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A B S T R A C T

In this work, a new generalised quadratic yield function for plane stress analysis that is able to describe the
plastic anisotropy of metals and also the asymmetric behaviour in tension-compression typical of the Hexagonal
Closed-Pack (HCP) materials, is developed. The new yield function has a quadratic form in the stress tensor and
it simultaneously predicts the r-values and directional flow stresses, which is shown to agree very well with
experimental results. It also accurately describes the biaxial symmetric stress state which is fundamental for the
accurate modelling of aluminium alloys. The new quadratic yield function represents the non-symmetric biaxial
stress state by performing a linear interpolation from pure uniaxial loading to a biaxial symmetric stress state.
The main advantages of this new yield function is that it can be used for the modelling of metals with any
crystallographic structure (BCC, FCC or HCP), it only has five anisotropic coefficients and also that it is a simple
quadratic yield criterion that is able to accurately reproduce the plastic anisotropy of metals whilst using an
associated flow rule.

1. Introduction

Material modelling is very important not only for the development
of new metal alloys but also for the simulation of manufacturing
processes. Within material modelling, plasticity plays a fundamental
role and its description is essential for the accurate design of manu-
facturing processes. In plasticity, yield functions are critical because
they provide the yielding point of the material and also when used
within an associated flow rule scheme, they describe the plastic flow of
the metal accurately. One of the first yield functions for plastic
anisotropy was developed in the pioneer work by Hill (1948) [20].
Hill developed a quadratic yield function with anisotropic coefficients
that could either predict the r-values or directional flow stresses, but
never both simultaneously. Moreover, Hill's original yield function does
not include the effect of the biaxial symmetric stress and so it is not
accurate in the modelling of aluminium alloys. Many posteriori yield
functions [2–6] were developed after Hill's and the coefficients of these
yield functions were designed to include the biaxial symmetric stress
effect. Whilst the equi-biaxial flow stress has been defined in these
functions, none of them have characterised the coefficients for the
unsymmetric biaxial stress state between pure uniaxial loading and
equi-biaxial loading.

The predominant deformation mechanism in Face-Cubic-Centred
metals (FCC) such as aluminium alloys, is deformation by slip in the

crystallographic slip systems, which is basically a consequence of the
movement of dislocations. In FCC materials, compressive and tensile
strengths are virtually identical and yielding is not influenced by the
hydrostatic pressure as well. The yield surface of such materials is
usually represented adequately by an even function of the principal
values of the deviatoric stresses (e.g. Hershey [19] and Hosford [21]).
Hexagonal Close-Packed (HCP) materials, such as magnesium and
titanium alloys, have less active slip systems at low/room temperatures
but they have additional twinning systems that accommodate plastic
deformation by a different mechanism known as twinning or distortion
of the lattice. Twinning is a polar deformation mechanism (it only
develops in one direction) and this is the main reason for the
asymmetric behaviour observed on HCP alloys in tension-compression.

For the description of incompressible plastic anisotropy, many yield
functions have been suggested based on the isotropic hardening
assumption (Hill [20], Barlat and Lian [2], Barlat et al. [3], Karafillis
and Boyce [23]). Among them, Cazacu and Barlat [10] introduced a
general formulation which originated from the rigorous theory of
representation of tensor functions. However with this approach, the
conditions for the convexity of the yield surface are difficult to derive
and impose. The convexity has a physical basis and, in addition, this
property ensures numerical stability in computer simulations. For this
reason, a particular case of this general theory, which is based on
linearly transformed stress components has received more interest from
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the metal forming and material modelling communities in general.
Barlat et al. [3] applied this method to a full stress state in an
orthotropic material and Karafillis and Boyce [23] generalised it as
the so-called isotropic plasticity equivalent theory with a more general
yield function and a linear transformation that can accommodate lower
material symmetry.

Cazacu et al. [11] proposed a criterion based on a linear transfor-
mation that accounts for the strength-differential effect, particularly
prominent in Hexagonal Closed-Pack (HCP) materials, with the work
being extended in Plunkett et al. [31] and Plunkett et al. [30] by
including the effect of texture development in the yield function. Barlat
et al. [5,6] later introduced two linear transformations which were
applied on the sum of two yield functions in the case of plane and
general stress states, in order to improve the accuracy of the functions
by Cazacu et al. [11], Plunkett et al. [31] and Plunkett et al. [30] in the
modelling of the anisotropic behaviour of aluminium sheets. Bron and
Besson [8] further extended Karafillis and Boyce's approach to two
linear transformations. These recently proposed yield functions include
more anisotropy coefficients and therefore give a better description of
the anisotropic properties of a material. Although the mathematical
formulations are complex and very heavy from a computational point of
view. These reported developments in yield functions have been
particularly important for the study of the formability of sheet metals
as shown in the works of Kuroda and Tvergaard [25], Stoughton and
Yoon [36], Lou et al. [28] and Dasappa et al. [14].

Apart from the phenomenological studies listed above, another
approach for the prediction of plastic anisotropy and strain hardening is
the one based on polycrystal plasticity models. Commercial aluminium
and magnesium alloys such as the aluminium AA6022 and AA2090 and
the magnesium AZ31B used in this paper and used generally in forming
operations, are polycrystalline materials composed of numerous grains
each with a given lattice orientation with respect to macroscopic axes.
At low temperatures, metals and alloys deform by dislocation glide or
slip on given crystallographic planes and directions thereby producing
microscopic shear deformations (Kocks et al. [24]). Therefore, the
distribution of grain orientations and crystallographic texture in gen-
eral, play an important role in the study and in the modelling of
plasticity. Due to the geometrical nature of slip deformations, strain
incompatibilities usually arise between grains thereby producing micro-
residual stresses, which from a macroscopic point of view, can lead to
the well-known Bauschinger effect. Slip results in gradual lattice
rotation where dislocations accumulate at micro-structural barriers,
increasing the slip resistance and consequently strain hardening. There
is also another crystallographic deformation mechanism that is very
typical of HCP materials which is the twinning. Proust et al. [32]
developed the modelling of texture, twinning and hardening evolution
of hexagonal materials by using the well-known Visco-Plastic Self-
Consistent (VPSC) approach (Lebensohn and Tome [26]), where the
interaction between a grain and its surrounding effective medium is
taken into account. Polycrystal models can be used in multi-scale
simulations of metal forming operations, but they are usually expensive
in computational time.

