The TTR is popular with researchers on evolution design of Boolean functions [9] and 

CA [3-5] as it is intuitive and direct. The balanced-ness [8] of the Boolean function can 

also be easily computed from the TTR. The ANFR is suitable for studying the structure 

of the Boolean function in terms of the XOR and AND logic involved. The algebraic 

degree can be easily read from the ANFR.  

 

There is no clear way to determine the period for generated sequences from both TTR 

and ANFR. Furthermore, it is difficult to apply the common crossover and mutation 

operators on both the TTR and ANFR without losing any of the desired sequence 

properties. Each newly generated child chromosome has to be checked and discarded if 

violations occur. This is clearly very inefficient. On the other hand, it is also unclear how 

to design a new genetic operator that will work with the TTR and ANFR that will ensure 

child chromosomes automatically possess the desired sequence properties. 

 

The maximum length property implies the overall set of n  Boolean functions 

1 2 0[ (.), (.), , (.)] 'n nF f f f− −≡ �  must be considered simultaneously but both TTR and 

ANFR work only on a single Boolean function (.)if . Since we want all possible n-bit 

tuples in a single period, the proposed transition representation (TR) is simply the 

generated sequence itself, denoted as  (1) (2) (2 1)[ , ,..., ]
n

S S S − . Each gene ( )t
S  is the decimal 

equivalent of the corresponding CA output at time (t). As long as each 



 

( ) {1, 2,..., 2 1}t nS ∈ −   appears exactly once in the chromosomal representation, the 

following desirable properties are ensured: maximum period 2 1np = − , uniform 

distribution of n-bit tuples and balanced distribution of ‘1’ and ‘0’. (The actual CA 

implementation that generates the sequence can be obtained by a transform from the TR 

to the ANFR [9].) 

 

The TR allows efficient initialization of the starting population of chromosomes. We first 

create a chromosome using a known linear CA that generates an m-sequence (this can be 

a simple counter that starts from 1 to 2 1n − ). This guarantees a valid chromosome and 

genetic operations can be applied on this chromosome to further breed the entire starting 

population of valid chromosomes. For efficiency in ensuring child chromosomes are 

valid, all genetic operations must work with the natural boundaries set by the n-bit genes. 

In other words, each n-bit gene is the smallest unit that can be manipulated by the genetic 

operators. The following replacement-swapping operator ensures that all evolved 

sequences retain the desirable sequence properties.     

    

B. The New Genetic Operator - Replacement-Swapping 

The popular crossover operator is used to produce child chromosomes using blocks of 

genes from two parents. Crossover is essentially a global search operator and its 

usefulness is widely debated [11] and can be very problem-specific. Using ordinary 

crossover directly with TR will (with very high probability) result in an invalid child 

chromosome. To create a child that is very similar to two parents, a new operator 

replacement-swapping is suggested in Fig. 2. The child is a near-duplicate of the higher-



 

fitness parent-A except the following: ρ  consecutive genes are replaced using the 

weaker parent-B’s genes and ρ  genes distributed within the parent-A are also swapped 

at the same time. These coordinated replacement and swapping operations ensures that all 

desirable sequence properties are retained. 

 

 

 

 

 

Fig. 2. The replacement-swapping operator 

 

Fig. 3 shows an example of how the replacement-swapping operator is used to achieve 

the “crossover” effect. Based on a 4-bit CA, each ( ) {1,2,...,15}tS ∈  and we use a random 

starting point i=3 with 5ρ = . Genes in bold represent changes made to the child 

chromosome.  

 

parent_A 3 15 1 7 14 5 6 13 8 9 11 10 2 4 12  

parent_B 1 7 3 4 12 6 2 8 9 15 11 10 13 14 8  

                 

child 3 15 1 7 14 5 6 13 8 9 11 10 2 4 12 Step 1 

child 1 15 3 7 14 5 6 13 8 9 11 10 2 4 12 Step 2 

child 1 15 3 4 14 5 6 13 8 9 11 10 2 7 12 Step 3 

child 1 15 3 4 12 5 6 13 8 9 11 10 2 7 14 Step 4 

child 1 15 3 4 12 6 2 13 8 9 11 10 2 7 14 Step 5 

child 1 15 3 4 12 6 2 13 8 9 11 10 2 7 14 Step 6 

Fig. 3. Replacement-swapping for chromosomes of a 4-bit CA 

 

Initialize child = parent-A (parent-A’s fitness higher than parent-B) 

Randomly select a starting point [0, 2 1]ni ∈ −  and the range ρ  of genes  

For each mod 2nj i ρ= + ,  

Child S
(j)

 = parent-B S
(j)

   // replace operation 

Child S
(k)

 = parent-A S
(j)

  // swap operation, (k is the prior position of Child S
(j)

) 

End 

 



 

Without a local search mechanism, a GA search is likened to the randomized search and 

an optimum can be difficult to locate. The mutation operator performs local search 

around the best performing solutions during evolution by “flipping” bits in the 

chromosome according to the mutation probability mp . Here, any changes must be made 

in pairs such that all n -bit states remain distinct in order to avoid violating the maximum 

length property. The easiest way is to use still the replacement-swapping operator. 

