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This paper uses long-range dependence techniques to analyse two important features of the US Federal Funds ef-
fective rate, namely its persistence and its cyclical behaviour. It examines annual, monthly, bi-weekly andweekly
data, from 1954 until 2017. Twomodels are considered. One is based on an I(d) specification with AR(2) distur-
bances and the other one on two fractional differencing structures, one at the zero and the other at a cyclical fre-
quency. Thus, the two approaches differ in the way the cyclical component of the process is modelled. In both
cases we obtain evidence of long memory and fractional integration with cycles repeating approximately
every 8 years. The in-sample goodness-of-fit analysis supports the second specification in the majority of
cases. An out-of-sample forecasting experiment also suggests that the long-memory model with two fractional
differencing parameters is the most adequate one, especially over long horizons.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
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1. Introduction

The Federal Funds rate is the interest rate at which depository insti-
tutions in the US lend each other overnight (normally without a collat-
eral) balances held at the Federal Reserve System (the Fed), which are
known as Federal Funds. Such deposits are held in order to satisfy the
reserve requirements of the Fed. The rate is negotiated between
banks, and its weighted average across all transactions is known as
the Federal Funds effective rate. It tends to be more volatile at the end
of the reserve maintenance period, the so-called settlement Wednes-
day, when the requirements have to be met.2 The Federal Funds target
rate is instead set by the Chairman of the Fed according to the directives
of the Federal Open Market Committee (FOMC), which holds regular
meetings (as well as additional ones when appropriate) to decide on
this target. It is therefore a policy rate, used to influence themoney sup-
ply, and to make the effective rate (which by contrast is determined by
the interaction of demand and supply) follow it. Specifically, the Trading
Desk of the Federal Reserve Bank of New York conducts open market
operations on the basis of the agreed target. This is considered one of
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themost important indicators for financialmarkets, whose expectations
can be inferred from the prices of option contracts on Federal Funds fu-
tures traded on the Chicago Board of Trade.

Given the fact that the Fed implements monetary policy by setting a
target for the effective Federal Funds ratewhich also affects other linked
interest rates and the real economy through various transmission chan-
nels, it is not surprising that both the theoretical and the empirical liter-
ature on this topic are extensive. Theoretical contributions include a
well-known paper by Bernanke and Blinder (1988), who propose a
model of monetary policy transmission which they then test in a fol-
low-up study (Bernanke & Blinder, 1992) showing that the Federal
Funds rate is very useful to forecast real macroeconomic variables,
being a good indicator of monetary policy actions. Bartolini, Bertola,
and Prati (2002) instead develop a model of the interbankmoney mar-
ket with an explicit role for central bank intervention and periodic re-
serve requirements that is consistent with the observed volatility
pattern of the US Federal Funds rate.

On the empirical side, somepapers examine the extent towhich var-
iables targeted by the Fed such as the output gap and inflation can ex-
plain the effective rate (see, e.g., Taylor, 1993 and Clarida, Gali, &
Gertler, 2000); others analyse the daily market for Federal Funds (e.g.,
Hamilton, 1996, and Taylor, 2001). An influential study by Hamilton
and Jorda (2002) introduced the autoregressive conditional hazard
model for forecasting a discrete-valued time series such as the target;
this specification is shown to outperform standard VAR models that
are unable to differentiate between the effects of an increase in the tar-
get and those of an anticipated target decrease that did not take place.
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Other studies examine the predictive power of the effective rate of the
target (Taylor, 2001) or other interest rates (e.g., Clarida, Sarno,
Taylor, & Valente, 2006). Sarno, Thornton, and Valente (2005) provide
the most extensive study of the forecasting performance of a variety
ofmodels of the Federal Funds rate proposed in the literature. They con-
sider both univariate (randowwalk, ARMA, EGARCH,Markov-switching
etc.) andmultivariate (M-TAR, BTAR,MS-VECM) specifications, andfind
that the best forecastingmodel is a univariate one using the current dif-
ference between the effective and the target rate to forecast the future
effective rate (also, combination forecasts only yield marginal improve-
ments). These findings are interpreted as suggesting that the Fed in fact
follows a forward-looking interest rate rule.