Some noteworthy studies that use dislocation motion, micro-struc-
tural grain size and shape data for the prediction of the yield strength of
metallic alloys include the studies by Esmaeili et al. [17] and Balogh
et al. [1], while some other studies perform a macroscopic study on the
anisotropy of aluminium sheets from the consideration of morphologi-
cal texture and crystallographic texture evolution (Choi et al. [12]).
Polycrystal modelling aspects have been treated in a large number of
publications and books such as in Kocks et al. [24], Gambin [18] and
Dawson [15]. More recently, crystallographic plasticity has been
extensively used in several numerical simulations, because it naturally
predicts texture evolution and anisotropy, Bauschinger effect, transient
behaviour and permanent softening. However, their computational cost
is still prohibitive when compared to the use of phenomenological
constitutive models.

Most of the early developed phenomenological yield potentials (e.g.
von-Mises [38] and Hill's [20]) are quadratic in the stress tensor. These
yield potentials were mainly designed from distortion energy balance
equations, and they were developed primarily for steel alloys, with
Hill's 1948 [20] going a step further by including plastic anisotropy in
the potential. It is widely accepted that these potentials fit the yield
locus very well for steel, but are unable to accurately predicting the
anomalous behaviour of aluminium alloys (Dodd and Caddell [16]),
especially in reproducing the yield locus on the vicinity of the
symmetric biaxial stress state. There are two ways of accurately model
aluminium alloys: i) by using non-quadratic yield functions with
associated flow rules; ii) by using quadratic yield functions with non-
associated flow rules (Stoughton and Yoon [37]), where in this case a
plastic potential needs to be defined for the plastic flow. The use of non-
associated flow rules allows for the use of simpler yield potentials, such
as the quadratic potential of Hill 1948 [20], but a second plastic
potential needs to be used for the plastic flow. The use of two different
potentials in the non-associated flow rule can however lead to
difficulties during return mapping procedures, especially if the loci of
the two potentials (yield and plastic potential) are of considerably
different shapes. Considering however the flexibility in phenomenolo-
gical modelling, it must be possible to develop a quadratic generalised
yield function for simultaneously predicting r-values and directional
flow stresses accurately as opposed to the individual treatment that has
been adopted so far. It also follows to say that it must be possible to
simultaneously match the r-values and directional flow stresses for any
stress state, as for example under planar anisotropy assumption. This
generalised yield function must be able to accurately predict the
anomalous aluminium behaviour [16] and the symmetric biaxial stress
state. Certainly, the yield function must be accurate for a wide range of
cases and valid if, and only if, it is proven to be convex in the principal
stress space. Therefore, the main ideas for the new yield function
proposed in this paper are as follows:

• A new quadratic yield function is developed for the simultaneous
prediction of r-values and directional flow stresses and its convexity
is proven in Appendix A for the case of proportional loading;

• This new model can simultaneously predict the r-values and
directional flow stress accurately for any given angle from the
rolling direction;

• The biaxial symmetric flow stress is incorporated in this new
quadratic yield function (this is detailed in Section 2.1). However,
the biaxial r-value is not included in this formulation;

• It is postulated that the stress tensor changes in a linear manner
between symmetric biaxial stress state and unaxial stress state,
hence it is included in the new quadratic yield function in an
interpolatory manner (details given in Section 2.1);

• Consequently due to this new quadratic yield function, it is possible
to simultaneous predict r-values and directional flow stress from the
use of an associated flow rule;

The main objective of this research work is therefore to develop the
yield function for plane stress analysis as general as possible so that it
can work with associated flow rules for the modelling of planar
anisotropy for both FCC and HCP materials and also that it is able to
describe the asymmetric behaviour in tension-compression typical of
HCP materials.

2. Model formulation

In this formulation, the well-established Hill's [20] yield potential is
used and extra flexibility is introduced in some coefficients in order to
achieve a fully generalised function. Hill [20] proposed a yield function
that can be used for the study of the planar anisotropy of metals and for
which the equivalent stress is defined as:
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The coefficients F, G, H and N are designed to fit the r-values or,
alternatively, the directional flow stresses but never both in simulta-
neous. This is a major limitation in Hill's yield potential because both
fitting is required for the accurate modelling of planar plastic aniso-
tropic metals. Hill's yield potential has however some great advantages
which are its quadratic form and the simplicity of the model for the
description of plastic anisotropy.

Therefore, a new yield function (YldParam) is defined as:

σ
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( )
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where C u( )a is a new coefficient which defines the anisotropy in the
yield stresses and the anisotropy for the r-values is conserved from the
adaptation of coefficient F from the original Hill's model by making it
variable. Both coefficients are a function of a parametric coordinate u,
which represents the orientation of the loading direction when mea-
sured from the rolling direction. This parametric variable u exists
within the limits u0.0 ≤ ≤ 1.0, with u=0.0 defining the rolling direc-
tion, u=0.125 being 45° from the rolling direction, u=0.25 defining 90°
with the rolling direction and finally u=1.0 again defining the rolling
direction. The coefficient C u( )a is designed to fit the yield stresses while
the coefficient F u( ) is designed to fit the r-values. In this work, the
functions for these two anisotropic coefficients are described from the
use of Non-Uniform Rational B-Splines (NURBS) but they can also be
described from the use of any other type of functions as far as the
accurate values for the coefficients are conserved. The main reasons for
the use of NURBS are essentially related to the local compact support of
NURBS which is explained in more detail later in this manuscript. It is
also demonstrated in Appendix A that the new yield potential for plane
stress analysis delivers a convex yield locus, which is a fundamental
prerequisite for a stable stress integration procedure in elasto-plastic
material modelling. The Hill's coefficients H, G and N are obtained from
the experimental r-values at 0°, 45° and 90° from the rolling direction
[20]:
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The r-value anisotropic coefficient F u( ) will be calculated from the use
of a Non-Uniform Rational B-Spline (NURBS) approximation on the
parametric coordinate u. For that purpose, it will be necessary to
calculate first the r-value anisotropic coefficient F at every 15° from the
rolling direction and then use the NURBS approximation to build a
function F u( ) that can generate the F-coefficient for any loading
orientation θ. The Hill's 1948 [20] formulae for this coefficient can
be used as presented in the following equation:

F θ H θ θ G θ θ r θ N θ θ
θ θ r θ

( ) = (1 − 4 sin cos ) − (sin cos + cos ) + 2 sin cos
sin cos + sin

θ

θ

2 2 2 2 2 2 2

2 2 2

(4)

This function for F θ( ) is singular at 0° and so the following alternative
function was used for the calculation of the coefficient at 0°:

F r
r r

(0°) = 2
(1 + )

0

90 0 (5)

For the NURBS approximation for both C u( )a and F u( ) the following
relation between the angle from the rolling direction and the para-
metric coordinate u is necessary:

θ πu= 2 (6)

and the angle θ can be easily obtained from the Mohr's circle or from
the equation for the principal directions from plane stress analysis:

θ
τ

σ σ
tan (2 ) =

2
−

xy

xx yy (7)

The coefficient C u( )a will be calculated from the new yield function
from Eq. (2) and from the yield stresses σθ defined at every 15° from the
rolling direction. From the stress transformation of the uniaxial loading
to the anisotropic axes we can get:

σ σ θ
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(8)

and after replacing Eq. (8) into Eq. (2) the following is obtained for
coefficient C u( )a :
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G H θ F u H θ N H θ θ
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( ) + +a

θ
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where σ
σ
θ is the normalised flow stress at direction θ from the rolling

direction obtained from experimental data.

