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Abstract 

In the last two decades, energy is becoming one of the main issues in the manufacturing 

industry as it contributes substantially to production cost, CO2 emissions, and other 

destructive environmental impact. Due to rising energy costs, environmental concerns and 

stringent regulations, manufacturing is increasingly driven towards sustainable 

manufacturing which needs to address the associated environmental, social and economic 

aspects simultaneously. One common approach is to achieve sustainability and to 

implement energy-resource efficient production management systems that enable 

optimisation of energy consumption and resource utilisation in the production system. 

However, by reducing energy consumption, the product quality and production cost may 

be compromised. To remain competitive in the dynamic environment, the energy-efficient 

management system should not only concern energy consumption but also maintain 

product quality and production efficiency. 

This thesis presents a development of the Energy-smart Production Management (e-

ProMan) system which provides a systematic, virtual simulation that integrates 

manufacturing data relating to thermal effect and correlation analysis between energy flow, 

work flow and data flow for the heating, ventilation and air conditioning (HVAC) system 

and production process. First, the e-ProMan system comprises of the multidimensional 

analysis between energy flow, work flow and data flow. The results showed that the 

product quality is significantly affected by ambient temperature in CNC precision 

machining. Product quality appears to be improved at lower temperatures. This research 

highlights the significance of ambient temperature in sustainable precision machining.  

Second, the simulation experiment was modelled at the production process due to it being 

the main source of energy consumption in manufacturing. An up-hill workload scenario 

was found to be the most energy and cost-efficient production processes. In other words, 

energy consumption, CO2 emission and total manufacturing cost could be reduced when 

workload capacity and operating machine increase incrementally. Moreover, the e-ProMan 

system was modelled and simulated using the weather forecast and real-time ambient 

temperature to reduce energy consumption of the HVAC system. The e-ProMan system 

results in less energy consumption compared to the fuzzy control system. To conclude, the 

e-ProMan demonstrates energy efficiency at all relevant levels in the manufacturing: 

machine, process and plant. For the future research, the e-ProMan system needs to be 

applied and validated in actual manufacturing environments.   
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

Over the last decades, energy has played a crucial role in the development of the world with 

fossil fuels being the main energy sources. While energy is the significant input to the global 

economic growth, the world’s total energy consumption is becoming an increasingly serious 

issue. As the economy is growing, energy demands also increases with improvements in 

standards of living. Depicted in Figure 1.1, the International Energy Agency estimated a rise 

of 7% per annum in the total energy consumption (International Energy Agency Statistics, 

2012a /2012b). This would result in a rise of global CO2 emission from 28 to 41 gigatons (Gt) 

by 2035. Electricity and heat are regarded as the largest producers of the total CO2 emissions, 

thus suggesting immediate actions toward reduction of electricity and heat consumption. 

 

Figure 1.1. The World energy consumption trends 

 (International Energy Agency Statistics, 2012b) 

The new economy has driven the manufacturing industry to operate in a highly competitive 

environment with growing pressure to reduce the world carbon footprint. Not only has the 

industry accounted for the largest percentage of the world’s total energy consumption, but it is 

also responsible for the significant proportion of the world CO2 emissions which has doubled 

in the last 60 years (Carbon Trust, 2008a/2008b). The extensive world CO2 emissions have 

greatly affected the global warming, causing threatening environmental issues such as 
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intensity of hurricanes, spread of diseases in quicker rates, changes in ecosystems and rise in 

sea levels (Bose, 2010). The destructive environmental impact has introduced economic, 

technical, social and political challenges in the ways in which energy resources are utilised 

and managed. Consequently, the current environmental concerns have driven the 

manufacturing industry towards sustainability, thereby contributing to environment, economy 

and society (Geretti and Taisch, 2012; Giret et al., 2015).  

Research on energy and resource efficiency in manufacturing has expanded in the last decade 

(Duflou et al., 2012). Attempts have been made to develop a better understanding of 

sustainable manufacturing in order to respond to more restricted regulations, higher demands 

for high quality and environmentally friendly products, and scarcity of energy resources 

(Allwood & Cullen, 2012). Efforts to develop and implement a more effective energy 

management system in manufacturing have been internationally recognised in various areas 

including law, standards, technology, benchmarking, energy costs and organisation and 

operations (Javied et al., 2015). According to the current standards, ISO 50001 energy 

management system, for sustainable manufacturing, energy-efficient system should be 

implemented and controlled through a systematic and continuous approach to ensure 

sustainability and efficiency (ISO, 2016).  

Any systems that can accurately predict energy consumption is beneficial to the overall energy 

management system as it optimises the operation and improves the control systems. More 

importantly, minimising energy usage through energy and resource efficient management 

system is not only necessary for environmental development but also essential for gaining 

competitive advantages and performance outcome. In essence, one way to succeed in the 

current market is to deliver energy and resource efficient performance through optimisation of 

manufacturing systems and processes (Rentsch, 2015).   

In manufacturing, electrical energy is the main energy used for equipment and machines. 

Machine tools can generate 70% of the total CO2 emissions during the use phase (Diaz et al., 

2010). For this reason, numerous studies in prior research have developed models to minimise 

energy usage at this phase (e.g. Kong et al., 2011). Approaches appear to focus on modifying 

cutting parameters and process and altering peripheral functions. Though these studies provide 

evidence of energy reduction by altering parameters of machine tools, quality of products 

produced by these machines is largely unexplored.  
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Furthermore, manufacturing operation processes collectively consume significant amounts of 

energy. Accordingly, different models have been introduced to predict and optimise energy 

consumption during operation processes. As Giret et al. (2015) emphasised production 

processes are the main elements that contribute to energy efficiency and output quality. Hence, 

optimisation of manufacturing processes can be advanced to minimise energy consumption 

and thus CO2 emission while maintaining the machined product quality. Despite their 

important roles in sustainability, research on operation process in relation to energy efficiency 

is still limited. In addition, among the non-production processes, heating, ventilation and air 

conditioning (HVAC) systems account for more than 50% of the total energy consumption as 

illustrated in Figure 1.2 (U.S. Energy Information Administration, 2010).  

 

Figure 1.2. Total energy consumption of non-production manufacturing process                 

(U.S. Energy Information Administration, 2010) 

In sum, the development of energy efficient system in sustainable manufacturing needs to 

integrate all applicable levels in the manufacturing plant particularly product, machine, system 

and process (Giret et al., 2015). An investigation on an individual level would provide a 

limited scope of knowledge in energy efficiency. Primarily, the production process level is 

considered the main source of impact on production including cost, energy efficiency and 

product quality (Trentesaux and Prabhu, 2014). In other words, production process determines 

the crucial outcome components towards sustainable manufacturing.  

50% 

37% 

10% 

1% 2% 

 Facility HVAC

 Facility Lighting

 Other Facility Support

 Onsite Transportation

 Other Nonprocess Use
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To extend the current knowledge and energy efficient management system in sustainable 

manufacturing, the primary purpose of this thesis is to develop an energy and resource 

efficient simulation system that models and optimises energy efficiency of the overall 

manufacturing plant. Specifically, it builds upon past research by considering the weather 

temperature, ambient shop-floor temperature and temperature at machining in predicting 

energy consumption of different manufacturing levels. 

1.2  Aim and Objectives of the Research 

This research project aims to investigate an integrated energy-resource efficient sustainable 

manufacturing approach and its underlying manufacturing science, which enable quantitative 

analysis of energy consumption in manufacturing systems so as to render timely in-process 

decision makings for energy-resource efficient production. 

The distinct objectives of this research are: 

 To undertake a critical review of the relevant research field and develop the scientific 

understanding of the state of the art and knowledge gaps in the research area. 

 To develop an integrated sustainable manufacturing approach for energy-smart 

workload management, and the associated predictive control. 

 To undertake the correlation analysis on energy consumption, ambient temperature 

and dimensional accuracy (quality) in sustainable precision machining of aluminium 

components. 

 To develop the in-process virtual simulation for energy-resource efficient 

manufacturing against the precision manufacturing case study. 

 To carry out the experimental trials using the approach and simulations developed, 

and precision machining scenarios, including HVAC system within the e-ProMan. 
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1.3  Research Significance and Challenges 

In accordance with the key elements of sustainability, the results of this research are expected 

to have significance and implications that can be applied to solve environmental, economic 

and social issues. An understanding on correlation relationships between the proposed factors 

would have an impact on conversation of energy resources while producing manufacturing 

products that meet a standard quality in an economically efficient way.  Manufacturing could 

adopt the proposed energy-smart production management and apply to the existing energy 

system in order to reduce energy consumption and CO2 emission. 

For the academic community, the thesis will advance knowledge on energy consumption and 

energy management system in manufacturing particularly simulation modelling of energy-

efficient system. The thesis also provides a more advanced understanding of energy 

consumption concepts and environment concerns in manufacturing environment. The findings 

will provide knowledge as the next step for further development of a simulation model for 

HVAC and production planning considering energy flow, work flow and quality flow. 

1.4 Scope of the Dissertation 

The thesis is organised into seven chapters. The structure of the subsequent chapters is as 

follows:  

Chapter 2 reviews the concepts and current literature on sustainable manufacturing, energy 

consumption which includes direct and indirect energy and energy consumption in building 

and manufacturing, energy efficiency which explores the calculations and levels of analysis, 

and low carbon manufacturing. ISO 50001 standards are briefly reviewed and are followed by 

the topic of energy management system in manufacturing. The significance of energy 

management system, modelling and control systems are described. The chapter concludes with 

a summary which stresses the current research gaps as shown in the literature.   

Chapter 3 presents the Energy-smart Production Management (e-ProMan) system as a 

simulation modelling of the manufacturing energy management system by first describing the 

methodology of simulation modelling. Equipment, and measurement and software tools used 

in the e-ProMan system are explained.  
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Chapter 4 investigates the research area of precision machining in sustainable manufacturing.  

It extends the work on the e-ProMan system by focusing on the analytical correlation between 

energy flow, temperature flow and quality flow to determine the relationships and potentials 

for the optimal solution for high quality machined product in energy-efficient manufacturing.   

Chapter 5 examines the energy and resource-efficient simulation modelling system of 

production processes in order to model and optimise the machine workload capacity for the 

energy- and cost-efficient process in manufacturing.  

Chapter 6 demonstrates the implementation and results of the simulation examining shop-

floor temperature, forecast weather and energy consumption of the HVAC system. It also 

presents experimental trials in order to integrate the thermal effect, quality of the product, 

production and workload processes and relationships between the three aforementioned flows 

to gain a more comprehensive understanding of energy efficiency at machine, process and 

plant levels in sustainable manufacturing.  

Chapter 7 provides the final remarks of the thesis by concluding on the research objectives 

and knowledge contribution to sustainable manufacturing. Limitations are acknowledged, and 

directions of future work are recommended.   

Figure 1.3 provides an overview of the thesis flow diagram with chapters listed above. 
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Figure 1.3. Overview of thesis structure 
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  CHAPTER 2 

  Literature Review 

This chapter presents a clear understanding of sustainable manufacturing and low carbon 

manufacturing concepts, followed by identification and discussions of standards-based 

environmental, energy consumption and CO2 emissions and energy management systems in 

the industrial environment. 

2.1  Introduction 

For both academics and practitioners, energy consumption and environmental impact has been 

one of the core topics within manufacturing. Currently, there are various schemes and 

initiatives that aim to provide useful information about sustainable practices in manufacturing. 

This research involves the setting, measuring and reporting of reduction targets for climate 

impacts such as carbon emissions. In particular, it addresses the monitoring and reporting of 

energy consumption and carbon dioxide emissions and the labelling of these environmental 

impacts for a more thorough understanding of the levels of global sustainability in 

manufacturing. 

2.2  Sustainable Manufacturing 

In principle, sustainable manufacturing involves the study of innovations, environmental 

concerns, renewable energy, waste elimination and implementations of energy efficiency 

(Jayal et al., 2010; Carlsson et al., 2008). In order to provide quality standards for human life, 

manufacturing sectors must be made sustainable throughout the product, process and systems 

levels by considering their relevant complexity issues (Jayal et al., 2010). Therefore, instead of 

focusing on an isolated level, efforts towards sustainable manufacturing should be established 

consistently at these three levels (Jayal et al., 2010).  

2.2.1 Sustainable Manufacturing Conception 

Currently, there are disparate definitions of sustainable manufacturing. By 1992, over 70 

different definitions had already been introduced (Kirkby et al., 1995). For instance, Polunin 

(1985 cited in WCED, 1987) defined sustainable development as “a development that meets 

the needs of the present without compromising the ability of future generations to meet their 
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own needs”. More recently, sustainability explained by Lozano (2008) emphasises on the 

capability to optimise the organisational performance which includes environmental, 

economic and social viability. According to the widely cited definitions from recent literature, 

three sustainability criteria suggested are illustrated in Figure 2.1 (Lozano, 2008). The three 

sustainability criteria collectively formulates that, at a meso level, sustainability is an essential 

matter that is embedded and implemented throughout all manufacturing stages including 

business models, processes, systems, and products and services in order to satisfy the 

established conditions of environmental, economic and social concerns (Garetti and Taisch, 

2012). 

 

Figure 2.1. Sustainability criteria (Lozano, 2008) 

Regarding environmental concerns and challenges, manufacturers need to optimise the use of 

natural resources, especially non-renewable resources, by efficiently promoting and managing 

them while minimising any potential adverse impact on the environment. In this connection, 

the economic criterion demands manufacturers to respond by maintaining new developmental 

and competitive advantages that can assure wealth and services not only to the industry but 

also to the broader society.  Congruently, challenges of the social concerns involve a quality of 

life and social development of all individuals within the society which can be improved 

through wealth and job value creation (Jovane et al., 2008).   

2.2.2 Evolution of Sustainable Manufacturing 

Currently, researchers have been striving to advance manufacturing operations performance 

using both qualitative and quantitative criteria. As reported by the U.S. National Council for 

Advanced Manufacturing, sustainable manufacturing comprises of two main elements which 
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are (1) the sustainable manufacturing applicable to all products accounting for the full life 

cycles and (2) the manufacturing of sustainable products including manufacturing of energy 

efficiency, renewable energy, and green building (National Council for Advanced 

Manufacturing, 2009). From this point of view, integration of sustainable principles, 

operations, product and services must be performed (Jovane et al., 2008). Therefore, 

manufacturers must take environmental issues into account alongside the extant manufacturing 

processes and must also provide advanced development in response to meet the most 

challenging demands of the society (Byrne and Scholta, 1993). 

After a lean manufacturing system was broadly and successfully implemented  with the 

concept of 3R methodology (reduce, reuse, recycle), a development of sustainable 

manufacturing was then initiated by focusing on the innovation-based 6R methodology to not 

only reduce, reuse and recycle but also to recover, redesign, and remanufacture the products 

over the close-loop life-cycle system (Jayal et al., 2010). 

Emphasising on the 3R methodology, reduce refers to minimising the use of resources in pre-

manufacturing, reducing the use of energy and materials during manufacturing processes, and 

the reduction of waste throughout the relevant processes (U.S. Environmental Protection 

Agency, 2008). Reuse involves the reuse of the components of the product or the product itself 

in order to minimise the usage of new raw materials (U.S. Environmental Protection Agency, 

2008). The development of converting used materials or waste into new materials or products 

is referred to as recycle (U.S. Environmental Protection Agency, 2008). With regard to the 

additional elements specific to the 6R methodology, recovery concerns the process of 

organising products for utilisation in the subsequent product life-cycles (U.S. Environmental 

Protection Agency, 2008). Design for the environment is a development of redesigning 

products to create sustainable products as redesign products (U.S. Environmental Protection 

Agency, 2008). Finally, the scope of remanufacturing includes re-processing of the used 

products in order to restore to their original form or a like-new state with full functions (U.S. 

Environmental Protection Agency, 2008). Figure 2.2 demonstrates the evolution of sustainable 

manufacturing concept and the contribution of stakeholder value regarding 6R methodology. 

Though there are a variety of perspectives on and definitions of sustainable manufacturing 

cited by academics and practitioners to develop new advancement in the industry, the majority 

of studies have similar main concepts to develop manufacturing to be sustainable 
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manufacturing. Achieving sustainability in manufacturing requires not only a single process 

but the whole manufacturing system. Based on this reasoning, to develop a sustainable 

methodology for processes, predictive models and optimisation techniques, it is necessary to 

consider and target energy usage that accounts for the environmental domain of sustainability. 

 

Figure 2.2. The 6R concept in evolution of sustainable manufacturing  

(U.S. Environmental Protection Agency, 2008). 

2.3 Sustainable Precision Machining Concepts and Framework 

Fundamentally, sustainability aims to improve the standards of human living while 

maintaining the resources for future generations (Seliger, 2007). To achieve this, the 

development of sustainability must consider the interdependency of the economy, society and 

environment (Giddings et al., 2002). The manufacturing industry has a significant contribution 

to make across these three dimensions of sustainability (Haapala et al., 2013). 

Sustainable manufacturing has been shown to largely rely on technology, and technology - 

especially machining - has created solutions to effectively preserve energy and meet quality 

assurance needs (Geretti and Taisch, 2012). For example, various techniques and standards 

have been implemented to measure the energy consumption of machine tools that take into 

account economic and environmental aspects of sustainability in manufacturing. Since 

machine tools contribute to the total energy consumed during the manufacturing processes, 
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standards have been developed to effectively assess energy consumption in order to improve 

the environmental performance of machine tools along with the machining operations (Nada et 

al., 2006; Fysikopoulos et al., 2014). Altogether, machining in manufacturing can be improved 

to minimise energy consumption while preserving the quality of products. 

As shown in Figure 2.3, sustainable precision machining is modelled based on an inter-related 

relationship between product quality, ambient temperature and machining costs. In particular, 

the high quality of the workpiece indicates the success of product manufacturing performance 

that corresponds to the economic sustainability. Simultaneously, the amount of energy 

consumed during the machining process is taken into the modelling framework to address the 

environmental issues of CO2 emissions generated during production.  

 

Figure 2.3. Sustainable precision machining framework 

2.3.1 Product quality 

A variety of factors determine the product quality of CNC precision milling including 

elements of a workpiece (e.g. strength, hardness, chemical position), tool (e.g. material, 

geometry, surface integrity), machine tool (e.g. stiffness and state of maintenance) and cutting 

parameters (e.g. speed, feed and depth of cut) (Grzesik, 2008). These factors have a direct 

impact on the life of machine tool as they are related to a rate of tool wear. In order to achieve 

a standard product quality, choosing a proper material, cutting tools and cutting parameters are 

essential. 
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2.3.1.1 Cutting Parameters 

Cutting parameters substantially affect the product quality, tool wear and tool life of a cutting 

tool (Juneja, 2003). Since milling tools are generally considered vulnerable and fragile, cutting 

parameters in the majority of circumstances, follow a conservative approach to determining 

feed rates and depth of cut. However, to maintain the efficiency of machining, spindle needs to 

be set at a higher speed to increase volumetric material removal through an increase of the 

feed rate and cutting speed (Reis et al., 2007). Besides, deflection and chatter of tools should 

be reduced to preserve their tool life. The cutting parameters need to warrant the functional 

performance, dimensional accuracy and surface roughness such that machining quality can be 

attained (Shaw, 2005).  

Research experiments have been carried out to optimise cutting parameters. For instance, 

experimental research conducted by Ghani et al. (2004) was performed on ASIS H13 tool steel 

to examine the impact of cutting speed, feed rate and depth of cut on the tool life. Among 

these, the results demonstrated the effects of high feed rate and depth of cut on tool failure due 

to high cutting forces in the milling operation. A more recent study by Natarajan et al. (2011) 

proposed an approach to machining parameter optimisation namely response surface 

methodology. It concluded that low feed rate could improve the surface finish, and moderate 

cutting speeds and depth of cut could improve the material removal rate.  

There are three parameter conditions in the CNC milling machine, which are used for 

experimentation with including tools diameter, cutting speed and depth of cut (Shaw, 2005 

and Juneja, 2003). The cutting speed can be determined the type of material being machined 

such as aluminium and the cutting tools material which is made from tungsten carbide. Also, 

the relationship between spindle speed and cutting speed can be calculated by using the 

equation below. There are two equations to be used in this experiment.  

 
   

          

    
 (2.1) 

where    is spindle speed (rev/min),    is cutting speed (m/min), and   is tools diameter (mm). 

The other equation is used to calculate feed per rev as shown in Equation (2.2):  

 
   

  

      
 (2.2) 
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where    is feed per tooth (mm/tooth),    is feed speed (mm/min) and   is number of teeth. 

2.3.1.2 Tool Wear 

Tool wear is a complex issue that is impacted by a variety of factors including tool material 

and workpiece material, cutting parameters, machine tool characteristics and cutting fluids 

(Cheng, 2008). Monitoring of a milling tool is thus fundamental to optimisation of cutting 

parameters in order to maintain machining quality. Tool wear defines a gradual failure of a 

cutting tool caused by operation. In machining, this is the key issues as it generally leads to 

higher production cost and lowers the product quality. There are two common sources of tool 

wear whereby the first involves inadequate surface finish and the second involves out of 

tolerance of the work dimension (Cheng, 2008).   

In addition, three types of tool wear exist which are established based on the locations in 

which a gradual wear occurs on a cutting tool: crater, flank and corner wear (Marinoy, 2006). 

Figure 2.4 demonstrates the specific locations of the three tool wear types.  

 

Figure 2.4. Types of wear observed in cutting tools (Marinov, 2006) 

First, crater wear is localised on the rake face of the tool caused by the sliding of the chip 

across the surface mainly due to temperature at the tool-chip and cutting speed (Marinov, 

2006).  Crater wear disrupts the machining process by increasing the rake angle of the cutting 

tool leading to an increase a likelihood of cutting. The second type, flank wear, occurs on the 
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relief face of the tool due to friction created by the two surfaces (i.e. machined workpiece and 

tool flank). The worn area of the tool is also referred as a wear land and is determined by its 

width labelled as VB. This type of wear also affects cutting forces. Cutting forces can turn into 

tool failure when greater than the set critical value (i.e. VB > 0.5 mm.). Compared to crater 

wear, flank wear has greater overall effects on tool cutting as it affects dimensional accuracy, 

surface finish and process stability. Last, as the name suggests, corner wear takes place at the 

tool corner. Though corner wear occurs at a segment of the wear land, several researchers 

consider corner wear as a distinct type of tool wear due to its distinguishing impact on 

machining precision in relation to dimensions (Cheng, 2008). Particularly, corner wear leads 

to a dimensional error in machining because it eradicates the cutting tool and therefore 

gradually increases the dimension of a machined surface. Figure 2.5 depicts the effects of 

corner wear on the dimensional error of a machined tool.   

 

Figure 2.5. The effect of tool corner wear on the dimensional precision (Marinov, 2006) 

Figure 2.6 depicts an example of a tungsten carbide milling tool wear that is seriously worn. 

Whatever the type of tool wear, excessive tool wear in general is detrimental to the tool life 

and lead to poor surface quality and, more importantly, to accuracy and precision (Jiao and 

Cheng, 2013).  

The process of tool wear is fundamentally dependent on time as the amount of tool wear 

increases progressively in the process of cutting. When tool wear exceeds a specific limit, tool 

failure occurs. As mentioned earlier, flank wear is considered as the most critical wear type 
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especially from the process point of view. The width of flank wear land VB is the parameter 

that needs to be monitored and controlled. For carbide cutting tools,     is a safe limit or an 

allowable wear land. Tool time, labelled as   , is the cutting time for the tool to generate a 

flake wear land of width    . Figure 2.7 presents a wear curve showing an association 

between the cutting speed (  ) the cutting time      and the width of flank wear land (VB  

(Marinov, 2006). This wear curve defines a tool-life criterion of a given wear    . 

 

Figure 2.6. Severely worn tungsten carbide milling tool (Jiao and Cheng, 2013) 

 

Figure 2.7. Effect of cutting speed on flank wear and tool life of three cutting speeds 

(Marinov, 2006) 

For an end-mill cutter, the ISO 8688-2 (1989) generally recommends a use criterion of 0.3 mm 

for the     averaged over the teeth for a uniform wear. However, the maximum safe limit can 

be set at 0.5 mm for a localised wear in cases of wear occurring next to the work cut-face. In 

line with this standardisation, Davis (1995) specified the maximum safe limit of tungensten 

carbine material to be 0.5 mm. Sakar (2014) stated the allowable wear land for this same tool 
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to be 0.3 mm. Marinov (2006) suggested that a safe limit for a carbine cutting tool should not 

exceed 0.4 mm.   

