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Abstract   

The proposal of this study is a new nonlinear autoregressive moving average, 
NARMA-L2 controller, which is based on an adaptive neuro-fuzzy inference 
system, ANFIS architecture. The new control configuration employs Sugeno-type 
fuzzy inference system FIS submodels to map input characteristics to the output of 
a dynamic and nonlinear system. The default hybrid learning algorithm 
(Backpropagation and Least Square Error) has been carried out as well as particle 
swarm optimisation (PSO) approach, in order to select the optimal parameters of the 
ANFIS submodels. Once the system has been modelled efficiently and accurately, 
the proposed controller is designed by rearranging the generalised FIS submodels. 
The controller performance is evaluated by simulations conducted on a binary 
distillation column, which is characterised by a nonlinear and dynamic behaviour. 
The obtained results show that the PSO-ANFIS based NARMA-L2 achieved more 
efficient modelling and control performances when compared with other 
controllers. These controllers include ANN-based NARMA-L2, (PD, PI and PID 
like) fuzzy-tuned by GA and PSO and traditional PID, which are also implemented 
to the column for comparison. Stability and robustness of the proposed controller 
regarding system inputs variance have also been tested by applying asynchronous 
setpoints of both inputs of the process. 

 

Keywords: Intelligent control; ANFIS; NARMA-L2; Nonlinear systems; Fuzzy 
control.  

1 Introduction 
As a result of the worldwide ambition for more reliable attainment of high product quality, 

more efficient use of energy, tighter safety and environmental regulations, industrial processes 
have evolved over recent years into very complex, highly nonlinear and integrated systems [1].  

Rigorous demands like these naturally lead to more difficult and challenging control 
problems for today's industrial control engineers; problems requiring more efficient solutions 
than can be achieved by only conventional techniques. It also required inter- and cross-
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disciplinary research, development, as well as collaboration in both industry and academia. 
Cooperation between control and other disciplines has been consistently fruitful [2]. 

A big drive has been seen in the academic community to design new control systems, either 
by traditional or contemporary methods. Introducing an intelligent control system can be the 
key factor in improving performance as well as deal better with challengeable features of 
nonlinear and complex processes, although linear-based control systems are frequently used. In 
general, reasonable performance is attained over a narrow operating range, however, when a 
wide range of process tasks is a prerequisite, the nonlinearities become more critical, and the 
control performance is sacrificed [3].  

Intelligence based methods emerged two decades ago to act as an effective solution in many 
applications, many of comprehensive reviews had been written showing that its importance and 
widespread applications [4]–[6]. From a control viewpoint, when nonlinearity, uncertainty or 
control difficulties result from dynamic processes, which may bring severe complications to 
analysis and synthesis. The most applied approaches such as Artificial Neural Networks 
(ANNs), Fuzzy Logic (FLC), is an essential ‘intelligent techniques’ approach which is 
employed considerably in order to control nonlinear processes. One of the strongest arguments 
for the use of fuzzy based controllers is their ability to exploit the tolerances for uncertainty 
and nonlinearity, in order to achieve robustness and controllability, as well to being affordable 
solutions [5]. In addition, many intelligent-hybrid approaches have been innovated to provide 
an efficient solution to widespread problems [7]–[9]. 

Advances in computer science and electronic technologies have facilitated control engineers 
to apply intelligent-based controllers due to [10]: 

1. Design and implementation of electronic circuits with a powerful performance with 
information processing. 

2. Significant development in simulation platforms and computer-aided software that enables 
control designers to build and further design various efficient conflagrations of control as 
well as process systems. 