2.1. Incorporation of the biaxial symmetric flow stress

The model defined so far does not consider the biaxial symmetric
yield stress. If the stress tensor deviates considerably from the uniaxial
stress state (defined by the principal stresses σ > 01 and σ = 02 for
tension or σ < 02 and σ = 01 for compression), the differences in
the accuracy can be substantial and this is more severe when the
stress tensor is closer to the biaxial symmetric stress state. So, the
incorporation of the biaxial symmetric flow stress in the model is
important.

A generalised yield function in the normalised principal space,
σ σ σ σ/ − /1 2 is shown in Fig. 1 and for each quadrant, the Mohr's circle
with the possible loading directions is depicted. In the first quadrant
(σ > 01 and σ > 02 ) it is possible to have a uniaxial tensile stress tensor
defined with angle θ from the rolling direction, a biaxial tensile stress
state and a biaxial symmetric tensile stress state, which is not
represented by a circle but rather by a dot (σ σ=1 2). In the second
and forth quadrant, the applied loading leads to a shear stress state
(σ > 01 and σ < 02 or σ < 01 and σ > 02 ) and in the third quadrant it is
possible to have a uniaxial compressive stress tensor defined with angle
θ from the rolling direction, a biaxial compressive stress state and a
biaxial symmetric compressive stress state.

The material calibration in most of well-known yield functions
requires several mechanical tests: uniaxial tests for r-values and
directional flow stresses and mechanical tests for the equi-biaxial stress
(or bulge test) and the disk compression for the equi-biaxial r-value.
The results from these tests are then included in optimisation algo-
rithms for the calculation of the anisotropic coefficients, a procedure
that is very common for example with the Barlat yield functions for
aluminium [5,6]. The stress tensor as one transits from a symmetric
biaxial state through an unsymmetric biaxial state to a uniaxial stress
state remains unknown, however it is postulated in this work that a
linear variation is valid. Hence an interpolation scheme is thus
proposed between a uni-axial stress and a biaxial symmetric flow
stress. The Mohr circle from Fig. 2 shows how far the stress state is from
uniaxial stress conditions, or alternatively, how close it is to symmetric
biaxial stress state. If σ = 02 we have uniaxial stress state and if σ σ=2 1
we then have symmetric biaxial stress state. We can therefore inter-
polate between these two stress states by introducing a parameter β
defined in Eqs. (11) and (12) that represents the deviation from a
symmetric biaxial stress state.

Therefore, we can define a coefficient C u( )b for the biaxial sym-
metric stress state and the coefficient C u( )a becomes:
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where:
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for biaxial tension and:

β σ σ
σ

= −2 1
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for biaxial compression. For β = 0 we have symmetric biaxial stress
state and for β = 1 we have uniaxial stress. For β0 < < 1 we have a
stress state somewhere between uniaxial and symmetric biaxial.

Thus, the new quadratic yield function from Eq. (2) becomes:
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2.2. Iso-Shear contours for the yield locus

Another coefficient C u( )c can be introduced for greater flexibility of
the yield locus for different (non-zero) iso-shear contour levels. This
new coefficient can be added to the linear interpolation for the biaxial
symmetric flow stress as described in Section 2.1. It is associated with
the shear stress τxy in the following way:

σ
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3
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×
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0
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where σ0 is the initial yield stress at 00 with the rolling direction. An
example for the coefficient C u( )c for the Al2090 aluminium alloy used
in the example of Section 5.1.2 is depicted in Fig. 3.

Fig. 1. Yield function and Mohr's circles at different quadrants representing different loading directions.

Fig. 2. Mohr's circle for a generalised biaxial stress state.

Fig. 3. Characterisation for the coefficient C u( )c for the Al2090 aluminium alloy.
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3. Non-uniform rational B-spline (NURBS) for the representation
of the non-constant coefficients

NURBS have been used extensively in geometric modelling because
it is able to represent curves and/or surfaces with high complexity in
their shape. Piegl [29], Hughes et al. [22] and Bazilevs et al. [7]
addressed the most fundamental properties of the NURBS basis func-
tions, however the most important attributes for this work are listed
below:

1. They form a partition of unity, i.e.:

∑ N u u U u u( ) = 1, ∈ = [ , ];
J

m

J
p

m p
=1

1 + +1
(15)

2. The support of each N u( )J
p is compact and contained in u u[ , ]J J p+ +1 ;

3. The basis functions are non-negative, that is, u N u∀ → ( ) ≥ 0J
p ;

4. Affine invariance.

3.1. Knot vector

An open knot vector is a set of non-negative parametric coordinates
which are repeated p + 1 times at the beginning and at the end of the
vector (p is the order of the polynomial basis functions). For one-
dimensional basis functions of order p, the following generic open knot
vector can be defined:

U u u u u= { ,…, ,…, ,…, }p m m p1 +1 +1 + +1 (16)

where m is the number of control points or basis functions. The basis
functions of order p have p − 1 continuous derivatives. More than one
knot can be considered at the same parametric coordinate and it is thus
referred as a repeated knot. An important property of repeated knots is
that the continuous derivative of their basis functions is decreased by
the number of times the knot is repeated. Also, the basis functions are
interpolatory only if the knot's multiplicity is the same as the
polynomial's order p [29]. For this quadratic yield function, the knot
vector is defined for the limits u0.0 ≤ ≤ 1.0, where u=0.0 corresponds
to an angle θ = 0° with the rolling direction and u=1.0 corresponds to
an angle of θ = 360° with the rolling direction. For instance, for a
quadratic degree in the NURBS basis functions (p=2) we have the
following knot vector:

U = {0.0, 0.0, 0.0, 1.0, 1.0, 1.0} (17)

3.2. Basis functions, control points and approximation for the coefficients

For a specific local parametric coordinate u from an open knot
vector and for a degree p of the polynomial, the basis functions are
obtained recursively from the following formulae [13,22,29]:

N u u u
u u

N u
u u
u u

N u( ) = −
−

( ) +
−
−

( ),I
p I

I p I
I
p I p

I p I
I
p

+

−1 + +1

+ +1
+1
−1

(18)

where I is the index for the basis functions. The formula for the basis
functions in Eq. (18) must be initialised from piecewise basis functions
corresponding to the polynomial order p=0, i.e.:

⎧⎨⎩N u if u u u
otherwise

( ) = 1 ≤ <
0I

I I0 +1

(19)

In this work, NURBS approximation functions are defined for the
coefficients C u( )a , C u( )b and F u( ) as follows:

∑

∑

∑

F u N u W F
W

C u N u W C
W

C u N u W C
W

( ) = ( )

( ) = ( )

( ) = ( )

I

I I I

a
I

I I aI

b
I

I I bI

(20)

with:

∑W N u W= ( )
I

I I
(21)

We will use the weights WI equal to 1.0 and because of the partition of
unity property of the NURBS basis functions ( N u∑ ( ) = 1I I ), the NURBS
approximations are reduced to:

∑

∑

∑

F u N u F

C u N u C

C u N u C

( ) = ( )

( ) = ( )

( ) = ( )

I
I I

a
I

I aI

b
I

I bI
(22)

In Eq. (22), N u( )I are the NURBS basis functions which are used to
approximate the coefficients F u( ),C u( )a andC u( )b . FI, CaI and CbI are the
control points, whose definition can be found in the works of Piegl and
Tiller [29]. A detailed description on how these control points are
obtained for the current work can be found in Appendix B. The use of
the same basis functions for all coefficients is the first advantage of the
use of NURBS. Another important advantage of using NURBS is that
they have local compact support, i.e. for a particular u in the parametric
domain, only p + 1 control points in the domain of influence need to be
used because outside of this domain of influence all other NURBS
approximation functions are zero. In this work, p=2 is used for the
NURBS basis functions.

4. Return mapping procedure

From a phenomenological point of view, the plastic flow
can be interpreted as an irreversible process in a material body,
typically a metal, characterised in terms of the history of the strain
tensor ϵ and two additional variables: the plastic strain ϵp and a suitable
set of internal variables α often referred to as hardening parameters.
Conventional constitutive laws which represent plastic deformation of
metals are typically described by considering three parts: yield func-
tions, stress-strain (or hardening) functions and the associated normal-
ity flow rule. The yield function describes yield stresses in general
deformation states, which are relative values measured with respect to
a reference yield stress. The stress-strain function represents the work-
hardening behaviour of the reference stress, which is usually a uniaxial
or balanced biaxial tension stress.

The notion of irreversibility of plastic flow is expressed by the
following equations of evolution for the set of internal variables ϵ α{ , }p ,
called flow rule and hardening law, respectively:

ϵ σ α
α σ α

γ
γ
r
H

̇ = ̇ ( , )
̇ = ̇ ( , )

p

(23)

where σ αr( , ) and σ αH( , ) are prescribed functions which define the
direction of plastic flow and the type of hardening. The parameter γ ̇ is a
non-negative function, called the consistency parameter, which is
assumed to obey the following Kuhn-Tucker complementary conditions:

σ α
σ α

γ
f
γf

̇ ≥ 0
( , ) ≤ 0
̇ ( , ) = 0 (24)

where σ αf σ ρ( , ) = − (ϵ )p , with ρ being the stress value from the uni-
axial stress-strain curve. In addition to the Kuhn-Tucker complementary
conditions there are the consistency requirement, i.e.:
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σ αγf ̇ ( , ) = 0 (25)

The consistency requirement allows the unloading to an elastic stress
state ( σ αf ̇ ( , ) < 0 and consequently γ = 0) and it also demonstrates
that the stress tensor is always located at the yield surface ( σ αf ̇ ( , ) = 0
and so γ > 0).

When using associated flow rule, the plastic strain tensor can be
obtained directly from the yield potential as follows:

ϵ
σ

γ σ= Δ ∂
∂

ptΔ
(26)

When using the forward-Euler scheme for return mapping proce-
dures [9,34,39,40], the time steps are assumed to be small enough for
the coefficients C u( )a and F u( ) to be considered constant during return
mapping. However, for larger time steps, the derivative of the
equivalent yield stress obtained from the following chain rule can be
used:

⎛
⎝⎜

⎞
⎠⎟ϵ

σ σ σ
γ σ σ

C u
C u

u
u σ

F u
F u

u
u= Δ ∂

∂
+ ∂

∂ ( )
∂ ( )

∂
∂
∂

+ ∂
∂ ( )

∂ ( )
∂

∂
∂

ptΔ

(27)

where:

∑

∑

C u
u

dN u
du

C

F u
u

dN u
du

F

∂ ( )
∂

= ( )

∂ ( )
∂

= ( )
I

I
I

J

J
J

(28)

and σu∂ /∂ is obtained from the derivative of Eqs. (6) and (7). If an
associated flow rule is used and if the return mapping of the trial stress
state to the yield surface is considered to be along the path with the
closest distance to the yield function then the derivative σu∂ /∂ can be
assumed to be zero and so the plastic strain tensor from Eq. (27) reduces
to:

ϵ
σ

γ σ= Δ ∂
∂

ptΔ
(29)

which simplifies considerably the return mapping procedure.
In the forward-Euler scheme for return mapping, the stress tensor

can be corrected from the predictor stage as follows:

σ σ ϵ σ
σ

γ σD D= − = − Δ ∂
∂

t t trial t p trial+Δ Δ
(30)

The r-value is by definition obtained from the plastic strain in the width
direction over the plastic strain along the thickness direction, i.e.:

r =
ϵ

−(ϵ + ϵ )θ
θ π
p

θ
p

θ π
p

+ /2

+ /2 (31)

and using Eq. (26) and the stress transformation Eq. (8), the following
result for the r-value can be obtained:

r H N F u G H θ θ
F u θ G θ

= + [2 − ( ) − − 4 ] sin cos
( ) sin + cosθ

2 2

2 2 (32)

where it can clearly be seen that the r-value can be matched by
adjusting the parameter F u( ) accordingly.

5. Validations and discussion

For validating the proposed quadratic yield function, single element
uniaxial simulations are performed along every 15 degrees from the
rolling direction for different case studies. The predicted r-values and
flow stresses are compared with experimental results and with predic-
tions from different yield criteria such as Hill's 1948, “yld91” (Barlat
and Lian [3]), “yld96” (Barlat et al. [4]), “yld2000” (Barlat et al. [5]),
“CPB06ex2” (Cazacu et al. [11]) and the new quadratic yield function,
“YldParam”, proposed in this paper.