To predict the life of tool, Equation (2.3) expressed Taylor’s equation of the tool life which 

can be used to calculate a life of different tool materials before they are repaired (Marinov, 

2006). 

     
    (2.3) 

   is cutting speed (m/min) expressed in m/min.    is tool life in minutes. n is exponent for the 

conditions tested, and C is the constant which varies on tool material. Table 2.1 summarised 

the values for n and C in the Taylor equation (Sekar, 2014; Shaw, 2005; Juneja, 2003).  

Table 2.1. n and C values for Taylor equation for various tool materials  

Tool Materials 
Ranges of n values for  

Taylor Equation 

Ranges of C values for 

Taylor Equation  

(Steel / Non-steel work ) 

High-speed steels 0.08-0.2 70 / 120 

Cast alloys 0.1-0.15 100 / 150 

Carbides 0.2-0.5 500 / 1000 

Coated Carbides 0.4-0.6 1000 / 1500 

Ceramics 0.5-0.7 2500 / 3000 

 

As indicated by the Equation 2.3, the tool life of an end-milling machine is dependent on 

various factors including type of workpiece material tool material, tool geometry and cutting 

conditions. It can be a complicated process to predict the tool life on the account of 

controllable process parameters, especially in a real workshop setting. Alauddin et al. (1997) 

demonstrated that the tool life of milling tool can be reduced by an increase in feed, speed and 

depth of cut. On the contrary, literature also showed that the built-up edge or BUE can occur 

at the chip interface when machine is at low cutting speed, potentially resulting in a more 

immediate tool wear (Reis, 2007). Dimensional metrology can be applied to quantify the 

width of tool flank wear in end-milling process in order to determine the actual tool life.  

2.3.1.3 Dimensional Accuracy Measurement 

To determine product quality, the present research adopts dimensional metrology which is 

generally defined as a measurement of product ‘dimensions’. The dimensional measurement is 
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used to investigate the dimensional error of product in terms of product quality. Absolute error 

(e) is the amount of physical error in a measurement period (Baird, 1995).  

                          (2.4) 

where   is the number of reference points;    is the nominal value of dimensions;    is the 

actual measured value of dimensions. 

Relative error or Percent error (%error) gives an indication of how good a measurement is 

relative to the size of the thing being measured. The relation error is used to determine the 

comparative accuracy of the measurements. 

 
                  |

             

  
|        (2.5) 

where    is the actual measured value of dimensions.  

2.3.2 Ambient Temperature and Environment Control 

Cutting temperature is well documented as a critical factor in machining process including its 

influence on tool wear, surface generation and integrity, cutting force, material properties and 

machining accuracy (da Silva & Wallbank, 1999; Jiao & Cheng, 2013). Research has 

highlighted that a small amount of heat generation during cutting can result in a significant 

expansion of tool material, thus degrading machining accuracy (Moriwaki, 1990). While a 

bulk of research has shown an effect of thermal deformation on machining errors, evidence of 

a relationship between ambient temperature and accuracy is rather scarce. However, it is 

logical to expect that the ambient temperature in the machining process could affect the 

quality of the product workpiece. Not only does ambient temperature needs to be controlled 

according to the regulations, but it is also important to reach the highest standard of product 

quality.  

2.3.2.1 Thermal Effects 

Typically, most materials expand as the temperature increases (Leach, 2014; Wilson, 1942; 

Cverna, 2002; Bryan, 1990). The International Standard Organization (ISO 1:2002) sets the 

standard temperature for gauge block measurements to be at 20°C. Due to thermal expansion, 

increased temperature causes the gauge blocks to change in size. Thus, it is important to set 

the temperature to the standard reference condition. The measurement of the gauge block 
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temperature should be performed concurrently with measuring the manual’s length to adjust 

for a change in the length. The correction equation is described by Equation (2.6). 

                  [    ]  (2.6) 

where   is the temperature in °C;      is the length at T;       is the length at 20°C; and   is 

the thermal expansion coefficient (Leach, 2014). The equation demonstrates that when the 

coefficient value is large, the temperature measurement needs to be more accurate, and when 

the temperate deviates from 20°C, the effect of materials’ thermal expansion coefficients 

becomes more significant (Leach, 2014). 

2.3.2.2 Temperature Control in Precision Machining 

As stated by the UK Workplace Regulations 1992 (Health, Safety and Welfare) (Health and 

Safety Executive, 2013), “The temperature of indoor workplaces should be reasonable. The 

approved code of practice defines a reasonable temperature indoors as being normally at 

least 16°C unless the work involves severe physical work in which case the temperature 

should be at least 13°C”. These standards are regulated to assure the quality of machine and 

well-being of operators at work. 

According to an established ‘dead band’, manufacturing needs to set a cost-saving and 

stringent requirement on temperature and thermal aspects based on the region of 4 - 5°C 

between heating and cooling thermostat set points (Carbon Trust, 2011). Ideally, in light-scale 

factories such as laboratories, the temperatures should range between 16°C and 19°C, whereas 

the temperature in heavy manufacturing needs to be controlled at a range of 11°C to 14°C 

(Carbon Trust, 2011). 

2.3.3 Machining Operation Costs 

By definition, a production cost is the average total cost required to perform a particular 

machining operation. In manufacturing, the production often comprises of various machining 

operations using assorted machine tools. Thus, the total product cost includes the production 

of different components. Equation (2.7) expresses the total cost of a single machining 

operation Cpr which is the sum of the energy cost Cm, tool cost Ct and labour cost CL (El-Hofy, 

2013). 
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                 (2.7) 

The machining cost Cm can be calculated by Equation (2.8) which Ce the sum of the power 

cost consumed by the machine, and Csm is the cost of servicing the machine. 

             (2.8) 

Machining economics are affected by various factors depending on a type of operation such as 

spindle speed, feed rate and depth of cut (Juneja, 2003).  

2.4 Energy Consumption in Manufacturing 

Energy is a broad term that is commonly used interchangeably to refer to work, heat and 

power. For academics and practitioners, energy has a scientifically specific meaning. At the 

broadest level, energy defines “the capacity of doing work” (Schobert, 2014, pp. 13). As the 

energy cost accounts for a significant proportion of the total product cost, energy saving is one 

of the major challenges faced by manufacturers (Mani et al., 2008). Different types of machine 

tools consume varied amounts of energy (Diaz et al., 2009). Experiments by other researchers 

have been carried out at a process control level and also at a system level to better determine 

the environmental impacts of machining (Behrendt et al., 2012; Diaz et al., 2009; Lanz et al., 

2010; Newman et al., 2012; Dahmus and Gutowski, 2004). These results can potentially lead 

to practical methods that effectively minimise adverse impacts on the environment. For 

example, experiments at the process-level have been conducted to reduce the energy usage in 

the machining process through improvements in, cutting tools, cutting parameters, tool-

workpiece contact mechanics and machining procedure (Behrendt et al., 2012; Diaz et al., 

2009; Newman et al., 2012).  

2.4.1 Direct and Indirect Energy Consumption 

In addition to addressing energy consumption at the two levels, the investigation of this 

research also considers direct and indirect energy consumption during different production 

activities of the manufacturing application. These two categories of energy consumption are 

both required to operate the manufacturing processes and to calculate the total energy 

consumption (Schlosser et al., 2011). In particular, as the name suggests, direct energy is the 

sum of energy that directly flow into the machine tool and are consumed by different 

processes to manufacture a product. On the other hand, the indirect energy defines the energy 
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consumed at the periphery of the machine tool. This category of energy involves the activities 

that are necessary to maintain the environmental conditions that enable the manufacturing 

performance within the plant (Seow and Rahimfard, 2011). 

Therefore, the total energy consumed        by a machine tool carrying out to perform a 

specific process can be expressed by Equation (2.9) where          can be regarded as direct 

energy that largely depends on process parameters and               expresses indirect energy 

where energy background differs depending on the specific machine tool used (Salonitis and 

Ball, 2013). 

                                 (2.9) 

2.4.2 Energy Consumption in Factory Plants 

The research in manufacturing literature has investigated energy consumption from two 

different prospect levels namely plant and process. The plant level concentrates on energy 

consumption at infrastructure and high-level services that are accountable for controlling and 

managing the required conditions and surroundings during the production (Seow and 

Rahimifard, 2011). Heating and cooling, ventilation and lighting are examples of energy 

activities consumed at the plant level.  

This simplistic approach, however, infers several assumptions derived from the multiple 

sources of factors that might alter the amount of energy consumed during the operations such 

as data acquisition system (DAS) and energy losses and gains that are accounted for by 

different power generation techniques. Other circumstances also include seasonal, 

temperature, climate and relative humidity variations. Consistently, building performance can 

be affected by these potential variations and fluctuations of maintenance, resulting in data 

ambiguity. Another plausible cause of data ambiguity involves uncertainties or the estimation 

of limits of the error that occurs during energy consumption measurement and calculation. 

Uncertainty differs from measurement error as errors define the extent to which the measured 

value is deviated from the true value. Uncertainty estimates should address all sources of error 

that occur at random or systematically.  

However, realistically, there are many factors to affect energy usage of a machine, a system or 

a process as it comprises of different components that may consume energy differently. One 

common way to calculate the energy consumption of machine is the energy block method 
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which concerns the behaviour of energy consumed by each specific machine (or ‘block’) 

during its specific operating state (e.g. standby, processing, and turned off) (Cataldo et al., 

2015). An overall energy consumption of machines is computed from energy profiles of each 

operating state. 

Furthermore, a manufacturing process level encompasses a set of processing stages where 

machining of high production activities typically occurs. The processing stages within some 

processes may be combined into a single equipment or machine such as a present-day milling 

machine that consists of different functions (e.g. work handling, tool changes, tool break 

detection, machine lubrication and chip removal) (Gutowski et al., 2006). Chiefly, these 

functions are conjoining functions of the main function of the milling tool that can dominantly 

control the energy requirements at the process level. Other processes exhibit this same 

behaviour. In general, there is a significant energy requirement to start-up and maintain the 

equipment in a “ready” position. Once in the “ready” position, there is then an additional 

requirement which is proportional to the quantity of material being processed. 

Energy consumption of a manufacturing process refers to the amount of energy consumed in a 

production process (Honczarenko and Berliński, 2012). Following the notion of direct and 

indirect energy, energy consumption in a production system can be summarised by three main 

parts as shown in Figure 2.8. 

 

Figure 2.8. Three main parts of energy consumption of manufacturing process 

(Honczarenko and Berliński, 2012) 

Put differently, the direct energy consumption consists of energy consumed directly at 

machining together with a variety of machining allowances such as rate of feed and change of 
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workpiece. The direct energy consumption is expressed in Equation (2.10) where    defines 

energy consumption of cutting (Watt),    defines specific resistance of cutting (N/mm
2
),    

defines correction coefficients and    defines volume of material (mm
3
) (Honczarenko and 

Berliński, 2012). 

 
           ∏      

 

   

 (2.10) 

Adding indirect energy (i.e. energy consumed in auxiliary processes such as transportation and 

handling), the total indirect energy consumption (  ) can be calculated by the Equation (2.11) 

where    signifies the time of production station whereas    signifies the time of idle run. The 

average power of a system during work operation is denoted by   . 

 
   ∑  

 

   

         (2.11) 

The total energy consumption (   ) can be calculated by Equation (2.12), where    defines 

energy consumption of cutting, and    defines the total indirect energy consumption. 

              (2.12) 

In particular, the energy consumed by the auxiliary processes to maintain the environment of a 

production process is shown to account for 60 to 90 percent of the total energy consumption 

(Honczarenko and Berliński, 2012). Using the automotive machine line as an example, Figure 

2.9 shows that the actual machining process (i.e. direct energy) requires only about 14.8% of 

the total energy use or smaller percentages if the machine is operated at lower production 

rates. 

As summarised in Figure 2.10, energy consumption during the production phase at both plant 

and process viewpoints would provide a more comprehensive understanding and more 

accurate information on energy consumption in manufacturing. 
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Figure 2.9. Energy at machining and auxiliary processes for an automobile production 

machining line (Gutowski et al., 2006). 

 

Figure 2.10. Plant, process and product viewpoints to energy flow modelling in 

manufacturing (Seow et al., 2011). 

2.5 Energy Efficiency 

Efficiency, or denoted by η, is a measurable term commonly expressed by a ratio of output to 

input as expressed in Equation (2.13).   
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 (2.13) 

Following this equation, efficiencies thus range from 0 indicating complete inefficiency to 1 

indicating a complete efficient process. Since the efficiency ratio is unitless, the calculation 

can be applied to any parameter (Schobert, 2014).  

2.5.1 Energy Efficiency Calculations and Indicators  

The term energy efficiency can be operationally defined from the two viewpoints that are, to a 

certain extent, contrasting but yet related: physical and monetary (Lovins, 2004). From an 

economic perspective, energy efficiency is viewed from a monetary output / physical input 

ratio in which monetary units such as money flow are defined as the efficiency parameters. In 

contrast, engineers define efficiency based on a physical output/ input ratio (Lovins, 2004). 

Using heat engine as an example, efficiency can be mathematically expressed by Equation 

(2.14), where    indicates high temperature (i.e. difference between the temperature and 

absolute zero), and       signifies a decline in temperature (Schobert, 2014).  

   [               ] (2.14) 

In this connection, there is thermodynamic efficiency which is defined by Equation (2.15) 

where      is the useful work produced in a heat engine, and    is the heat transferred from 

the hot areas (Turner and Doty, 2007).  

 
   

    

  
 (2.15) 

Parallel to the above efficiencies, the efficiency of a device operating in a process line can also 

be calculated using Equation (2.16) (Hordeski, 2004). 

                                                        (2.16) 

Jeswiet and Kara (2008) implied that improving machines and equipment, which can reduce 

CO2 emission, are one of the key solutions to minimise the energy consumption. Moreover, 

Lovins (2004) agreed that energy efficiency has led the manufacturing to become economical 

and environmental manufacturing. Collectively, energy efficiency significantly contributes to 

potential economic growth by reducing the cost of manufacturing products and services by 
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means of achieving ‘lower energy costs potentially resulting from reduced amount of energy 

consumed (Dinçer and Zamfirescu, 2011). In addition, it is also worth noting that while energy 

efficiency and energy conservation are often used interchangeably, the two terms have 

distinguishable implications (Herring, 2006). As described above, energy efficiency 

emphasises on the ratio of energy output and input. On the other hand, the objective of energy 

conservation is to lower energy consumption often through reducing energy service quality. 

2.5.2 Quantitative Analysis on Energy Efficiency 

Prior research on energy efficiency in manufacturing has examined energy consumption at 

various levels, which differs in terms of their assumptions and input. In Duflou et al.’s (2012) 

review paper, optimisation of energy efficiency covers five analytical levels: device/process, 

multi-machine system, facility, multi-factory system, and global supply chain. Similarly, 

Fysikopoulos et al. (2013) identified four hierarchy yet interrelated levels of analysis as 

process, machine, line and factory respectively. Salonitis and Ball (2013), on the other hand, 

proposed a more generic approach to energy efficiency analysis, which reflects only at two 

broad levels: machine tool level and manufacturing system level. Despite differing taxonomy 

in the literature, this dissertation recognises the importance of distinguishing characteristics 

between machine and process levels as machine tool level and process level are justified by a 

different mechanism of energy loss on these two levels (Fysikopoulos et al., 2013). Therefore, 

the following sections review energy efficiency on the three main levels in manufacturing: 

machine, process and plant. 

2.5.2.1 Energy Efficiency on the Machine 

Generally speaking, energy efficiency on a machine level aims to reduce energy consumption 

of machine tools. Within this level of analysis, one stream of research has focused on 

measuring energy consumption of machine tools as a means to optimise energy efficiency. 

Among these studies, Dahmus and Gutowski (2004) examined three main modes of machine 

tools: off, idle and operating. More recently, Behrendt et al. (2012) extended on the 

aforementioned modes and studied standby power, component power and machining power of 

a variety of machine tools mostly medium-sized and large-sized. Generally, energy usage of 

machines can be reduced by turning off inactive equipment during set-up and by minimising 

wait times.   
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Another stream has monitored energy consumption of specific components or conditions of 

machine tools such as modification of cutting conditions. For example, the study of Mori et al. 

(2011) showed that energy consumption in milling machines could be reduced by adjusting 

the cutting conditions to minimise the machining time. However, the cutting conditions need 

to be within the appropriate range to avoid compromising the quality of the machine 

components. Similarly, Oda et al. (2012) found that by optimising inclined angle and cutting 

speed, energy consumption can be reduced.   

A review of literature also reveals two approaches to energy efficiency on a machine level. 

The first approach focuses on estimation energy demand using analytical models, and the 

second approach focuses on the reduction of energy demand. In line with this, Kianinejad et 

al. (2015) described Specific Energy Consumption (SEC) as “the energy consumption of 

machine tool for removing 1 cm
3
 of material”. This SEC unit is thus used as an indicator of 

energy efficiency performance.  

2.5.2.2 Energy Efficiency in the Process 

Management of energy efficient system at a process level is of particular importance since the 

transformations of energy occurs during processes. Consumption of machine peripherals and 

production planning can also be modified by adjusting process parameters, thereby altering the 

overall energy consumption in manufacturing. Fysikopoulos et al. (2013) highlighted that 

though the process level consumes relatively less energy, energy efficiency at this level largely 

contributes to the overall energy efficiency maximisation. There have been various approaches 

towards process energy efficiency such as optimisation of process parameters, optimisation of 

process capacity, changing technologies of the production and reducing the unproductive ideal 

time during operations (Duflou et al., 2012).  

To increase energy efficiency, Neugebauer et al. (2011) described that processes in relation to 

product features and specifications need to be defined such that alternative solutions to a more 

energy-efficient process can be evaluated. In doing so, process energy demand and 

consumption of resource can be applied. For instance, grinding consumes a larger amount of 

energy than turning, thus making grinding a more energy-efficient process.  
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2.5.2.3 Energy Efficiency in a Manufacturing System 

Energy efficiency on a plant level follows a more comprehensive and holistic approach 

because it involves all relevant production systems including machine components, machine 

tools, and production lines (Neugebauer et al., 2011). The most challenging element to 

improve the efficiency of the manufacturing plant is explained by the interrelated relationships 

of production systems and manufacturing plant services (Müller and Löffler, 2009). In other 

words, an analysis of energy usage requires information of all energy consumption behaviours 

(Cataldo et al., 2015). All in all, improvement of energy efficiency depends on the 

manufacturing processes which includes all interactions between each resource, processes and 

structures of a plant (Dietmair and Verl, 2009).  

Furthermore, Fysikopoulos et al. (2013) described a newly optimised energy-efficient system 

might show potentials in energy consumption reduction. However, due to different policies 

and tariffs, the system may not necessarily result in energy cost reduction. In other words, the 

system can potentially respond efficiently to the environmental concerns but not to economic 

concerns of sustainability. Therefore, there are great opportunities to advance an 

understanding of energy efficiency at this level.   

2.6 Low Carbon Manufacturing 

In the manufacturing industry, electrical energy is the main energy for all machine processes 

and tools (Jeswiet and Kara, 2008). Jeswiet and Kara (2008) stated that energy usage in the 

manufacturing procedure was the main cause of the carbon emissions to the environment. The 

steady rise of carbon dioxide (CO2) emissions is one of the major factors that cause global 

warming problem that affects the world population (Bose, 2010) (Köne and Büke, 2010). 

Since the industrial revolution, the use of fossil fuels has rapidly increased due to the role they 

play in electricity generation, yielding a significant proportion of greenhouse gases (Köne and 

Büke, 2010). Currently, low carbon manufacturing systems are not yet fully applied to 

industrial systems. Nonetheless, alternative sources of energy and renewable energy have been 

discovered to cope the global warming issue and sustain the manufacturing (Köne and Büke, 

2010). 
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2.6.1 Characterisation of Low Carbon Manufacturing 

Tridech and Cheng (2008) explained that the low carbon manufacturing process can represent 

the quantity of carbon dioxide (CO2) intensity released at the machine level throughout the 

plant level. More specifically, there are five components of low carbon manufacturing 

characteristics that identify the amount of carbon emissions in the process. In order to reach 

the concept of low carbon manufacturing, these five elements have to be illustrated and 

achieved as shown in Figure 2.11 (Tridech and Cheng, 2008). 

 

Figure 2.11. Characterisation of low carbon manufacturing (Tridech and Cheng, 2008). 

2.6.2 Manufacturing Carbon Footprint 

‘Carbon footprint’ is a term that defines the proportion of greenhouse gas (GHG) emissions 

caused by activities or entities (Carbon Trust, 2008a).  Carbon dioxide (CO2) mainly causes 

greenhouse gases in the atmosphere. From the energy point of view, the generating electricity 

through fossil fuel combustion is a process leading to a large amount of CO2 emissions 

(Jeswiet and Kara, 2008). In addition, carbon dioxide from global average energy causes 

around 60% of the anthropogenic greenhouse gas emissions, globally (Carbon Trust, 2008a). 

In every industry, electrical energy is the foremost source for all equipment and machines 

(Jayal et al., 2010; Carbon Trust, 2008a; Jeswiet and Kara, 2008). Jeswiet and Kara (2008) 

stated that the primary energy source was an electrical power grid.  Carbon emissions are 

initiated at the point whereby the primary energy is transformed into electricity (Jeswiet and 

Kara, 2008). Illustrated in Figure 2.12, energy sources as the primary energy are broadly 
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classified into carbon emissions sources including coal, oil and natural gas, and non-carbon 

emissions sources labelled as ‘green energy’ such as biomass, hydro, nuclear and solar. 

 

Figure 2.12. Primary energy supplies available (Jeswiet and Kara, 2008). 

2.6.3 Quantitative Analysis on Manufacturing Carbon Dioxide Emission 

The carbon footprint in manufacturing system can be evaluated using the equation of Carbon 

Emission Signature (CES) stated by Jeswiet and Kara (2008). In this equation, the carbon 

emitted CE is calculated by multiplying energy consumed (EC) (GJ) by Carbon Emission 

Signature (CES) [
        

  
 ] as shown in the Equation (2.17) below.  

               (2.17) 

However, there are one or more primary energy sources for an electrical grid which are coal, 

natural gas, petroleum, biofuel, hydro, solar, wind, geothermal, earth, wave and tidal. Each of 

these can be represented with functions: C (coal), NG (natural gas), P (petroleum), B (biofuel), 

H (hydro), S (solar), W (wind), G (geothermal), E (earth), W (wave) and T (tidal). To 

calculate the Carbon Emission Signature (CES), the summary of fractions of the primary 

sources is multiplied by the conversion efficiency (η) for each of the primary energy sources 

as defined in Equation (2.18) below.  
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          [                       ]  (2.18) 

The coefficients of coal (C), natural gas (NG), and petroleum (P) are 112, 66, and 49 

respectively, and they are the kilogrammes of carbon emitted per gigajoule of heat releases 

and are an inevitable fate of combustion in each case. The conversion efficiency (η) = 0.34 is 

commonly accepted (Carbon Trust, 2008b). 

Regarding energy consumption, the amount of CO2 emissions is computed by the multiple of 

activity data by CO2 emissions conversion factor in the unit of kWh and kg carbon dioxide 

equivalent (       ), respectively as summarised in Equation (2.19). The activity data 

includes the activities of machines or equipment that consumed energy during the period of 

time (Carbon Trust, 2008a). The CO2 emissions conversion factors are shown in Figure 2.13. 

In the UK, the quantity of energy consumption used in units of kWh and CO2 emissions 

conversion factor is 0.41205                 in 2016 (GOV.UK, 2016) 

                                                   (2.19) 

 

Figure 2.13. The UK carbon emission factor in different types of energy generating sources  

(Carbon Trust, 2008a). 
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2.6.4 Impact of Manufacturing Carbon Dioxide Emissions 

The major impact of carbon dioxide (CO2) emissions (one of the main greenhouse gases or 

GHGs) from human activities is evidently the global warming problem (Cook, 2012). The 

emissions of GHG gradually trap the solar heat in the atmosphere, leading to the greenhouse 

effect as the solar heat is accumulated from an increased concentration of GHGs (including 

methane, nitrous oxide and fluorinated gases). Eventually, the accumulated solar heat 

heightens the atmospheric temperature. Though measurements and predictions have indicated 

that the rise in temperature due to the global warming is expected to occur every 100 years, 

both immediate impacts and long-term consequences are seriously threatening.  