Most of themodels found in the literature to describe the behaviour
of the Federal Funds rate (and of interest rates in general) assume
nonstationarity and are based on first-differenced series. This is true,
for instance of all the univariate specifications considered in Sarno et
al. (2005), which imply that the series are I(1), without mean reversion
andwith permanent effects of shocks. This is a rather strong assumption
that is not justified on theoretical grounds. The classic alternative is to
assume that the Federal Funds rate and interest rates in general are sta-
tionary I(0) variables, and to model them as autoregressive processes
with roots close to the unit circle to allow for a high degree of persis-
tence, with the additional problem of the well-known low power of
standard unit root tests in such a case. In this studywe overcome this di-
chotomy by estimating fractional integration models allowing for both
nonstationary and mean-reverting behaviour.3 The fractional approach
is more flexible since it does not restrict the differencing parameter to
be an integer as in the case of standard models. In this paper we extend
this approach to allow for fractional integration in the cyclical compo-
nent of the series. This innovative framework is shown to outperform
standard methods in terms of its forecasting ability. It is also of interest
from a policy perspective since the estimated fractional orders of inte-
gration are a measure of the degree of persistence of the series and pro-
vide information on whether or not mean reversion occurs and on the
dynamic response to shocks.

Using recent techniques based on the concept of long-range depen-
dence, in this paper we explicitly model twowell-known features of in-
terest rates in general which also appear to characterise the Federal
Funds rate, namely their persistence and cyclical behaviour, mostly
overlooked in previous studies. These two features are expected in the
Federal Funds rate which is commonly modelled using a Taylor rule
and therefore is a linear combination of inflation,which is highly persis-
tent (Pivetta & Reis, 2007), and the output gap, which is cyclical. In par-
ticular, we use fractional integration methods with multiple poles or
singularities in the spectrum not constrained at the zero frequency as
in the usual case, but allowing instead for poles at zero and non-zero
(cyclical) frequencies. In this way we are able to capture the two afore-
mentioned features of interest rates: their high degree of persistence
(described by the pole in the spectrum at the zero frequency) and
their cyclical pattern (described by the pole at the non-zero
frequency).4 Overall, our results confirm that both these stylised facts
are important features of the stochastic behaviour of the Federal
Funds rates. Sensitivity to data frequency is then analysed by using an-
nual, monthly, bi-weekly and weekly data, from 1955 until 2017 (see
Caporale & Gil-Alana, 2010, showing that lower integration order
might correspond to lower frequencies).

The remainder of the paper is structured as follows. Section 2 de-
scribes the econometric approach. Section 3 presents the empirical re-
sults. Section 4 provides some concluding remarks.
3 Gil-Alana (2002, 2004) also modelled the US Federal Funds rate using fractional inte-
gration. However, in those two papers the analysis focused exclusively on the long run or
zero frequency, without taking into account the cyclical component of the series.

4 Other sources of persistence/cyclical patterns are described by the short-run (ARMA)
dynamics of the process.
2. Methodology

We consider the following model:

yt ¼ βTzt þ xt; t ¼ 1;2;…; ð1Þ

1−Lð Þd1 1−2 coswrL þ L2
� �d2

xt ¼ ut; t ¼ 1;2;…; ð2Þ

with xt = 0, t ≤ 0,5 andwhere yt is the observed time series; β is a (kx1)
vector of unknown parameters, and zt is a (kx1) vector of deterministic
terms, thatmight include, for example, an intercept (i.e. zt=1) or an in-
tercept with a linear trend (zt = (1,t)T); L is the lag operator (i.e., Lsxt =
xt − s); d1 is the order of integration corresponding to the long-run or
zero frequency; wr = 2π / r, r = T / j, with r representing the number
of periods per cycle and j indicating the frequency with a pole at the
spectrum; d2 is the order of integration with respect to the non-zero
(cyclical) frequency, and ut is assumed to be an I(0) process, defined
for the purposes of the present study as a covariance-stationary process,
with a spectral density function that is positive and finite at any fre-
quency on the spectrum. Note that d1 and d2 are allowed to be any
real values and thus are not restricted to be integers.

The set-up described in Eqs. (1) and (2) is fairly general, including
the standard AutoRegressive Moving Average, ARMA model (with or
without trends), if d1 = d2 = 0 and ut is weakly autocorrelated; the
unit root or I(1) model if d1 = 1 or, more generally, the ARIMA6 case
if d1 is an integer and d2 = 0; the standard ARFIMA7 specification, if
d1 has a fractional value and d2 = 0, along with other more complex
representations.