In 1974, Mamdani first applied fuzzy based controllers for laboratory-scale steam engines 
[11], a year after his work with Assilian [12] had proved the superiority of fuzzy based 
controllers over the fixed based controllers on DDC algorithms. Later on, the process control 
designers extended Mamdani’s innovative work in order to design and implement various 
control systems to deal more efficiently with a different application of more complex real-
world processes. The so-called ‘Mamdani fuzzy model’ was reported as intuitive with a 
widespread acceptance inference system. Around a decade later, Takagi and Sugeno proposed 
another fuzzy model that could map any smooth, nonlinear function to any prescribed 
precision, within any compact set. This model is presented by a set of fuzzy ‘IF–THEN’ rules. 
The rules of the so-called Takagi–Sugeno (T–S), fuzzy model characterise the local linear 
input–output relationships of any nonlinear system. When this proposed fuzzy model is 
applied, it gave a reasonable performance in a water cleaning process, as well as a converter in 
a steel-making process [13]. Both the Mamdani and T-S models have been successfully 
implemented in various applications. Comprehensive reviews have been written about Fuzzy 
controllers; types, effectiveness applications [5], [14]. 
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Neural networks have also a remarkable approximation ability that has inspired many 
researchers to propose a new controller that can use the prediction performance of those 
networks in control configurations. One of the most interested configurations is nonlinear 
autoregressive moving average technique, NARMA-L2, proposed by Narendra and 
Mukhopadhyay [15] by introducing an efficient solution to the problems that cause slow 
performance of backpropagation training algorithms. The main idea of the NARMA-L2 
controller is using approximate models that represent a dynamic process, by training ANN 
offline and then designing the NARMA-L2 controller by rearrangement the trained ANN 
model. The obvious advantage of the NARMA-L2 controller is that it does not require an 
additional submodel to be trained, as is required in other neuro-controllers, such as Model 
Reference Adaptive Control, MRAC, and Model Predictive Controller, MPC [16]. 

More recently, other new controllers have been proposed and applied in different fields. 
Some contributions are referred to in the following by Piltan et al. [17], who proposed and 
implemented a SISO fuzzy estimating sliding mode controller on a robot manipulator, as well 
as a PSO, used as an optimisation tool to tune and adjust the sliding function. Valikhani et al. 
[18] used a novel control method based on the emotional decision-making process, which 
occurs in mammalian brains. The so-called brain emotional learning-based intelligent 
controllers, BELBIC, are applied to control twice-fed induction generator wind turbine 
systems. Shen et al. [19] introduced a new adaptive solution to neural tracking control 
problems by proposing a novel neural control for a class of uncertain pure-feedback nonlinear 
systems. 

 NARMA-L2 based controllers have been recently gaining enormous interest amongst 
researchers in different areas. Necsulescu et al. [20] designed a MIMO NARMA-L2 controller, 
together with output redefinition techniques for controlling the flight of an unmanned aerial 
vehicle, UAV. The results showed a good and stable performance of the proposed controller. 
Fourati et al. [21] controlled a bioreactor with an NARMA-L2 controller and proved that the 
trajectory tracking performance obtained was better than with the use of the inverse neural 
model controller. Valluru et al. [22] implemented NARMA-L2 controller on a series of DC 
motors, in order to regulate speed. The performance index indicated better performance than a 
PID controller. Uçak et al. [23] proposed a novel NARMA-L2 controller based on online 
Support Vector Regression, SVR. The proposed controller was tested on a bioreactor system. 
Its performance compared with a PID controller. Jalil et al. [24] used an NARMA-L2 to 
control the vibration of a flexible beam structure, with non-collocated sensor-actuator 
placement. 

This study proposes a new design of MIMO NARMA-L2 controller, based on FIS 
approximation submodels at the identification of the process to be controlled. ANFIS 
configuration is used into the FIS submodels and trained separately by the hybrid method (Bp-
LSE) and Patricle Swarm Optimisation, to find the optimal parameters of the FISs. This 
proposed controller has been implemented, followed by testing on a binary distillation column, 
which exhibits nonlinear and dynamic behaviour.  
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2 Distillation Modelling  

2.1 Process description 

Oil refineries, as well as other chemical and petrochemical plants, widely use the process of 
distillation. The chemical compounds in a mixture are separated into their individual 
component chemicals using distillation columns. These types of columns operate extensively in 
the petroleum, natural gas, liquid and chemical industries [25]. However, the process utilised in 
these columns is very energy intensive columns. The Department of Energy in the USA 
published a report and showing that distillation columns are the largest consumers of energy in 
the chemical industry. Typically, they account for 40% of the energy consumed by all 
petrochemical plants. Even with this high energy consumption, distillation is still widely 
utilised for this separation and purification method [26]. 