First, the glaciers and ice caps in most parts of the world have melted at a continually 

increasing rate, thereby flooding the lowering areas or approximately 100 million individuals 

in the world who live within 1 metre of the sea water level. On the other hand, there are 

serious droughts near the equator especially in countries such as India and Africa. The effects 

of drought harm agriculture which poses severe impacts not only on productivity but also on 

the supply of fresh water for basic human needs. In addition, several researchers have argued 

that the rising sea level and sea surface temperatures together with a circulation of heavily 

moist air could affect intensity, or even frequency, of hurricanes, tornados and tropical storms 

(Mousavi et al., 2011). Other harmful consequences include an increased acidity of sea water, 

a quick spread of diseases and a potential extinction of animal populations (Bose, 2010). More 

importantly, there is evidence to suggest that the climate change as a result of CO2 emissions 

will be largely irreversible for at least 1,000 years (Solomon et al., 2009). However, according 

to Bose (2010), “The global warming problem is solvable by the united effort of humanity,” 

thereby suggesting an importance of an effective energy management system implementation 

that could minimise the CO2 emissions.  

2.7 Resource Efficiency in Sustainable Manufacturing 

Generally, resource efficiency describes the efforts to “deliver more with less” resources 

(ECN, 2013, p. 3). Coupling with concerns for environmental sustainability, energy resource 

efficiency describes the utilisation of resources in an optimal way by requiring a minimal 

amount of energy to achieve the established level of product output. An accurate analysis of 

energy consumption behaviour of relevant machines and systems is, therefore, requisite to an 

understanding of energy resource efficiency in manufacturing, which involves consumption 



33 
 

behaviour of diverse production machines and systems at different operating states (Herrmann 

and Thiede, 2009; Thiede, 2012). In other words, energy consumption varies with machine 

operating states that differ from constant (e.g. pumps and control units) and variable rates (e.g. 

tool positioning) (Gutowski et al., 2006). The utilisation of machines is largely regulated by 

the shop-floor schedules which thus impact the overall energy consumption of the 

manufacturing plant. In an attempt to develop a manufacturing system that minimises energy 

usage, research has focused on two approaches within the production processes: peak power 

consumption and overall energy consumption (Pach et al., 2014).  

2.7.1 Avoiding Peak Power Consumption 

As the name suggests, the first approach focuses on avoiding or at least minimising energy 

consumption at the peak load by using load shifting (Pach et al., 2014). Several studies have 

utilised this approach as peak load’s rate structures have a direct effect on the manufacturing 

costs. For example, Fang et al. (2011) proposed an advanced modelling using a multi-

objective mixed integer linear formulation which modifies the operation speed in order to 

change the energy consumption behaviour at peak load. Nghiem et al. (2011) created a model 

which implemented on a hybrid automation and peak power constraint. Other modelling 

methods include a mixed integer nonlinear programming (Babu and Ashok, 2008) and mixed 

integer programming (Bruzzone et al., 2012) both aimed to avoid the peak demand through 

modifying parameters in shop flow. Nonetheless, managing energy efficiency using 

minimising peak power consumption can be problematic for manufacturing systems with 

inadequate or restricted peak demands (Pach et al., 2014). Also, it provides information of 

only one factor among various factors that affect the overall energy consumption behaviour 

(Menezes et al., 2014). Therefore, this approach is not selected to be the focus of the present 

energy-efficient system proposed in this thesis.  

2.7.2 Reducing the Overall Energy Consumption 

To overcome the main limitation of examining peak power consumption, research has also 

attempted to minimise overall energy consumption of the manufacturing production system 

(Pach et al., 2014). In doing so, existing methods can be classified into three primary 

approaches: resource changes, process tuning and optimisation of resource. Figure 2.14 

summarises the approaches within manufacturing energy efficiency. 
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Figure 2.14. A summary of approaches towards energy efficiency in manufacturing  

(Pach et al., 2014) 

2.7.2.1 Resource/ Process Changes 

The most straightforward approach to reduce overall energy consumption is to change the 

resource or production process with the new resource (e.g. machine tool) or process that 

consumes less energy. Karnouskos et al. (2009) emphasised an overall energy consumption of 

the manufacturing plant by explaining that energy needs to be monitored and measured real-

time. To reduce energy consumed in the plant, machines and processes should auto-manage 

their operations when no resource is active in operation. Consequently, the operation process 

and its energy consumption are reduced as a result of auto-managing capacity. However, this 

approach often involves substantial changes to the existing system which may be costly to the 

manufacturer (Pach et al., 2014).   

2.7.2.2 Process Tuning 

Another approach which involves changes to a lesser extent refers to process turning which 

optimises the existing process based on energy usage and can be less costly compared to 

changing the overall process (Duflou et al., 2012). Optimisation of process is often performed 

by modifying process parameters. For example, Mori et al. (2012) enhanced the energy 

efficiency of milling machine tools by modifying the cutting parameters, synchronising 

spindle speed and adjusting pecking cycle. In line with this, Bi and Wang (2012) modelled 

energy consumption of machine tools using their physical behaviours including kinematics 
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and dynamics analysis. Optimising the machine setup, the model could save up to 67% of the 

total energy consumption during drilling operations. Together, this approach to overall energy 

consumption reduction often involves modification of process parameters such as spindle 

speed or feed rate. However, this could lead to reduced quality of the product or shortened 

resource lifespan, thereby compromising the overall performance of manufacturing (Pach et 

al., 2014). 

2.7.2.3 Optimisation of the Resource Use 

To overcome the shortcomings of process changes and process tuning, researchers have 

optimised the use of resource instead. In other words, the way in which the resource is used is 

improved or optimised, thereby resulting in reduced energy usage. The changes typically 

occur in the control system whereas the process itself remains constant (Pach et al., 2014). 

Research has shown successful outcomes of this approach in which an overall decrease in 

energy usage is documented.  

Moreover, to optimise resource use, two methods have been adopted in research (Pach et al., 

2014). The first method referred to as the exact method which focuses on fixed conditions of 

energy-related variables. An effort to minimise energy consumed in this job-shop environment 

is, therefore, complicated. Emphasising on the constraint, Vallada et al. (2008) asserted that 

exact methods are inapplicable for job-shop with complex flow-shop as it consists of a series 

of numerous operation processes. Hence, exact methods are not suitable for dynamic and 

frequently altered manufacturing environment (Mařík and McFarlane, 2005). 

This limitation has led researchers to utilise the second method- approximated method- more 

frequently. This method consists of various subcategories such as heuristics and meta-

heuristics (Vallada et al., 2008). Approximated methods have been regarded as more effective 

especially for manufacturing with multiple machines and processes due to its centralised 

predictive approach which leads to shorter completion times (Lee and Kim, 2008; Shen et al., 

2006). For example, Küster et al. (2012) modelled a control system in order to optimise 

production by using forecast energy prices. This type of optimisation documented the impact 

of process in managing an energy-efficient system. 

With regard to the overall resource use optimisation, more researchers have paid attention to 

workload of machines and its influence on energy efficiency during a production process such 

as productive states of machining. An example is a study conducted by Devoldere et al. (2007) 
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who proposed on machine occupancy. In this study, energy was reduced when a product order 

was released in the production process. Specifically, the non-production function could save 

approximately 47% of the milling machine energy consumption. Zhang et al. (2009) attempted 

to minimise maximal completion and total workload of machines in a flexible job-shop 

scheduling problem. More recently, Fysikipoulos et al. (2012) considered cost in relation to 

energy consumption and productive states. This research asserted that though an idle state of a 

machine reduces energy consumption, it could lower energy efficiency as it does not produce 

any product. In addition, energy consumption was found to be at the highest at the minimum 

productive working state, whereas energy was consumed at the lowest when the productive 

working state was its maximum. The two states accounted for approximately 17% difference 

in energy consumption and cost. Taken together, literature has provided an empirical evidence 

that optimisation of resource workload in manufacturing process can minimise energy cost and 

production cost.  

2.8 Machine Loading  

A review of literature on machine loading shows that the majority of studies have concerned 

machine loading problems of flexible manufacturing systems known as FMS (Grieco et al., 

2001 and Singh et al., 2015). The major aim of this body of research is to improve, or at least 

achieve, efficiency in production. This type of production is characterised by a mass 

production that is automated, high volume and by a job shop production that is low in volume 

(Groover and Zimmer, 1984). Hence, research has attempted to solve machine loading 

problems in order to increase productivity, but at the same time flexibility and low volume job 

shop production are still maintained.  

Various solutions have been presented to solve problems of machine loading. For instance, a 

number of researchers in the early research proposed mathematical programming methods. In 

the work of Stecke (1983), non-linear 0-1 integer programming was formulated to planning 

problems of FMS. Other studies in FMS have included the work of Shankar and Srinivasulu 

(1989) who applied mathematical approach to reduce workload imbalance, the study of Sawik 

(1990) in which a multi-level integer program was formulated, and the study of Liang and 

Dutta (1992) who developed a bicriterion mathematical programme to integrally solve 

problems of part selection and machine loading. In line with this, prior research has also well 

examined machine loading using multi-criteria objective.  
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For instance, multiobjective optimisation was demonstrated in the work of Kumar et al. (1990) 

whereby the min-max approach was used to compromise grouping and machine loading. 

Mukhopadhyay and Tiwari (1995) took into account machine utilisation and solved loading 

problem by reducing the maximum difference between machines. Later, Kim and Yano (1997) 

aimed to simultaneously solve grouping and loading problems. This research demonstrated 

that balancing workloads across machines while minimising machine groups could decrease 

makespan in FMS. A heuristic, multi-stage approach was also performed in the study of 

Nagarjuna et al. (2006) in order to enhance efficiency and maintain flexibility of job shops. 

With this proposed model, the system unbalance was minimised, and constraints such as 

machining time and tool slows were met.   

In relation to energy consumption, several studies have examined the relationship between 

energy and machining. Within this body of research, Drake et al. (2006) generally asserted 

that the amount of energy consumption is great when machine or its component is in an ON or 

idle state. Twomey (2008) further emphasised that over 10% of the total energy consumption 

can be saved from turning the machine OFF from the idle state when it is not processing any 

job. Additionally, Shrouf et al. (2014) described that the total energy consumption changes 

depending on various factors such as status, transition and duration of each machine and 

amount of energy consumed at each phase. Among these factors, time of energy usage or 

production time is one of the most significant factors that amend total energy consumption. 

One of the machine loading studies concluded that at 90% chiller loading (1,857.30 kW), 

machine consumed less energy per load than at 50% chiller loading (904.62 kW) which was 

estimated to be about 2.55kW per 1% chiller loading (Chang et al., 2005). Nonetheless, past 

research has not well explored machine loading problems that concern energy consumption 

and product quality simultaneously. Therefore, this needs further investigation of the problem 

under the real environment scenarios of shop-floor. 

2.9 Heating, Ventilation and Air Conditioning (HVAC) Systems  

Heating, ventilation and air condition (HVAC) is the main system that consumes energy in the 

manufacturing system. The operation of HVAC system has a significant effect on the cost of 

energy consumption (Wang and Ma, 2008). The HVAC system is the world’s energy 

consuming that uses energy up to 50% of a non-production manufacturing process in the U.S. 

(U.S. Energy Information Administration, 2010). Moreover, the UK rate of energy 
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consumption is continuously increasing 0.5% per year due to the economic growth that leads 

to a significant rise in energy usage of the HVAC system (Pérez-Lombard et al., 2008). 

Previously, there was an empirical study that demonstrates a similar predictive system 

operated in building designs of building services (Lück, 2012). Research on energy 

consumption has extensively focused on both residential and commercial buildings as they 

account for 20 to 40 percent of the total energy consumption in developed countries (Pérez-

Lombard et al., 2008). Generally, energy consumption behaviour of a building can be 

comprehensively determined by thermodynamics laws that calculate the energy consumption 

of each component of the building along with other energy information relating to the building 

and their environments (Zhao and Magoulés, 2012). Accordingly, the energy behaviour 

includes, for example, weather conditions outside the building, operation, HVAC equipment, 

utility rate and building construction. In line with this, HVAC systems play the most important 

role in energy consumption within commercial (agricultural and services) and non-commercial 

(i.e. residential) buildings in response to a high demand for thermal comfort (Pérez-Lombard 

et al., 2008). Other main sources of energy consumption include lighting, appliances and water 

heating. Strategies aimed to reduce energy consumption in buildings have included, for 

instance, optimisation by means of compactness and shape factor, passive cooling and heating, 

glazing and shading (Ordóñez and Martínez, 2012). 

Typically, the temperatures of inside and outside a building can be different. To maintain an 

indoor temperature, an HVAC system requires energy to operate and control the temperature 

in the manufacturing ambient environment. The energy required for the HVAC system in a 

light factory building represented by Q can be calculated with Equation (2.20).  

                    |     | (2.20) 

where ρ0 defines the outside air density, Cp defines the specific heat of air, V defines the 

volumetric flow rate of air  which is also the change in air volume within an hour, Ti is the 

outside temperature, and To is the inside temperature. In general, the value of the specific heat 

capacity of air is 1 kJ/kg   °C at a normal atmospheric pressure (Cengel, 1998). The value of 

air density is 1.2754 kg   m-3
. 
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2.9.1 Temperature Variation 

The daily temperature within a manufacturing plant, or the ambient thermal environment, is a 

crucial variable that constantly fluctuates which is potentially due to seasonal temperature 

variations, solar radiation, increased/decreased heat from machine tools, and other unexpected 

variations. Temperature variations may be as high as 5°C  to 10°C  in the morning of the 

summer days.  

Moreover, the effects of ambient temperature fluctuations concern two main areas: regulations 

and machine performance. First, according to Health, Safety and Welfare Regulations 1992 

which states that all workplaces including manufacturing plants must provide comfortable 

working conditions for employees and non-employees within the premises (Health and Safety 

Executive, 2013). Specific to thermal comfort in indoor workplaces, a suitable temperature for 

working conditions is defined as “being normally at least 16°C unless the work involves 

severe physical work in which case the temperature should be at least 13°C”. Consistently, 

manufacturing plants that involve high thermal effects need to considerably address this matter 

by complying with the published code of practice to ensure the health and safety of all 

individuals in the plants. Second, it has been documented that ambient thermal environment 

affects the accuracy of a machining process and inter-relatedly machine measurement and 

performance (Black & Kohser, 2008). Consequently, data on ambient temperature within a 

plant is of a particular importance, especially for the HVAC system performance.  

2.9.2 Weather Forecast 

Whilst indoor temperatures play a significantly role in manufacturing facilities, indoor 

temperatures are evidently affected by the outdoor weather. Data on weather forecast can 

provide useful information to predict the indoor temperatures in the near future. To manage 

energy system in a more effective way, the system should therefore integrate temperature 

forecast data as it affects energy efficiency of the tuning process of the temperature controller. 

Put differently, accurate forecast data can facilitate the operations of the HVAC control 

system.   

As described by Burroughs (2003), future weather or future temperature can be predicted by 

its intrinsic behaviour of a non-linear system through a non-linear differential equation. This 

methodological system is the basic element of the Numerical Weather Prediction (NWP) 

method that is adopted by most forecasting meteorological databases (Zhang & Hanby, 2007). 

http://www.rapidtables.com/convert/temperature/celsius.htm
http://www.rapidtables.com/convert/temperature/celsius.htm
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The NWP employs computer-based systems to simulate short-range weather data by using 

intelligently adaptive temperature systems to acquire predictive data including hourly 

temperature weather data (Rodwell & Palmer, 2007) 

Mentioned earlier, management of an energy efficient system at an HVAC level is of great 

importance. Nonetheless, relatively few studies have focused on the HVAC system in 

manufacturing. Among these is the study of Dababneh et al. (2016) that attempted to reduce 

peak demand using HVAC workload without affecting production. In particular, 29% of peak 

demand could be reduced during summer, and 21% peak power could be reduced during 

winter. Monitoring and optimisation of control systems are not only necessary but also 

regulated by legislations to ensure comfort in manufacturing. The appropriate temperature in 

working environment does not only minimise energy consumption, but it can also improve 

employee’s performance. Therefore, the setting point of temperature should be identified. The 

following sections provide a review of the two types of control systems that are used in HVAC 

system: PID controller and fuzzy logic controller. 

2.9.3 PID Controller 

As the name suggests, PID or proportional-integral-derivative controller combines the roles of 

the three parts: proportional, integral and derivative modes (Sung et al., 2009). The PID 

system can be considered as conventional or classical system (Dounis and Caraiscos, 2009). 

The primary objective of PID controllers is to minimise errors of a control system by 

performing the mathematical operations of the three parts (Kiyak and Gol, 2016). Specifically, 

the proportional part can be computed with Equation (2.21) (Sung et al., 2009). 

                        (2.21) 

The Integral control part can be mathematically expressed by Equation (2.22). 

 
       

  

  
∫               

 

 

 (2.22) 

The derivative part is expressed by Equation (2.23). 

 
           

             

  
 (2.23) 
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For the three equations, the denotation       defines the desired process output,      defines 

the output of the process,      defines output the of the control.    defines the proportional 

gain,    defines integral time, and    defines derivative time. The parameters should be 

adjusted accordingly to the process dynamics.  

Particularly, the proportional part first creates the controller output by multiplying errors with 

a specific gain value (Kiyak and Gol, 2016). This improves the accuracy of both static and 

dynamic response of the controller by means of fast reaction time and reduced errors. The 

integral part then creates the proportional output with the sum of errors, thereby increasing the 

static response but reducing the dynamic response time. On the other hand, the derivative part 

does not affect error recovery when it increases the dynamic response. Together, the PID 

controller is, therefore, the sum of the three control parts which can be computed with 

Equation (2.24). 

                                          

   (          )  
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(2.24) 

The three values,   ,    and   , are regarded as parameters of a tuning procedure which need 

to be set before operating. Overall, the calculation of the PID controller is simple. According 

to Sung et al. (2009), PID controllers are widely used in manufacturing due to their simplicity 

and robustness to uncertainties. PID control system has been extensively applied to HVAC 

control system in attempt to mininise energy usage. However, conventional PID controllers 

may not properly analyse nonlinear systems, high-order linear systems, time-delayed linear 

systems and general complex manufacturing systems that can be expressed with simple 

mathematical models (Tang et al., 2001). The type of control system, in many situations, is not 

suitable for optimisation and prediction purposes, but it can be effective in tuning easing and 

lowering costs (Dounis and Caraiscos, 2009).  

2.9.4 Fuzzy Logic Systems 

The term ‘fuzzy logic’ was first introduced in the early 1960’s and generally describes the 

mathematical order which expresses uncertainties. The fuzzy logic control system thus obtains 

values with logic in an uncertain environment (Kiyak and Gol, 2016). It can examine all states 
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of the system by handling all intermediate values. In building and manufacturing, the fuzzy 

logic is often applied to the neural networks technology along with algorithms to develop 

various computer-based intelligent control systems (Dounis et al.,1996). 

Several empirical studies have carried out to investigate the energy performance of the various 

control systems. For instance, Dounis et al. (1996) found that fuzzy controllers are more 

suitable than the PID controllers or the ON/OFF controllers when controlling for the air 

quality of ventilated indoor. More recently, Ulpiani et al. (2016) compared the ergonomic 

performance of the ON/OFF, PID and fuzzy controller for the heating system in a building. 

The results demonstrated that a more energy efficient (energetic and ergonomic) performance 

of the fuzzy controller which reduced 30 to 70 percent of energy consumption while 

constantly maintaining thermal comfort in the building. Similarly, Kiyak and Gol (2016) 

compared between PID controller and fuzzy logic controller using a solar tracking system and 

concluded that the fuzzy logic control system could increase 2.39% of energy efficiency.  

2.9.4.1 Fuzzy Controllers 

Fuzzy controllers are generally used to control fuzzy systems. In traditional control 

algorithms, a mathematical model is required to control the system. However, numerous 

physical systems cannot also be modelled mathematically. Nonetheless, if the control strategy 

can be described qualitatively, fuzzy logic can be used to create a fuzzy controller that 

reproduces heuristic rules. As shown in Figure 2.15, a fuzzy logical controller consists of three 

main parts which are fuzzification, implementation of a linguistic control strategy, and 

defuzzification in a respective order.  

The fuzzification is the process of converting crisp inputs (or numerical inputs) into the 

linguistic terms that are corresponding to the input linguistic variables. A linguistic variable 

can therefore be fragmented into a set of linguistic terms. For instance, as demonstrated in 

Figure 2.16, if temperature in a room is set as the linguistic variable, a fuzzy controller may 

convert the crisp inputs of the thermometer reading on the system with the linguistic terms of 

“Very Cold”, “Cold”, “Warm”, “Hot” and “Very Hot” that are corresponding to the linguistic 

variable. However, the value of the temperature can belong to one or more linguistic terms 

depending on the membership functions that are used to quantify a linguistic term. 

Membership functions are thus numerical functions used to map crisp input values into the 

corresponding linguistic term and represent different degree of memberships of linguistic 
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variables. A membership value is continuous and ranges between 0 and 1 where 0 indicates 

0% of membership and 1 indicates 100% membership (Chinthamani et al., 2012).  

 

Figure 2.15. Process of a Fuzzy Controller (Bitter et al., 2007) 

 

Figure 2.16. An example of temperature crisp input membership function 

Rules represent the relationship between the input and output linguistic variables in 

accordance to their linguistic terms. A rule base is a set-off rule and constructed to control the 

variable. (Chinthamani et al., 2012). In a fuzzy system, the total number of possible rules 

denoted as R is described by Equation. (2.25). 

                 (2.25) 

where pn  determines the number of linguistic terms for the linguistic variable n. If there are the 

same number of linguistic terms in an input linguistic variable, Equation (2.26) can be 

calculated for the total number of possible rules.  
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       (2.26) 

where p defines the number of linguistic terms for an input linguistic variable, and m defines 

the number of input linguistic variables (Chinthamani et al., 2012).  

A rule base can be plotted using a matrix representation as a helpful tool to recognise 

inconsistent and contradictory rules. Cascading fuzzy systems can be used to avoid large rule 

bases for fuzzy systems with a large number of controller inputs. A rule base is established to 

control the output variable, and a fuzzy rule is an IF-THEN rule with a premise and a 

consequence (Isizoh et al., 2012). Table 2.2 and 2.3 provide an example of fuzzy rules for a 

temperature control system and an example of the matrix representation of the fuzzy rules, 

respectively. 

Table 2.2. An example of fuzzy rules for temperature control system  

(Chinthamani et al., 2012). 

No. Fuzzy Rules 

1 
IF (temperature is cold OR too-cold  

AND (target is warm) THEN command is heat 

2 
IF (temperature is hot OR too-hot) 

AND (target is warm) THEN command is cool 

3 
IF (temperature is warm) 

AND (target is warm) THEN command is no-change 

Table 2.3. An example of matrix for the temperature control system  

(Chinthamani et al., 2012). 

Temperature/ 

Target 
Too-cold Cold Warm Hot Too-hot 

Too-cold 
No-

change 
Heat Heat Heat Heat 

Cold Cool 
No-

change 
Heat Heat Heat 

Warm Cool Cool 
No-

change 
Heat Heat 

Hot Cool Cool Cool 
No-

change 
Heat 

Too-hot Cool Cool Cool Cool 
No-

change 
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The third part, defuzzification, involves a quantifiable result in which the degrees of 

membership of output linguistic variables are converted into crisp values that are numerical. 

This process can be performed with a number of mathematical methods such as the centroid 

method which is the most common among all available defuzzification methods (Chinthamani 

et al., 2012). The Centroid method is also known as the center of area (CoA) or center of 

gravity (CoG) method and is considered as the most useful method because it considers the 

input and output linguistic terms. According to this method, the fuzzy controller calculates the 

center of area under the membership functions within the range of the output variables. To 

calculate the center of this area known as CoA, Equation (2.27) is applied.  

 
     

∫          
    

    

∫       
    

    

 (2.27) 

where x is the linguistic variable value, and xmin and xmax are the minimum and maximum 

values of linguistic variable range.  