We now focus on Eq. (2), and first assume that d2= 0. Then, for any
d1 N 0, the spectral density function of xt is given by

f λð Þ ¼ σ2

2π
gu λð Þj j2 1−eiλ

��� ���−2d1
;

where gu(λ) corresponds to the potential ARMA structure in ut. It can be
easily shown that this function f(λ) contains a pole or singularity at the
long-run or zero frequency, i.e.,

f λð Þ→∞; as λ → 0þ:

Further, note that the polynomial (1−L)d1 can be expressed in terms
of its Binomial expansion, such that, for all real d1,

1−Lð Þd1 ¼ ∑
∞

j¼0

d1
j

� �
−1ð Þ jL j ¼ 1−d1L þ d1 d1−1ð Þ

2
L2−…; ð3Þ

implying that the higher the value of d1 is, the higher the degree of de-
pendence between observations distant in time will be. Thus, the pa-
rameter d1 plays a crucial role in determining the degree of long-run
persistence of the series. Estimation and testing procedures in this con-
text include Sowell (1992a), Agiakloglou and Newbold (1994) and
Beran (1995) in the time domain, and Geweke and Porter-Hudak
(1983), Robinson (1994, 1995a, 1995b) among others in the frequency
domain. Examples of applications using this model can be found in
Diebold and Rudebusch (1989), Sowell (1992b), Baillie (1996), and
Gil-Alana and Robinson (1997) among many others.8
5 In otherwords,we adopt the Type II definition of fractional integration (seeMarinucci
& Robisnon, 1999 and Davidson & Hashimzade, 2009 for the differences from Type I frac-
tional integration where values are randomly generated).

6 AutoRegressive Integrated Moving Average.
7 AutoRegressive Fractionally Integrated Moving Average.
8 Empirical studies estimating I(d) models of this form for interest rates include Lai

(1997), Tsay (2000), Meade and Maier (2003) and Couchman, Gounder, and Su (2006).



9 We do not observe any significant seasonal pattern in the data.
10 Themonthly series are aggregated daily data. In the case of the weekly and bi-weekly
series we use the Wednesday observations
11 Although a time trend appears not to be required (see Figure 1), we have included
it to consider a more general case. Note also that, when d1 = 1, the time trend disap-
pears for t N 1.
12 See Gil-Alana and Robinson (1997) for details of the testing procedure in this context.
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On the other hand, if d1= 0 in (2), then for any d2 ≠ 0, the process xt
has a spectral density function

f λð Þ ¼ σ2

2π
gu λð Þj j2 2 cos λð Þ− cos wrð Þð Þj j−2d2 ;

which is characterised by a pole at a non-zero frequency, i.e.,

f λð Þ→∞; as λ → λ�;λ�∈ 0;πð Þ:

Moreover, the polynomial (1−2coswrL+L2)d2 can be expressed as
a Gegenbauer polynomial, such that, defining μ=coswr, for all d2≠0,

1−2μL þ L2
� �−d2 ¼ ∑

∞

j¼0
Cj;d2 μð ÞL j;

ð4Þ

where Cj,d2
(μ) are orthogonal Gegenbauer polynomial coefficients re-

cursively defined as:

C0;d2 μð Þ ¼ 1;

C1;d2
μð Þ ¼ 2μd2;

Cj;d2
μð Þ ¼ 2μ

d2−1
j

þ 1
� �

Cj−1;d2
μð Þ− 2

d2−1
j

þ 1
� �

Cj−2;d2
μð Þ; j

¼ 2;3;…

(see, inter alia, Magnus, Oberhettinger, & Soni, 1966, or Rainville, 1960,
for further details). Gray, Yhang, and Woodward (1989, 1994) showed
that this process is stationary if d2b0.5 for |μ=coswr|b1 and if
d2b0.25 for |μ |=1. Estimation methods include the parametric ap-
proach of Giriatis, Hidalgo, and Robinson (2001), and the
semiparametricmethod of Hidalgo (2005), andWald (W) and Lagrange
Multiplier (LM) tests of cyclical long can be found in Dalla and Hidalgo
(2005). If d2 = 1, the process is said to contain a unit root cycle
(Ahtola & Tiao, 1987; Bierens, 2001); and other empirical applications
using fractional values of d2 can be found in Gil-Alana (2001), Anh,
Knopova, and Leonenko (2004) and Soares and Souza (2006).

In the empirical analysis carried out in the following sectionwe use a
very general procedure to test the model given by Eqs. (1) and (2). It
was initially developed by Robinson (1994) on the basis of the Lagrange
Multiplier (LM) principle and uses theWhittle function in the frequency
domain. It can be applied to test the null hypothesis:

H0 : d ≡ d1;d2ð ÞT ¼ d10;d20ð ÞT ≡ d0; ð5Þ

in Eqs. (1) and (2) where d10 and d20 can be any real values, thus
encompassing stationary and nonstationary hypotheses. The specific
form of the test statistic (denoted by R̂) is presented in the Appendix.
Under very general regularity conditions, Robinson (1994) showed
that for this particular version of his tests,

