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For the first time, experimental evidence is presented for the occurrence of a eutectic reaction in dilute Al-Zr al-
loys solidified at cooling rates from 0.5 to 5 K/s. Particles which formed at grain boundaries during solidification
were confirmed by electron diffraction analysis to be the equilibrium tetragonal DO23 Al3Zr phase. Differential
thermal analysis showed a thermal arrest at 658–659 °C, i.e. below the melting point of pure Al, which indicated
the presence of a eutectic reaction.
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Zirconium is added to aluminium alloys for several purposes: to pre-
vent or control recrystallization [1], to enhance mechanical properties
and thermal stability while retaining electrical conductivity [2], and to
control grain size during solidification [3]. In the first two cases, super-
saturation of the Al solid solution is achieved during solidification and
the metastable L12 Al3Zr phase precipitates during annealing, pinning
dislocations and subgrain boundaries [1]. In the last case, primary crys-
tals of the equilibrium Al3Zr phase act as nucleating substrates for Al
grains [4]. Non-equilibrium solidification of Al-rich Al-Zr alloys typically
results in either formation of a supersaturated solid solution of Zr in Al
or the formation of the metastable Al3Zr phase [5]. When designing al-
loys for these applications, rather small concentrations of Zr are used,
typically below 0.2 wt%; and the peritectic reaction in the Al corner of
the Al–Zr binary phase diagram is assumed: L + Al3Zr → (Al) at
661 °C [6] with the peritectic point at 0.28wt% Zr and themaximum liq-
uid solubility of Zr in (Al) 0.11 wt% at 661 °C [7]. However, most of the
work on the equilibria in the Al corner of the Al-Zr phase diagram has
been done by assessment rather than by direct measurements [6].

In this studywe present for the first time experimental evidence of a
probable eutectic reaction occurring in the Al corner of the Al-Zr system,
instead of the conventionally accepted peritectic reaction.
. This is an open access article
Evidence for a eutectic-type reaction arose during work to study the
solidification microstructures of Al–Zr alloys, containing 0.1, 0.15, 0.3,
0.4, and 0.5 wt% Zr. These alloys weremade by the UK group in a graph-
ite crucible and electric resistance furnace using 99.99% pure Al and an
Al–10wt% Zrmaster alloy. Themaster alloywas added to themolten al-
uminium at 900 °C and the melt was isothermally held for 1 h with in-
termittent stirring before solidifying either in a graphite crucible in air
(1 K/s) or by pouring into a copper wedge mould preheated to 500 °C,
enabling a range of cooling rates from 3 to 12 K/s, as recorded by K-
type thermocouples. Metallographic samples were cut from the bottom
parts of the castings, ground and polished using standard techniques
and examined in scanning (SEM, Zeiss SUPRA35V) and transmission
(TEM, JEOL 2100) electronmicroscopes. Four foil samples approximate-
ly 80 to 90 nm-thick were also prepared by focused ion beam (FIB, FEI
Helios 660) from the areas of interest and used for phase identification
by TEM. In addition, deep etching of some sampleswithNaOHwater so-
lutionwas performed to remove the Almatrix, thereby revealing the 3D
morphology of the intermetallic particles.

In addition, alloys containing 0.4 and 1 wt% Zr were prepared inde-
pendently by the Russian group using 99.99% pure Al and 99.99% pure
Zr at 1000 °C, allowing formelt homogenisation for 2 h before solidifica-
tion in a graphite crucible in air. Samples from the casting were cut and
used for metallographic and differential thermal analysis (DTA/DSC
Labsys Setaram). Prior to the measurements, the apparatus was cali-
brated using high-purity metal standards (99.999% Pb, 99.99% Al,
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Secondary electron images of grain-boundary particles formed during solidification in Al–0.4 wt% Zr alloys at a cooling rate of 5 K/s (a) and 1 K/s (b–d): a, b, general view; c, higher
magnification of grain boundary particles; and d, deep etching of the matrix.
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99.99% Cu, 99.99% Ag). Using reproducibility of the calibration data, the
instrumental error of temperature measurements was estimated as
±0.04 K. The samples for these measurements were kept in closed
Al2O3 crucibles under a continuous 99.995% Ar flow, which was addi-
tionally filtered for oxygen. Before the experiments, the DTA/DSC appa-
ratuswas pumped out to 10−5 atm and flushedwith Ar three times. The
heating/cooling rates for calibration and experiments were 5, 1 and
0.5 K/min. Experiments with an empty crucible or pure 99.99% Al as a
reference sample were conducted. The heating curves were used to de-
termine the solidus temperatures of the samples at different heating
rates as recommended by the DTA guidelines [8].

Metallographic examination of the studied samples reliably revealed
the presence of fine intermetallics at dendritic grain boundaries in all
samples containing more than 0.15% Zr and solidified at cooling rates
below 5 K/s. No intermetallic phases were found at lower Zr concentra-
tions and at higher cooling rates (apparently due to the well-known
phenomenon of supersaturation of the Al solid solution with Zr [1]). It
is interesting to note that, on decreasing the cooling rate from 5 to
1 K/s, first the intermetallics at grain boundaries appeared and then
theprimary crystalswere formed in addition to the grain-boundary par-
ticles as illustrated in Fig. 1a & b. These primary crystals are formed at
hyper-eutectic compositions and have been observed in all the studied
alloys containing more than 0.15% Zr, which places the eutectic
Fig. 2. (a) STEM image of intermetallic particles along the grain boundary; and EDS
composition somewhere around 0.12–0.15% Zr (similar to the composi-
tion abovewhich the primary intermetallics have been usually observed
in this system). The fact that the primary particles do not always appear
at higher cooling rates is also a well-known experimental fact for these
alloys. The eutectic structure is, however, less affected by the cooling
rate and has been always observed in the range of cooling rates 1 to
5 K/s.