In a HVAC system, the fuzzy control system is utilised to control the temperature in the 

environment by regulating a cooling or heating system. The temperature of the room is 

adjusted based on information of the current room temperature and the target value defined by 

the system. The fuzzy controller system compares current temperature value to the target value 

at a given time and then creates a command for cooling or heating. Figure 2.17 illustrates the 

process of a regular fuzzy logic control system of room temperature. 

 

Figure 2.17. A regular fuzzy logic control system of room temperature 

2.10 Energy Management System 

Despite increasing attention given to advanced developments, there are remarkable 

opportunities to improve energy performance within the manufacturing industry. 
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Consequently, a complete energy management system is essential to the establishment of 

success towards sustained energy-performance (Almaguer, 2012). The challenge within 

energy management is not related only to the technical elements, but it needs to implement the 

technical changes to minimise cost effectively but at the same time with minimum disruptions 

(Turner and Doty, 2007).  

2.10.1 Energy Management System Framework 

Energy management system refers to the integral sum of various elements that collectively 

leads to policies, processes and procedures that are established in accordance with the strategic 

energy objectives. More simple definitions also exist such as a system aimed to monitor 

expenditures of electricity or fossil fuels (Dinçer and Zamfirescu, 2011). Based on the 

summary of various definitions in current academic literature, energy management systems 

consists of an energy-related definition, implementation and controlling through continuously 

transparent and systematic approach in order to achieve the strategic goals related to 

sustainability and efficiency (Javied et al., 2015).  Moreover, the values of energy 

management cannot be understated. Evidently, by efficient energy management, immediate 

and long-term economic return can be attained, thus bringing competitive advantages to 

manufacturers. Relatedly, well-established management systems can respond to rapid changes 

in energy technology, and financial-related (e.g. energy price shocks) and environmental 

concerns (Turner and Doty, 2007).  

Despite the varied benefits of energy management system practices to achieve efficiency 

shown in literature, not all manufacturers have successfully implemented such a system. The 

common barriers to energy efficiency practices have shown to include, for example, a lack of 

economic- (e.g. cost reduction) or environmental-related (e.g. concern for environments) 

motivations, capability (i.e. a lack of resources such as time, technical skills, knowledge, staff 

and finances), a lack of window of opportunity, a lack of data to evidence positive returns of 

system adoption or positive returns for the energy saving efforts, and a fear of production 

disruption (Chai and Yeo, 2012).  

The International Organisation for Standardisation or ISO appointed PC242-Energy 

Management in February 2008 as the project committee to establish a new ISO energy 

management system (EnMS) standard for energy named ISO 50001 which was released in 

June 2011. ISO 50001 provides an international framework for all types of organisations 
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including industrial plants and manufacturers of all sizes to effectively use and manage energy 

and at the same time recognises ways to save money (i.e. economic criterion), to conserve 

resources and respond to the current climate change. The ISO 50001 framework offers 

standards and policies for all essential elements which include, but are not limited to, energy 

management planning for energy use, efficiency, supply and performance, and design and 

procurement practices for systems and processes related to energy usage (Dörr et al., 2013). 

The framework of ISO 50001 also covers standards for measurement, documentation and 

reporting of energy usage and consumption. By demonstrating that the manufacturers have 

sustainable energy management systems, they are attributable to continual, long-term energy 

performance improvement. Overall, it aims to offer a systematic framework for organisations 

to not only establish an energy management system but also to implement, measure, monitor, 

maintain and improve it (ISO, 2016). 

Because manufacturing is largely responsible for a significant proportion of the total world 

energy consumption and CO2 emissions that have resulted in high energy prices and 

ecological damages, it is, therefore, crucial for manufacturers to model, measure and predict 

energy consumption and efficiency (Park et al., 2009). Energy management systems (EMS) 

are commonly used to monitor all activities. Technology has played a significant role in the 

development of energy management systems, and the systems have grown more advanced and 

sophisticated over the years (Hordeski, 2004). For instance, the earlier systems such as Energy 

Management and Control Systems (EMCS) utilised computers to optimise energy saving 

features, equipment operation and initiated the shutdown of machines when they were not in 

use.  

2.10.2 Modelling of Energy Management system 

In the last decade, various energy efficient methodological models have been proposed to 

predict energy consumption for manufacturing systems. In manufacturing, modelling is a 

practical processing technique that aids a decision-making process in relation to the 

implementation of effective systems (Johnansson and Grunberg, 2001).  The decisions often 

involve the choice between an analytical (or mathematical) and a simulation modelling 

approach. Whilst an analytical approach enables a solution to a particular performance 

measure, simulation modelling may become a more systemically well-suited method in 
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manufacturing handle underlying complex behavioural systems (Blanchard and Fabrycky, 

2006). 

Because simulation modelling is managed with a computer-based programme, computation of 

the solution can be performed on any complex manufacturing systems and any sets of 

assumptions. Rather than finding the optimal values of a prescribed function as in an 

analytical model, simulation modelling adopts a descriptive model which estimates a set of 

performance measures that correspond to a set of input data through sample histories (Altiok 

and Melamed, 2007). More specifically, once the programme creates the models of a specific 

system, it then proceeds to experiment that is established based on a prescribed set of 

objectives of the goal. Next, the experiment produces histories, statistics and system behaviour 

over time.  

Importantly, simulation models can effectively explore the alternative system characteristics 

without actually examining each of the candidate systems, thereby providing great advantages 

especially for complex manufacturing systems that involve high costs or are difficult to 

manipulate (Blanchard and Fabrycky, 2006). In manufacturing, a simulation model of an 

energy system can be adopted to establish ‘what-if’ scenarios in order to analyse and evaluate 

energy consumption or other outcomes during different phases of a manufacturing system and 

processes (Seow et al., 2011).  

With the application of an energy simulation model, flows of the manufacturing processes can 

be easily adjusted and modified. The simulation model can also be expanded to include more 

variations of products and processes such as lead times, queue times, production lines and 

batch sizing. For example, using simulation modelling, aCtuatorS Methodology also known as 

CSM advanced the computation and prediction of the power peaks and energy consumed at 

the on/off switching of the actuators during the production process (Cataldo et al., 2015). The 

simulation approach enables modelling of energy efficiency to evaluate energy consumption 

of various processes in more details and demonstrate energy hotspots in the manufacturing 

plant (Seow et al., 2011). 

Another objective of this methodology concerns the optimisation of a performance measure 

from an economic perspective by seeking the optimal solution for decisions such as financial 

risk reduction and a decrease in lead time (Robinson, 1994). Owing to the fact that simulation 

modeling is a paradigm that establishes a simplified model or representation for evaluating 
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and analysing complex manufacturing systems, this approach, therefore, provides a powerful 

methodological tool that supports the operations of various manufacturing systems (e.g. 

production planning, process and control) that are integrally essential to the overall energy 

management system (Hermandez-Matias et al., 2006; Rossetti, 2010).  

2.10.2.1 Process Simulation Software Packages 

Computer simulations provide crucial features of a real system for users to test, design and 

analyse information in a safe and convenient environment (Tavakkoli-Moghaddam and 

Daneshmand-Mehr, 2005). Several simulation software packages are available in the industry 

such as ProModel, AnyLogic, Plant Simulation, Lanner and Arena Simulation programme. 

Most of the simulation programmes provide similar production modelling features and 

capabilities (Componation et al., 2003.) As modelling appears to be one of the difficult and 

time-consuming elements of the simulation process, Arena Simulation can provide several 

advantages over other programmes due to its graphical user-friendly interface and templates 

(Guneri & Seker, 2008). The modelling can be performed by clicking and dropping the 

modules into the window. Furthermore, the user-friendly display, the Arena Simulation 

programme provides important applications for performances in manufacturing production 

management system (Thierry et al., 2008). 

In addition, Kelton et al. (2015) confirmed that the development of Arena is regarded as one of 

the most successful simulation programmes for analysing complex systems. Figure 2.18 shows 

an example of Arena Simulation programme model window. Because the simulation software 

can be used to model both detailed discrete and continuous systems of high-level analysis, 

complex systems are modelled using pre-packaged SIMAN code modules, blocks and 

elements (Altiok & Melamed 2007; Banks et al., 2010). Therefore, in this research, Arena 

Simulation programme (Version 14.5) is adopted as an acquisition and analysis tool in this 

research. 

Similarly, several visual programming tools are available including Python, myOpenLab, 

PyLab_Works, FlowStone, MatLab and LabVIEW. Among these, Laboratory Virtual 

Instrument Engineering Workbench (LabVIEW) software is suitable to be used to acquire, 

display, analyse and present data with a user-interface application (Bitter et al., 2006). Bishop 

(2007) asserted that the programme provides a series of graphic interface that demonstrates 

and controls the data acquisition and connects them to a variety of instruments such as  
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Figure 2.18. Illustration of Arena Simulation programming model window 

 

Figure 2.19. Illustration of LabVIEW programming model window 
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MatLab. In particular, Front Panel window uses the virtual instrument to control and monitor 

systems whereby each instrument can correspond to Block Diagram. The Block Diagram 

contains the structure and object that carry data from one instrument to another for 

programming elements. The connection function allows LabVIEW to improve its performance 

and overcome its limitations (National Instruments, 2016). LabVIEW programme was 

developed by the National Instruments to support data acquisition, measurement, analysis and 

display in laboratory settings (Morris & Langari, 2012). Using built-in signal processing and 

mathematical functions, the programme can quickly analyse the data both online and offline. 

Algorithms can also be customised (Bishop, 2007). Figure 2.19 illustrates a LabVIEW 

application user interface. 

2.11 Research Gaps 

As discussed in this review of the literature, the current manufacturing industry faces difficult 

challenges in economic and environmental domains, thereby resulting in increasing demands 

to develop a more effective energy management system. The implementation of energy 

management systems has great potential for energy efficient performance which in turn will 

have an impact on reducing energy consumption and CO2 emission (European Commission, 

2011). While the current literature has shown extensive work in an attempt to improve an 

energy-efficient system by minimising energy consumption, there is room for improvement 

due to three major research gaps. To accurately model energy management system, it is 

important to systematically improve energy efficiency through a methodical, novel approach 

to the energy consumption of sustainable and low carbon manufacturing at machine, process 

and shop-floor levels. 

Firstly, the existing body of research on sustainable manufacturing has been understudied the 

relation between product quality and energy efficiency. In other words, a systematic 

knowledge on how manufacturing environments and energy consumption can collectively 

enhance product quality is unclear. This is of particular importance to precision manufacturing 

since accuracy is the primary indicator of machining performance. 

Secondly, Geret et al. (2015) recently explained that energy efficiency at the manufacturing 

plant level needs further investigations in order to provide a more comprehensive development 

of the energy-efficient management system. Nevertheless, studies on energy efficiency at a 

manufacturing plant level are highly limited which may be explained by the complexity of 
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methodological analysis. One common strategy to improve efficiency adopted by a number of 

manufacturing plants is based on the notion that different production rates generate different 

amount of energy usage.   

Finally, the majority of research on energy-efficient HVAC system has focused on buildings. 

No systematic model has yet been developed for the manufacturing environment which is 

highly dynamic and complex. Energy-efficient management systems that were developed for 

buildings are not likely to be suitable for implementation in manufacturing as it comprises of a 

variety of machines, systems and processes that differ in energy consumption behaviour. 

Therefore, a systematic model energy management system in manufacturing is necessary to 

accurately predict energy consumption and control the HVAC system. In industrial 

environmental conditions, a variety of factors and variables (e.g. plant design, machines, and 

HVAC system) can certainly affect the total energy consumption and consequently the total 

carbon emissions.  

2.12 Chapter Summary 

Considering the recent rises in electricity costs and greater environmental concerns in 

manufacturing, energy saving has become an essential factor to move closer towards 

sustainable consumption and production (Katchasuwanmanee, 2015; Mani et al., 2008). The 

manufacturing industry is responsible for more than 30% of global energy consumption and 

40% of CO2 emissions (Behrendt et al., 2012; Tridech, 2011, Strange, 2008). To address the 

challenges of climate change and other environmental issues, more energy-efficient and yet 

high-quality production processes are one potential solution to reduce the total energy 

consumed in manufacturing. In order to fill the three research gaps identified previously, the 

following chapters will present a development of an integrated sustainable manufacturing 

approach energy-smart production management (e-ProMan). The e-ProMan is a simulation 

modelling which takes into account the systematic relationship between energy flow, work 

flow and data flow and considers the real-time data from a variety of sources. It is also a 

HVAC predictive control system and provides decision-making algorithms as an innovative 

step towards sustainable precision manufacturing. Simulation experiments will also be carried 

out at machine, process and plant levels in order to extend knowledge on energy-efficient 

management system in precision manufacturing.  
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CHAPTER 3 

Methodology 

The aim of this chapter is to scientifically understand and summarise all methodological 

choices in the present research which include simulation modelling process and its 

methodology. It is followed by a summary of statistical analysis of multiple regression and 

correlation analyses. This chapter also describes the simulation tools and statistical analysis 

tools used in this research. 

3.1 Introduction 

Research philosophy is a fundamental element in research as it provides a systematic 

understanding of how research knowledge is derived and interpreted (Reich and 

Subrahmanian, 2013). In the last decades, engineering research has increasingly focused on 

computer-based tools especially simulation modelling (Green et al., 2002). This particular 

research method and a laboratory experiment follow a scientific, positivist approach in which 

variables of interest are designed and studied in a laboratory in order to replicate a real-world 

environment and behaviour of a complex manufacturing system. To fulfil the research 

objectives, the following sections elaborate on the methodological choices of conducting 

simulation modelling and quantitative statistical analysis.  

3.2 Process Simulation Modelling 

Simulation describes a process of generating an environment in order to understand the 

behaviour of a model in a specific time interval. This environment serves as a medium to 

connect with the model. Banks (1998) and Son and Wysk (2001) asserted justifications for 

using simulation modelling as a research method tool. In line with this, Onut et al. (1994) 

presented simulation modelling by integrating the model into a control system of a shop floor 

of a Semi-Integrated Manufacturing System or SIMS. In this research, a framework was 

proposed in which simulation was interfaced with a variety of systems including Material 

Requirement Planning or MRP system, database management system, host computer, control 

system and supervisory input system. The results showed that the modelling was able to 

improve the effectiveness of control and operations in manufacturing. Nonetheless, the data 

inputted into the model which was collected from the shop floor and relevant systems were not 
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automatically updated. In summary, past studies have provided empirically evidence that show 

the simulation is a fundamental method in understanding and thus n improving behaviours of 

manufacturing systems.  

3.2.1 Traditional Simulation 

In early research, traditional simulation models are used to analyse systems and make 

decisions on operations and control. They are generally discarded following the 

implementation of the initial design. A number of researchers have termed traditional 

simulation models as “throw-away models” which describe models that are used after the 

plans and designs and are primarily based on historical data (Banks et al., 2010). The 

limitations of traditional simulation, however, have been acknowledged in research (Komashie 

et al., 2005, 2008). The disadvantages of this approach are mainly related to time and cost. 

First, a manual analysis of input data is typically required in traditional modelling, which 

involves a large amount of time to complete. In some cases, the required input data may be 

available in a format that is impractical to use and thus require more time to process. In 

addition, since traditional simulation largely relies on historical input data, the results 

generated from the model are not necessarily reliable, especially when the data are no longer 

valid or relevant. This shortcoming is a crucial issue in manufacturing where its complex 

systems are highly dynamic. When the data inputted into a model are not obsolete and thus 

reliable, it is likely that simulation modeling would not accurately predict future events. 

Hence, the model can become an ineffective tool in understanding the system. Relatedly, since 

simulation, especially a complex model, can be time consuming, cost of simulating a 

traditional modelling is recognised as another shortcoming (Chung, 2003). Efforts to collect 

up-to-date input data can also be costly. Taken these disadvantages into consideration, real-

time simulation modelling can enhance a more accurate prediction of future events and 

potentially reduce cost and time related to data input.  

3.2.2 Discrete-Event Simulation (DES) in Real-time Control 

To ameliorate the main limitations of traditional simulation, researchers have attempted to 

develop simulation modeling that is less dependent on time yet can still be integrated into 

large, complex systems. In manufacturing, the application of discrete-event simulation 

modeling is real-time which is constrained by timing requirements. Lee et al. (2001) explained 
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that, in order for a real-time system to be simulated efficiently, a model must meet the 

constraints of time and simulation objectives (Banks, 2001). In this approach to simulation, the 

environment influences the model after a certain amount of time. After each interval of time, 

the status of the model is updated and shown according to the accumulation of input data.   

Research has well demonstrated the use of discrete-event simulation. For instance, in a study 

of Vaidyanathan et al. (1998), a discrete event simulation model was developed as a planning 

tool using a hybrid approach which integrated a planner into the model. Later, Son and Wysk 

(2001) generated a code for an automatic simulation model to be applied to a real-time control 

system of a shop floor level. While this model can be applied to a traditional approach, this 

particular methodological simulation modeling is able to send and receive messages real-time 

through an Ethernet link and with an application of Rockwell Software Area. The model 

emphasised the strengths of its implementation and application of predictive simulation in 

conjunction with real-time data acquisition in dynamic manufacturing. In summary, the review 

of traditional and discrete-event simulation modeling highlighted the benefits of applying 

discrete-event simulation modeling to dynamic, complex systems of the current manufacturing 

industry.  

As mentioned in the previous chapter, a number of simulation software packages are available 

in the industry such as AnyLogic, ProModel, Lanner, Plant Simulation and Arena Simulation 

programme. However, Guneri and Seker (2008) and Kelton et al. (2015) suggested that the 

development of Arena is regarded as one of the most successful simulation programmes for 

analysing complex systems. In addition, LabVIEW programme is suitable to be used as real-

time data acquisition (DAQ) compared with other programming tools such as Python, 

myOpenLab, PyLab_Works, FlowStone, MatLab (Bitter et al., 2006 and Bishop, 2007). 

3.2.3 Simulation Modelling Methodology 

Arena Simulation programme (version 14.5) was employed to build a simulation model of the 

manufacturing systems and processes (Kelton et al., 2015). Robinson (1994) proposed four 

primary steps in simulation modelling methodology: problem analysis, simulating and testing, 

experimentation and analysis, and implementation. Figure 3.1 identifies the sub-steps in each 

of the four steps within the modelling process. 
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3.2.3.1 Problem Analysis 

The problem analysis step consists of six sub-steps as follows: identify the problem, set 

objectives, define experimental factors, determine the conceptual model, collect and analyse 

data, provide project specification (Thierry et al., 2008). Overall, once the problem is 

recognised and defined and the objectives are clearly stated, the conceptual model which is a 

description of the model needs to be developed. The conceptual model should precisely 

identify the parameters including inputs, outputs and content. Raw data is collected and 

analysed to improve the accuracy of the simulation model in the subsequent step. However, 

because data collection could consume extensive time, this sub-step may be carried out 

simultaneously with the simulating and testing step. 

 

Figure 3.1: Four steps of simulation modelling methodology (Robinson, 1994) 

In addition, Thierry et al. (2008) demonstrated the modelling process in relation to the four 

steps of simulation methodology. The relationship between the modelling process and the four 

steps are depicted in Figure 3.2. 
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Figure 3.2: Modelling process (Thierry et al., 2008) 

3.2.3.2 Simulating and Testing 

Mainly, this step involves the computer model which is defined as the simulation model that is 

implemented on a computer and consists of three sub-steps: (1) structure, (2) create, and (3) 

verify and validate the model (Robinson, 1994, 2014). The computer model is first structured 

to test the components, reliability and logic. In this second sub-step, the computer model is 

created with the simulation software tool (i.e. Arena Simulation programme in this research) 

based on the structural model and acquired data. Last, the model is verified according to the 

logical rules and validated in order to further enhance accuracy and reliability of the output 

model and to ensure that it meets the objectives identified in the first step (Ingemansson and 

Bolmsjo, 2004; Robinson, 1994). 

3.2.3.3 Experimentation and Analysis 

This third step involves an experiment and analysis to gain improvements or understanding of 

the ‘real world’ situations or problems (Robinson, 2014). This step refers to the ‘what-if’ 

analysis process which modifies the model’s inputs, run the model, observe and analyse the 

results, and then modify changes to the inputs again, if necessary,  to improve the robustness 

of the solution and more importantly to achieve the objectives. Robinson (1994) also refers the 

‘what-if’ analysis process to interactive experimentation.  
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3.2.3.4 Implementation 

Implementation is carried out for three main purposes: to implement the findings from the 

simulation to improve the ‘real world’ problem, to implement the model, and to gain 

understand for learning purposes (Robinson, 2014). In this step, recommendations can also be 

implemented with the results for improvements and future work. 

3.3 Statistical Analysis 

Statistical analysis is a systematic approach in which data are analysed in order provide 

answers to the research question (Morris, 2010). In an experimental case study, data are 

typically derived from the process of data acquisition such as measurement. As a result, a set 

of data includes a number of independent and dependent variables. In the present dissertation, 

the relationship between the variables of interest, namely energy consumption, product quality 

and temperature, is analysed by a mathematical method called regression model. The strength 

of the relationship is identified with a correlation index called correlation analysis 

(Montgomery, 2013).  

A variety of statistical software packages are available such as SPSS, SAS, R, Stata, SYSTAT, 

JMP and MINITAB. Coakes and Steed (2001) stated that SPSS can efficiently analyse large 

sets of data. Levesque (2005) claimed that SPSS is a powerful tool which comprises of various 

function such as acquiring, merging, and transforming data. It also provides user friendly 

graphical interface (Levesque, 2005). Hence, statistical analysis was investigated with the 

statistical analysis software package SPSS version 20 in this dissertation. In addition, Hilbe 

(2003) suggested that SigmaPlot is a tool for users to create complex two- and three-

dimensional graphs. Thus, SigmaPlot programming is used to illustrate the 3D correlation 

analysis. 

3.3.1 Multiple Regression Analysis 

Regression analysis is a mathematical process for constructing a model which describes the 

relationship between dependent and independent variables that are continuous (Seber and Lee, 

2003). The model is then fitted in order to acquire the estimator from the unknown parameter 

values often with a least squares method. This method aims to produce fitted line that is the 

closest to the data points (Draper and Smith, 1998). Thus, distances between each of the 

collected data points and the fitted line are minimised. In addition, various regression models 
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are available to analyse the data to predict the value of the dependent variable from the value 

of the independent variable. In the simplest form, simple regression model explains a 

relationship between one independent and one dependent variable. However, when multiple 

independent variables are involved, conducting several simple regression model tests 

separately can result in an increase in type I error. Hence, multiple linear regression analysis is 

more appropriate when there are two or more independent variables.      

Multiple linear regressions are extended from the least squares regression to the equation of 

one 2D plane which is expressed in Equation (3.1) (Draper and Smith, 2014). 

           (3.1) 

The equation minimises the vertical distances between the   ,   ,    points and the plane. In 

doing so, the values of a, b, and c need to be solved in Equation (3.2). 
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Assuming the linearity exists and there is:  
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The matrix equation for a, b, and c can then be established as:  
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The solution for a, b, and c can be found when the matrix on the left is invertible, i.e. the 

determinant being not equal to zero. 

3.3.2 Correlation Analysis 

In order to investigate the correlation between two variables, the use of different indices needs 

to be selected. There are three main types of correlation coefficients which are Pearson’s 

coefficient (r), Spearman’s coefficient (rs), and Kendall’s coefficient (τ) (Hauke and 
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Kossowski, 2011). Pearson’s correlation coefficient is a widely used statistical measure which 

defines the strength of a linear relationship between two continuous variables and varies from 

+ 1 through 0 to – 1 (Hauke  and Kossowski, 2011). It is denoted by r.  

Figure 3.3 depicts examples of graphical representations of correlation and Pearson (r) 

correlation data. As depicted in Figure 3.3, the positive values denote a positive linear 

correlation whereas negative values denote a negative linear correlation. A value of 0 denotes 

no linear correlation. Benesty et al., 2009 suggested that the absolute values of r ranging from 

0 to 0.19 are described as “very weak”, the values between 0.20 and 0.39 are “weak”, the 

values between 0.40 and 0.59 are “moderate”, the values between 0.60 and 0.79 are “strong”, 

and the values between 0.80 and 1.0 are “very strong”. 