R̂→dχ2
2; as T → ∞; ð6Þ

where T indicates the sample size, and “→d” stands for convergence in
distribution. Thus, unlike in other procedures, we are in a classical
large-sample testing situation. A test of Eq. (5) will reject H0 against

the alternative Ha: d ≠ d0 if R̂Nχ2
2;α , where Prob (χ22Nχ2,α2 )=α. Note

that, as mentioned before, when testing the null H0:d2 = 0, the model
reduces to the standard case of fractional integration at the zero fre-
quency as in Gil-Alana and Robinson (1997), and testing H0 Eq. (5)
with d1 = 0 becomes a test for the order of integration at a cyclical fre-
quency as in Gil-Alana (2001) and Caporale and Gil-Alana (2016). The
latter paper investigates the monthly structure of the Euribor rate
using a cyclical long memory model, however, unlike the present
study, it does not allow simultaneously for both long run persistence
at the zero and the cyclical frequencies.
There are several reasons for using this approach. First, this test is the
most efficient in the Pitman sense against local departures from thenull,
that is, if it is implemented against local departures of the form: Ha:d=
do + δT−1/2, for δ ≠ 0, the limit distribution is a χ22(v), with a non-cen-
trality parameter v that is optimal under Gaussianity of ut. Moreover,
Gaussianity is not necessary for the implementation of this procedure,
amoment condition of only order 2 being required. As in other standard
large-sample testing situations, Wald and LR test statistics against frac-
tional alternatives have the same null and limit theory as the LM test of
Robinson (1994). Lobato and Velasco (2007) essentially employed such
aWald testing procedure, even though it requires a consistent estimate
of d and concerns exclusively the long run or zero frequency.

3. Empirical results

The series examined is the US Federal Funds effective rate, from
1954 till 2017, at annual, monthly, bi-weekly and weekly frequencies.
The source of the data is the Federal Reserve Bank of St. Louis database
and the data are seasonally unadjusted.9

Fig. 1 displays plots of the series at the four frequencies considered,
the pattern being similar in all four cases.10 Note that during 2009 and
2010 there was a downward movement in the Federal Funds rate,
which hit the zero lower bound (ZLB) and stayed between 0% and
0.25%. Excluding those two years, however, does not affect the overall
picture. Fig. 2 displays the correlograms; the two features mentioned
above can clearly be seen: there is a slow decay in the sample autocor-
relation values possibly due to persistence, and a cyclical pattern. The
same two features are exhibited by the periodograms in Fig. 3, with
the highest peaks occurring at the smallest frequency (long-run persis-
tence) and at frequencies oscillating between 6 and 8, corresponding
approximately to T/7 periods per cycle, namely to approximately
8 years in all cases.

First, we examine the degree of persistence considering only the
long-run or zero frequency, that is, we specify a model such as Eqs.
(1) and (2) with d2= 0 a priori and zt = (1,t)T, t ≥ 1; (0, 0)T, otherwise,
i.e.,

yt ¼ β0 þ β1tþ xt; t ¼ 1;2;…; ð7Þ

1−Lð Þd1xt ¼ ut; t ¼ 1;2;…; ð8Þ

with xt=0 for t ≤ 0, under the assumption that the disturbance term
ut is white noise, AR(1) and AR(2) respectively.11 The latter specifica-
tion is used to describe the cyclical component through the possible
presence of complex roots in the AR polynomial. Higher AR orders and
otherMA (ARMA) structureswere also considered, with very similar re-
sults.We employ here a simple version of Robinson's (1994) procedure,
testing Ho: d1 = d10, for d10-values from 0 to 2 with 0.001 increments,
(i.e., d10= 0, 0.001, 0.002,…, 1.999 and 2), and reporting the estimates
of d1 alongwith the 95% confidence intervals of the non-rejection values
of d1 based on the testing procedure.12

Weobtain estimates for the three standard cases examined in the lit-
erature, i.e., with no regressors in the undifferenced regression Eq. (7)
(β0 = β1 = 0); with an intercept (β0 unknown and β1 = 0); and with
an intercept and a linear time trend (β0 and β1 unknown). The results
for the time trend were found to be statistically insignificant in all



Fig. 1. Original time series data.

Fig. 2. Correlogram of the time series. Note: The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation.
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Fig. 3. Periodogram of the time series. Note: The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1,…, T/2.

Table 1
Estimates of d and 95% confidence interval in an I(d) model with an intercept.