Fig. 4 shows the procedure used for the prediction of r-values. As
shown in Fig. 4, a 1 × 1 × 0.1 mm single element is elongated and then

unloaded to eliminate the elastic deformation, since r-value is a plastic
property. An additional boundary condition to impose equal vertical
displacement was also considered for the nodes on the top of the
element square.

The predicted r-value for an angle θ with the rolling direction is
defined as:

r = − ϵ
ϵ + ϵθ

22

22 11 (33)

where:

⎛
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⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

dx
x

dy
y

ϵ = ln 1 +

ϵ = ln 1 +

11

22
(34)

This simple one-element test is going to be used with the different
yield criteria listed above for the assessment of the accuracy of the
different yield models for plastic anisotropy. These validations are
going to be performed for three different alloys (case studies): two
aluminium alloys AA6022 and AA2090, for weak and strong plastic
anisotropy validations, and also for the AZ31B Mg alloy, where the
main objective is to demonstrate the generality and accuracy of the new
yield function in describing the plastic anisotropy as well as the
asymmetry in tension-compression.

5.1. r-values and directional flow stresses for FCC materials

5.1.1. The AA6022 aluminium alloy
The Young's modulus and Poisson's ratio used were:

E = 70000.0 MPa and ν = 0.3, respectively. The following Voce's curve
was used for strain hardening:

σ = 328.36 − 194.5 · exp (−10.941 · ϵ )p (35)

In Fig. 5, the yield locus projected on the zero shear stress plane,
τ = 0xy , is shown for Hill's 1948, Barlat yld2000 and the new quadratic
yield function (the stresses are normalised from the uniaxial stress at 0
degrees (σ0)). It can be seen that the new yield function delivers a yield
locus which is almost coincident with the yield locus from Barlat et al.
[5], yld2000, but considerably different from the yield locus of Hill's
1948 yield criterion. It can be also seen that the symmetric biaxial yield
stress was captured very well with this new yield function.

In Fig. 6, the yield locus contours for every 0.5 values of shear stress
is shown, where the shape of the different yield locus is projected at
different shear stress planes. Fig. 7 shows a plot of coefficients F u( ), G,
H, N, C u( )a and C u( )b as a function of the angle with the rolling
direction. The coefficients G, H and N are constants but the coefficients
F u( ), C u( )a and C u( )b are not constant, they are function of the
parametric variable u which in turn represents the angle measured
from the rolling direction. The plots for the non-constant coefficients is
symmetric about 180°, as expected for this alloy because there is no
difference in its behaviour when in tension compared to when in
compression. Another important aspect that is noteworthy from the plot
of the coefficients in Fig. 7 is the comparison betweenC u( )a andC u( )b . It
can be seen that these two coefficients are the same at every orientation
except at orientations in the vicinity of the symmetric biaxial stress
region. This was also expected considering the coefficient C u( )a was
designed to fit the uniaxial yield (flow) stresses, while the coefficient
C u( )b was designed for the symmetric biaxial stress state.

Fig. 8 shows the prediction for the r-values and a comparison with
experimental results. It can be seen that the new quadratic yield
function predicts the r-values for every direction very well. Hill's
1948 shows a good agreement at 0°, 45° and 90° and the same can be
said for the Barlat yield functions yld96 and yld2000. The prediction of
r-values for the Barlat yield functions at every 15° from the rolling
direction is not as good as the new yield function because the
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coefficients for Barlat yield functions were designed to fit r-values at 0°,
45° and 90° only and so we cannot expect a perfect prediction for all
other directions. On the contrary, the coefficient F u( ) for the new yield
function was designed to fit r-values at every direction and this explains
the better accuracy of the newly proposed model.

In Fig. 9 the predictions for the normalised flow stresses at every15°
from the rolling direction are compared. Again, the comparison is made
for the same yield models used for the r-values prediction and a
comparison is also made with experimental results. The flow stresses for
the new quadratic yield function were obtained following the deriva-
tion from Eq. (9), i.e.:

σ
σ

C u F u G H
G H θ F u H θ N H θ θ

= ( ) 2
3

( ) + +
( + ) cos + [ ( ) + ] sin + 2 ( − ) cos sin

θ
a 4 4 2 2

(36)

All yield criteria deliver normalised flow stresses very close to
experimental results with the exception of Hill's 1948 yield criterion. It
is also fair to say that the disparity for the Hill's results for the
normalised yield stresses is expected because in this work the Hill
coefficients were designed to fit the r-values and not the normalised
flow stresses.

5.1.2. The Al2090 aluminium alloy
The aluminium alloy AA6022 does not represent an alloy with a

strong plastic anisotropy. This can be clearly seen from Figs. 8 and 9 for
the low amplitude for both the r-values and for the normalised flow
stresses. The aluminium alloy AA2090, on the contrary, shows a very
strong plastic anisotropy with high amplitudes or range for both r-

Fig. 4. Definitions for r-value calculation.

Fig. 5. Yield locus for AA6022: comparison between Hill's 1948, yld2000 and the new
yield function (τ = 0xy ). Stresses normalised with the yield stress at 0 degrees (σ0).

Fig. 6. Yield locus contours for AA6022 projected on shear planes for every 0.5 shear
stress.

Fig. 7. Coefficients F u( ), G, H, N, C u( )a and C u( )b for the AA6022 aluminium alloy.
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values and normalised flow stresses and thus it represents a higher
challenge for the newly proposed quadratic yield function.

The Young's modulus and Poisson's ratio used in this validation
were: E = 70000.0 MPa and ν = 0.3, respectively. The following Power
law was used for strain hardening:

σ = 646.0 · (0.025 + ϵ )p 0.227 (37)

In Fig. 10, the yield locus projected on the zero shear stress plane,
τ = 0xy , for the Hill's 1948 and the new quadratic yield function is
shown together with some experimental results. The stresses were
normalised with the uniaxial stress at 0 degrees (σ0). It can be seen that
the new yield function delivers a yield locus which matches excellently
well with the experimental results. It is quite interesting to see the
difference in the yield locus when compared with the Hill's 1948 yield
function; Hill's 1948 does not fit the biaxial symmetric flow stress
accurately as expected because it does not have included the equi-
biaxial stress in his model. On the contrary, the equi-biaxial yield stress
was very well captured with this new quadratic yield function. Another
noteworthy point is the ability of predicting the aluminium's behaviour

from the use of quadratic yield functions with an associated flow rule. It
is well-agreed up till now that if an associated flow rule is used with
aluminium alloys than the yield criterion needs to be non-quadratic,
otherwise erroneous predictions for r-values and/or normalised yield
stresses should be expected. Alternatively, if a non-associated flow rule
is to be used, then a quadratic yield potential, such as Hill's 1948,
should be able to accurately represent the aluminium's behaviour. The
main reason is that with a non-associated flow rule the yield potential
can be used to match the normalised yield stresses while the plastic
potential can be used to match the r-values. Barlat yield functions
(yld91, Barlat et al. [3], yld96, Barlat et al. [4] and yld2000, Barlat
et al. [5]) were all designed to be non-quadratic yield functions as well
as the CPB06ex2 yield function of Cazacu et al. [11].