 

Figure 3.3: Graphical correlation coefficient (Draper and Smith, 2014) 

In multiple regression analysis, correlation coefficient (r) alone is not sufficient to explain a 

multi-linear relationship because there are multiple variables involved. Draper and Smith 

(2014) described that R
2
 (coefficient of determination) takes into account correlation of the 

multiple pairs in the multiple linear regression model. 

R
2 

explains how well the least squares line fits the collected data where the large value defines 

a closer fit between the line and the data (Seber and Lee, 2012). It also defines the amount of 

variability of the dependent variable that is explained by the independent variables. Therefore, 

the R
2
 is a useful measurement to estimate the strength of the association between the 
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variables in the model (Seber and Lee, 2012). In Figure 3.4, the graphs demonstrate the value 

of the response variable variation that is explained by a linear model showing three simulated 

data of X and Y values. The values can be multiplied by 100 to give a percentage.  

 

Figure 3.4: Examples of determination correlation (R
2
) data (Seber and Lee, 2012) 

Furthermore, significance level (or α) is adopted to describe the statistical significance of a 

regression model (Cohen, 1988). Specifically, the p value which defines the probability of 

rejecting the model as significant when it is in fact statistically significant (Cohen, 1988). 

Typically, a significance level is set at 0.05 in engineering and management fields (Cohen, 

1988. In other words, the model and independent variables are stated to be statistical 

significant in predicting values of the dependent variable when the p value is less than 0.05 

(Cohen, 1988 and Anderson, 1984).  

3.4 Chapter Summary 

Research method is fundamental as it provides a systematic plan in how research is carried 

out. The present chapter describes the concept and provides the rational justification for 

conducting a simulation modelling method. In the following chapter, a simulation model of 

the proposed Energy-smart Production Management System (e-ProMan) is introduced and 

elaborated in more details. Statistical analysis is also described in this chapter. 
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CHAPTER 4 

Development of the Sustainable Manufacturing Approach 

Integrated with e-ProMan Framework and Analytics 

The primary objective of the present chapter is to develop a scientific and methodology based 

approach for sustainable manufacturing by using modelling simulation and energy efficiency 

management system.  The process and steps of the simulation are elaborated. More 

importantly, the chapter presents the Energy-smart Production Management (e-ProMan) 

system as an advanced simulation platform for modelling and management of energy use in a 

manufacturing system. The chapter also describes the measurement tools and software 

programmes and their implementation in this energy management system.  

4.1  Introduction 

In manufacturing, energy management systems employ an empirical methodology that 

systematically consists of monitoring, analysing and optimising as proposed in Figure 4.1 

(Costa et al., 2013). At a simple level of analysis, the monitor function is carried out to 

understand what, when and where energy is consumed. The analyse function is to achieve 

better utility rates by utilising resources or changing behaviour. Finally, the optimise function 

aims to improve equipment performance by reducing energy usage. When necessary, the 

process continually repeats in order to find the optimum solution.  

 

Figure 4.1: Energy management cycle 

 

 Monitor 

 Analyse   Optimise 
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In the current manufacturing environment where processes are highly complex, numerical or 

mathematical methods alone may be impractical to monitor, analyse and optimise the overall 

behaviour of energy consumption at different levels of analysis (Altiok & Melamed, 2007). 

Simulation methods, however, enable the energy management system to identify and evaluate 

the flows of information in the manufacturing processes and plant. Specifically, these methods 

provide more advantages over other methods as simulations examine the existing model and 

then propose the implemented system according to the ‘what-if’ analysis, thereby resulting in 

an optimal solution to modelling for manufacturing applications (Banks et al., 2010). 

Robinson (2014) also highlighted other advantages of simulation over experimentation 

including less cost and time and unavailability of a real system for experimentation. 

Accordingly, the present research employs simulation modelling as the main methodology to 

monitor, analyse and optimise the energy management system in manufacturing.  

4.2 Development of the the e-ProMan System 

Considering the significance of correlational and analytical analysis in real-time decision 

making in relation to energy efficiency, the present research develops and proposes a 

simulation model of energy consumption or energy-smart production management system (e-

ProMan) (Katchasuwanmanee et al., 2015). As shown in Figure 4.2, the e-ProMan presents 

user-friendly factory displays demonstrated with 3D CAD models. It is a predictive modelling 

and simulation system which performs by (1) acquiring the inputs from the historical and real-

time data, (2) evaluating on the three-dimensional correlation between energy flow, work flow 

and data flow and (3) providing real-time decision making in the most accurate way as 

possible. 

More specifically, the manufacturing data in this proposed energy-efficient management 

system consist of four real-time data types: weather forecast, shop-floor ambient temperature, 

production processes and workload (both real-time and historical), and energy consumption of 

machines (i.e. HVAC system and CNC milling machines). The manufacturing data are 

gathered using two analysis and implementation tools: Arena Simulation programme and 

LabVIEW. Accordingly, the e-ProMan system is used to analyse in order to gain results of the 

multidimensional relationships between energy flow, work flow and data flow in the 

manufacturing. The results of the correlational analysis will advance the development of a 
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control system and optimisation concerning the minimisation of energy usage and CO2 

emissions in manufacturing. 

 

Figure 4.2. Architecture of the energy-smart production management system (e-ProMan) 

4.2.1 Measurement Instruments 

To acquire manufacturing data, three main performance measurement tools are used within the 

e-ProMan system: thermal camera, temperature sensors and power logger. Briefly, a thermal 

camera is installed and used to measure the temperature at a surrounding area of the operating 

machine. The ambient temperature of the manufacturing plant and outside temperature are 

measured with temperature sensors. Power logger is employed to measure the actual energy 

consumption of the operating machine.  

Theoretical analysis on temperature flows is carried out against the experimental data by CFD 

in the experimental models to identify temperature distribution and air movement predications. 

Last, the acquired data is put into Arena Simulation programme via LabVIEW in order to 

evaluate and calculate the sum of energy consumption and CO2 emissions throughout the 

manufacturing process. Figure 4.3 summarises the flow and sequence of the methodological 

measurement tools within the present energy management system. 
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Figure 4.3: The flows of methodological tools in e-ProMan system  

4.2.1.1 Thermal Camera 

A thermal camera OPTRIS PI 160TAK is installed and used to gather real-time data of the 

surrounding area of operating machine and workpieces as shown in Figure 4.4. This device is 

an infrared and non-contact temperature tool that enables both point and area measurements at 

a specific area or at the machine. This thermal camera can virtually capture and display 

temperatures within a range between -20 and 900 degrees Celsius, and it can detect 

wavelengths in the spectral range of 7.5 to 13 μm with a speed of 120 Hz. An example of the 

thermal display is presented on the right side of Figure 4.4.  

 

Figure 4.4: Thermal camera optris PI 160TAK (left) and thermal camera display (right) 

(Optris, 2016) 

4.2.1.2 Temperature Sensor 

The AREXX temperature logger is a real-time dynamic system to measure and log 

temperature data connecting with computers (Arexx Engineering, 2013). The temperature 
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logger consists of two equipment components which are temperature sensor and USB base 

station (Arexx Engineering, 2013). Both of them are connected to each other using wireless 

links and are then linked to the computer as presented in Figure 4.5. 

 

Figure 4.5: Temperature logger process chart (Arexx Engineering, 2013) 

Specifically, the temperature sensors, as shown in Figure 4.6, acquire all temperature values 

while the software is running in the background mode. The left side of Figure 4.6 shows the 

temperature sensor that is used to measure the ambient temperature of the shop-floor, whereas 

the sensor on the right side of the figure is used to measure the outside temperature. According 

to Arexx Engineering (2013), the sensors are designed to measure temperatures in a wide 

range between -30 and +80 degrees Celsius and capture temperature every second.  As shown 

in Figure 4.7, the USB base station can synchronously receive data from a maximum of 50 

wireless temperature sensors. 

           

Figure 4.6: Inside temperature sensor (left) and outside temperature sensor (right)  

(Arexx Engineering, 2013) 
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Figure 4.7: USB base station (Arexx Engineering, 2013) 

Figure 4.8 displays the temperature logger measurement software illustrating time and date 

graphically. The device is connected to its online website via lan-line cable; thus, the 

temperature data can be accessed real-time and only available for client network. This 

software can track the data over several years and continually save the data as long as the 

linked computer is running (Arexx Engineering, 2013). 

4.2.1.3 Power Logger 

Fluke’s literature (2013) stated that “The Fluke 1735 Power Logger is the ideal electrician or 

technician’s power meter for conducting energy studies and basic power quality logging”. In 

the e-ProMan system, power logger is selected and utilised to acquire energy consumption of a 

machine in a manufacturing environment on cutting trial with different machining conditions. 

As displayed in Figure 4.9 and Figure 4.10, the power logger is attached to the three phase 

electrical cable using the three-phase clamps (I1A/10A PQ3, 3-PHASE 1A/10A MINI 

CURRENT CLAMP SET FOR PQ). The measured data related to energy consumption are 

then linked to the LabVIEW programme and to the Arena simulation programme to create 

user interface display in a user-friendly manner. Figure 4.11 presents the graph results of the 

voltage average and current average displayed in the LabVIEW programme.  

  

http://www.fluke.com/fluke/usen/products/categorypqttop.htm
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Figure 4.8: Multi-temperature logger experiment user interfac
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4.2.2 Manufacturing Real-Time Data  

At this research stage, the manufacturing data of the e-ProMan system include three real-time 

data sources: weather forecast, shop-floor ambient temperature and energy consumption of a 

HVAC system.  

         

Figure 4.9: The power logger connected to the three-phase clamps (Fluke, 2013) 

 

Figure 4.10. Measurement of three phase motor (Fluke, 2013) 
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Figure 4.11: An example of voltage and current display results in LabVIEW 

4.2.2.1 Weather Forecast Data  

Various commercial weather forecast websites that provide real-time weather predictive data 

are freely available such as Weather Channel, Metcheck, BBC Weather and Met Office. The 

e-ProMan system particularly selects Met Office, one of the UK’s well-recognised 

meteorological websites, because it adopts the Numerical Weather Prediction (NWP) model. 

The NWP model employs a computer-based simulation and is regarded as the most reliable 

predictive system (Rodwell & Palmer, 2007). Figure 4.12. presents an example of the weather 

forecast data on the Met Office website page. The e-ProMan system retrieves real-time next-

hour weather forecast data from the Met Office database which are directly linked to and 

displayed on the LabVIEW as demonstrated in Figure 4.13. The three main displays provide 

weather data on temperature, wind and humidity.  
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Figure 4.12. Met Office weather forecast data (Met Office, 2016) 

 

Figure 4.13. Predictive weather forecast data in LabVIEW 
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4.2.2.2 Shop-floor Temperature Data  

Data of shop-floor temperature are collected from the ambient temperature of the Advanced 

Manufacturing and Enterprise Engineering (AMEE) Laboratory at Brunel University London 

as shown in Figure 4.13.  

 

Figure 4.14. AMEE laboratory at Brunel University London 

A total of 10 temperature sensors are equipped across the shop-floor. The laboratory layout is 

designed and modelled with the CAD (computer-aided drafting) system tool. Figure 4.15 

presents the two-dimensional (2D) CAD model of the shop-floor which illustrates the 

locations of the equipped temperature sensors (yellow dots). Figure 4.16 depicts the three-

dimensional (3D) CAD model illustrating the measuring positions of the ten temperature 

sensors located on each side of the shop-floor. 

As shown in Figure 4.17, the real-time shop-floor temperature data are first linked to BS-1000 

LAN base station, then connected and displayed on the web browser via a script based web 

service. The 3D CAD model is then synchronised to the LabVIEW which established the 

distribution of thermal environment in the colour-coded by demonstrating and comparing 

temperatures between each point in the manufacturing environments as shown in Figure 4.18. 
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Figure 4.15. Brunel AMEE Laboratory Layout in CAD 

 

Figure 4.16. Outside view (left) and inside view (right) of Temperature Sensors Measuring 

Positions in the AMEE Laboratory 
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Figure 4.17. Real-time temperature sensor data acquisition  

 

Figure 4.18. Real-time 3D sensor mapping 

4.2.2.3 HVAC System Data 

As described in Chapter 2, the Health, Safety and Welfare Regulations 1992 state that the 

temperatures in laboratories should be in the range between 16 and 19 C (Health and Safety 

Executive, 2013). Thus, the ideal temperature defined by the range of these regulations is 

demonstrated in LabVIEW 3D sensor mapping shown in Figure 4.19. Typically, HVAC 

systems are operated to adjust and maintain temperatures in buildings and also in 
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manufacturing plants using the simple logic of the difference between indoor and outdoor 

temperatures ( T). This research implements an integrated HVAC system together with the 

ambient shop-floor temperature data and weather forecast data. Figure 4.20. illustrates the user 

interface of HVAC system of the e-ProMan application system. 

 

Figure 4.19. Ideal temperature 

 

Figure 4.20. HVAC system controller 

4.2.2.4 Production Manufacturing Data 

The capabilities of Arena enable the production management system to monitor and analyse 

the system to gain improvements in various areas such as energy consumption and resources. 

Moreover, simulation in Arena can model a variety of systems such as manufacturing plant 

with a set of various machines, processes, people and devices as shown in Figure 4.21. The 

implementation of Arena combines graphic and textual paradigms and presents a module-

based simulation that can model any ‘what-if’ scenario that involves the flow of activities 

through a set of processes using the SIMAN simulation language (Altiok & Melamed, 2007).  
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Figure 4.21. A simulation of milling production in Arena Simulation programme 

The other software programme employed in the present energy management system is the 

LabVIEW programme. In this research, LabVIEW is primarily used as a data acquisition 

system to continuously link the raw data gathered from the three measurement tools (i.e. 

thermal camera, temperature sensors and power logger) to the Area Simulation programme in 

a real-time manner. The analysis of the simulation model is also performed with LabVIEW 

including multi correlation analysis, HVAC fuzzy system and e-ProMan system. Last, 

LabVIEW is employed to display and model the simulation model of the energy management 

system including user friendly display.  

4.3 Chapter Summary 

The present chapter presents a prototype of the Energy-smart Production Management (e-

ProMan) system that is systematically developed from a computer-based simulation modelling 

and describes the measurement tools and software programmes within the system. The 

simulation method provides a valuable tool to monitor, analyse and optimise the effectiveness 

of a complex energy management system without having to conduct actual ‘real-world’ 

situations. The e-ProMan acquires the data from various sources including real-time 

temperature data in order to present a virtual friendly display and provide decision making. By 

obtaining both types of data, the e-ProMan is proposed to control and adjust the shop-floor 

temperature environments, calculate energy consumption and thus CO2 emission to achieve 

sustainable manufacturing. 
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CHAPTER 5 

Multivariable Correlation Analysis on Energy Consumption, 

Ambient Temperature and Component Accuracy 

in Precision Machining 

This chapter presents an experiment-oriented correlation analysis approach to investigate the 

intrinsic relationships between the machining accuracy, ambient temperature and total energy 

consumption including HVAC system and machining energy consumption in CNC precision 

milling, which aims to establish a scientific understanding of a sustainable precision 

machining system on a quantitative analysis basis. The CNC milling experiments were 

conducted on 40 aluminium workpieces, which was used to quantify quality error percentages 

at various ‘shop-floor’ temperature conditions ranging between 23°C and 27°C. A total of 14 

dimensions were measured at reference points on each workpiece plate, giving a total of 560 

data measurements. 

5.1 Introduction 

Quality improvement in manufacturing is the key indicator of performance that has a crucial 

impact on competitiveness (Nada et al., 2006). One approach to improving the product quality 

is to leverage the accuracy of the machining processes involved. Specifically, geometrical and 

dimensional accuracy significantly characterises manufactured parts with thermal deformation 

being of particular importance as it leads to machining errors (Archenti, 2014). Therefore, 

much recent research in manufacturing has paid great attention to the effect of temperature 

variation on machining precision to continuously assure and achieve a high quality of 

components and products (Shin et al., 1991; Katchasuwanmanee et al., 2015; Shu et al., 2013). 

Current literature on machining accuracy due to temperature has addressed methodological 

advancement on the machine tools and material properties, cutting tool material and condition, 

and machining parameters (Cheng, 2008). 

A correlational analysis on machining quality, energy consumption and temperature variations 

is presented in the context of sustainable precision machining. The investigation aims to 

determine the accuracy performance of a three-axis CNC milling machine while taking into 

account the environmental temperature variations and energy usage throughout the machining 
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process. A parametric compensation method is employed to compute the quality errors of 

aluminium milling produced by the temperature variable conditions. By adopting a 

multidimensional analytical approach, the experimental and analytical results could provide a 

holistic framework for the scientific understanding of sustainable precision machining, which 

addresses the needs for high precision sustainable machining for high-value manufacturing 

purposes. 

5.2 Multivariable Correlation Analysis for Sustainable Precision 

Machining 

5.2.1 Machining Quality Linking to Component Dimensional Accuracy 

In response to a growing demand for advanced standards of machining accuracy, various 

approaches to characterise machine tools have been developed (Shin et al., 1991). Accuracy of 

machined parts depends on a variety of elements including machine tool accuracy, cutting tool 

materials, the material properties of the workpiece, environmental temperature change and 

machining parameters such as feed rate, cutting speed and depth of cut (Shin et al., 1991; 

Chen et al., 2013; Schwenke et al., 2008). Both static and dynamic characteristics of 

machining should be accurately analysed, and errors should be adjusted accordingly to assure 

the quality of products.   

When manufacturing environment is well regulated, a machine has the potential to position 

itself within micrometres (Shin, 1991). Nonetheless, the environmental condition during the 

machining process is not necessary ideal where, for instance, the temperature of the 

surrounding air can fluctuate. The majority of machines in production, therefore, may not 

operate under the optimal condition. Variations of the temperature could cause thermal 

distortion of a workpiece.   

In this research, quality of machining is defined by the machining error which is the distance 

between the nominal CAD model and the actual measured point after machining. Following 

the relative error or percent error (%error) of Equation (2.5) in Chapter 2, the formula for the 

quality error is specifically applied to measure the machining error and calculated as shown in 

Equation (5.1). 
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where   is the number of reference points;    is the nominal CAD model value of dimensions; 

   is the actual measured value of dimensions; and   is the total number of measurement 

points. 

Taking into account the numerous possibilities of cutting conditions, the performance of a 

machine tool cannot be assessed directly based on machining experiments, yet the experiments 

can generate practical results that are potentially useful to model correlations between the 

errors of volumetric accuracy and the actual cutting (Shin, 1991).  

5.2.2 Temperature Variations in Manufacturing 

As illustrated in Figure 5.1, in a precision machining system the energy sources (e.g. cutting 

heat and thermal sources) at machine tools and the temperature variations in the local work 

environment have integral effects on the respective thermal expansions on the machine tool 

and workpiece and consequently on the accuracy of the component and the environmental 

impact from the machining (Shu et al., 2013; Cheng, 2008; Chen et al., 2013). Accordingly, 

the relationships between thermal deformations and outcomes namely machining accuracy, 

energy consumption and productivity rates are collectively inter-related. As thermal 

deformation and outputs are substantially affected by heat from various sources, it is essential 

to consider the variations of temperature in the manufacturing environment. 

The properties of a workpiece material identify thermal deformation (Kruth et al., 2000; Shaw, 

2005). As described by Equation (2.6), a large coefficient of thermal expansion results in a 

relatively larger deformation (Leach, 2014; Wilson, 1942; Cverna, 2002). From previous 

research, the aluminium material has a high value of thermal expansion coefficient, so 

significant differences in deformations can be expected to result from the range of temperature 

values (Ho and Taylor, 1998). For this reason, an aluminium material (AW 6082-T6) was 

chosen to be machined in this research experiment in order to exhibit easily detectable 

deformations.  
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Figure 5.1. Thermal / temperature envelope and the associated interrelationships 

within the machining system 

5.2.3 Energy Consumption in Precision Machining 

The majority of past studies have focused on the process parameters and their impact on 

energy consumption in a manufacturing process. The end-milling process is primarily chosen 

due to its common use in the industry (Diaz et al., 2009). The energy demand of a machine 

tool comprises a constant and variable component. The constant part functions independently 

of the process parameters and is allocated to different parts of the machine tool such as 

computer, lighting and lubricants (Dahmus and Gutowski, 2004). On the other hand, the 

variable part functions dependently of the process parameter and is allocated to the drives or 

spindles of the axes. In this experiment, parameters of the machining process were set under 

the same conditions with vary of ambient temperatures that were speculated to affect 

machining energy consumption. The following sections describe the effect of the ambient 

temperature on energy consumption. The correlation between energy usage and quality is also 

presented. 
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5.3 Experimental Case Study 

This research was conducted in the Brunel University London Advanced Manufacturing 

Laboratory and covered the data collection tests for the entire machine work area. Forty 

cutting test with aluminium (AW 6082-T6) were performed on the CNC machine at different 

periods of time during the days in order to obtain different temperatures in the local 

environment of the laboratory. Data acquisition was obtained specifically at 9.00am, 11.00am, 

2.00pm and 4.00pm over the ten days period. 

5.3.1 Experimental Setup 

The milling trials were carried out on a high precision CNC milling machine (KERN 5 Axis 

HSPC 2216), the machining experiments are shown in Figure 5.2 (a). As illustrated in Figure 

5.2 (c), a batch of 40 purposely designed aluminium components (AW 6082-T6) were 

machined with a dimension of 100mm X 100mm X 10mm in order to highlight the 

dimensional accuracy of machining side during the milling process. After the CAD model was 

performed to design the aluminium workpieces as shown in Figure 5.3 (a), tool paths 

simulation using Powermill was carried out so as to obtain the best CNC milling tool path as 

depicted in Figure 5.3 (b). The milling machine was operated approximately 35 minutes for 

machining each workpiece with Spray-nozzle coolant (SD18) as illustrated in Figure 5.2 (f). 

The SD18 Spray-nozzle lubrication system was set at a viscosity of 100 kPa (1 bar) at 20°C.  

Tungsten-carbide mill tool was used for end-mill machining in this experiment as it is more 

cost-effective, has better wear resistance and offers higher toughness compared with other 

available tools (Sekar, 2014). According to speed and feed recommendations of SGS Tool 

(2016), the spindle speed was set at 12,000 rev/min with a cutting speed of 226 m/min.  

According to Taylor’s equation of the tool life (Sekar, 2014; Shaw, 2005; Juneja, 2003) and 

the setup parameters in this experiment, the approximated tool life was calculated by using 

Equation (2.3) in Chapter 2. From Table 2.1, Sekar (2014) suggested n value is 0.2 for 

uncoated carbide tool and C value for non-steel work is 1000 as calculated follow; 
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Figure 5.2. Precision milling experimental process: (a) Kern CNC milling machine, (b) 

thermal camera user interface, (c) aluminium block experimental setup, (d) temperature 

sensor, (e) LAN based receiver, (f) aluminium machining, and (g) power logger 

 

 

Figure 5.3. Design and manufacturing procedures for the experimental workpiece: (a) design 

and simulation, (b) tool path generation, and (c) machined sample workpiece 
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As a result, the approximated tool life was 1,696 minutes. Hence, one tungsten-carbine mill 

tool could be cut up into 48 workpieces in this experiment. However, two different sets of 

milling tools were used for roughing and finishing in order to acquire better quality. Table 5.1 

lists a summary of the machining conditions and the associated experimental setup.  

5.3.2 Energy Consumption Measurement 

For energy consumption measurement hardware, a ‘Power logger’ (FLUK 1735) was chosen 

as it provides high precision measurement level (Noureddine et al., 2013). As shown in Figure 

5.2 (g), the Fluke 1735 power logger was used to individually measure all three phases of the 

power supplied to provide total energy consumption of the process by using a 3-phase clamper 

(I1A/10A PQ3, 3-PHASE 1A/10A MINI CURRENT CLAMP SET FOR PQ). After a 

connection was established, the results were automatically downloaded to the computer. 