White noise AR(1)
disturbances

AR(2)
disturbances

Annual 0.867
(0.665, 1.284)

0.479
(0.231, 0.668)

0.629
(0.344, 1.224)
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cases, while the intercept was always significant. Thus, in what follows,
we only consider the case of an intercept.13 Table 1 displays the esti-
mates of d1 based on the Whittle function in the frequency domain
(Dahlhaus, 1989) alongwith the 95% confidence interval of the non-re-
jection values of d1 using Robinson's (1994) method.14

When ut is assumed to be a white noise process, the results change
substantially depending on the data frequency. In particular, for annual
data the estimated value of d1 is 0.867 and the I(1) null hypothesis can-
not be rejected. It is rejected instead for monthly and bi-weekly data in
favour of values of d1 above 1. Finally, for weekly data, the estimated d1
is significantly smaller than 1, implyingmean reversion.When allowing
for autocorrelated errors, if ut is assumed to be AR(1) values of d1 below
1 supporting mean reversion are obtained in the annual and monthly
cases; for bi-weekly and weekly data, d1 is instead slightly above 1
and the unit root null is rejected in favour of d1 N 1 in the two cases.
The lack of consistency in the results across data frequency might be a
sign of misspecification, since no cyclical model has been considered
here. (We are referring here to the I(d) model with white noise and
AR(1) disturbances). Thus, we next assume that ut is AR(2), which
seems more realistic, and in this case the unit root null cannot be
rejected in any single case and the estimated values of d1 range be-
tween 0.629 (with annual data) and 1.026 (weekly data). Asmentioned
before, the case of AR(2) disturbances is interesting because it allows to
capture the cyclical pattern of the series through a short-memory I(0)
process for ut.15
13 Note that if d1 = 1 and ut is white noise, for t N 1 the model becomes the simple
driftless randomwalk model.
14 The main results did not change when considering 90% and 99% intervals.
15 The roots of the AR(2) polynomials (not reported) were in all cases in the complex
plane,which is consistentwith the cyclical pattern observed in the data.Whenusing other
approaches such as Sowell's (1992a) maximum likelihood method, the results based on
the AIC also suggest that the ARIMA(2, d, 0) is the most adequate specification.
As expected, Likelihood Ratio (LR) tests and other likelihood criteria
(not reported) suggest that themodel with AR(2) disturbances outper-
forms the others. These results, however, might be biased owing to the
long memory in the cyclical structure of the series having been
overlooked. Thus, in what follows we examine the possibility of long
memory but focusing on the case where the spectrum has a pole or sin-
gularity at a non-zero (cyclical) frequency. For this purpose and as a pre-
liminary step, we employ the LM parametric test of Dalla and Hidalgo
(2005), and given the results displayed in Table 1 we use the first
differenced data. We consider different specifications for the distur-
bance term and in all cases the null hypothesis of no cycles is rejected
at the 5% level.

Once we have determined the presence of a pole or singulatiry at a
non-zero (cyclical) frequency, we next implement the methods pro-
posed in Giriatis et al. (2001) and Hidalgo (2005) to estimate the
differencing parameter and the pole in a model of the form given by
Eq. (2) with d1=0. The first of thesemethods is parametric andwe im-
pose white noise disturbances for the error term ut, while the second is
Monthly 1.276
(1.193, 1.379)

0.824
(0.748, 0.912)

0.856
(0.701, 1.008)

Bi-weekly 1.032
(1.001, 1.067)

1.126
(1.049, 1.209)

0.846
(0.672, 1.029)

Weekly 0.973
(0.954, 0.994)

1.084
(1.039, 1.132)

1.026
(0.947, 1.101)

The values areWhittle estimates of d in the frequency domain (Dahlhaus, 1989). Those in
parentheses are the 95% confidence interval of the non-rejection values of d using
Robinson (1994).



Table 2
Estimates of d1 and d2 in the model with two fractional structures.

Frequency j( = T/r) d1 d2

Annual j = 7 (r = 9) 0.912 (0.532, 0.977) 0.091 (−0.004, 0.230)
Monthly j = 8 (r = 94) 0.961 (0.891, 1.125) 0.133 (0.111, 0.215)
Bi-weekly j = 6 (r = 227) 0.768 (0.669, 0.971) 0.230 (0.166, 0.293)
Weekly j = 6 (r = 438) 0.812 (0.701, 0.897) 0.151 (0.116, 0.197)

The values in parentheses in the third and fourth columns are the 95% confidence interval
of the non-rejection values of d using Robinson (1994).

