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In this paper, the distortion of simply supported girders with inner diaphragms subjected to concentrated
eccentric loads is investigated using initial parameter method (IPM), in which the in-plane shear defor-
mation of diaphragms is fully considered. A statically indeterminate structure was modeled with inner
redundant forces, where the interactions between the girder and diaphragms were indicated by a distor-
tional moment. Considering the compatibility condition between the girder and diaphragms, solutions
for the distortional angle, warping displacements and stresses were derived and further simplified by
establishing a matrix equation system. The validity of IPM was intensively verified by a finite element
analysis and distortional experiments. Parametric studies were then performed to examine the effect
of the diaphragm number on the distortional angle, warping displacements and stresses under various
ratios of height to span of the girder and the diaphragm thicknesses. Besides, stabilities of the local
web plate and mid-span diaphragm were analyzed based on IPM for box girders with symmetrical three
inner diaphragms. Results show that the local web plate will buckle before overall yielding with the
increment of the eccentric loads Pj, and the mid-span diaphragm is constantly stable in the whole defor-
mation process. It shows that more attentions should be paid on the stability of the local web plate than
overall yielding for girders subjected to eccentric loads.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

During the past several decades, box girders have been widely
applied in buildings and bridges due to their large bending and tor-
sional stiffness. However, they are generally susceptible to the
cross-sectional distortion [1] under eccentric loads due to their
quadrilateral instability. Therefore, excessive distortional warping
and transversal bending stresses will be produced besides the
torsional and bending ones in box girders. In a special case, the dis-
tortional warping stresses may be significant to the torsional and
bending ones. In order to control the distortion, diaphragms are
installed at the interior of the girder, which can increase not only
the stability of the local plate, but also the resistance to the warp-
ing deformations and stresses [2–4].
Researches on the distortion of girders with inner diaphragms
have been performed for many decades. The distortion of box gir-
der was initially studied by Dabrowski [5] who first formulated the
distortion of box girders with a symmetrical cross section. Li [6,7]
proposed that the shear strain of the cross section cannot be
ignored when the distortional shear rigidity is significant com-
pared to the distortional warping one for box girders. Wright [8]
proposed the Beam on Elastic Foundation (BEF) analogy for the dis-
tortion of girders with inner diaphragms, where the diaphragms
are analogous to inner supports. Based on BEF, Hsu [9,10] proposed
the Equivalent Beam on Elastic Foundation (EBEF) analogy consid-
ering the shear strain of the cross section, and found that the EBEF
analogy is more versatile than BEF due to its simplicity in analyzing
more complex problems such as non-uniform sections and multi-
span beams.

Interactions between the girder and diaphragms is the key issue
for the distortion of girders with inner diaphragms. A statically
indeterminate structure [11] was modeled with redundant forces
acting along the junctions between the girder and diaphragms.
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Moreover, the force method was applied to calculate redundant
forces, where elements in the stiffness matrix were obtained from
the finite strip method [12]. The numerical results were then
extended to multi-span bridges [13] and long-span curved bridges
[14]. An outstanding contribution was made by Suetake [15],
where the girder was regarded as an assembly of thin plates, and
the extended trigonometric series method (ETS) was applied to
analyze the stresses and deformations for box girders. Compar-
isons with FEM results show that ETS has a high accuracy. How-
ever, it is inconvenient to apply since there are many
simultaneous nonlinear equations to solve even for girders with
few diaphragms, e.g. there are up to 720 equations for a girder with
two diaphragms.

The wall thickness of diaphragms and the number of dia-
phragms in a girder will make a significant influence on the dis-
placements and stresses. Park [16,17] proposed a new beam
element with nine degrees of freedom per node for girders. Studies
showed that the distortional warping and transversal bending
stresses were reduced by increasing the diaphragm number. Simi-
lar conclusions can be drawn for straight multi-cell box girders
with diaphragms [18,19]. For horizontally curved bridges, the
rational spacing between adjacent diaphragms was provided [20]
according to the ratio between the distortional warping stress
and the bending stress. Using FEM, Zhang [21] found that the
rational number for diaphragms is 3 to 5 when the ratio of width
to height of the cross section is 1.5 and the rational number is 9
when the ratio is 4.5. Li [22] proposed a new finite element solu-
tion, and found that the distortional warping stress for cantilever
girders can be ignored when the spacing between adjacent
diaphragms is less than one fifth of the span; while for simply
supported and fixed girders, the spacing is less than one eighth
of the span.