In Fig. 11 the yield locus contours for every 0.5 values of shear stress
is shown. In Fig. 12, a plot of the coefficients F u( ), G, H, N, C u( )a and
C u( )b is shown as a function of the angle from the rolling direction.
Again, the coefficients G, H and N are constant but the coefficients F u( ),
C u( )a and C u( )b are not. The plots of these two non-constant coefficients
show again a symmetry at 180°. It is also worth noting for this example

Fig. 8. Comparison between measured and predicted r-values for the AA6022 aluminium alloy.

Fig. 9. Comparison between measured and predicted flow stresses for the AA6022 aluminium alloy.
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the comparison between C u( )a and C u( )b as discussed in the previous
section but, although, the deviation is not as prominent for this alloy
because the effect of the symmetric biaxial stress is much less when
compared to that of the AA6022 aluminium alloy.

Fig. 13 shows the comparison between the predicted r-values and
experimental results. It can be seen that the predictions for the r-values
from the new quadratic yield function match the experimental results
for every orientation very well, with a slight deviation at 60°. Hill's
1948 gives good agreement at 0°, 45° and 90° and the same can be said
for the Barlat yield functions yld91, yld96 and yld2000. The prediction
of r-values for the Barlat yield functions at every 15° from the rolling
direction is not as good as the new quadratic yield function because the
coefficients for Barlat yield functions were designed to fit r-values at 0°,
45° and 90° only and so we cannot expect a perfect prediction for all
other directions. On the contrary, the coefficient F u( ) for the new
quadratic yield function was designed to fit r-values at every direction
and this explains the better accuracy of the proposed model.

All yield criteria shown deliver normalised flow stresses very close
to experiments with the exception of Hill's 1948 yield criterion as seen
in Fig. 14. It can also be said that the Barlat yield criteria (yld91 and
yld96) struggles a bit to match the experimental normalised flow stress
at 30°. As discussed in the previous section, it is fair to say that the
disparity for the Hill's results for the normalised yield stresses is
expected because Hill coefficients in this work were designed to fit
the r-values, not the normalised flow stresses. If the Hill coefficients had
been fitted for the normalised yield stresses we should then expect a
much better prediction of the Hill model for the normalised yield
stresses but then the prediction for the r-values would be worst.

5.2. Cup drawing for earing prediction

The new yield function was also tested for a cup drawing simulation
for the prediction of the cup earing profile for an Al 2090-T3 aluminium
alloy.

Fig. 15 depicts the geometry for the die tools and for the blank
sheet. The following dimensions were used in our analysis:

• Punch diameter: D = 97.46 mmp

• Punch profile radius: r = 12.70 mmp

• Die opening diameter: D = 101.48 mmd

• Die profile radius: r = 12.70 mmd

• Blank radius: D = 158.76 mmb

The material properties used in the analysis are given below:

• Stress-strain curve characteristics: σ MPa= 646(0.025 + ϵ) ( )0.227

• Initial sheet thickness: t = 1.6 mm0

• Coulomb coefficient of friction: 0.1
• Blank holding force: 22.2 kN

The cup drawing simulation was carried out in the commercial
software ABAQUS and by using a user material subroutine “VUMAT”
for the new yield function. Fig. 16 depicts the deformed configuration
and the earing profile for the cup after the cup drawing operation.

In Fig. 17 the cup earing profile is compared for the experimental
results from Yoon et al. [41], Yld96 without translation [41] (or
without consideration of the strength differential effects) and the new
yield function. For an orthotropic material, the cup height profile
between 0 and 90 degrees should be the mirror image of the cup height
profile between 90 and 180 degrees with respect to the 90 degrees axis.
However, the measured earing profile slightly deviates from this
condition and, according to Yoon et al. [41], this deviation might have
occurred because the center of the blank was not aligned properly with
the centers of the die and the punch during processing. The earing
magnitude is in good agreement with the simulations of Yoon et al. [41]
for the Yld96 without translation and also in reasonable agreement with

Fig. 10. Yield locus for Al2090: comparison between Hill 1948, the new parametric yield
function and experimental results.

Fig. 11. Yield locus contours for Al2090 projected on shear planes for every 0.5 shear
stress.

Fig. 12. Coefficients F u( ), G, H, N, C u( )a and C u( )b for the Al2090 aluminium alloy.
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the measured result, but however, both Yld96 and the new yield
function do not lead to the correct trend: the experimental cup height at
0 degrees is larger than that at 90 degrees, whereas the simulated
results predict the reverse. Yoon et al. [41] and Yoon et al. [43]
reported this to be a consequence of the cup drawing simulations being
performed from coefficients based on the tensile test results. In their
work, Yoon et al. [41] said that since the stresses in the flange area are
nearly compressive in nature, the cup drawing simulations should also
account for the compressive test results. In other words, they are
suggesting that there is a strength differential effect that should have
been considered during the material characterisation of the Al2090
aluminium alloy. It was shown in Yoon et al. [41] that if the strength
differential effect was considered (Yld96 with translation of the yield
surface) then a better agreement could be obtained with the experi-
mental results. It is therefore more important to compare the results
obtained with the new yield function with the results from the use of
Yld96 without translation of the yield surface (both plotted in Fig. 17)

Fig. 13. Predictions and experimental results for the r-values of the Al2090 aluminium alloy.

Fig. 14. Comparison for predictions of flow stresses for the Al2090 aluminium alloy.

Fig. 15. Al2090 cup forming example. Definition of tools and blank geometry.
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as they properly reflect the material characterisation employed in the
simulation.

For the Al2090-T3 alloy, Yoon et al. [42] demonstrated that a more
accurate prediction of the r-value at 75 degrees should be reflected into
a small ear around 15 degrees and so the earing profile should include
six ears instead of four ears. This behaviour was not observed with the
current model maybe due to the slight deviation of the r-value
prediction obtained for 75 degrees from the rolling direction.