5.3.3 Temperature Monitoring in the Machining Process 

An experimental setup was performed to efficiently monitor the thermal distortion. Thus, 

temperature monitoring needed to be recorded during the CNC machining of the aluminium 

workpiece. There is no precise temperature control in this Brunel laboratory, so the 

experiments were run at different time periods and at different weather conditions in order to 

obtain the required variations in ambient temperature. The ambient temperature variation of 

the workshop was recorded by using a set of temperature sensors (AREXX TL-3TSN Multi-

logger) as presented in Figure 5.2(d). The three temperature sensors were placed around the 

CNC machine with the distance of 1 metre away from the CNC machine to monitor the 
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ambient temperature variation in the machining process with the sensors broadcasting a new 

measurement every 45 (+/- 15) seconds. In Figure 5.2(e), the real-time results were 

automatically transferred to LAN based receiver (AREXX BS-1000) to be analysed. In Figure 

5.2 (b), the temperature measurements were validated by using thermal images from the 

thermal camera (OPTRIS PI 160TAK). The tests focused on the ambient temperature 

variations between the range of 23°C and 27°C during the machining process. 

Table 5.1 Elements of experiment set-up for machining the designed workpiece 

Elements of Experiment Set-up Descriptions 

Machine Kern CNC milling machine 

Process End Mill 

Material Aluminium Alloy (6082-T6) 

Block size (workpiece) 100mm x 100mm x 10mm 

Cutting tool 6 mm tungsten carbide 

Number of teeth 2 

Depth of cut (Roughing) 1 mm  (5 times) 

Depth of cut (Finishing) 0.1 mm 

Feed speed (Vf) 600 mm/min 

Spindle rotational speed (Ns) 12,000 rev/min 

Cutting speed (Vc) 226.29 m/min 

Feed per tooth (fz) 0.025 mm/tooth 

Duration (Roughing) 30 mins 

Duration (Finishing) 5 mins 

Coolant system Mist 

Combining with air pressure 100 kPa at 20°C 

 

5.3.4 Components Accuracy Measurement 

Following the completion of the machining experiments, the measurements of machining error 

were taken by using a Coordinate Measuring Machine (CMM) – MITUTOYO FN503. CMMs 

are precision machines that produce three-dimensional Cartesian coordinate space 

measurements with the resolution of 1    (Black & Kohser, 2008). The MITUTOYO FN 503 

CMM was located in a temperature controlled laboratory because the temperature in the 

environment is one of the main influences on CMM accuracy (Leach, 2014). Specifically, the 

common establishment of the standard measuring temperature is set at 20°C (Black & Kohser, 

2008). This standard is greater importance when the measurements accuracies are greater than 
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0.0025 mm. Because this experiment is based on the precision measuring purposes, the 

temperature of the laboratory in which the CMM was located and controlled at 20°C. 

Probing was done on the fixture of the workpiece with the machining error being indicated by 

the difference in the probe deflections between the reference points. In this research, there 

were 14 different dimensions of machining error measurement including 9 lengths and 5 

depths errors that were performed related to reference points as described in Figure 5.4 (a). 

The results of three-time measurements were averaged and summarized. After programming 

the CMM code shown in Figure 5.4 (b), the entire experimental process was automated by 

generating an NC program on a CAD system and operating the measurement process on the 

40 aluminium workpieces as depicted in Figure 5.4 (c). After this, simplified test sheets were 

provided for investigation and analysis. 

 

Figure 5.4. Metrology measurement and assessment on the workpiece at a CMM: 

(a) Workpiece designed and its methodology measurement strategies, 

(b) CMM program coding, and (c) CMM measurement in process 

http://www.rapidtables.com/convert/temperature/celsius.htm
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5.3.5 Tool Wear Measurement 

Prior to each cutting trial, two types of tool wear measurements were continuously monitored 

which were tool length and cutting edge radius. The online and offline tool length and its 

variation were measured using the Blum laser control system and TESA-200 Optical 

microscope as demonstrated in Figure 5.5 (a) and Figure 5.5 (b), respectively. The tool length 

was measured both before and after machining to investigate the tool wear. In Figure 5.5 (c), 

the used tools were observed and measured the tool wear in terms of cutting edge radius using 

JEOL JCM-6000 Scanning Electron Microscopes (SEM) and MatLab programme. 

    

Figure 5.5. Tool wear measurement: (a) Blum laser control system, (b) TESA-200 Optical 

microscope, and (c) JEOL JCM-6000 Scanning Electron Microscopes (SEM) 
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Figure 5.6 illustrates a 3D schematic diagram of end milling tool wear from ISO 8688-2 

(1989) describing the main wear patterns and localisation. ISO 8688-2 (1989) explained that 

wear land A-A which is normally of constant width and extends over those portions of the tool 

flanks adjoining the entire length of the active cutting edge. Hence, Uniform flank wear (VB1) 

is considered to be measured as a flank wear for this experiment which means the wear along 

the axial depth of cut. 

 

Figure 5.6. 3D schematic end milling tool wear 

5.4 Results and Discussion 

According to ISO Standard 8688-2: 1989, the tool wear measurement is used to identify the 

width of a flank wear land which could lead to tool failure. The results of tool wear 

measurement were 114 μm and 58 μm for roughing and finishing tools (Appendix M).  The 

ISO 8688-2 (1989) stated that the maximum safe limit of tungsten carbide material should not 

exceed 300 μm for an end-mill cutter. Thus, the tools used in this experiment were at an 

acceptable condition to continue machining and were unworn.  

Figure 5.7 shows a comparison of the geometry and morphology between the condition of the 

new tool before machining and the condition after machined 40 workpieces (1400 minutes) of 

the roughing and finishing tools as shown in Figure 5.7 (a) and (c). In Figure 5.7 (b) and (d), 

the cutting edge of the used roughing and finishing tools are relatively worn.  
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Figure 5.7. Tool wear cutting edge before and after machining: (a) Roughing tool before 

machining, (b) Roughing tool after machining, (c) Finishing tool before machining, 

 and (d) Finishing tool after machining 

Due to the manufacturing limitation and material properties, the cutting edge radius of 

tungsten carbide milling tool is normally about 3-5 μm (Malekian et al., 2009). The cutting 

edge radius of the two milling tools is shown in Figure 5.8. The cutting radius was 

investigated by using SEM. The cutting edge radius of roughing and finishing tools increased 

from 4.5332 μm to 20.833 μm and from 4.3844 μm to 12.8108 μm, respectively. These final 

cutting edge radius values did not exceed the tool life criteria value of 60 μm (ISO 8688-2, 

1989). Hence, the milling tools were not worn yet. 
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Figure 5.8. Cutting edge radius of tungsten carbide tools before and after machining: 

(a) Roughing tool before machining, (b) Roughing tool after machining,  

(c) Finishing tool before machining, and (d) Finishing tool after machining 

With regard to the economic aspect of sustainable precision machining, the total machining 

costs were analysed. Following Equations (2.7) and (2.8) described in Chapter 2, the total cost 

of a single machining operation comprises of material cost, tool cost, machine maintenance 

cost, labour cost and the sum of the energy cost. The total machining cost to produce 40 

aluminium workpieces in this experiment based on the operating time of 1,400 minutes was 

532.09 pounds as follow; 
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In addition, applying Equation (2.19) to the calculation, the total CO2 emitted during this 

machining process was calculated to be 179.345         as follow; 

                                                                    

                   

                     

The results of ambient temperature, quality error and total energy consumption including 

HVAC system and machining of the 40 machined aluminium workpieces are summarised as 

shown in Appendix K. The workpiece dimensional error of 14 CMM measurements was 

calculated by using the Equation 5.1. For example, workpiece number 23 machining on 12
nd

 

October 2016 at 11.19am at ambient temperature 25.8°C. The workpiece quality error is 

calculated as follow; 
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After running the Chi-square test in the “Input Analyser programme”, the results show that the 

corresponding p-value of temperature was less than 0.005 for normal distribution expression 

as shown in Appendix L. Hence, the number of tests was reliable. Furthermore, the skewness 

values of ambient temperature, total energy consumption and quality error were -0.49, 0.552 

and -0.136, respectively which are less than +/- 1. These results suggest no issue of an outlier 

(Field, 2013).  

A linear regression analysis was performed with the statistical analysis software package SPSS 

version 20. First, the results testing ambient temperature as a predictor indicated that ambient 

temperature explained 85.2% of the variance in quality error, R
2
 = 0.852, F(1,18) = 103.345, p 

< 0.001. It significantly predicted quality error in a positive direction, β = 0.923, p < 0.001. A 

correlation chart of ambient temperature and dimensional error (quality) generated from 

milling aluminium blocks is demonstrated in Figure 5.9. Within the temperature range 

between 23°C and 27°C, the percentage of machining error increased while the environment 

temperature rose. These results suggest that the quality of the workpiece decreases at higher 

ambient temperatures. This could be explained by the thermal expansion as the ambient 

temperature affects the geometry of aluminium workpiece. Consequently, the quality of the 

product is degraded when the temperature increases. The regression model of dimensional 

error and ambient temperature is described by Equation (5.6). 

                   (5.6) 

where   is ambient temperature; and   is dimensional error. 
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Figure 5.9. Ambient temperature versus dimensional error (quality) 

In contrast, a negative correlation was found between ambient temperature and total energy 

consumption, plotted in Figure 5.10. The results of the regression indicated that temperature as 

a predictor explained 85.1% of the variance in total energy consumption, R
2 

= 0.851, F(1, 18) 

= 103.071, p < 0.001. Ambient temperature significantly predicted total energy consumption,  

β = -0.923, p < 0.001. At 26.3°C, the CNC milling machine consumed approximately 10.57 

kWh to finish the workpiece which was at the lowest power usage. Moreover, operating the 

CNC machine used the largest amount energy which was about 11.32 kWh at around 23.3°C. 

Therefore, less energy was consumed at higher ambient temperatures. The regression model of 

total energy consumption and ambient temperature is described by Equation (5.7). 

                     (5.7) 

where   is ambient temperature; and   is total energy consumption. 

The results of regression testing total energy consumption as a predictor indicated total energy 

consumption explained 80.2% of the variance in quality error, R
2 

= 0.802, F(1, 18) = 73.139, p 

< 0.001. Total energy consumption negatively and significantly predicted quality error, β = -

0.896, p < 0.001, as illustrated in Figure 5.11. These findings suggest a better quality of 

workpiece was provided by a higher machining energy consumed. 
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Figure 5.10. Ambient temperature versus total energy consumption 

The results of the multiple linear regression indicated the two predictors- ambient temperature 

and total energy consumption- explained 86% of the variance in quality error, R
2 

= 0.86, F(2, 

37) = 113.722, p < 0.001. Specifically, ambient temperature significantly uniquely predicted 

quality error, β = 0.656, p < 0.01, 95% CI [0.007, 0.21]. In contrast, total energy consumption 

did not significantly predict quality error, β = -0.286, p < 0.087, 95% CI [-0.68, 0.05]. Figure 

5.12 and 5.13 demonstrate the 3D correlation between the three factors using the simulating 

Matlab and SigmaPlot program. From Equation (3.4), the three dimensional correlation of % 

quality error, total energy consumption and ambient temperature is described by Equation 

(5.8).  

                             (5.8) 

where   is quality error;   is ambient temperature; and   is total energy consumption. 

The overall results of this experiment indicate that the ambient temperature should be 

controlled accordingly to achieve product quality standards and also to reduce the energy 

usage. Whilst this thesis can identify significant factors that can improve accuracy, examining 

all parameters to predict machining error better is a complex task considering the variability of 

parameters that cannot be defined. 
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Figure 5.11. Total energy consumption versus dimensional error (quality) 

 

  

Figure 5.12. 3D correlation analysis in Matlab programming 
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Figure 5.13. 3D correlation analysis in SigmaPlot programming 

5.5 Chapter Summary 

This chapter presents an approach to a correlation analysis on machining accuracy, total 

energy consumption including HVAC system and machining energy consumption, and 

ambient temperature variations in sustainable precision machining. The research integrally 

takes account of total energy consumption during the machining process and the effect of 

temperature variation on machining quality in a quantitative analysis. Measured surrounding 

temperature and total energy consumption data were used as a collective indicator for 

machining quality levels. Quality error percentage was defined by the difference in value 

between the nominal CAD model and the actual measured point after machining in the 

temperature range between 23°C and 27°C. 

The correlational analysis on the experimental cutting trials results indicates that in precision 

machining, the environmental temperature influences the machining error which increases 

with the rise of surrounding temperature, but in contrast, the total energy consumption of the 

CNC milling machine falls. Thus, the temperature variations in precision machining processes 

need to be controllable according to the component quality specifications in order to obtain the 

required quality standard while minimising the total energy consumption throughout the 
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process. The correlation analysis results show that a rise in surrounding temperature is 

associated with increasing quality error of machining and lower total energy consumption 

during machining.  

These findings are consistent with past studies on cutting temperature which were explained 

by the thermal expansion that high-temperature values could deform machined workpiece 

properties (Leach, 2014; Wilson, 1942; Cverna, 2002; Bryan, 1990). Besides cutting 

temperature, the present experiment highlights that ambient temperature is another element of 

temperature that has an impact on precision machining. The contribution of this work 

represents some first steps to scientifically understand the intrinsic relationships between 

machining accuracy, ambient temperature and total energy consumption in CNC precision 

milling and thus to establish a more sustainable precision machining system. 
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CHAPTER 6 

Energy-resource Efficient Manufacturing Supported with  

In-process Virtual Simulation 

Building upon the current literature on energy-efficient production and processes, the purpose 

of the research in this chapter is to model the optimisation of the production workload at a 

manufacturing process level by empirically investigating on minimisation of energy 

consumption of CNC machines. Additionally, an innovative simulation approach to energy-

resource efficient management system in manufacturing is presented as a virtual simulation 

using a simulation modelling method that monitors and produces user-friendly displays in 

real-time in order to construct a systematic decision-making based on analytical and 

correlational relationships. The results are described in relation to energy efficiency in 

sustainable precision manufacturing.  

6.1 Introduction 

Production processes are important activities in manufacturing which involve utilisation of 

resources and time span of the production operations (Nejad et al., 2011). The implications of 

these activities become remarkably important as manufacturers are now operating in highly 

dynamic and highly complex environments. Planning and optimisation of a production process 

need to be systematically simulated in order to manufacture machined products in a 

sustainable- yet precise- way, thereby gaining competitive advantages and leading to enhanced 

productivity (Phanden et al., 2013). In line with this, the production process is to allocate the 

operations on machines while maintaining the established parameters of the production 

process. Therefore, production operations are interrelatedly bound together by the same 

resources and should be thus comprehensively modelled and optimised. 

Most studies on machining have highlighted on optimisation cutting parameters in order to 

minimise processing time. Increasing certain parameters such as cutting speed and feed rate 

could reduce processing time. However, they may incur higher costs resulting from tool wear 

and tool failure, suggesting that a decision on optimisation of resources should not overlook 

the total manufacturing cost (Kayan and Akturk, 2005). While cutting parameters appear to be 
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one of the main areas under investigating, more researchers have examined on workload 

optimisation in CNC machining (Hoeck, 2008).  

Despite the importance of gaining competitive advantages through optimised processes and 

reduced operating cost, manufacturing cannot fail to consider its roles towards sustainability. 

Evidently, efforts to improve on sustainable manufacturing systems need to be integrated at all 

applicable levels including production processes (Giret et al., 2015). Zhang et al. (2015) 

presented a model which takes into account processing time, workload and CO2 emission. 

While the model of this study provided a contribution to sustainable manufacturing, it neglects 

the element of cost. In response to the gap of research knowledge and escalating demand for 

sustainability, research embedded in this chapter attempts to put forward the development of a 

simulation modelling of an energy-resource efficient system that examines the impact of 

workload on energy consumption of the machining system and total production costs.  

6.2 Resource Efficiency based on Energy Demand 

Manufacturing processes are energy demanding and are thus the main sources of energy 

consumption (Giret et al., 2015). A set of production processes composes a larger production 

system which also consists of various machines that serve different levels. For this reason, the 

production process should be managed and controlled in accordance with the collective 

functions of the production system that comprises of differing technical machines. Machines 

generate energy consumption and energy load profiles that are accumulated throughout the 

production process. To avoid energy wasted, inactive resources especially machines need to 

turn off the energy supply operation during the time slot that involves no production (Pach et 

al., 2014). Conversely, the power supply should be turned on by the resource when the 

production line starts. These assumptions emphasise on the notion that resources require 

information about production in consideration to produce energy consumption behaviour in a 

steady and persistent way. 

This research develops the modelling system which simply defines energy efficiency by the 

total energy consumption and defines effectiveness with each resource in different conditions. 

To calculate the total energy consumption of the production system, three formulas are applied 

to the modelling in a hierarchical order (Pach et al., 2014). In the first order, energy 

consumption of a resource, denoted by r, in its specific operating state e.g. idle, operating and 
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shutdown, denoted by i, is expressed by Equation (6.1) where energy consumption is defined 

by     , production time is defined by      , and power is defined by        .  

 
     ∫          

     

 

 (6.1) 

Using the same symbols, the total energy consumption of a resource comprises of energy 

consumption in all resource states and can be computed with Equation (6.2) where     

defines the total energy consumption and N defines the number of resource states.  

 

    ∑    

 

   

 (6.2) 

In the last hierarchical order, the total energy consumption of the production system is equal to 

the sum of energy consumption of accumulated resources and is mathematically computed 

with Equation (6.3) where    defines the total energy consumption of the production system, 

and R defines the number of resources in the system.  

 

   ∑   

 

   

 (6.3) 

Moreover, production workload is the key element that determines the efficiency of 

production in the production processes. Thus, different workload parameters lead to changes 

in energy efficiency and gradually to changes in emissions. To develop sustainable production 

plan, it is necessary for the modelling to involve a methodological approach that incorporates 

the optimisation of both input and output means to optimising workload.  

6.3 Virtual Simulation of Energy-resource Efficiency 

In this experiment, the method of simulation modelling is built upon the Energy-smart 

Production Management (e-ProMan) system that was developed and implemented in Chapter 

3. To extend on the previous knowledge, the current development of the virtual simulation of 

the energy-resource efficient system takes into account the roles of the production system at 

the process level which examines energy and resource efficient performance of the 

manufacturing. Also, the presented simulation modelling at this stage provides the 

comprehensively interrelated relationships with the real-time dynamics of the variously 
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equipped machine tools in order to efficiently optimise the design and control systems of the 

production processes.   

In addition, the framework of this virtual simulation of the energy-resource efficient system in 

this research stage does not intend to provide a systematic examination of a specific machine 

or an individual manufacturing system of a process analysis level. Rather, the objective of this 

research stage is to intrinsically acknowledge various functions with respect to energy 

consumption determined by an evaluation of both input and output flows related to energy. To 

better model an energy-efficient system, the systematic approach employed in this system 

follows a hierarchical structure of simulation which considers four different levels as 

suggested by Herrmann and Thiede (2009). The four levels are input, logic, user and 

evaluation of simulation.  

Furthermore, the application of this virtual simulation comprises a variety of adjustable 

process modules that improve applicability as they minimise knowledge modelling and 

modelling efforts. Particularly, process modules can be altered within the appropriate 

parameters through accessible data. Ultimately, they facilitate the virtual simulation to 

establish the fundamental performance of production processes within the manufacturing 

plant. Thereby, detail level can be modified in accordance to the objectives of analysis. When 

the background data are involved, augmentation of minor processes into individual process 

modules may be required such that the information on energy consumption can be obtained 

from each of the process modules.  

More specifically, the methodological implementation of the current virtual simulation 

experiment employs a three-step systematic approach partially adopted from Herrmann and 

Thiede (2009) as follows.  

Step 1: Production Processes  

Firstly, the main objective is to acquire a more thorough understanding of the mechanical and 

organisational characteristics that are crucially relevant to the production processes under the 

scope of simulation modelling. The information and data relating to manufacturing machines, 

systems, flows and management, especially relevant to energy consumption and efficiency, 

needs to be obtained and understood.  
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Step 2: Production Energy Analysis 

Next, the focus lies within the analysis aspect of energy which includes input flow and output 

flows of all necessary production machine tools and systems. By deeply analysing all energy 

flows, more accurate data on energy consumption can be obtained. Thus, it is crucial to 

analyse the complete production process model that are fundamental to the direct production 

processes. It may be useful to review documents or regulations to attain an overview of energy 

consumption in the manufacturing plant. Nonetheless, since the values of energy consumption 

stated in most media documentations appear to be higher than the actual energy usage, the 

analysis can potentially benefit from the actual measurements of energy consumption, 

especially for the major production processes (Herrmann and Thiede, 2009).  

Step 3: Integrated Simulation of Production Processes 

Last, this step is regarded as an essential step as it provides the final simulation modelling that 

integrates the manufacturing of production processes with analytical, interdependent 

relationship between the energy and work flows. Put differently, elements of the integral 

production processes are combined with measured data of various machine tools in order to 

simulate the outcomes of energy-efficient measures. The modelling of the virtual simulation in 

a manufacturing plant level is fundamental to this experiment as it would aid the problem 

dynamics for the complete manufacturing system.  

6.4 Simulation of CNC Milling Production Processes 

According to Cheng and Bateman (2008), virtual modelling application as proposed in this 

research is a development of an energy-resource efficient system based on in-process analysis 

that supports real-time manufacturing decision-makings through advanced use of ICT 

techniques. The optimisation concept of this experiment is shown in Figure 6.1 which begins 

with production process data including machine profiles and machine conditions followed by a 

simulation of workload scenarios assumptions and ends with an investigation of the 

optimisation model by applying the optimum scenario into the simulation process. 
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Figure 6.1. Optimisation concept for energy-resource efficient machining 

The simulation of the energy-resource efficient system presented in this chapter was 

conducted in the experimental set up at the Advanced Manufacturing and Enterprise 

Engineering (AMEE) Laboratory at Brunel University London. In general, this simulation was 

performed by gathering the input of energy consumption of CNC milling process using energy 

measurement tool (Power logger- Fluke 1735) to measure the energy consumed at the CNC 

milling machine as shown in Chapter 5 (Appendix K). The experiment was carried out at 

various ‘shop-floor’ temperature conditions ranging between 23°C and 27°C. This production 

process used ‘first in first out concept’ throughout the production line. 

6.4.1 Simulation Scenarios 

In total, the simulated model consisted of four CNC milling production machines using three 

machine operating statuses (i.e. operating, idle and shutdown) during 700 minutes period in 

order to finish the cutting process of the total 40 aluminium workpieces as identical to the 

experiment set up in Chapter 5. Figure 6.2 illustrates the simulation modelling of the CNC 

production process (Appendix R). The simulation modelling started with ‘Product Input’ and 

‘Assign Product Specification’ modules to classify the beginning product including time 

arrival, energy consumption and CO2 emission. Then, ‘Decide Resource CNC Milling’ was 

used to feed the aluminium workpieces into the CNC milling process which in this case, an 

aluminium workpiece would be allocated to the first available CNC milling machine resource. 

The ‘Process CNC Milling’ module consisted of roughing and finishing processes, and the 

operation time was about 35 minutes including 30 minutes of roughing and 5 minutes of 

finishing. After running the Chi-square test in the “Input Analyser programme”, the 

distribution of CNC milling operation was ‘NORM(2.1e+003, 15.8)’, and the results showed 

that the corresponding p-value of operating time was less than 0.05 for normal distribution 

expression as shown in Appendix O. The final section consisted of ‘Record’ and ‘Dispose’ 

modules which used to acquire and record the energy consumption, CO2 emission and 



103 
 

production costs including each process and the total production process. As shown in the 

horizontal lines, the simulation was based on the four CNC milling machines. For example, 

‘Process CNC Machine 1’ was for process 1. 

 

Figure 6.2. Arena Simulation modelling in CNC milling production process 

In addition, three scenarios were proposed for the simulation of machine capacity workload. 

Time and workload capacity of the three scenarios are depicted in Figure 6.3. The workload 

scenarios were labelled as (a) up-hill, (b) down-hill and (c) balanced scenario. Operating time 

was constant across the three scenarios which is 700 minutes. The three workload scenarios 

were simulated in order to determine the scenario with the lowest and highest energy 

consumed.  

First, the up-hill scenario started operating with one CNC milling machine. After 175 minutes, 

the second CNC milling then started machining together with the first machine. Applying the 

same pattern, the workload increased to 75% as the three CNC machines were operating 

together at 350 minutes. At 525 minutes, all four machines were working at the same time. In 

contrast, the down-hill scenario started with full-load machining or workload capacity of 

100% until 175 minutes. After, the number of operating machines reduced to three CNC 

machines.  At 350 minutes, another CNC machine was shut down. Between the minutes of 

525 and 700 minute, only one CNC machine was operating. Finally, the third scenario or 

balanced scenario was to demonstrate the use of the average workload of all four CNC 

machines to complete the total assigned aluminium workpieces within the given time frame. 
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Every KERN CNC machine needs to warm-up at least 15 minutes to perform efficient 

performance (Rainfordprecision, 2016). 