Initial parameter method (IPM) was proposed first by Vlasov
[23] to analyze the non-uniform torsion of beams. Analogous to
IPM in non-uniform torsion, IPM can be extended to analyze dis-
tortions of girders. Considering the effect of shear strains of the
cross section, Xu [24,25] developed an equation with the variable
distortional angle, and established two categories of IPMs of the
fourth order, classified by the ratio of the distortional stiffness.
Harashima [26] proposed a distortional equation with a distor-
tional warping function, and established the fifth-order IPM. Both
IPMs in distortion have a high efficiency compared with FEM. How-
ever, IPMs has not been extended into the distortion for girders
with inner diaphragms.
tp(i+1)

zpi

zp(i+1) Pj zj

P j+1zj+1

l

(a) simply supported box girder 

y x
z

O
tpi

Inner diaphr
Pin joint

with inner diaphragms

Fig. 1. Girder with inner diaphragms un
For distortions of a girder with inner diaphragms, an assump-
tion of infinite-rigidity diaphragm was generally made in most
studies [16,20,27], where the in-plane deformation of diaphragms
was totally restrained and warping was free. Similar assumptions
can be found in distortion of curved box beams [28], where the dis-
tortional angle at the location of diaphragms is set as zero. How-
ever, the infinite-rigidity assumption is just an approximation,
which is not applicable to thin flexible diaphragms. The main
objective of this work is to investigate the distortion of simply sup-
ported girders with inner flexible diaphragms under concentrated
eccentric loads, where the in-plane shear deformation of dia-
phragms is fully considered. Interactions between the girder and
diaphragms are indicated by a distortional moment. Based on the
compatibility condition between the girder and diaphragms, solu-
tions for both the distortional angle and warping function are
obtained from the IPM. Taking a simply supported girder with 2,
5 and 9 diaphragms, respectively, as an example, the distortional
solutions from IPM were obtained, then verified by a FE analysis
and experiments. This was followed by a parametric study, in
which distortional deformations and stresses were investigated
in terms of the diaphragm number and thickness and the height
to span ratio of the girder. Based on the proposed IPM, stabilities
of both the local web plate and mid-span diaphragm were exam-
ined for girders with three symmetrical inner diaphragms. A series
of curves were obtained for the relations between the critical buck-
ling load and the position of diaphragms under various height to
width ratios of the cross section.
2. Structural model

Consider a simply supported box girder with inner diaphragms
under concentrated eccentric loads Pj (j = 1,2,. . .,m). The coordinate
system O-xyz is illustrated in Fig. 1a with the original O at the shear
center onone endof the girder. For analysis, thedistancesbetweenO
and themid-lines ofwebs B andD aremarked by n1 and n2 in Fig. 1b,
respectively. The girder ismadeof a homogeneous, isotropic and lin-
early elastic material with its Young’s and shear moduli denoted by
E and G, respectively. The girder span is l. The thicknesses of web B
and D are t1 and t2 and their height is h, while the width of flanges
A and C is b and the thickness t3. The thickness for the ith diaphragm
is tpi (i = 1,2,. . .,n) and itsmid line ismarked by zpi, measured fromO.
The load Pj is located on the top of web D at zj.