5.3. Iso-error maps

In this section we assess the accuracy of the return mapping
procedure used in this work by means of the iso-error maps, as detailed
in Simo and Hughes [34]. The new yield function developed in this
work was designed to work with the semi-implicit or forward-Euler
return mapping scheme, as detailed in Section 4 and as derived in a
previous work of Cardoso and Yoon [9], where it is assumed that the
trial stress state is not too far away from the yield locus or, in other
words, the incremental time steps are considered to be sufficiently small
enough. The iso-error maps presented in this section were constructed
for the Al2090 alloy, whose yield locus has the shape as described in
Fig. 10, including regions with high curvature, making the accuracy
and even the convergence of the return mapping scheme much more
complicated.

Three points on the yield surface were considered for the plotting of
the iso-error maps: point A, corresponding to the uniaxial stress state;
point B, which is a biaxial stress state; point C, which corresponds to the
pure shear stress state. All of these points are schematically represented
in Fig. 18.

Without any loss of generality, the initial stress state for points A, B
and C is the one corresponding to locations at the yield locus for the
initial yield point. Subsequently, incremental stresses in the principal
directions “S1” and “S2” are added and the return mapping scheme is
applied for the assessment of the iso-error contours. There is the need to
calculate the exact stress tensor for points A, B and C after return
mapping and that is done in this current work by applying 10,000
infinitesimal stress increments between the yield locus and the yield
locus for the trial stress state. The iso-error contour E is constructed
from the following equation:

σ σ σ σ
σ σ

E =
( − *) : ( − *)

* : *
× 100

(38)

where σ* is the exact stress tensor and σ is the stress tensor after return
mapping.

The plots for the iso-error contours for points A, B and C in Figs. 19,
20 and 21, respectively, were constructed for S Sy1/ ≤ 1.75 and
S Sy2/ ≤ 1.75, where Sy is the initial yield stress of Al2090 alloy. Because
the return mapping scheme used in this work is a forward-Euler scheme

Fig. 16. Al2090 deformed cup after drawing.

Fig. 17. Cup earing profile for the Al2090 aluminium alloy.
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(traditionally used for explicit analysis), then if larger time steps (or
larger S Sy1/ ratio) are used there is the chance of divergence in the
return mapping scheme and that is even more critical for the high
curvature yield locus of the Al2090 aluminium alloy. This was also
proved to be the case when the Barlat yld2000 yield function was used

for the forward-Euler scheme in the work of Cardoso and Yoon [9].
Another aspect that is worth discussing is the computational

performance of the return mapping scheme used. This was addressed
by Cardoso and Yoon [9], however the return mapping scheme now
comes together with a new yield function so it is worth considering the
computational costs or benefits added by the new yield function to the
return mapping procedure. When compared with the yld96 function
used for the cup drawing for the earing profile of previous section, it
can be said that there is the need to calculate the loading direction as in
Eq. (7), however this is computationally inexpensive. The other major
difference of this new yield function is the calculation of the plastic flow
direction, where in this case we calculate the normal to the yield
surface (derivative of the yield potential) by using B-Splines basis
functions and the derivative of the B-Spline's basis functions for the
anisotropic coefficients. When comparing with the yld96 yield function,
the normal to the yield surface also has to be calculated and the
derivatives of the yield potential, however, for the approximation of the
coefficients for a particular loading direction, only the coefficients
inside the local compact support of the B-Spline basis functions need to
be considered. If the polynomials used for the B-Splines basis function
have degree “p” then the size of the local compact support is p + 1, so
for a quadratic degree only three coefficients in the local compact
support of the loading direction “u” need to be used. If we compare with
more elaborated yield functions such as Barlat's yld2000, there are the
advantages of the straightforwardness of obtaining the anisotropic
coefficients as well as the simplicity for the calculation of the plastic
flow tensor for the normal to the yield surface. In the comparison study
carried out for the Al2090 alloy, the differences for the computational
performance of the return mapping scheme used for the new yield
function and for the yld96 and yld2000 yield functions are barely
undetectable.

5.4. r-values and directional flow stresses for HCP materials

5.4.1. The AZ31B Mg alloy
The last case study presented in this paper is for a HCP material, the

AZ31B Mg alloy. Many yield functions were developed to account for
the asymmetry in tension-compression for these alloys and amongst
them we can distinguish the works of Cazacu et al. [10,11] and more
recently the work of Soare and Benzerga [35] on the modelling of
asymmetric yield functions. The main objective of this case study is to
demonstrate that the newly proposed yield function for plane stress
analysis is generalised enough to accurately predict the plastic aniso-
tropy for this alloy as well as its asymmetric behaviour in tension-
compression. The Young's modulus and Poisson's ratio used were:
E = 42000.0 MPa and ν = 0.35, respectively. The following Voce curve

Fig. 18. Points A (uniaxial), B (biaxial) and C (pure shear) for the iso-error maps.
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Fig. 19. Iso-error plot for point A (uniaxial stress state).
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Fig. 20. Iso-error plot for point B (biaxial stress state).
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Fig. 21. Iso-error plot for point C (pure shear stress state).
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was used for strain hardening:

σ = 361.43 − 158.6 · exp (−9.74 · ϵ )p (39)

In Fig. 22, the yield locus for the Hill 1948 yield function, for
Cazacu et al. [11] CPB06ex2 yield potential, for the newly proposed
quadratic yield criterion (YldParam) and for the experimental results
from Lou et al. [27] are presented. It can be seen that the proposed new
yield function is able to predict accurately the asymmetry in tension-
compression that is very typical of this alloy. The CPB06ex2 yield
criterion is also extremely accurate but, as reported by Plunkett et al.
[31], it requires the calculation of 18 anisotropic coefficients plus 2
additional coefficients to describe the asymmetry in tension-compres-
sion, it is not a quadratic yield potential and it requires at least two
linear transformations for the yield potential. In Fig. 23 it is shown the
yield locus contours for every 0.5 values of shear stress. It shows the
shape of the different yield locus when projected at different shear
stress planes.

Fig. 24 shows a plot of coefficients F u( ), G, H, N, C u( )a and C u( )b as
a function of the angle from the rolling direction. It is important to
notice that for this case study the coefficients G, H and N have different
values for tension and compression and so are not constant for the
entire range of loading directions. The reason for the different
distribution for these coefficients is due to the asymmetric behaviour
of HCP alloys, which requires a separated calibration for the tension
and compression domains. The plot for the coefficients F u( ), C u( )a and
C u( )b is not symmetric at 180° due to the asymmetric behaviour in
tension-compression of this particular Mg alloy. Also, regarding the
coefficients C u( )a and C u( )b from Fig. 24, and in particular their
comparison in the vicinity of the symmetric biaxial stress state, it can
be said that the difference between the coefficients is higher in tension
than it is in compression.