 

  

Figure 6.3. Three scenarios of machine capacity workload; (a) up-hill scenario, (b) down-hill 

scenario, and (c) balanced scenario  

6.5 Results and Discussion 

In order to monitor the resources, particularly machines, of the virtual simulation model, the 

top right panel of the LabVIEW shown in Figure 6.4 displays the simulation of the CNC 

milling production processes in the manufacturing. The simulation modelled the CNC milling 

production system in Arena Simulation programme with various workload scenarios at the 

replication of 20 times. The significant level for the confidence level was greater than 0.95. 

The simulation of the processes, however, was created in the Arena Simulation programme 

which then linked back to the LabVIEW. In Figure 6.4, the virtual display was performed by  
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Figure 6.4. Virtual simulation on the energy-resource efficient system 
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the LabVIEW programme which comprises of five different components: shop-floor 

monitoring, simulation of the production process, CO2 emission, energy consumption and 

resource workload in a clockwise order.  

From Figure 6.3, the total energy consumption of up-hill, down-hill and balanced scenarios 

were calculated by using Equation (5.1), (5.2) and (5.3) as shown below; 
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Total energy consumption of the three workload scenarios was first analysed. According to 

Figure 6.5, the up-hill and down-hill scenarios were found to consume similar amount of 

energy at 458.35 and 459.47 kWh, respectively. Based on these results, different workloads of 

a production process consumed a different amount of energy while producing the same level 

of productivity. In the up-hill scenario, the production process operated throughout 700 

minutes period which started at the lowest machine capacity. The capacity is increased 

incrementally over the period of time. This scenario was found to be the most energy-resource 

efficient workload process.  On the other hand, in the down-hill scenario, the production 

process operated by increasing the capacity over the period of time which consumed the 

highest energy. Importantly, the balanced workload scenario, which operated with an half of 

workload throughout the process, consumed the least amount of energy at approximately 

450.99 kWh. 

 

Figure 6.5. Total energy consumption at the three workload scenarios 
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Among the three scenarios, the balanced workload scenario was the most energy-resource 

efficient scenario. As Chang et al (2005) suggested that the higher machine workload, the 

higher energy usage. Hence, the results of the experiment confirmed the balanced workload 

which is 50% of machine workload over the period of time gives the lowest energy 

consumption compared with up-hill and down-hill scenarios.  

The total machining cost to produce 40 aluminium workpieces in this experiment based on 

three workload scenarios are summarised in Table 6.1. In addition, applying Equation (2.19) 

to the calculation, the total CO2 emitted during the machining process are also summarised in 

Table 6.1. Overall, the findings indicate that by reducing the energy consumption, the 

balanced scenario also yields the lowest total production costs at £534.61, followed by 

balanced and down-hill workload production, respectively as calculated in following; 

                                      

                                              

             

 

                                              

                           

                              

                           

                                          

 

                                                       

              
 

                                            

                              

 

In addition, applying Equation (2.19) to the calculation, the total CO2 emitted of the balanced 

scenario was calculated to be 179.345         as follow; 
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Table 6.1 Total production costs and CO2 emission of the three workload scenarios 

Workload Scenarios 
Total Production Costs 

(Pounds) 
CO2 Emission (kg) 

Up-hill 535.79 188.86 

Down-hill 535.97 189.32 

Balanced 534.61 185.83 

 

6.6 Chapter Summary 

To respond to environmental concerns and higher energy costs, manufacturing industry has 

put great efforts into sustainability. Since production processes are responsible for high energy 

consumption, optimising an energy-efficient system at this manufacturing level is of an 

important concern for both academic and practitioners. At the same time, energy costs and 

high competition have driven manufacturers to pay closer attention to economic output 

especially productivity and production costs. This chapter developed an energy-resource 

efficient simulation system which collectively considered energy consumption and machine 

workload in a production process of CNC machining. The findings demonstrated the 

implication of using a balanced production in which the workload capacity and number of 

operating machines are at 50% workload throughout the process. This scenario of a production 

process was shown to reduce energy consumption, total production costs and CO2 emissions 

the three elements that are essential to sustainable manufacturing.  
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CHAPTER 7 

HVAC System within the e-ProMan and its Implementation  

This chapter presents three experimental trials that examined simulation of energy efficiency 

at the manufacturing levels of heating, ventilation and air conditioning (HVAC) system 

considering weather forecast. The experiment trials were carried out with the Energy-smart 

Production Management (e-ProMan) system to provide a more integrated and comprehensive 

analysis of manufacturing data, machine accuracy and correlational analysis of the three flows 

(i.e. energy, data and work) based on the proposed e-ProMan system presented in Chapter 3. 

The objective was also to demonstrate an implementation of the e-ProMan system in a 

manufacturing level. Results and discussions of each experimental trial are provided.  

7.1 Introduction 

In order to efficiently reduce energy in manufacturing, the overall energy consumption which 

consists of energy usage at different machines, processes and systems need to be investigated 

and reduced. As described in the current research gaps (Section 2.9), research on HVAC 

system in manufacturing buildings that considers energy consumption at a manufacturing level 

is limited. To contribute to the limited knowledge, the experimental trials will demonstrate the 

e-ProMan implementation and its applications on minimisation of energy consumption and 

thus carbon mission. In order to validate the performance of the e-ProMan, its predictive 

HVAC system is simulated and compared to the fuzzy logic system which is shown to be the 

most accurate control system (Dounis et al., 1996; Ulpiani et al., 2016). In addition, the final 

implementation of the e-ProMan is illustrated through a simulation modelling that integrates 

predictive and real-time data and the correlational relationship between energy consumption, 

product quality and ambient temperature on the HVAC system and production processes. 

Taken together, the e-ProMan takes into account energy consumption at different levels 

namely machine, shop-floor and production process. 

7.2 Model and Architecture of HVAC System within the e-ProMan 

HVAC is the system that is used to control a comfortable level of the ambient environment in 

a building. Due to the temperature-controlling function, an HVAC system consumes a 

significant amount of energy in order to maintain the set point temperature in manufacturing 
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facilities. The e-ProMan system operates by controlling the temperatures of the laboratory 

shop-floor in the simulation modelling in accordance to the ideal comfort temperatures in light 

factories (including laboratories) which are stated to range between 16°C and 19°C (Health, 

Safety and Welfare Regulations, 1992). According to this established HVAC guidelines 

(Carbon Trust, 2011), the heating system would automatically turn on when the shop-floor 

temperature drops below 16°C, whereas the air conditioning system would operate when the 

temperature rises above 19°C. Consequently, the simulation of the e-ProMan HVAC 

controller operates by comparing the real-time shop-floor temperature to the ideal comfort 

temperature and also by integrating weather forecast temperature data to improve the decision 

of adjusting temperature in HVAC system that can lead to enhance the manufacturing energy 

management system. The e-ProMan HVAC system uses a fuzzy logic algorithm in LabVIEW 

programme which includes the HVAC optimum setpoint to reduce the energy consumption 

and thus CO2 emission. Figure 7.1 illustrates the overview of the e-ProMan HVAC system. 

 

Figure 7.1. Overview of the e-ProMan HVAC system 
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In the present e-ProMan HVAC system, the simulation controller adjusts the HVAC system 

based on the value of temperature derived from Equation (7.1). This research proposes eight 

equations which are applied into a regular fuzzy HVAC system in order to investigate the 

HVAC optimum setpoint temperature equation for the e-ProMan HVAC system in terms of 

the total energy consumption. The eight equations and total energy consumption derived from 

each equation are summarised in Table 7.1, and the statistical test of the eight equations are 

shown in Appendix S. According to these results, the second equation is considered the most 

energy efficient for the HVAC system as it consumed 1,968.50 kWh during the experimental 

period in the summer. 

Table 7.1. Total energy consumption after applied e-ProMan HVAC 

setpoint temperature equations 

No. 
e-ProMan HVAC Setpoint 

Temperature Equations 

Total Energy Consumption 

(kWh)  

1                 2,285.60  

2          
     

 
   1,968.50 

3          
     

 
  2,070.45 

4          
     

 
  2124.00 

5          
     

 
   2,197.20 

6          
     

 
  2,231.25 

7         √|     |  1,982.20 

8         √|     |
 

  2,013.80 

 

where    is the e-ProMan HVAC setpoint temperature,    is the HVAC setpoint temperature 

to be adjusted,    is current outside temperature, and    is a value of weather forecast 

temperature in the next hour. 
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  (7.1) 

The simulation controller operates every one hour in advance by considering (1) the current 

outside temperature    measured by the temperature sensor and (2) the weather temperature in 

the next hour    obtained from predictive weather forecast database in order to reduce energy 

usage consumed by the operation of the HVAC system. For example, if the real-time weather 

forecast database predicts a 5°C rise in weather temperature in the next hour, the e-ProMan 

HVAC setpoint temperature of the controller system in the simulation is adjusted accordingly.  

In Figure 7.2, the Single Input Single Output (SISO) in the LabVIEW programme is designed 

and implemented using fuzzy controller which is a method of rule-based decision making 

using for process control. The fuzzy controller uses identified rules to control a fuzzy system 

based on the current values of input variable which is the difference between the current 

ambient temperature and the ideal ambient temperature.  Triangular forms of membership 

function and a collection of logic rules in the form of If-Then statements are set and illustrated 

in Figure 7.3 and Figure 7.4, respectively. Then, the parameters adjust themselves to the 

algorithm as stated by Equation (2.27) in Chapter 2. The center of area (CoA) method of 

defuzzification is performed, and the HVAC setpoint temperature output is thus attained. The 

value of HVAC setpoint temperature is converted into the e-ProMan HVAC setpoint 

temperature using Equation (7.1).  

After that, the HVAC algorithm system is operated consequently by using the e-ProMan 

HVAC setpoint temperature as shown in Figure 7.5. The heater and cooler were operated 

when the ambient temperature was not within the expected temperature range. 

7.3 Forecastive Control on the e-ProMan HVAC System  

The present research was conducted at the Advanced Manufacturing and Enterprise 

Engineering (AMEE) Laboratory at Brunel University London. The laboratory has a floor area 

of 180 m
2
 with 5 metres ceiling. In particular, it was carried out at two different seasonal 

periods (summer and winter) in order to capture the high variability of weather. The summer 

experiment was monitored between 1
st
 and 31

st
 August 2014 which is considered as having the 

most fluctuation in temperatures compared with other periods. The winter experiment was 

between 1
st
 and 31

st
 January 2015. 
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Figure 7.2. e-ProMan HVAC system fuzzy logic controller 

 

Figure 7.3. HVAC system triangular form of membership function 
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Figure 7.4. HVAC system fuzzy logic rules 

 

Figure 7.5. HVAC system algorithm 

As shown in Figure 7.6, the LabVIEW programme was run to display the e-ProMan system by 

obtaining the real-time data (i.e. weather forecast, shop-floor temperature and energy usage of 

the HVAC system) and by demonstrating the feasibility of the predictive control of the HVAC 

system in the manufacturing system. As displayed on the top right side of the Figure 7.6, the 

HVAC predictive control of the e-ProMan system comprehensively and virtually displays the 

real-time 3D colour-correlated thermography of the CAD model temperature measuring shop-

floor. The main HVAC controller is shown in the bottom left side of the system, and the real-

time shop-floor temperature and real-time weather forecast data are displayed in the middle 

and on the bottom right side of the panel system respectively. The shop-floor temperature data 

displayed on the e-ProMan system is the average temperature values obtained from the ten 

temperature sensors. 

In addition, with regard to energy consumption, the e-ProMan system considers two 

assumptions. First, a central air condition typically consumes approximately 3,000 to 5,000  
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Figure 7.6. Forecastive control on the e-ProMan HVAC system
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Watts/hour and operates between three and seven months a year during summer depending on 

the current weather at the time. Second, a water heater consumes approximately 3,000 to 4,000 

Watts/hour during winter (Carbon Trust, 2011). 

To evaluate the energy usage of the HVAC system, the analysis first considered the overall 

temperatures of the shop-floor during the two experiments. Figure 7.7 summarised the average 

temperatures displayed in a two-hour time interval during the summer (August 2014) and 

winter (January 2015) periods. The average shop-floor temperatures of each experiment were 

calculated using the average of the temperatures acquired from the total of 31 days in which 

each of the experiments was conducted. From these results, the temperatures in summer 

fluctuated sharply between 6.00 am and 11.00 am where the average temperature dropped to 

the lowest at approximately 17°C at 5.00 am and then reached the highest at 29°C at 10.00 am. 

On the other hand, the average shop-floor temperatures slightly fluctuated in the winter 

experiment. The temperatures between midnight and 9.00 am remained mostly stable within 

the range of 12°C. The lowest temperature was at 12°C at 2.00 am, and the highest 

temperature was at approximately 15°C at 11.00 am. Based on these results, the air 

conditioning system would operate more frequently in the morning during the summer period, 

whereas the heating system would operate most of the time during the winter period. 

The second part of the analysis evaluated a reduction in energy consumption of the HVAC 

system by comparing between the two simulation systems: ON/OFF system and e-ProMan 

system. The ON/OFF system was regarded as a basic of HVAC system, whereas the e-ProMan 

system was proposed as an advanced modelling of HVAC system concerning real-time and 

predictive temperature data. As illustrated in Figure 7.8, total energy consumption in the two 

systems was generally higher in winter than in the summer. Importantly, the results of the 

simulation further showed a larger amount of total energy consumption in the ON/OFF system 

for both summer and winter when compared to the total energy consumption in the e-ProMan 

system. 

Table 7.2 provides more detailed results of HVAC energy consumption of the two systems 

during the two seasonal periods. In August 2014 during the summer period, the proposed e-

ProMan simulation system consumed 1,968.50 kWh which was reduced from 2,317.50 kWh 

of energy consumed in the ON/OFF system, resulting in 15% of energy saving. 

Approximately 143.81 kg CO2 emission was thus reduced. The same pattern was also shown 
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for the winter experiment. The total of 2,628 kWh energy consumption in the ON/OFF system 

was reduced by 10.69%, and CO2 emission was reduced by about 115.79 kg compared to the 

total of 2,347 kWh energy consumption in the e-ProMan system. Together, the energy 

consumption was reduced in both experiments.  

 

 

Figure 7.7. An average of Brunel laboratory shop-floor temperature in summer and winter 

 

Figure 7.8. Results of the total HVAC energy consumption   
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Table 7.2 Results of HVAC energy consumption in ON/OFF and e-ProMan systems 

 
Summer (Aug 2014) Winter (Jan 2015) 

ON/OFF System (kWh) 2,317.50 2,628.00 

e-ProMan System (kWh) 1,968.50 2,347.00 

Energy Saving (%) 15.06 10.69 

 

The findings suggest that both real-time temperature and weather forecastive data are 

necessary for the HVAC control system as they enable the e-ProMan system to adjust the 

temperatures accordingly to the ideal comfort temperatures stated by the regulations. 

Moreover, the predictive data of weather enabled the control system to adjust the HVAC 

operating status according to the ideal temperature range, thereby reducing the energy usage at 

the HVA system. Compared to the conventional ON/OFF system, the e-ProMan system was 

found to save 15% of energy in summer and 10% in winter. 

The predicted weather helped the HVAC system reducing more energy in the summer than in 

the winter by minimising the ambient temperature fluctuation. In the winter, the heating 

system was working all the time; on the other hand, in the summer, the HVAC system was 

occasionally turned off. Therefore, the effectiveness of the e-ProMan system was found to be 

more pronounced during the summer period which is characterised by large weather 

temperature variations especially in the morning hours. Similar results were also observed in 

the work of Dababneh et al. (2016) which modelled an energy demand response of the HVAC 

system in summer and winter. In this research, a greater energy demand reduction was found 

in summer compared to winter. Taken together, the virtual, user-friendly simulation of the e-

ProMan system shows promising results for energy consumption system and thus for energy 

efficiency in manufacturing.  

7.4 HVAC Experimental Trials on the Shop-floor 

In this simulation experiment, the e-ProMan HVAC system was tested in the AMEE 

laboratory which gathered real-time ambient data of the laboratory shop-floor, weather 

forecast data and machining energy consumption data. The experiment was conducted at a 

CNC machine which operated over the 4-hour period (1.00 pm-5.00 pm) on 14
th

 October 2015 
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when the outside temperatures of the laboratory were between 13°C and 18°C. The inside 

temperatures of the laboratory were between 20.4°C and 27.8°C. Figure 7.9 shows a 

comparison between inside and outside temperatures during the period in which the 

experiment was conducted. The temperature both inside and outside were increased over the 

period on time.  

 

Figure 7.9. Temperature outside and inside the laboratory during HVAC system experiment 

The 3D thermal distributions of the shop-floor plan between 1.00 pm and 4.00 pm are 

illustrated in Figure 7.10. Evidently, the shop-floor temperatures increased significantly during 

the afternoon hours as the red areas of the thermography expanded and covered most of the 

shop-floor areas. 

The second part of the simulation compared energy efficiency between the fuzzy logic 

controller and HVAC controller in the e-ProMan system. Figure 7.11 summarised the amount 

of the energy consumed in the simulating fuzzy logic system and the HVAC e-ProMan 

system. The results showed that the HVAC controller in the e-ProMan system consumed less 

energy than the fuzzy logic controller. The e-ProMan system saved energy by more than 0.53 

kWh or 3.57%, thus reducing the CO2 emission by approximately 0.21 kilogrammes during 

the experiment as illustrated in Figure 7.12. 
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Figure 7.10. Shop-floor thermal distributions at (a) 1.00 pm, (b) 2.00 pm,  

(c) 3.00 pm and (d) 4.00 pm 

 

Figure 7.11. The comparison of energy consumption between                                                      

fuzzy logic controller and e-ProMan system 

In other words, if the CNC milling machine operates every day on an 8-hour shift excluding 

weekends, the e-ProMan system would save approximately 275.6 kWh and reduce carbon 

emissions by 115.89 kg per annum for the HVAC system in the manufacturing shop-floor. 

Consistent with the previous HVAC experiment, the predictive control system of the e-

ProMan which considers real-time weather forecast data confirms its implication on energy 
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efficiency especially when there is a large variation in temperature such as in the afternoon 

period and in the summer season.  

 

Figure 7.12. The comparison of CO2 emission between 

 fuzzy logic controller and e-ProMan system 

7.5 Experimental Trials on Virtual Production System Modelling Working 

with Internet 

In this last experimental trial, the main objective was to provide an implementation of the e-

ProMan virtual production web-based system. This system offers a real-time monitoring 

publishing on the web server in order to observe and control the manufacturing system.  

As displayed in Figure 7.13, the virtual production system consists of 9 elements which are 3D 

shop-floor thermal distribution (top left panel), real-time web camera, simulation of 

production process, dimensional error (quality), e-ProMan HVAC system, total energy 

consumption, weather forecast and shop-floor ambient temperature in a clockwise order. 

According to the results of production workload in Chapter 6, the most energy-efficient 

scenario of schedule (i.e. up-hill scenario) was applied as a case study in the e-ProMan system 

using four CNC milling machines to finish the cutting process of the total 40 aluminium 

workpieces. The e-ProMan HVAC system was added into the case study to control the shop-

floor temperatures. Moreover, the regression line equations (Equation 5.6), which resulted 

from the correlational analysis presented in Chapter 5, were applied to this simulation model  
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Figure 7.13. Web-based virtual production system modelling and analysis 
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in order to display the results of the three-dimensional correlation of energy consumption, 

ambient temperature and product quality.  

After running the virtual production modelling system, the simulation provided the results of 

energy usage of the e-ProMan HVAC system, production processes, total energy consumption 

and also CO2 emission as summarised in Table 7.3. With the e-ProMan HVAC controllers 

together with the production processes based on an up-hill scheduling scenario consumed 

approximately 467.7 kW which contributed to approximately 192.71 kilogrammes of CO2 

emission.  

Table 7.3 Overall results of the virtual production modelling system 

  Energy Consumption (kWh) CO2 Emission (kg) 

HVAC system 45.51 18.75 

4 Precision Milling 

Machines 
422.19 173.96 

Total  467.7 192.71 

 

 

7.6 Chapter Summary 

This chapter aimed to provide experimental testing of the simulation modelling of the Energy-

smart Production Management (e-ProMan) system. This energy management system 

established an innovative method to demonstrate and analyse the real-time web-based 

manufacturing data including work flow, energy flow and data flow. The development of the 

e-ProMan system provides a preliminary model of the manufacturing data-based simulation on 

the energy efficiency of the HVAC system level in the manufacturing. In particular, the e-

ProMan system inputs real-time manufacturing data of weather forecast, outside and ambient 

shop-floor temperatures, and energy consumption of the HVAC system. By simulating and 

analysing the model, a reduction of energy consumption was supported by the implementation 

of the e-ProMan system. Moreover, an experiment trial illustrated the energy-efficient 

performance of the e-ProMan system as a result of its predictive HVAC control system, 

workload optimisation in a production process and the quantitative three-dimensional 

correlation between energy flow, work flow and data flow.  
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CHAPTER 8 

Conclusions and Recommendations for Future Work 

8.1 Conclusions 

The research conclusions can be drawn as follows: 

(1) A simulation-based methodology which models thermal and energy management for 

real-time decision makings in energy-efficient manufacturing. To achieve the established 

research objective, the Energy-smart Production Management (e-ProMan) system was 

developed. The e-ProMan system was proposed as a virtual, user-friendly simulation-based 

system that provides real-time decision makings from modelling weather forecast, shop-

floor outside temperature and ambient temperature data and from a quantitative three-

dimensional correlation analysis of energy flow, work flow and data flow. In order to 

evaluate the effectiveness of the e-ProMan system performance at different levels, the 

conclusions are summarised as follows.  

(2) The dimensional accuracy in precision machining was investigated by integrating 

precision machining with energy efficiency in sustainable manufacturing. In response to an 

increasing demand for higher standards of products, machining accuracy is crucial but 

often consumes more energy. Built upon the previous experiment which demonstrated the 

important role of thermal effect in energy consumption of manufacturing machines and 

systems, an experiment was conducted to provide a correlational analysis of energy 

consumption, dimensional error quality of workpiece and ambient temperature. The 

experiment performed machining accuracy trials on milling workpieces and employed a 

three-dimensional correlational analysis. The findings suggest that at high ambient 

temperatures, quality errors appear to increase, but less energy is consumed. More 

important, product quality is found to be significantly affected by temperatures in which 

higher product quality occurs at low temperatures. This experiment highlights that the 

temperature variations at the ambient shop-floor can have an effect on quality error, 

thereby emphasising the need to control the temperatures according to maintain the 

standard quality of machined products. The correlational analysis expands the knowledge 

on thermal expansion and illustrates its implications for the e-ProMan system.     

(3) The production process is the main sources of energy consumption in manufacturing. 

Therefore, workload optimisation at this level can significantly contribute not only to the 

overall energy efficiency of the plant, but also the total cost of production. The simulation 
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experiment was performed to examine energy consumption of a machining production 

process by simulating different scenarios of workload. First, up-hill scenario workload is 

found to consume less amount of energy. In this scenario, workload starts at its minimum 

capacity then increases incrementally throughout the planned hours. The up-hill scenario is 

also empirically shown to reduce total production cost and CO2 emission.  

(4) The e-ProMan system models the predictive HVAC system which controls the shop-

floor temperature to the thermal comfort range during Summer and Winter seasons. The 

simulation experiment provides evidence to support the energy-efficient performance of 

the e-ProMan system in which 15% of energy consumed by the HVAC system can be 

saved in the Summer and 10% of energy can be saved in the Winter. Because of the larger 

temperature variations in the Summer, the energy-efficient performance of the e-ProMan 

system is more pronounced in the Summer. This work emphasises the importance of 

predictive control system which considers weather forecast and shop-floor temperature in 

the real-time decision makings.  

In conclusion, as highlighted throughout the dissertation, a systematic approach is essential 

in a simulation modelling development of an energy-efficient application in 

manufacturing. To successfully optimise energy consumption while maintaining high 

quality product, the energy-efficient management system should be implemented in order 

to continuously increase energy efficiency and achieve sustainability. The Energy-smart 

Production Management (e-ProMan) system is shown to be an applicable system that 

increases energy efficiency for different levels of manufacturing plants.  