Fig. 2a shows that the eccentric load Pj can be decomposed into
three components [29,30] – the flexural load, the torsional and the
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Fig. 2. Loading decomposition, deformations and stresses of girders.
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distortional load. In Fig. 2b, the cross-section rigidly rotates around
O with a torsional angle h under torsional loads. Fig. 2c illustrates
the transversal deformations in the web and the flange under dis-
tortional loads, where uM and vM are horizontal and vertical dis-
placements at node M, respectively. The variation of the right
angle at node N is defined as the distortional angle v, given by
v = v1 + v2. Moreover, the warping displacement wd and the stress
rd, produced by the distortional moment Bd, are shown in Fig. 2d.
There also exists the shear stress sd along the cross-section profile,
developed by the distortional moment Md, as shown in Fig. 2e.

This article will focus on the distortional deformation and stres-
ses of a simply supported box girder with inner diaphragms sub-
jected to concentrated eccentric loads.

3. Distortion of girders without diaphragm

In distortion, when the shear stiffness of the cross section has a
significant value in comparison with the warping one, the influ-
ence of shear strain of the cross section on deformation and stres-
ses cannot be ignored [6,7]. The distortional differentiate equation
can be expressed as [7]

EItWðzÞ0000 � EIc
EIt
GIk

WðzÞ00 þ EIcWðzÞ ¼ m0
d ð1Þ

where It, Ic and Ik are distortional warping, frame and shear con-
stants, respectively; W(z) is the distortional warping function; md

is the distributed distortional moment. The number of the apostro-
phes of W(z) indicates the first, second and forth differentiations
with respect to the z-coordinate.

Under concentrated distortional loads, md = 0, and the solution
for Eq. (1) is given as [26]

WðzÞ ¼
X4
i¼1

BiuiðzÞ ð2Þ
where Bi (i = 1, 2, 3, 4) are coefficients determined by the
boundary conditions, and ui are defined as

u1 = cosh(k1z)sin(k2z), u2 = cosh(k1z)cos(k2z), u3 = sinh(k1z)cos
(k2z), u4 = sinh(k1z)sin(k2z)

where ki (i = 1,2) are distortional coefficients.

k1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EIc
EIt

s
þ EIc
GIk

vuut
; k2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EIc
EIt

s
� EIc
GIk

vuut
Relations between the warping function and the distortional

angle are [7]

vðzÞ ¼ � EIt
EIc

W 000ðzÞ;BdðzÞ ¼ �EItW
0ðzÞMdðzÞ ¼ �EItW

00ðzÞ ð3Þ

Substituting Eq. (2) into Eq. (3), the matrix equation is given by

ZðzÞ ¼ UðzÞB ð4Þ
where

UðzÞ¼

� EIt
EIc
u000

1 ðzÞ � EIt
EIc
u000

2 ðzÞ � EIt
EIc
u000

3 ðzÞ � EIt
EIc
u000

4 ðzÞ
u1ðzÞ u2ðzÞ u3ðzÞ u4ðzÞ
u0

1ðzÞ u0
2ðzÞ u0

3ðzÞ u0
4ðzÞ

u00
1ðzÞ u00

2ðzÞ u00
3ðzÞ u00

4ðzÞ

2
6664

3
7775; B¼B1;B2;B3;B

T
4;

ð5Þ
Z(z) is the state vector in IPM,

ZðzÞ ¼ fvðzÞ; WðzÞ; �BdðzÞ
EIt

;
MdðzÞ
EIt

g
T

ð6Þ

The boundary conditions for a simply supported girder are

vð0Þ ¼ 0;Bdð0Þ ¼ 0; for the initial end z ¼ 0;

vðlÞ ¼ 0;BdðlÞ ¼ 0; for the ultimate end z ¼ l:
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Correspondingly, the state vectors on both ends are

Zð0Þ ¼ 0; Wð0Þ; 0;
Mdð0Þ
EIt

� �
T; ZðlÞ

¼ 0; WðlÞ; 0;
MdðlÞ
EIt

� �T

For z = 0, Z(0) =U(0)B, we have

B ¼ ½Uð0Þ�inv � Zð0Þ ð7Þ
where [U(0)]inv is the inverse matrix of U(0).
Substituting Eq. (7) into Eq. (4) yields in the state vector Z(z)