Figure 1 shows the schematic diagram of a binary distillation column. The feed mixture is 
separated into two products; one is a distillate or overhead, and the other is the bottom product. 
Heat is supplied to the column via a reboiler, in order to vaporise the liquid in the base of the 
column. The vapour goes up through trays inside the column to reach the top. The vapour then 
liquefies in the condenser. Liquid from the condenser drops into the reflux drum. Finally, the 
some of the distillate product is removed from this drum as a pure product. The rest of the 
liquid is fed back near the top of the column as reflux, while another product is produced at the 
bottom. 
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Figure 1 Schematic diagram of a binary distillation column 

2.2 Model representation 

The Luyben model is the basis of this binary distillation column, and modelled and 
simulated in this research, based on [27], [28] with the following considerations: 

1) No chemical reactions occur inside the column. 
2) There is constant pressure. 
3) Binary mixture. 
4) Constant relative volatility. 
5) No vapour hold-up occurs in any stages. 
6) Constant hold-up liquid at all trays. 
7) Perfect mixing and equilibrium for vapour-liquid at all stages. 

Hereafter, the mathematical equations of the model can be written per stage by following 
equations: 

• On each tray (excluding reboiler, feed and condenser stages): 

 
𝑀𝑀𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐿𝐿𝑖𝑖+1𝑥𝑥𝑖𝑖+1 + 𝑉𝑉𝑖𝑖−1𝑦𝑦𝑖𝑖−1 − 𝐿𝐿𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑉𝑉𝑖𝑖𝑦𝑦𝑖𝑖  (1) 

• Above the feed stage i=NF+1; 

 
𝑀𝑀𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐿𝐿𝑖𝑖+1𝑥𝑥𝑖𝑖+1 + 𝑉𝑉𝑖𝑖−1𝑦𝑦𝑖𝑖−1 − 𝐿𝐿𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑉𝑉𝑖𝑖𝑦𝑦𝑖𝑖 + 𝐹𝐹𝑣𝑣𝑦𝑦𝐹𝐹   (2) 

• Below the feed stage, i=NF: 

 
𝑀𝑀𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐿𝐿𝑖𝑖+1𝑥𝑥𝑖𝑖+1 + 𝑉𝑉𝑖𝑖−1𝑦𝑦𝑖𝑖−1 − 𝐿𝐿𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑉𝑉𝑖𝑖𝑦𝑦𝑖𝑖 + 𝐹𝐹𝐿𝐿𝑥𝑥𝐹𝐹  (3) 

• At the reboiler and column base, i=1, xi=xB: 

 
𝑀𝑀𝐵𝐵

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐿𝐿𝑖𝑖+1𝑥𝑥𝑖𝑖+1 − 𝑉𝑉𝑖𝑖𝑦𝑦𝑖𝑖 + 𝐵𝐵𝑥𝑥𝐵𝐵   (4) 

• At the condenser, i=N+1, xD = xN+1; 

 
𝑀𝑀𝐷𝐷

𝑑𝑑𝑥𝑥𝐷𝐷
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝑖𝑖−1𝑦𝑦𝑖𝑖−1 − 𝐿𝐿𝑖𝑖𝑥𝑥𝐷𝐷 − 𝐷𝐷𝐷𝐷𝐷𝐷  (5) 

• Vapour-liquid equilibrium relationship for each tray: 

 𝑦𝑦𝑖𝑖 =
∝ 𝑥𝑥𝑖𝑖

1 + (∝ −1)𝑥𝑥𝑖𝑖
 (6) 
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The flow rate of constant molar flow: 

Above the feed stage: 

 𝐿𝐿𝑖𝑖 = 𝐿𝐿,     𝑉𝑉𝑖𝑖 = 𝑉𝑉 + 𝐹𝐹𝑣𝑣    (7) 

 At or below the feed stage: 

 𝐿𝐿𝑖𝑖 = 𝐿𝐿 + 𝐹𝐹𝐿𝐿,     𝑉𝑉𝑖𝑖 = 𝑉𝑉  (8) 

Since 𝐹𝐹𝑙𝑙 = 𝑞𝑞𝐹𝐹  ×  𝐹𝐹  (9) 

 𝐹𝐹𝑣𝑣 = 𝐹𝐹 + 𝐹𝐹𝐿𝐿  (10) 

The constant hold-up for both the condenser and the reboiler as: 