The contributions to knowledge in light of the research are summarised below; 

 The multiple correlation analysis of ambient temperature, energy consumption and 

dimensional error quality of workpiece was investigated in sustainable precision 

machining  

 The e-ProMan system was developed at different levels by integrating the different 

components that are found to be important within the energy-efficient management 

system namely thermal effects (i.e. weather forecast and real-time ambient temperature 

and temperature at machining), workload of production process, and correlational 

analysis of work flow, energy flow and data flow. 
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8.2 Recommendations for Future Work 

Despite the benefits gained from the simulation system, this research has several 

limitations which can be further studied in the future investigations. With regard to 

methodological issues, the following areas are recommended for future work. 

1) Despite the advantages of simulation, the results from the simulation experiments were 

based on ‘what-if’ scenarios. Real data obtained from actual experimentation (i.e. 

energy consumption in a production process) would enhance the reliability of the 

results and thus validate the energy-efficient simulation system. The e-ProMan system 

should further be implemented in the real manufacturing settings- potentially of 

different machines, products and in order to verify its performance.  

2) The concept of big data manufacturing should be integrated into the e-ProMan system 

in order to provide remarkably useful information that enables manufacturers to better 

learn, understand and evaluate the current situations in the manufacturing plant. Such 

information is essential to productivity, and to modelling and improvement of an 

energy-efficient system including difference type of machines and operation processes. 
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Appendix A: List of Publications Resulting from the Research 
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Approach, Analysis and Optimization”, Proceedings of the Institution of 

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(5) pp. 

972-978. DOI: 10.1177/0954405415586711. SAGE. 

 Katchasuwanmanee, K., Cheng, K, and Bateman, R., 2016, “Investigation on 

Simulation based Energy-Resource Efficient Manufacturing Integrated with In-

Process Virtual Management”, Chinese Journal of Mechanical Engineering – 

Special Issue on Future Digital Design and Manufacturing Technologies for 

Manufacturing Innovation: Embracing Industry 4.0 and Beyond, 29(6) pp.1083-

1089. DOI: 10.3901/CJME.2016.0714.080. Springer. 

 Katchasuwanmanee, K., Bateman, R., and Cheng, K., 2016, “An Integrated 

Approach to Energy Efficiency in Automotive Manufacturing Systems: 

Quantitative Analysis and Optimisation", Production and Manufacturing Research. 

Taylor & Francis (Accepted). 

 Katchasuwanmanee, K., Bateman, R., and Cheng, K., 2016, “An Investigation into 

Correlation Analysis of Machining Quality, Energy Consumption and Temperature 

Variations for Sustainable Precision Machining”, Journal of Manufacturing Science 

and Engineering – Special Issue on: Sustainable Manufacturing. ASME. (Under 

review).  
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Conferences 

 The 37th International Matador Conference, Manufacturing Automation and 

Systems Technology Applications Design Organisation and Management Research 

on 25
th

 – 27
th

 July 2012. Title: Complexity in Manufacturing Supply Chain Applied 

to Automotive Industry: Modelling, Analysis and a Case Study, Manchester, UK. 

 The 13th International Conference on Manufacturing Research on 8
th

 – 10
th

 July 

2015, Title: An Integrated Approach to Energy Efficiency in Automotive 

Manufacturing Systems: Quantitative Analysis and Optimisation, Bath, UK. 

 International conference of Digital Design and Manufacturing Technologies on 12
th

 

– 13
th

 April 2016. Title: Investigation on Simulation on Simulation based Energy-

Resource Efficient Manufacturing Integrated with In-Process Virtual Management, 

Newcastle, UK. 
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Appendix B: List of ISO Standards Associated with 

EuroEnergest Project 

Table B1 List of standards associated with EuroEnergest and the automotive industry 

Standards Description Current status 

ISO 9001:2008 Quality Management System Current 

ISO 16001:2008 

Hazard Detection Systems (HDS) and 

Visual Aids (VA) Test Method and 

Performance 

Current 

ISO 14001:2004 Environmental Management Systems Current 

ISO 14020:2001 
Environmental labels and declarations 

– General principles 
Current 

ISO 14021:2001+A1:2011 
Environmental Labels and 

Declarations 
Current 

ISO 14025:2010 

Environmental labels and declarations 

– Type III environmental declarations 

– Principles and procedures 

Current 

ISO 14044:2006 

Environmental Managements – Life 

cycle assessment – Requirements and 

Guidelines 

Current 

ISO/TR 14062:2002 Environmental Management Current 

DIN EN 16001 
Energy Management Systems in 

Practice 

Replaced with ISO 

50001 

ISO 50001:2011 Energy Management Systems Current 

ISO 15011-2:2009 
Health and Safety in Welding  

and Allied Processes 
Current 

ISO 10263-4:2009 HVAC test method and performance Current 

ISO/EN 15316:2012 Heating systems in buildings Current 

ISO/EN 14825:2012 Air Conditioners Current 
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Appendix C: Coefficients of Thermal Expansion for Various 

Materials  

Table C1 Coefficients of thermal expansion for steel (Bal Seal Engineering, 2004) 

Steel     

 
(0° to 93°C) 

303 SS (17.3 x 10
-6

) 

304 SS (15.8 x 10
-6

) 

347 SS (16.7 x 10
-6

) 

410 SS (9.9 x 10
-6

) 

416 SS (9.9 x 10
-6

) 

15-5 PH SS (10.8 x 10
-6

) 

17-4 PH SS (10.8 x 10
-6

) 

17-7 PH SS (15.3 x 10
-6

) 

A286 SS (16.6 x 10
-6

) 

4140 High Alloy Steel (22.9 x 10
-6

) 

4340 High Alloy Steel (22.3 x 10
-6

) 

H13 Tool Steel (20.7 x 10
-6

) 

H11 Tool Steel (20.7 x 10
-6

) 

Tungsten Carbide K801 (4.9 x 10
-6

) 

Vasco T-250 (10.1 x 10
-6

) 

 

Table C2 Coefficients of thermal expansion for aluminium (Bal Seal Engineering, 2004) 

Aluminium     

 
(20° to 100°C) 

356 (21.4 x 10
-6

) 

2014 (22.5 x 10
-6

) 

2024 (22.7 x 10
-6

) 

6061 (23.4 x 10
-6

) 

6082-T6 (24 x 10
-6

) 

7075 (23.2 x 10
-6

) 
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Table C3 Coefficients of thermal expansion for other alloys (Bal Seal Engineering, 2004) 

Other Alloys     

Titanium 6AL-4V (8.6 x 10
-6

) 

Brass (20.3 x 10
-6

) 

Copper (16.65 x 10
-6

) 

Iron (11.8x 10
-6

) 

Platinum (8.8 x 10
-6

) 

Gold (14.2 x 10
-6

) 

Silver (18.9 x 10
-6

) 
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Appendix D: Experimental Equipment Specifications 

 

Figure D1. BS-1000 lan receiver for multi logging system 
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Table D2: BS1000 Device Logging Codes 

   

Rule Device Code Description 

Startup 0 0 startup device 

Access 0 code open new session code: 0 = success, 1 = failed 

Access 0 2 log in failed 

Time 0 0 time set by network time server 

Time 0 1 time query timed out 

Time 0 2 time server not resolved 

Time 1 0 time set by usb 

Startup 1 0 reset device to default settings 

DHCP 0 0 dhcp configured 

rulenb device 0 rule executed with beep 

rulenb device 1 rule http address unresolved 

rulenb device 2 rule http request timeout 

rulenb device 3 rule hhtp request parse error 

rulenb device 4 rule hhtp request cannot connect 

rulenb device 5 rule hhtp request timeout 

rulenb device 6 rule hhtp request timeout 

rulenb device 7 rule hhtp request timeout 

rulenb device 8 rule hhtp request closed unexpected 

rulenb device 21 rule condition parse error 

rulenb device 22 rule condition parse error 

rulenb device code smtp server or http server result code for rule 

rulenb device 1 no mail server address 

rulenb device 2 cannot connect to mailserver 
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Figure D3. TL-500 / TL-510 wireless USB multi-logging system 
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Figure D4. Specifications of Thermal Camera 
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Figure D5. Specifications of KERN CNC machine 
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Figure D6. Specifications of Coolant (SD18 Spray Nozzle) 
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Figure D7. Specifications of BLUM laser control 
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Figure D8. Specifications of Coordinate Measuring Machine (CMM) – MITUTOYO 

FN503 
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Figure D9. Specification of optical microscope (TESA 200) 
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Figure D10. Specifications of JEOL JCM-6000 Scanning Electron Microscopes (SEM)  
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Appendix E: Specifications of Aluminium Alloy 6082-T6  

 

Figure E1. Specifications of Aluminium Alloy 6082-T6 
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Figure E2. Mechanical properties of Aluminium Alloy 6082-T6 
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Appendix F: Specifications of Cutting Tool  

 

 

Figure F1. 2 Flutes end mill tungsten carbide tool 
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Appendix G: Aluminium Workpiece Drawing 

 

Figure G1. Aluminium Workpiece Drawing 

 

  



 171 

Appendix H: Temperature Control Range in Different Sectors 

 

Figure H1. Temperature control range in different sectors (Carbon Trust, 2011) 
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Appendix I: Cutting Speed and Feed Recommendations 

 

Figure I1. Cutting Speed and feed recommendations (SGS Tool, 2016) 
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Appendix J: Fluke Power Logger Display  

 
 

Figure J1. Fluke power log displaying three phrases of voltages and currents results 
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Appendix K: Three Dimensional Correlations  

Experimental Results 

Table K1 Three Dimensional Correlation Analysis Results 

Day 
Workpiece 

No. 

Ambient  

Temperature 

(°C) 

Total Energy 

Consumption 

(kWh) 

Quality Error 

(%) 

1 

1 23.6 11.02 0.1452 

2 25.3 10.85 0.1698 

3 26.1 10.760 0.1778 

4 25.5 10.73 0.1834 

2 

5 23.7 11.13 0.1491 

6 24.3 10.93 0.1467 

7 26.2 10.797 0.1907 

8 25.2 10.94 0.1730 

3 

9 23.9 11.05 0.1349 

10 24.7 10.92 0.1636 

11 26.5 10.691 0.1971 

12 25.9 10.797 0.1828 

4 

13 23.3 11.32 0.1466 

14 25.7 10.863 0.1746 

15 26.3 10.757 0.1960 

16 26.6 10.671 0.1990 

5 

17 23.8 11.24 0.1475 

18 25 10.99 0.1617 

19 25.6 10.86 0.1860 

20 25.8 10.74 0.1723 

6 

21 23.4 11.27 0.1476 

22 26.5 10.57 0.2122 

23 25.8 10.66 0.2072 

24 25.7 10.81 0.1894 

7 

25 23.8 11.12 0.1391 

26 25.4 10.80 0.1762 

27 26.3 10.67 0.1923 

28 25.4 10.92 0.1877 

8 

29 23.9 11.21 0.1494 

30 25.8 10.842 0.1792 

31 26.1 10.71 0.2060 

32 26.8 10.571 0.2060 

9 

33 24.1 11.20 0.1516 

34 25.3 10.74 0.1880 

35 25.3 10.97 0.1681 

36 25.9 10.67 0.2057 

10 

37 24.3 11.02 0.1580 

38 25.6 10.89 0.1762 

39 25.4 10.93 0.1729 

40 26.7 10.644 0.2027 
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Appendix L: Statistical Results 

 

 
 

Figure L1. Chi-Square Test of ambient temperature data 
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Figure L2. Ambient temperature data histogram 

 

 

Figure L3. Total energy consumption data histogram 
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Figure L4. Workpiece quality error data histogram 

 

Table L1. Skewness results 

 

 

 

 

 

 

  

 

 Ambient 

Temperature 

Total Energy 

Consumption 

Quality 

N 
Valid 40 40 40 

Missing 0 0 0 

Skewness -.490 .552 -.136 

Std. Error of 

Skewness 
.374 .374 .374 

Kurtosis -.922 -.458 -1.066 

Std. Error of 

Kurtosis 
.733 .733 .733 
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Table L2. SPSS regression analysis ambient temperature predicting workpiece quality 

error results 

  
Model Summary 

Mode

l 

R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .921
a
 .849 .845 .008555524 

a. Predictors: (Constant), Ambient Temperature 

ANOVA
a
 

Model Sum of 

Squares 

df Mean 

Square 

F Sig. 

1 

Regression .016 1 .016 213.063 .000
b
 

Residual .003 38 .000   

Total .018 39    

a. Dependent Variable: Workpiece Quality Error 

b. Predictors: (Constant), Ambient Temperature 

Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) -.322 .034  -9.444 .000 

Ambient 

Temperature 
.020 .001 .921 14.597 .000 

a. Dependent Variable: Workpiece Quality Error 
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Table L3. SPSS regression analysis ambient temperature  

Predicting total energy consumption results 

 

 

 

 

 

 

 

ANOVA
a
 

Model Sum of 

Squares 

df Mean 

Square 

F Sig. 

1 

Regression 1.302 1 1.302 229.313 .000
b
 

Residual .216 38 .006   

Total 1.518 39    

a. Dependent Variable: Total Energy Consumption 

b. Predictors: (Constant), Ambient Temperature 

 

  

Model Summary 

Mode

l 

R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .926
a
 .858 .854 .075364471 

a. Predictors: (Constant), Ambient Temperature 

Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) 15.427 .300  51.356 .000 

Ambient 

Temperature 
-.180 .012 -.926 -15.143 .000 

a. Dependent Variable: Total Energy Consumption 
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Table L4. SPSS regression analysis total energy consumption  

predicting workpiece quality error results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Model Summary 

Mode

l 

R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .894
a
 .799 .794 .009854011 

a. Predictors: (Constant), Energy Consumption 

ANOVA
a
 

Model Sum of 

Squares 

df Mean 

Square 

F Sig. 

1 

Regression .015 1 .015 151.256 .000
b
 

Residual .004 38 .000   

Total .018 39    

a. Dependent Variable: Quality Error 

b. Predictors: (Constant), Energy Consumption 

Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) 1.246 .087  14.311 .000 

Total Energy 

Consumption 
-.098 .008 -.894 -12.299 .000 

a. Dependent Variable: Workpiece Quality Error 
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Table L5. SPSS multiple regression analysis predicting workpiece quality error results 

 

 

 

 

 

 

 

 

 

Model Summary 

Model R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .928
a
 .860 .853 .008328971 

a. Predictors: (Constant), Energy Consumption, Ambient 

Temperature 

ANOVA
a
 

Model Sum of 

Squares 

df Mean 

Square 

F Sig. 

1 

Regression .016 2 .008 113.953 .000
b
 

Residual .003 37 .000   

Total .018 39    

a. Dependent Variable: Quality Error 

b. Predictors: (Constant), Energy Consumption, Ambient Temperature 

Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 95.0% Confidence 

Interval for B 

B Std. Error Beta Lower 

Bound 

Upper 

Bound 

1 

(Constant) .165 .279  .591 .588 -.400 .729 

Ambient 

Temperature 
.014 .003 .656 4.024 .000 .007 .021 

Total Energy 

Consumption 
-.032 .018 -.287 -1.759 .087 -.068 .005 

a. Dependent Variable: Workpiece Quality Error 
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Appendix M: Tool Wear Measurement Results 

Table M1 Magnitude of roughing tool wear results from Blum laser system 

 Workpiece 

No. 

Machining Time 

(minutes) 

Tool Wear 

(μm) 

1 30 9 

2 60 15 

3 90 19 

4 120 25 

5 150 30 

6 180 33 

7 210 37 

8 240 39 

9 270 42 

10 300 46 

11 330 49 

12 360 53 

13 390 56 

14 420 58 

15 450 60 

16 480 61 

17 510 63 

18 540 66 

19 570 68 

20 600 71 

21 630 73 

22 660 75 

23 690 76 

24 720 78 

25 750 79 

26 780 81 

27 810 84 

28 840 86 

29 870 88 

30 900 91 

31 930 93 

32 960 96 

33 990 98 

34 1020 101 

35 1050 103 

36 1080 105 

37 1110 108 

38 1140 111 

39 1170 112 

40 1200 114 

Total 114 
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Table M2 Magnitude of finishing tool wear results from Blum laser system 
 

  
Workpiece 

No. 

Machining Time 

(minutes) 

Tool Wear 

(μm) 

1 5 4 

2 10 6 

3 15 8 

4 20 9 

5 25 11 

6 30 12 

7 35 13 

8 40 15 

9 45 16 

10 50 18 

11 55 19 

12 60 21 

13 65 23 

14 70 24 

15 75 25 

16 80 26 

17 85 27 

18 90 28 

19 95 30 

20 100 31 

21 105 33 

22 110 34 

23 115 36 

24 120 37 

25 125 39 

26 130 40 

27 135 41 

28 140 43 

29 145 45 

30 150 46 

31 155 47 

32 160 48 

33 165 49 

34 170 51 

35 175 52 

36 180 53 

37 185 55 

38 190 56 

39 195 57 

40 200 58 

Total 58 
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Table M3 Cutting edge results of roughing tool from SEM 

Machining Time 

(minutes) 

Tool Cutting 

Edge Radius 

(μm) 

0 4.5332 

120 7.6343 

240 8.9646 

360 9.4382 

480 10.1692 

600 11.9811 

720 13.4812 

840 14.6927 

960 15.9731 

1080 18.8214 

1200 20.8330 

 

Table M4 Cutting edge results of finishing tool from SEM 

Machining Time 

(minutes) 

Tool Cutting 

Edge Radius 

(μm) 

0 4.3844 

20 4.8228 

40 5.2087 

60 5.5889 

80 6.3713 

100 6.4988 

120 7.2136 

140 8.3678 

160 9.6230 

180 10.7778 

200 12.8108 
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Appendix N: Economic Data  

Table N1 Operating CNC Costs 

Lists Details Costs Units 

Energy Electricity (current) £0.16
1 

Pounds/kWh 

Maintenance Kern CNC £3,256.50
2 

Pounds/year 

Material Aluminium workpiece £2.70
3 

Pounds/workpiece 

Machine Tool Tungsten Carbine Tool £18.45
3 

Pounds 

Labour Technician £19.23
4 

Pounds/hour 

  

1 
GOV (2016) Quarterly energy prices 

2 
Rainford Precision Machines Limited and Brunel University London purchase orders 

3 
MSC Industrial Supply Co. (2016)  

4 
Human Resource Departments: Brunel University London 

 

 

 

 
                                 

                                     

               
  

 
 

                                                                  

               
  

 
 

                           

 
  

 
 

       

 
     

                   

                  

 

                                 

*Brunel University bought the KERN CNC machine since 2001  
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Figure N1. Estimated KERN CNC machine total service costs 
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Figure N2. Replacement KERN CNC pump costs 
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Figure N3. Replacement KERN CNC drive XYZ costs 
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Appendix O: CNC Milling Production Data  

Table O1 CNC milling machine operating time for aluminium cutting 

 

Operation Time 

Minutes Seconds 

1 34.93 2096 

2 35.35 2121 

3 34.64 2079 

4 34.64 2079 

5 34.99 2099 

6 34.64 2078 

7 34.99 2099 

8 34.64 2078 

9 35.68 2141 

10 34.60 2076 

11 34.95 2097 

12 34.60 2076 

13 35.29 2118 

14 34.59 2075 

15 34.93 2096 

16 35.63 2138 

17 34.92 2095 

18 35.27 2116 

19 34.92 2095 

20 35.61 2137 

21 34.90 2094 

22 35.60 2136 

23 34.53 2072 

24 34.88 2093 

25 35.23 2114 

26 34.87 2092 

27 35.57 2134 

28 34.50 2070 

29 34.85 2091 

30 35.20 2112 

31 34.49 2070 

32 34.67 2080 

33 35.01 2101 

34 35.08 2105 

35 35.22 2113 

36 35.19 2111 

37 34.80 2088 

38 34.81 2089 

39 34.82 2089 

40 35.17 2110 
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Figure O1. Chi-Square Test of CNC milling operating time for cutting aluminium 

workpiece data 
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Appendix P: e-ProMan Web-based User Interface 
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Appendix Q: 

Parts of LabVIEW Programming  
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Figure Q1. Block diagram for weather forecast overview of data acquisition 

Weather forecast data acquisition 

from weather forecast website 

block diagram (Figure Q2 and Q3) 

Weather forecast user interface 

Block diagram (Figure Q4) 
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Figure Q2. Block diagram for weather forecast data acquisition from weather forecast website 

 

Figure Q3. Block diagram for weather forecast user interface 
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Figure Q4. Block diagram for weather forecast 3-hours interval display 
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Figure Q5. Block diagram for overview of laboratory ambient temperature data acquisition 

  

Ambient temperature acquisition 

from temperature sensors block 

diagram (Figure Q7) 

Real-time 3D sensor mapping 

block diagram (Figure Q6) 
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Figure Q6. Block diagram for real-time 3D sensor mapping 

 

 

Figure Q7. Block diagram for ambient temperature acquisition from temperature sensors 
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Figure Q8. Block diagram for three dimensional correlation analysis of 

 work flow, energy flow and quality flow 

  

Work flow correlation 

analysis block diagram 

(Figure Q9) 

 

Energy flow 

correlation analysis 

block diagram 

(Figure Q10) 

Quality flow 

correlation analysis 

block diagram 

(Figure Q11) 
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Figure Q9. Block diagram for work flow correlation analysis 

 

Figure Q10. Block diagram for energy flow correlation analysis 

 

Figure Q11. Block diagram for quality flow correlation analysis   
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Figure Q12. Block diagram for 3D temperature range 

 

 

Figure Q13. Block diagram for virtual manufacturing display 
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Figure Q14. Block diagram for HVAC system algorithm overview 

 

Figure Q15. Block diagram for HVAC algorithm of checking condition 

 

 

 

 

 

 

 

  

HVAC system status 

(Figure Q15, Q16 and Q17) 

 



 204 

 

 

  

Figure Q16. Block diagram for HVAC algorithm of air conditioning 

 

 

Figure Q17. Block diagram for HVAC algorithm of heating 
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Figure Q18. Block diagram for regular HVAC system fuzzy logic controller  

 

 

Figure Q19. Block diagram for e-ProMan HVAC system fuzzy logic controller 
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Figure Q20. Weather forecast Met Office weather data acquisition  
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Figure Q21. Weather forecast Met Office location data acquisition   
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Appendix R: 

Parts of Arena Simulation Programming  
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Figure R1. Arena simulation programming for overall four CNC milling machines process 
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Figure R2. ‘Create Module’ for aluminium workpiece arrival 

 

Figure R3. ‘Assign Module’ for product specification 

 

Figure R4. ‘Decide Module’ for checking availability of CNC milling machine resource 1 
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Figure R5. ‘Decide Module’ for checking availability of CNC milling machine resource 2 

 

 

Figure R6. ‘Decide Module’ for checking availability of CNC milling machine resource 3 
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Figure R7. ‘Process Module’ for process CNC milling 1 

 

Figure R8. ‘Record Module’ for energy consumption, CO2 emission and production costs 
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Figure R9. ‘Dispose Module’ for product finished 

 

Figure R10. ‘Up-hill scenario’ schedule for CNC milling machine resources 
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Figure R11. ‘Down-hill scenario’ schedule for CNC milling machine resources 

 

Figure R12. ‘Balanced scenario’ schedule for CNC milling machine resources 

  



 215 

 

 

 

 

 

 

 

 

Appendix S: 

Statistical test of e-ProMan HVAC setpoint temperature 

equations  
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Figure S1. Statistical test of e-ProMan HVAC setpoint temperature equation No.1 
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Figure S2. Statistical test of e-ProMan HVAC setpoint temperature equation No.2 
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Figure S3. Statistical test of e-ProMan HVAC setpoint temperature equation No.3 
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Figure S4. Statistical test of e-ProMan HVAC setpoint temperature equation No.4 
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Figure S5. Statistical test of e-ProMan HVAC setpoint temperature equation No.5 
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Figure S6. Statistical test of e-ProMan HVAC setpoint temperature equation No.6 
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Figure S7. Statistical test of e-ProMan HVAC setpoint temperature equation No.7 
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Figure S8. Statistical test of e-ProMan HVAC setpoint temperature equation No.8 
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