ZðzÞ ¼ PðzÞ � Zð0Þ ð8Þ
where P(z) is the transfer matrix, and P(z) =U(z)�[U(0)]inv.
Eq. (8) is the standard form of IPM for the distortion of girders

without diaphragms. However, the transfer matrix P(z) is compli-
cated. Based on the relations between ui(z) (i = 1,2,3,4) and their
differentiations (see Eq. (A1)–(A3) in Appendix A), the matrix P
(z) is simplified as

PðzÞ ¼

�SC 000
1 ðzÞ �KC000

2 ðzÞ �SKC000
3 ðzÞ KC 000

4 ðzÞ
S
K C1ðzÞ C2ðzÞ SC3ðzÞ �C4ðzÞ
S
K C

0
1ðzÞ C 0

2ðzÞ SC0
3ðzÞ �C 0

4ðzÞ
� S

K C
00
1ðzÞ �C 00

2ðzÞ �SC 0
3ðzÞ C00

4ðzÞ

2
6664

3
7775 ð9Þ

where S ¼ 1
2k21þ2k22

, K ¼ EIt
EIc
, C1ðzÞ ¼ u3ðzÞ

k1
� u1ðzÞ

k2
, C2ðzÞ ¼ u2ðzÞ�

k21�k22
2k1k2

u4ðzÞ, C3ðzÞ ¼ 3k21�k22
k1

u3ðzÞ � k21�3k22
k2

u1ðzÞ, C4ðzÞ ¼ u4ðzÞ
2k1k2

.

The jth distortional load in IPM is indicated by a vector Zj, given
by

Zj ¼ 0; 0; 0;
Mj

EIt

� �T

ð10Þ

where Mj is the distortional moment for the jth distortional load,
and Mj = Pj�n1/2 [26]; n1 is the distance between the web D and
point the original O (see Fig. 1b).

4. Distortion of box girders with inner diaphragms

4.1. IPM solution

For analysis, a statically indeterminate structure is modeled
with inner redundant forces acting along the junctions between
the girder and the diaphragms. The entire model is shown in
Fig. 3a and the horizontal and vertical redundant forces Hej and
Vej are illustrated in the zoomed picture, where the subscript e
indicates the webs and flanges and e = A,B,C,D (see Fig. 1b). The
Fig. 3. A statically indeterminate structure and the
small circles indicate the joints between the girder and diaphragms
where redundant forces are located.

In order to analyze the interactions between the girder and dia-
phragms, two assumptions are made:

(1) Self balance of the in-plane forces of diaphragms

Under distortional loads, the summation of all vertical and hor-
izontal redundant forces and moments are zero for diaphragms.
That is

X
e¼A;B;C;D

Xr
j¼2

Hej ¼ 0;
X

e¼A;B;C;D

Xr
j¼2

Vej ¼ 0
X

e¼A;B;C;D

Xr
j¼2

Hejyej þ
X

e¼A;B;C;D

Xr
j¼2

Vejxej ¼ 0

ð11Þ
where xej and yej are the distances between the redundant forces Vej,
Hej and the original O.

Based on the self balance assumption, only the distortional
component for redundant forces is reserved. Referred to the forma-
tion of external momentMj [26,27], the distortional components of
the redundant forces are gathered and indicated by a concentrated
distortional moment Mpi for the ith diaphragm. Therefore, the
interactions between the girder and diaphragms can be indicated
by a moment Mpi (i = 1,2,. . .,n). Only Mpi,, opposite to Mj, will resist
the distortional deformation and stresses. In IPM, Mpi is indicated
by a vector Zpi, given by

Zpi ¼ 0; 0; 0;
Mpi

EIttpi

� �T

ð12Þ

(2) Compatibility condition between the girder and diaphragms

In-plane shear strains of diaphragms are considered, given by
cpi =Mpi /(Gbhtpi). The compatibility condition is that the distor-
tional angle at the mid line of diaphragms is opposite to the in-
plane shear strain of diaphragms. That is v(zpi) = �cpi (0 5 i 5 n).
This is a key aspect for the distortion of girders with inner
diaphragms.