Reboiler:     𝐵𝐵 = 𝐿𝐿 + 𝐹𝐹𝐿𝐿 − 𝑉𝑉            (11) 

Condenser:   𝐷𝐷 =  𝑉𝑉 + 𝐹𝐹𝑉𝑉 − 𝐿𝐿            (12) 

The feed compositions xF and yF are found from the flash equation as: 

 

 
𝐹𝐹𝑧𝑧𝑧𝑧 =  𝐹𝐹𝐿𝐿 × 𝑥𝑥𝐹𝐹 − 𝐹𝐹𝑉𝑉 × 𝑦𝑦𝐹𝐹  (13) 

The abbreviations, operation conditions and steady states of the column are in the appendix, 
the schematic diagram of a theoretical stage of the column is shown in Figure 2. 

 
Figure 2 Schematic diagram of ith stage of a binary distillation column 

3 Process Identification 
The performance index of nonlinear process identification is measured by the accuracy of 

input-output mapping. This index is considered the key in the optimisation of many advanced 
control systems, such as neurocontrollers or fuzzy inference based controllers.  
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Any process model formed by input-output pairs is typically divided into two main 
categories. The first one is a mathematical expression of a system model, and the other is the 
model identification. However, a mathematical method itself is required for simplicity and 
generality, in addition to the many assumptions that could be necessary [13]. Therefore, 
identification of a nonlinear process by mapping input-output dataset is the most favoured 
method for achieving high accuracy and capturing the nonlinearity of the process. 

Artificial Neural Network (ANN) and the fuzzy-based method are both the most intelligent 
techniques employed in the process of identification, whether for modelling nonlinear systems 
or control configurations purposes. In this section, a theoretical introduction is presented about 
these approaches, which are used for the comparison purpose with the proposed controller. 

3.1 Artificial Neural Networks 

ANN is a group of nodes (neurons) that mimic the biological neural networks of the brains 
of animals; specifically, the neuronal-synaptic mechanisms that store, learn and retrieve 
information, based on only empirical data. They are basically employed in machine learning in 
order to identify complex functions. ANNs are considered one of the most significant subfields 
of artificial intelligence, showing excellent performance to learn the input-output relations of 
nonlinear functions (processes). Once the network has learned, by introducing enough dataset 
of input-output pairs, the output can be estimated faster and with better efficiency. ANN-based 
approaches are still being applied extensively to overcome various complications in many 
diverse practical applications, ranging from nonlinear system identification to adaptive control, 
as well as pattern recognition, image processing, medical diagnostics, process monitoring, 
renewable and sustainable energy and laser-based applications [29]–[31]. 

3.2 Fuzzy models 

Fuzzy logic is the other major subfield of artificial intelligence, principally dealing with 
imprecision by emulating reasoning in the human brain, for the approximation process.  Fuzzy 
based modelling has been explored widely in literature and applied extensively in industrial 
applications because its biggest advantage is that there is no need for precise quantitative 
analyses. It mostly depends on the IF-THEN rules, which are linguistic expressions specified 
by membership functions in the form: IF X THEN Y, where X and Y are labels of fuzzy sets 
[32], whereas Y is a crisp value for the T-S models [13]. 

The majority of engineering problems deal with a number of input-output pairs. This is in 
contrast to other problems that look for the relationship between input-output in sets form. 
Consequently, a pre-processing, called fuzzification and defuzzification should occur before 
and after the fuzzy inference system, as depicted in Figure 3. 

Even though there have been many successes in applications, the rule base of most of the 
fuzzy control systems has been static. Thus, it has to be tuned manually by an expert operator 
until a good performance is reached. The most challenging task facing fuzzy system designers 
is the computational time and effort required to develop the fuzzy parameters, including the 
rules and membership functions. 
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Figure 3 Basic fuzzy inference system 

Therefore, many innovative solutions have been proposed to make an automatic selection of 
these parameters. One of the most efficient approaches is ‘adaptive neuro-fuzzy’ or ‘adaptive 
network-based fuzzy inference systems’ (ANFIS) [33] that uses, commonly, the hybrid 
backpropagation-least square error method to tune the parameters of FIS.  