Fig. 25 shows the r-values predictions and comparisons with
experimental results for both the tension and compression regions.
The prediction from the new yield function is compared with Plunkett
et al. [31] predictions based on the yield criterion CPB06ex2 of Cazacu
et al. [11]. It can be seen that the CPB06ex2 yield criterion is just
perfect in accurately predicting the r-values for both tension and
compression regions. The new yield function is also great for the
prediction of the r-values in tension and some slight deviations are seen
for the r-values in compression, mostly for 45° and 75°. However, it is
reasonable to say that these minor deviations are still good if we
consider the fact that these predictions were obtained from the use of a
quadratic yield potential. In regards to the normalised yield stresses
from the plots in Fig. 26, the conclusion is that both Cazacu et al. [11]
CPB06ex2 yield potential and the newly proposed formulation deliver
excellent agreement with the normalised yield stresses from experi-
ments.

In this paper, the general definition or classification of a “quadratic
planar anisotropic yield function” is adopted. This commonly refers to
the exponent used directly in the stress components inside the yield
criterion, which in the case of this new yield function is of degree two as
in the original Hill's yield criterion [20]. All non-quadratic (higher-
order) yield functions in the literature are defined as such because of
the higher exponent of the stress components and this invariably results
in the more accurate fitting of the yield surface. This higher-order
fitting however comes at such costs as difficulties in converging during
return mapping procedures and also higher number of coefficients that
must be obtained experimentally, amongst other costs. However, in this
new function the same accurate fitting is achievable through the
introduction of the variable anisotropic parameters C and F which are
both functions of the angle between rolling and loading directions,
which is one of the main advantages of this yield function. The curves

Fig. 22. Yield locus for AZ31B Mg alloy: comparison between Hill 1948, Plunkett et al.
[31] for the CPB06ex2 yield function, the new parametric yield function and experiments
from Lou et al. [27].

Fig. 23. Yield locus contours for the AZ31B Mg alloy projected on shear planes for every
0.5 shear stress.

Fig. 24. Coefficients F u( ), G, H, N and C u( )a for the AZ31B Mg alloy.
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for the distribution of these anisotropic parameters are defined as a B-
Spline function of the local parametric variable, however they can also
be represented by any other function with any degree as far as an
accurate fitting of the coefficient is achieved.

6. Concluding remarks

In this work, a new generalised quadratic yield function was
developed for the description of planar plastic anisotropy in metallic
alloys. The new yield function delivers a good prediction of both r-
values and directional flow stresses and it also accurately describes the
biaxial symmetric flow stress and the unsymmetric biaxial stress state.
One coefficient F u( ) was made function of a directional parameter that
represents the angle between the loading direction and the rolling
direction. An additional coefficient C u( ) was added for the accurate

prediction of directional flow stresses. Quadratic NURBS basis functions
were used for the mathematical description of these two coefficients,
making the method computationally effective.

It was shown in the discussion/validations section that the yield
locus, r-values and directional flow stresses predictions were almost
perfectly matched for two aluminium alloys (AA6022 and AA2090),
with weak and strong plastic planar anisotropy, and also for a HCP
magnesium alloy (AZ31B Mg), where the asymmetric behaviour in
tension-compression was also shown to be very well captured. In
addition, FE simulations of the cup drawing of a circular blank was
conducted, where the predicted earing profile matches the experimen-
tal results satisfactorily. These prove that the newly developed yield
potential is generalised enough for the prediction of plastic planar
anisotropy and for the accurate description of the asymmetry in
tension-compression of HCP materials.

Fig. 25. Comparison between the predicted r-values (Tension and Compression) for the new yield function, Plunkett et al. [31] and experimental results for the AZ31B Mg alloy.

Fig. 26. Comparison between the predicted Normalised Flow Stress in Tension and Compression for the new yield function, Plunkett et al. [31] and experimental values for the AZ31B Mg
alloy.
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Appendix A. Proof of convexity in the principal stress space (τ = 0xy ) and for the case of proportional loading

A yield function is convex if its Hessian matrix H defined as:

σ
σ σ

H = ∂
∂ ∂i j

2

(A.1)

is positive semi-definite, i.e. if its eigenvalues are not negative (Rockafellar [33]). The analysis is going to be done initially for the yield function
projected on the zero shear stress plane, i.e. for τ = 0xy . In this case the Hessian matrix is defined as follows:
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The first derivatives are defined as:
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where:

A
C u F u G H

= 1
( )

3
2( ( ) + + ) (A.4)

The second derivatives can be obtained from the following equations:
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and so the Hessian matrix can be written as:
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The eigenvalues for this Hessian matrix are:

α
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which means that the new yield function is convex if:

A G F u G H H F u
G H σ F u H σ Hσ σ

[ · ( ) + · + · ( )]
{( + ) + [ ( ) + ] − 2 }

≥ 0
xx yy xx yy
2 2 3/2
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or:

A G F u G H H F u[ · ( ) + · + · ( )] ≥ 0 (A.9)

From Eq. (A.9), A ≥ 0 means the coefficient C u( ) needs to be positive and the coefficients F u( ), G and H also need to be positive.

Appendix B. Control points for coefficients C u( ) and F u( )

The NURBS control points for the coefficients C u( ) and F u( ) were generated from the algorithm described in the work by Piegl and Tiller [29]
where the major equations used are described here.

Given a set of points k nF ( = 0,…, )k , the aim is to interpolate these points with a second-degree nonrational B-spline curve. From the parameter
u0 ≤ ≤ 1 that represents the angle between the loading and rolling directions, we can define a parameter uk for each Fk and select an appropriate

knot vector U u u= { ,…, }m0 so that the following n n( + 1) × ( + 1) system of linear equations can be defined:

∑ N uF P= ( )k
I

n

I k I
=0

,2
(B.1)

where N u( )i k,2 stands for the quadratic NURBS basis function of control point PI , evaluated at the parametric coordinate uk . The control points PI are
the n + 1 unknowns in the linear system of equations. There are different methods for the definition of the parametric coordinates uk . In this work, we
first defined the total chord length d as follows:
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∑d F F= −
k

n

k k
=1

−1
(B.2)

and then the parametric coordinates were defined as:

u
u

u u
d

k nF F

= 0
= 1

= + − = 1,…, − 1

n

k k
k k

0

−1
−1

(B.3)

For more details on these, refer to the work by Piegl and Tiller [29].
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