Combining Eq. (8) and Eq. (12), the state vector Z(z) can be
expressed as

ZðzÞ ¼ PðzÞZð0Þ �
XR
i¼1

Z zpiþtpi=2

zpi�tpi=2
Pðz� ziÞZpidzi �

XS
j¼1

Pðz� zjÞZj

ð13Þ
where R and S are the numbers of diaphragms and moments Mj

before point z, respectively. The transfer matrices P(z � zi) and P
Mpi

Mpi

equivalent boundaries for the ith diaphragm.
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(z � zj) are obtained from P(z) by substituting the variable z by
‘z � zi’ and ‘z � zj’.

For z = l, Eq. (13) changes into

ZðlÞ ¼ PðlÞZð0Þ �
Xn
i¼1

Z zpiþtpi=2

zpi�tpi=2
Pðl� ziÞZpidzi �

Xm
j¼1

Pðl� zjÞZj ð14Þ

where the vectors Z(l) and Z(0) are referred to Eq. (6); W(0) and
Md(0) in vector Z(0) can be calculated from the first and third simul-
taneous equations in Eq. (14). Then, substituting W(0) and Md(0)
into Eq. (13), the distortional angle and the warping function can
be obtained as

vðzÞ ¼
Pn

i¼1R
1giðzÞMpi þ

Pm
j¼1S

1e24ðz; zjÞMj

2k1k2EIcU24ðl; lÞ ð15Þ
(a) n=2

(c) n=9

y
x

z
O

y
O

y
x

z
O

y
O

Fig. 4. Meshing grid, ending boundaries a

(b) D(a) Distortional warping displacement

Fig. 5. 3D contours of a girder with two diaphragms u

(b) D(a) Distortional warping displacement

Fig. 6. 3D contours of a girder with five diaphragms un
WðzÞ ¼
Pn

i¼1R
2giðzÞMpi þ

Pm
j¼1S

2e24ðz; zjÞMj

2k1k2EItU24ðl; lÞ ð16Þ

where

R
1giðzÞ ¼

2
tpi

n0031 l� zpi;
tpi
2

� �
U33

42ðz; lÞ þ n0231 l� zpi;
tpi
2

� �
U13

42ðl; zÞ
� �

� H Rþ 1
2
� i

� �
2U24ðl; lÞ

tpi
n0231 z� zpi;

tpi
2

� �

R
2giðzÞ ¼

2
tpi

n0031 l� zpi;
tpi
2

� �
U30

42ðl; zÞ � n0231 l� zpi;
tpi
2

� �
U10

42ðl; zÞ
� �

þ H Rþ 1
2
� i

� �
2U24ðl; lÞ

tpi
n0ð�1Þ
24 z� zpi;

tpi
2

� �
(b) n=5
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S
1e24ðz; zjÞ ¼ K24ðz; zjÞ � H Sþ 1

2
� j

� �
u000

4 ðz� zjÞU24ðl; lÞ

S
2e24ðz; zjÞ ¼ K24ðz; zjÞ þ H Sþ 1

2
� j

� �
u4ðz� zjÞU24ðl; lÞ

H(x) is the unit step function. H(x) = 1 for x > 0 and H(x) = 0 for
x < 0

Uijðx; yÞ ¼
u000

i ðxÞ u000
j ðyÞ

u0
iðxÞ u0

jðyÞ

					
					; Kijðx; yÞ ¼

uiðxÞ U4iðl� y; lÞ
ujðxÞ U4jðl� y; lÞ

					
					;