3.3 Adaptive Neuro-fuzzy Inference Systems 

As mentioned in the previous section, the implementation of ANFIS introduced an 
automatic adjustment of the FIS parameters. There are two methods used in the ANFIS 
approach; backpropagation, as well as the combination of backpropagation and least square 
error, called a hybrid learning method.  

The main motivational aims of using ANFIS are the features that present the learning 
capabilities of both ANN and fuzzy inference systems. The learning algorithm adjusts the 
membership functions of a Sugeno fuzzy model, using input-output dataset. Figure 4 shows an 
example of the simplified ANFIS architecture, which contains two membership functions (A, 
B) for both inputs (x1, x2) and four rules as well as four membership functions of output (y). 

 
Figure 4 An ANFIS architecture of two inputs, four rules, and first order Sugeno model 

 

According to Figure 4, w1 to w4, which are the weights of correctness for the rules, are 
calculated through T-norm. Additionally, these weights are used to compute y1, y2, y3 and y4 
respectively. The final output Y is expressed as: 
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(14) 

 

After normalising the weights, the output is written as: 

 44332211 ywywywywY +++=  (15) 

It is reported that there is no guarantee that ANN-based learning algorithm converges and 
the adjusting of FIS will be successful [34]. The weaknesses relating to neural networks and 
fuzzy inference systems appear complementary and natural intelligence based methods could 
be implemented to optimise the combination to produce the best possible synergetic 
performance to create a hybrid intelligent system [35]. Using different intelligent-based 
optimisation methods for adaptation of FIS has been extensively explored [36], [37]. 

3.4 Genetic Algorithm  

Genetic algorithm, GA, is a heuristic, global, optimisation likelihood search algorithm that 
mimics the genetic mechanisms that form the basis of the theory of Darwin’s natural selection 
and biological evolution. Initially, this generates a random population of candidate solutions 
towards the optimal fitness (objective function) by performing specific techniques, such as 
reproduction, crossover, and mutation. The procedures are repeated until the prescribed 
objective function is accepted, or the pre-set number of generations is executed. GA has been 
extensively employed in a variety of domains with considerable efficacy in recent years, and 
this is primarily attributed to their almost universal relevance and promise. 

3.5 Particle Swarms Optimisation 

Kennedy and Eberhart have proposed the Particle Swarm Optimisation (PSO) in 1995 [38]  
and 2001 [39]. PSO algorithm is considered to be enormously successful as a swarm 
optimisation tool. Over the past decade, many studies have shown the advantages of the 
application of PSO’s in a wide range of engineering problems [40].  

The implementing procedures of the PSO can be detailed as follows: all particles or 
candidates (usually between 10 and 100) are placed at a random location and are theoretically 
considered to travel randomly within the search space. The direction of each particle then 
changes gradually to move more assuredly along the direction of its best previous position, in 
order to determine an even better position, according to predefined criteria or an objective 
function. The preliminary velocity and location of the particles are nominated randomly. The 
subsequent velocity can be updated by the following equation: 

 )()( 22111 iiiii xGbRCxPbRCwVV −×+−×+=+  (16) 

Consequently, the position of the new particle is computed by adding the previous position 
to the obtained velocity, as shown in the following equation: 

 11 ++ += iii Vxx       (17) 
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where V = the particle’s velocity, x = the particle’s position, R1;R2 = independent random 
factors uniformly distributed from 0 to 1, C1;C2 = acceleration coefficients, w = inertial weight.  

Eq. 16 is used to compute the new velocity of the particle, according to its previous value 
and the distance of its current position from its own best position (Pb) and the global best 
position (GB). Then, the particle travels to a new position in the search space, according to Eq. 
17. PSO is implemented in this study to find the optimal parameters of all FIS submodels in the 
identification process as shown in Figure 5. 

4 NARMA model 
The Nonlinear Auto-Regressive Moving Average, NARMA, is one of the most certified 

representations of general discrete-time nonlinear systems. This model representation is used in 
the form of past, current, and the future system parameters, as shown in Eq. 18.  

 

 
],...,,,...,[ )1()1()()1()1()(d)(k +−−+−−+ = ntttnttt uuuyyyfy

 
 (18) 

where y(t), u(t) are the input and output of the system respectively, and f [.] is a nonlinear 
approximation of input and output of the system.  