17 Note, however, that these criteriamight not necessarily be the best criteria in applica-
tions involving fractional differences, as they focus on the short-term forecasting ability of
the fitted model and may not give sufficient attention to the long-run properties of the
fractional models (see, e.g. Hosking, 1981, 1984 and more recently, Beran, Bhansali, &
Ocker, 1998).
18 These two models also outperform the random walk model in all cases, which is not
surprising since this hypothesis was decisively rejected with the tests of Robinson
(1994) in practically all cases.
19 The accuracy of different forecasting methods is a topic of continuing interest and re-
search (see, e.g., Makridakis, Wheelwright, & Hyndman, 1998 and Makridakis & Hibon,
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semiparametric and no functional form is assumed for ut. The analysis
was conducted using both the original data and the first differences
and the results were consistent in the two cases. Specifically, for the
original data the estimated pole was found at the zero frequency, al-
though with the Giriatis et al.'s (2001) method the order of integration
changes substantially depending on the frequency of the data. For the
first differenced data we obtained estimated values for the poles at fre-
quencies corresponding to 8, 99, 209 and 428 periods respectively for
the annual, monthly, bi-weekly and weekly data, and once again the
order of integration changes substantially across frequencies. This lack
of robustness could be now partly due to the fact that we do not allow
for any degree of flexibility with respect to the order of integration at
the zero frequency, which is imposed to be 0 or 1 respectively for the
original and first differenced data. Thus, in what follows we consider a
more general model that allows for fractional degrees of integration at
both the zero and the cyclical frequencies. In particular, we use a
model such as Eqs. (1) and (2), again with zt = (1,t)T, t ≥ 1; (0, 0)T, oth-
erwise, i.e., the model now becomes:

yt ¼ β0 þ β1tþ xt; ð9Þ

1−Lð Þd1 1−2 coswrL þ L2
� �d2

xt ¼ ut; ð10Þ

againwith I(0) (potentially ARMA) ut. Note that this model includes the
previous one of long memory at the zero frequency if d2 = 0. The re-
sults, for the case of an intercept, which is the most realistic one on
the basis of the t-values (not reported), are displayed in Table 2.

The estimated values of j and thus r=T/j (the number of periods per
cycle) for the four series is now between 4 and 10 years. Specifically, j is
found to be 7 (63/7 = 9 years) in the case of annual data; 8 (and thus
751/8–94 months) for monthly data; and 6 (1366/6 and 2633/6/) for
bi-weekly and weekly data. This is consistent with the plots of the
periodograms displayed in Fig. 3 andwith the results obtained applying
the Giriatis et al. (2001) and Hidalgo (2005) methods to the first
differenced data. Focusing now on the fractional differencing parame-
ters, it can be seen that d1 is close to (although below) 1 and d2 is slight-
ly above 0 for the four series. For d1 the unit root null is rejected in
favour of mean reversion in the case of annual, bi-weekly and weekly
data; however, for monthly data, even though d1 is still below 1, the
unit root null cannot be rejected at conventional significance levels. As
for the cyclical fractional differencing parameter, d2, is estimated to be
0.094 in the annual case and the I(0) null hypothesis cannot be rejected.
In the remaining three cases, d2 is significantly above 0 (thus displaying
cyclical longmemory), ranging from 0.133 (monthly data) to 0.230 (bi-
weekly data). Very similar values for d1 and d2 are obtained in the case
of autocorrelated disturbances; LR and no-autocorrelation tests strongly
support the white noise specification for ut for each of the four series.16

Finally, we investigate which of the two specifications (the I(d) one
with AR(2) disturbances or the onewith the two fractional differencing
structures) has a better in-sample performance, and also better fore-
castingproperties. For thefirst of these twopurposeswe employ several
goodness-of-fit measures based on the likelihood function. For the
16 We use here the Box-Pierce and Ljung-Box-Pierce statistics (Box & Pierce, 1970; Ljung
& Box, 1978).
forecasting experiment, we use instead various statistics including the
modified Diebold and Mariano (1995) (M-DM) statistic. Remember
that the two models considered are:

yt ¼ β0 þ xt; 1−Lð Þd1xt ¼ ut;ut ¼ φ1ut−1 þ φ2ut−2 þ εt; ðM1Þ

and

yt ¼ β0 þ xt; 1−Lð Þd1 1−2 coswrL þ L2
� �d2

xt ¼ εt; ðM2Þ

and therefore they differ in theway the cyclical component ismodelled,
model (M1) and (M2) adopting respectively an AR(2) process and a
Gegenbauer (fractional) specification for the d1-differenced (de-
meaned) series.