At a higher magnification, one can resolve very fine (micron and
submicron size) particles with a button shape (Figs. 1c and 2a), while
deep etching revealed that these particles form a continuous network
at grain boundaries (Fig. 1d). The alloys prepared for DTA analysis
showed similar microstructures.

The identification of the submicron particles at grain-boundary was
performed using energy dispersive X-ray spectroscopy (EDS) spectrum
imaging (Fig. 2) in combination with selected-area electron diffraction
(SAED) analysis (Fig. 3) in the TEM at 200 kV. EDS maps extracted
from the spectrum image datasets (Fig. 2) clearly show that theparticles
contain the elements Al and Zr. The selected-area diffraction patterns
(Fig. 3) obtained at different beamdirections for each particlewere con-
sistently indexed as tetragonal DO23 Al3Zr particles and themeasured d-
spacing, interplanar angles and angles between beam directions agree
well with published values of tetragonal DO23 Al3Zr [7,9]. Both the
EDS data and electron diffraction analyses confirmed that these
maps showing the elemental distribution of (b) Al and (c) Zr in the particles.



Fig. 3. (a) TEM-BF image of a typical intermetallic particle at a grain boundary; (b), (c), and (d) SAEDpatterns obtained from the intermetallic particle and indexed as tetragonal DO23 Al3Zr
with beam directions (BDs): (b) [1 0 0]; (c) [1 1 0] and (d) [12 0 1].
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particles are the equilibrium tetragonal (DO23) Al3Zr particles. The fac-
eted shape of these particles is typical of an irregular eutectic [10]. It is
necessary to mention that 40 particles were analysed in total, with re-
producible and consistent results.

The clear metallographic evidence of the formation of intermetallic
particles of the equilibrium phase at grain boundaries during solidifica-
tion, in a system that is accepted as a peritectic, needs adequate expla-
nation. Various non-equilibrium effects during solidification in a
peritectic systemmay result in the appearance of intermetallic particles
at grain boundaries. During solidification, primary intermetallic parti-
cles may form in a range of sizes with the larger ones acting as sub-
strates for the aluminium solid solution, while the smaller ones are
pushed to the grain boundaries [11]. Another scenario is the so-called
banding cycle of peritectic transformation [12], which may result in
the formation of intermetallics at the periphery of the aluminium solid
solution. These possibilities can be, however, dismissed due to the fol-
lowing results of our DTA analysis that clearly suggest a eutectic type
of solidification reaction between Al and Al3Zr.

Table 1 gives a summary of DTA measurements for the Al–1 wt% Zr
with an empty ceramic crucible as a reference sample. The Al–Zr and
Al columns show melting points for the corresponding materials at
the given heating rates. These results show that the Al–1 wt% Zr alloy
has a lower melting temperature than pure Al (660.3 °C as measured
during calibration), which suggests that the reaction in the Al-rich re-
gion is of the eutectic type.

Similar results were obtained in the DTA experiment with Al-Zr al-
loys, where pure Al was taken as a reference sample.

Fig. 4 shows that the Al–1 wt% Zr melting process results in a nega-
tive peakwith the onset at 658.5 °C,which is followed by a positive peak
caused by the melting of the pure Al sample. The opposite direction of
peaks in this curve is a result of superposition of two melting events
in different sample holders situated at the opposite sides of the detector
(similar to the technique used by Janghorban et al. [14]). The Al–Zr
solidus temperature obtained in this experiment corresponds to the
Table 1
DTA results for the Al–1 wt% Zr alloy.

Heating rate, K/min Melting point, °C

5 658.5
1 658.5
0.5 659.1
values in Table 1. The DTA results for the Al–0.4 wt% Zr alloy showed
the same thermal arrests as the Al–1 wt% Zr alloy.

It is worth noting at this point that there have been earlier reports
contradicting the peritectic nature of the solidification in the Al-rich al-
loys. Different authors from different laboratories have, at different
times, reported a lower temperature for this reaction, i.e. 655 °C in the
USA, 1954 [13] and 656± 2 °C in France, 2013 [14], which implies a eu-
tectic reaction, i.e. L→ (Al) + Al3Zr. These reports have been dismissed
by others as not complying with the thermodynamic modelling of the
system. It is important to mention that no metallographic evidence of
a eutectic reaction in this system has been reported until now.

The presented results raise a serious concern regarding the validity
of the accepted version of the Al–Zr phase diagram. The observed effects
may still be of a non-equilibrium nature. For example the difference in
the low temperature thermal arrests reported in [13,14] and in our
work may reflect the effect of cooling conditions on the reaction tem-
perature. In any way, the observed temperature effects and structures
point to the replacement of the peritectic reactionwith the eutectic one.

At the moment the nature and stability of the eutectic reaction and
phase equilibria are still under detailed experimental investigation. As
experimentalists, the UK and Russian groups worked independently
Fig. 4. Heating curve for the DTA experiment with the Al–1 wt% Zr alloy, with Al as a
reference sample.
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and came together as co-authors aswe realised that our separate exper-
imental observations were complementary. We are publishing now to
encourage others to reproduce our results.
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