For the identification stage, a global approximation could be employed to compute f [.], 
such as ANN, FIS or SVM. For control purposes, using backpropagation ANN, for finding a 
control signal u(t) is noted to be quite slow because of the involving dynamic gradient methods. 
Therefore, an efficient method is proposed by Narendra and Mukhopadhyay by introducing 
approximation models to overcome computational difficulties. Two classes of NARMA model 
have been tested; NARMA-L1 and NARMA-L2. It was found that the second class involving 
two sub-approximation functions is more efficient and adequate in the identification and 
adaptation of control contexts [15]. 

 

 
)()1()1()1()1()(

)1()1()1()1()(d)(t

],...,,...,[
],...,,...,[ˆ

tnttnttt

nttnttt

uuuyyyg
uuyyyfy

×+

=

+−−+−−

+−−+−−+

 

 (19) 

The two sub-functions, f and g, are used in the identification phase as well as to compute the 
control signal as follows: 

 

 ],...,,,...,[
],...,,,...,[

)1()1()()1()1()(

)1()1()()1()1()(d)(k
)(

+−−+−−

+−−+−−+ −
=

ntttnttt

ntttnttt
t uuuyyyg

uuuyyyfy
u

 
 (20) 

Eq. 19 and 20 represent single-input-single-output SISO systems. As reported in the 
literature, using ANN-based estimation methods have a noticed disadvantage; they are 
expected to get trapped in local minima. Therefore, the models approximated through ANN 
will be accepted only locally; this is the primary motivation behind choosing an alternative 
approach to approximate NARMA submodels. The key advantage of ANFIS compared to 
backpropagation-based identification approaches is that reasoning and learning in the uncertain 
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and vague situations are guaranteed; henceforth the proposed model prevalent in operation 
ranges is attained precisely. 

Thus, our proposed control system design, using FIS as approximation functions. So, we can 
rewrite the equation 19 as:  

( )
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( ) )2(2
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(21) 

where the subscripts 1 and 2 of u and y represent the first and second input or output 
respectively, and t is a time step. The schematic diagram of the time series identification 
process of MIMO systems is depicted in Figure 5. FIS1 and FIS4 represent the relationship 
between the  

4.1 Identification results 

Obtain an NARMA model of the system to be controlled is the first step, in order to design 
the proposed controller later. This is done by mapping the input-output pairs. The dataset was 
collected by simulating the binary distillation column by introducing 40 distributed random 
values, each lasting 50 sampling time for (L) and (V) to collect product compositions, xD, xB 
of different situations. The distillate composition was approximately between 0.95 and 1 (mole 
fraction), while the bottom composition was around 0.005 to 0.12 (mole fraction). A total of 
2000 datasets were collected for the identification stage. 

Figure 6 shows the block diagram of the modelled binary distillation column which is 
simulated using MATLAB® and Simulink®; the model was built via representing the 
mathematical equations mentioned earlier in section 2.2. Simulink® is considered the very 
powerful graphical design tool to model, analyse and visualise of a system response which is 
easily manipulated to facilitate the control experiments. In order to collect sufficient 
information for creating a good model that represents the system behaviour, the inputs are 
selected as PRBS (Pseudo-Random Binary Sequence) within the operating range. The collected 
dataset has been presented in Figure 7 showing the inputs and outputs of the simulated column. 

The obtained dataset has been divided into 70% and 30% for training, and testing subsets 
respectively. For ANFIS structure, the hybrid method (Bp-LSE) has been applied to  find the 
optimal parameters of FISs of the proposed model and then PSO is employed to see if we can 
get better (optimised) FISs parameters. 
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Figure 5 Schematic diagram of the proposed MIMO NARMA-L2 model 

 
Figure 6 Figure 6 Simulation model of a binary distillation column 
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Figure 7 Inputs/outputs of the simulation of the distillation 

The identification performance index is measured using commonly used statistical criteria 
regarding the Root Mean Squared Errors (RMSE) between the predicted and actual output(s) as 
expressed in equation (22): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
��𝑌𝑌𝚤𝚤� − 𝑌𝑌𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

 (22) 

where Y� is a vector of n predictions, Y is representing the vector of actual values corresponding 
to the inputs to the model which produced the approximation. This prediction performance 
index is also used as an objective function to compute the convergence of PSO. Due to the 
random initialization of the location of the particle, PSO was run 20 times to explore a broad 
coverage of the search space. 