Crossover’s global search effect is achieved by using a block version of replacement-

swapping while mutation’s local search effect is achieved by using a point version of 

replacement-swapping, i.e. use 1ρ =  as shown in Fig. 2 and only one gene is 

replaced/swapped.  

 

C. Fitness Functions 

A useful fitness function allows different chromosomes to be compared in a manner 

which clearly distinguishes the best solution from others. Since the randomness quality of 

the generated sequence is the most important empirical objective to be measured, the 

number of DIEHARD tests [7] passed is used as the fitness function. We call the 

chromosome passing 19 DIEHARD tests as a solution. In our context, there will be 

multiple solutions, so that these solutions can be further differentiated in terms of 

secondary objectives such as total gate count required for the CA. 

 

A suitable chromosomal representation facilitates the efficient evaluation of 

chromosomes’ fitness.  The evaluation of different objectives requires the transformation 

from one representation to another; this process is facilitated by efficient algorithms 



 

given in [9]. For example, the TR allows direct DIEHARD evaluation – the TR itself is 

the sequence to be tested by DIEHARD, the TTR facilitate the derivation of the 

function’s nonlinearity and the ANFR gives the implementation details of the CA and 

simplifies the calculation of the CA’s gate count.  

 

IV. EXPERIMENTAL RESULTS 

In this first series of experiments, the objective is to verify that the proposed 

chromosomal representation allows CA solutions that pass all DIEHARD tests to be 

located. DIEHARD testing requires a 10M byte sequence and experiments are conducted 

for the 24-bit CA which generates the sequence of period 242 10M byte> . The following 

simple GA evolution strategy is used:  

1) Create an initial population of 10 chromosomes and set the maximum of 

evolutions to 50. 

2) The crossover range is a decreasing function of the evolution no. 

162 / evolution no.ρ  =     while 0.1mp =  for each gene. 

3) After each individual’s fitness is evaluated using DIEHARD [7], the top five 

individuals are retained and five new individuals (child) are created for the next 

evolution. To create each child, a random pair of parents is selected from the 

retained individuals.   

 

We repeat the above procedure using 10 different initial populations and there is only one 

occurrence where the final evolved population does not contain a CA that passes all 19 



 

DIEHARD tests (although it eventually did after re-running the experiment beyond 50 

evolutions).  

 

In continuing experiments, it is observed that the number of evolutions required to locate 

an individual passing all DIEHARD tests is slightly dependent on the crossover range 

and mutation probability. We noticed that changing the crossover range has a more 

pronounced effect on the required evolutions. This can be explained from the definition 

of the replacement-swapping operation to create crossover. Besides each continuous 

block of ρ  genes to be swapped, there is a corresponding set of ρ  genes which are 

modified and the positions of these genes are randomly distributed throughout the 

chromosome. Here, the crossover effect is not standalone and inherently includes 

mutation.  

 

One disadvantage of the TR is that memory requirements for the GA evolution 

simulation program is very high. In general, TR requires 2n
n ⋅  bits to represent a single 

chromosome while the representation used in [3-5] requires only 12r
n

+⋅  bits. For the 24-

bit CA used, each chromosome requires approximately 2424 2⋅  bits or 384Mb of RAM. 

A Pentium IV 2.4Ghz with 1G memory was used for the experiments and each evolution 

took an average of 60 minutes to complete (the initial evolutions took longer since ρ  is 

larger). 

 



 

V. CONCLUSION 

We have shown that through explicit knowledge and problem formulation, the 

chromosomal representation is an effective tool to demarcate the solution space 

efficiently. More specifically, the proposed transition representation, together with the 

replacement-swapping operation, facilitates the use of genetic algorithms to evolve CA 

that passes all DIEHARD tests. All evolved CA are ensured of desirable sequence 

properties because of the solution space encoded by the transition representation. This 

new representation offers an alternative to the popular truth table representation that is 

dominantly used in previous work. It allows the investigation of nonlinear sequences that 

have guaranteed desirable sequence properties. The truth table and algebraic normal form 

representations are also important intermediate steps for determining other fitness 

objectives such as nonlinearity, gate count, etc. As such, multi-objective GA can be 

considered for the further work.  
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