For the in-sample goodness of fit analysis we carry out first a Likeli-
hood Ratio (LR) test, comparing (M1) with (M2) with AR(2) errors,
which is clearly nested in (M1). Note that using in (M2) the equations
given by Eqs. (9) and (10) with β1 = 0, d2 = 0 and AR(2) ut we obtain
(M1). The results support the modified (M2) specification for three of
the four series examined - the AR(2) coefficients were found to be sta-
tistically insignificant suggesting model (M2). Only for the annual data
(M1) seems to be preferable at the 5% level. This is consistent with the
results displayed in Tables 1 and 2, noting that the only confidence in-
terval in Table 2 where d2 = 0 is not excluded is precisely that for the
annual series. Other likelihood criteria (AIC and SIC) lead essentially to
the same conclusions.17

Nextwe focus on the forecasting performance of the twomodels. For
this purpose we calculate one- to twenty-step ahead forecasts for each
of the four series at four different data frequencies. The forecasts were
constructed according to a recursive procedure conditionally upon in-
formation available up to the forecast date which changes recursively.

We computed the Root Mean Squared Errors (RMSE) and the Mean
Absolute Deviation (MAD) for the two specifications of each series. The
results (not reported here for reasons of space, but available from the
authors upon request) indicate that the fractional structure outperforms
the AR(2) model in practically all cases.18

However, the above two criteria and other methods such as the
Mean Absolute Prediction Error (MAPE), Mean Squared Error (MSE),
etc., are purely descriptive devices.19 Several statistical tests for compar-
ing different forecasting models are now available. One of them, widely
employed in the time series literature, is the asymptotic test for a zero
expected loss differential due to Diebold and Mariano (1995).20

Harvey, Leybourne, andNewbold (1997) note that theDiebold-Mariano
test statistic could be seriously over-sized as the prediction horizon in-
creases, and therefore provide a modified Diebold-Mariano test statistic
(M-DM) given by:

M−DM ¼ DM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1−2hþ h h−1ð Þ=n

n

r
;

where DM is the original Diebold-Mariano statistic, h is the prediction
horizon and n is the time span for the predictions. Harvey et al. (1997)
and Clark and McCracken (2001) show that this modified test statistic
performs better than the DM test statistic, and also that the power of
2000, for a review of the forecasting accuracy of competing forecasting models).
20 An alternative approach is the bootstrap-based test of Ashley (1998), though his
method is computationally more intensive.



Table 3
Modified DM statistic: 5, 10, 15, 20 and 25-step ahead forecasts.

(M1) vs (M2) 5 10 15 20 25

Annual 0.998 1.799 1.222 −1.633 −4.300 (M2)
Monthly 1.565 1.536 −1.151 −3.256 (M2) −10.098 (M2)
Bi-weekly 0.887 1.109 −3.454 (M2) −5.399 (M2) −11.834 (M2)
Weekly 0.992 −0.051 −1.515 −5.466 (M2) −7.856 (M2)

In bold the cases where model (M2) outperforms model (M1) in statistical terms.
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the test is improved when p-values are computed with a Student t-
distribution.

We further evaluate the relative forecast performance of the differ-
ent models by making pairwise comparisons based on the M-DM test
statistic. We consider here 5, 10, 15, 20 and 25-period ahead forecasts.
The results are displayed in Table 3.

They show that for the 5-step and 10-step ahead predictions it can-
not be inferred that one model is statistically superior to the other. By
contrast, over longer horizons there are several cases where the frac-
tional model (M2) outperforms (M1). As a final remark, we should
note that theM-DM test may have very low power under some circum-
stances, especially in the case of non-linear models (see, e.g., Costantini
& Künst, 2011). Thus, these results here should be taken with caution.21

4. Conclusions

This paper uses long-range dependence techniques to analyse two
important features of the US Federal Funds effective rate, namely its
persistence and its cyclical behaviour. In particular, it examines annual,
monthly, bi-weekly and weekly data, from 1954 until 2017. The main
results are the following. When estimating a simple I(d) model, the es-
timates suggest that d is close to 1, in some cases below 1 indicating
mean reversion, and in others above 1 implying a rejection of the I(1)
hypothesis depending on the data frequency and the type of distur-
bances considered (white noise or AR(1)). If these are modelled as
AR(2), which is an appropriate specification according to the likelihood
criteria and also highly plausible in view of the cyclical pattern of the se-
ries under examination, the results indicate that the I(1) null cannot be
rejected at any of the four frequencies. The LM test of Dalla and Hidalgo
(2005) on the first differenced data suggests the existence of strong cy-
cles at a non-zero frequency, which is estimated to be at around 8 years
in the four cases considered. In order to allow for a more flexible speci-
fication, we consider a model that incorporates the zero and the non-
zero poles into the analysis, estimating simultaneously the two
differencing parameters, one corresponding to the long-run or zero fre-
quency (d1), and the other one to the cyclical structure (d2). When
using this specification the results indicate that the order of integration
at the zero frequency ranges between 0.768 (bi-weekly frequency) and
0.961 (monthly), while that of the cyclical component ranges between
0.091 (annual) and 0.239 (bi-weekly), with the cycles repeating them-
selves between 4 and 9 years. Both the in-sample and out-of-sample ev-
idence suggest that the long memory model with two fractional
structures (one at zero and the other at the cyclical frequency) outper-
forms the other models. Our analysis is of interest to policy makers and
practitioners since it provides an alternative modelling framework for
the Federal Funds rate that takes into account the main two features
of this series, namely its persistence and cyclicality. Moreover, the sug-
gested model outperforms rival ones in terms of its forecasting ability
and it is therefore particularly useful for the design of interest rate pol-
icies over various time horizons.