 

 

 

 

 

Table 1 Identification Performance of the ANFIS0based NARMA-L2 model 
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Learning method 
RMSE (xD) RMSE (xB) 

Training Testing Training Testing 

Hybrid (BP and LSE) 0.0044312 0.01072 0.014566 0.01217 

PSO 7.6 ×10-6 4.873×10-5 1.3216×10-5 9.4261×10-6 

It is clear that, as shown in Table 1, the FISs submodels are better optimised using PSO 
compared to the hybrid method with less RMSE. The visual comparison between the actual 
and predicted outputs for the both methods is shown in Figure 8 for training and testing cases. 
ANFIS tuned by PSO model shows adequately accurate predictions for distillate and bottoms 
compositions, while the ANFIS trained by the hybrid method lack of adequate prediction 
especially for the second output in both training and testing subsets. 

 
Figure 8 Prediction model behaviour vs. actual outputs (distillate and bottoms compositions), training and 

testing subsets,  

5 NARMA-L2 controller 
After accepting the generalisation of the modelling of the proposed configuration, testing of 

the model can be done with the unseen data (test set). The trained FISs can be rearranged to 
form the MIMO NARMA-L2 controller. The control signal calculated as: 

�
𝑌𝑌𝑟𝑟1
𝑌𝑌𝑟𝑟2
� = �𝐹𝐹𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹𝐹𝐹4

� + �𝐹𝐹𝐹𝐹𝐹𝐹2𝐹𝐹𝐹𝐹𝐹𝐹5
� × 𝑈𝑈1(𝑡𝑡+2) + �𝐹𝐹𝐹𝐹𝐹𝐹3𝐹𝐹𝐹𝐹𝐹𝐹6

� × 𝑈𝑈2(𝑡𝑡+2) (23) 
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where Yr1 and Yr2 are the set points or desired compositions of the column products. Figure 9 is 
a schematic diagram of the proposed controller. 

 
Figure 9 ANFIS based MIMO NARMA-L2 control configuration 

For comparison purposes, various control configurations have been applied to control the 
column. These control configurations are: 

1. Traditional PID 

��
𝑌𝑌𝑟𝑟1
𝑌𝑌𝑟𝑟2
� − �𝐹𝐹𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹𝐹𝐹4

�� = �𝐹𝐹𝐹𝐹𝐹𝐹2𝐹𝐹𝐹𝐹𝐹𝐹5
� × 𝑈𝑈1(𝑡𝑡+2) + �𝐹𝐹𝐹𝐹𝐹𝐹3𝐹𝐹𝐹𝐹𝐹𝐹6

� × 𝑈𝑈2(𝑡𝑡+2) (24) 

��
𝑌𝑌𝑟𝑟1
𝑌𝑌𝑟𝑟2
� − �𝐹𝐹𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹𝐹𝐹4

�� = �𝐹𝐹𝐹𝐹𝐹𝐹2 𝐹𝐹𝐹𝐹𝐹𝐹3
𝐹𝐹𝐹𝐹𝐹𝐹5 𝐹𝐹𝐹𝐹𝐹𝐹6

� �
𝑈𝑈1(𝑡𝑡+2)
𝑈𝑈2(𝑡𝑡+2)

� (25) 

�
𝑈𝑈1(𝑡𝑡+2)
𝑈𝑈2(𝑡𝑡+2)

� = �𝐹𝐹𝐹𝐹𝐹𝐹2 𝐹𝐹𝐹𝐹𝐹𝐹3
𝐹𝐹𝐹𝐹𝐹𝐹5 𝐹𝐹𝐹𝐹𝐹𝐹6

�
−1

× ��
𝑌𝑌𝑟𝑟1
𝑌𝑌𝑟𝑟2
� − �𝐹𝐹𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹𝐹𝐹4

�� (26) 



16 
 

2. PD, PI and PID-like Fuzzy logic controller tuned by PSO and GA separately 
3. NARMA-L2 based on ANN 

ANN-based NARMA-L2 applied here, which is available in Simulink® library in 
MATLAB® platform from The MathWorks, Inc., uses Multi-Layer Perceptron (MLP), with a 
symmetric sigmoid transfer function in the hidden layers, and linear transfer as activation 
function in the output layer. All ANN default parameters have been employed in this context.  

The performance index of the different controllers with various tuning methods is given in 
Table 2. The time response is shown in Figure 10; it is noticeable that all of the designed 
controllers use different configurations passed the transient response requirements. 
Nevertheless, the performance of the MIMO ANFIS-based NARMA-L2 indicated better 
attainment regarding the performance index, as well as better transit responses in addition to 
eliminating the loop interactions. 

Table 2 Comparison of performance index of the proposed controller vs. other controllers 

Controller Tuning / Configuration 
Performance Index 

ISE ITAE 

PID PSO 0.0015 18.5396 

FLC 

PSO 

PD like 0.0018 26.6249 

PI like 0.0047 37.2752 

PID like 0.0011 10.0091 

GA 

PD like 0.0092 57.1706 

PI like 0.0042 33.2897 

PID like 0.0014 11.4034 

NARMA-L2 ANN 0.0006 4.0751 

NARMA-L2 PSO_ANFIS 0.00021 3.289 

 

To check the robustness and stability of the proposed controller, the desired compositions of 
the column are set to change asynchronously, to examine the process behaviour regarding 
inputs variance played as disturbances that should be rejected and should handle it well. The 
desired compositions of distillate and bottoms produced are changed every 100 min for up to a 
thousand minutes. It can be observed that the control actions of the controller can be adapted to 
eliminate the effects of the input variance, where the convergence of the desired responses can 
be achieved after the adaptation of the control output, as shown in Figure 10.  
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(a) 

 
(b) 

Figure 10 Time response of the various controllers, (a) distillate composition, (b) bottoms 
composition 
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6 Conclusions  
This study focussed on a proposal for a new MIMO ANFIS-based NARMA-L2 controller, 

in which ANFIS is employed to construct the configuration of FIS submodels of NARMA-L2. 
Initially, an ANFIS-based NARMA-L2 model is erected to estimate the system outputs using 
the hybrid learning method (backpropagation and least square error). In addition, the scholastic 
search method, particle swarm optimisation, implemented to find the optimum inference 
system parameters of the submodels. The generality of the obtained model is then tested using 
unseen data to ensure the model is sufficiently unbiased. The proposed controller is designed 
by rearranging the obtained submodels to compute the required control signal to achieve the 
desired performance.   

A binary distillation column is used as a benchmark in order to evaluate the proposed 
modelling and control system. The manipulated variables are the boilup and reflux flow rates 
of the column used to control the product compositions. The accomplishment of the controller 
is compared with different control configurations include conventional PID, PD, PI and PID-
like Fuzzy logic controller tuned by PSO and GA separately, as well as NARMA-L2 based on 
ANN. The proposed controller outperformed all these configurations, in terms of performance 
index (ISE and ITAE), overshoot and steady state error. 

The stability and robustness of the controller against input variance have also been 
examined, by selecting asynchronous setpoints. The simulation results showed that the 
proposed controller is powerful in achieving low tracking error, time response behaviour, as 
well as the elimination of input interactions. 
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Appendix 
Abbreviations, the operating conditions and technical aspects of the distillation column are 

detailed in the following table. 

Symbol Description Value Unit 

N Number of trays 20 - 

NF Feed stage location 11 - 

F Typical inlet flow rate to the column 1 kmol/min 

D Typical distillate flow rate  0.5 kmol/min 

B Typical bottoms flow rate 0.5 kmol/min 

zF Light component in the feed (mole fraction) 0.5 - 

qF Mole fraction of the liquid in the feed 0.5 - 

L Typical reflux flow rate 1.28 kmol/min 

V Typical boil-up flow rate 1.78 kmol/min 

α Relative volatility 2 - 

xD Distillate composition (mole fraction) 0.98 - 

xB Bottoms composition (mole fraction) 0.02 - 

i Stage number during distillation - - 

x Mole fraction of light component in liquid - - 

y Mole fraction of light component in vapour - - 

M Tray hold-up liquid 0.5 kmol 

MD Condenser hold-up liquid 0.5 kmol 

MB Reboiler hold-up liquid 0.5 kmol 
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