Our results are not directly comparable to those of Sarno et al.
(2005), who examine different specifications for the difference between
the effective and the target rate (finding that a variation of Taylor's
21 Using non-linear deterministic trends of the Chebyshev form (Bierens, 1997; Cuestas
& Gil-Alana, 2016) produced insignificant coefficients in virtually all cases.
(2001) model is the best among them), while we focus on the effective
rate itself. Nevertheless, our analysis produces valuable evidence for in-
terest rate modelling, since it shows that an I(d) specification including
a cyclical component outperforms both classical I(0) and I(1) models
and simple I(d) representations. This confirms the importance of
adopting an econometric framework such as the one chosen here,
which explicitly takes into account both persistence and cyclical pat-
terns, to model the behaviour of the US Federal Funds effective rate
and interest rates in general. Finally, as mentioned before, non-linear-
ities might also be present in the data, in particular in the cyclical struc-
ture. Fig. 1 shows a big spike in themiddle of the sample, which could be
an indication of timevariation in the parameters. Thereforewe also con-
ducted the analysis for two subsamples, but the results did not substan-
tially differ in terms of the number of periods per cycle. Moreover, our
findings appear to be robust across data frequencies. Since fractional in-
tegration and potential breaks are issues which are intimately related,
(Diebold & Inoue, 2001; Granger &Hyung, 2004), it would also be inter-
esting to apply the method of Ohanissian, Russel, and Tsay (2008) that
uses different frequencies. All these issues will be examined in future
papers.

Appendix A. Appendix

The test statistic proposed by Robinson (1994) for testing H0 Eq. (5)
in the model given by Eqs. (1) and (2) is given by:

R̂ ¼ T

σ̂4 â
0
Â
−1

â;

where T is the sample size, and

â ¼ −2π
T

∑
�

j
ψ λ j
� 	

gu λ j; τ̂
� 	−1I λ j

� 	
; σ̂2 ¼ σ2 τ̂ð Þ

¼ 2π
T

∑
T−1

j¼1
gu λ j; τ̂

� 	−1I λ j
� 	

;

ψ λ j
� 	0 ¼ ψ1 λ j

� 	
;ψ2 λ j

� 	
 �
; ε̂ λ j
� 	 ¼ ∂

∂τ
loggu λ j; τ̂

� 	
;ψ1 λ j

� 	

¼ log 2 sin
λ j

2

����
����;

ψ2(λj)=log |2(cosλj−coswr)|, with λj = 2πj/T, and the summation
in * is over all frequencies which are bounded in the spectrum. I(λj) is

the periodogram of ût ¼ ð1−LÞd10 ð1−2 coswrL þ L2Þd20yt−β̂
0
zt , with

β̂ ¼ ð∑
T

t¼1
ztzt

0 Þ−1
∑
T

t¼1
ztð1−LÞd10 ð1−2 coswrL þ L2Þd20yt , zt ¼ ð1−LÞd10

ð1−2 coswrL þ L2Þd20 zt; evaluated at λj = 2πj/T and τ̂ ¼ argminτ∈T�

σ2ðτÞ; with T⁎ as a suitable subset of the Rq Euclidean space. Finally,
the function gu above is a known function coming from the spectral
density of ut:

f λð Þ ¼ σ2

2π
gu λ;τð Þ;−π b λ ≤ π:

Note that this test is purely parametric and, therefore, it requires
specific modelling assumptions about the short-memory specification
of ut. Thus, if ut is white noise, gu ≡ 1, and if ut is an AR process of the
form ϕ(L)ut = εt, gu = |ϕ(eiλ)|−2, with σ2 = V(εt), so that the AR coef-
ficients are a function of τ.

The point estimates were obtained by choosing the values that min-
imise Robinson's (1994) test statistic over a grid of values for d1, d2 and
r. These parameter estimates were practically identical to those obtain-
ed by maximising the Whittle function in the frequency domain
(Dahlhaus, 1989). The confidence intervals were obtained by choosing
the values of the differencing parameterswere the null hypotheses test-
ed could not be rejected at the 5% level.
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