Kijðx; yÞ ¼ d3Kijðx;yÞ
dx3
(b) D(a) Distortional warping displacement

Fig. 7. 3D contours of a girder with nine diaphragms u
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Uij
mnðx; yÞ ¼

uðiÞ
m ðxÞ uðiÞ

n ðxÞ
uðjÞ

m ðyÞ uðjÞ
n ðyÞ

					
					; nijmnðx; yÞ ¼

uðiÞ
m ðxÞ �uðiÞ

n ðxÞ
uðjÞ

m ðyÞ uðjÞ
n ðyÞ

					
					

where um
(i)(x) and un

(i)(y) are the ith differentiation of functions
um(x) and un(y). un

(�1)(y) is the integral of function un(y), given by

uð�1Þ
2 ðyÞ ¼ k1u3ðyÞ þ k2u1ðyÞ

k21 þ k22
; uð�1Þ

4 ðyÞ ¼ k1u1ðyÞ � k2u3ðyÞ
k21 þ k22

When the calculated point z is located in the thickness of (R + 1)
th diaphragm (zp(R+1)–tp(R+1)/2 5 z 5 zp(R+1)+tp(R+1)/2), an additional
angle vadd and function Wadd should be involved,
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vadd ¼ MpðRþ1Þ½2k1k2 �u00
4ðz� zpðRþ1Þ þ tpðRþ1Þ=2Þ�

2k1k2EIctpðRþ1Þ
ð17Þ

Wadd ¼ MpðRþ1Þuð�1Þ
4 ðz� zpðRþ1Þ þ tpðRþ1Þ=2Þ
2k1k2EIttpðRþ1Þ

ð18Þ

where zp(R+1), tp(R+1) and Mp(R+1) are the mid-line location, the thick-
ness and the distortional moment of the (R + 1)th diaphragm,
respectively.

Based on Eqs. (15)–(18), both the angle v(z) and the function W
(z) are related to Mj and Mpi. Since Mj has been given in Eq. (10),
solutions rest in Mpi.

4.2. Derivation of Mpi

The compatibility condition gives the equation

Xn
i¼1

T
1giðzpTÞMpi þ

Xm
j¼1

T
1e24ðzpT ; zjÞMj

�U24ðl; lÞ
tpT

u00
4

tpT
2

� �
� 2k1k2 1þ EIc

Gbh

� �� �
MpT ¼ 0 ð19Þ

for the Tth diaphragm (T = 1,2,. . .,n), where
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4 ðzpT � zjÞ

kT is the number of distortional loads before the Tth diaphragm.
The matrix equation system for Eq. (19) is

g �Mp þ e ¼ 0 ð20Þ
where

Mp ¼ fMp1;Mp2; . . . ;MpngT; g¼

R11 T
1g2ðzp1Þ T

1gnðzp1Þ
T
1g1ðzp2Þ R22 T
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. . . . . . . . . . . .

T
1g1ðzpnÞ T

1g2ðzpnÞ Rnn

2
6664

3
7775
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" #T

and the diagonal elements in matrix g is
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Consequently, Mpi can be obtained by

Mpi ¼ �
Xm
j¼1

QijMj ð21Þ

according to the Cramer rule. Qij = |gi|/|g|, where the |g| indicates
the determinant of g, and gi is the same of g except for the ith col-
umn [T

1e24ðzp1; zjÞ, T
1e24ðzp2; zjÞ; . . . ; T1e24ðzpn; zjÞ]T

4.3. Simplification of v(z) and W(z)

Substituting Eq. (21) into Eq. (15), and the angle v(z) changes
into

vðzÞ ¼
Pn

i¼1

Pm
j¼1

S
1e24ðz;zjÞ

n � R
1giðzÞQij


 �
Mj

2k1k2EIcU24ðl; lÞ ð22Þ

where n and m are the total numbers of diaphragms and distor-
tional loads, respectively.

The number of calculation steps is m � n in Eq. (22) and it
would be time-consuming for girders with many diaphragms
under many distortional loads. For solution, a matrix equation is
established, given by

g � w ¼ a ð23Þ
Fig. 12. anti-symmetri
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the elements in matrix a are

agk ¼
Xm

j¼1
½S1e24ðz;zjÞT1gkðzpgÞ=n� R

1gkðzÞT1e24ðzpg ;zjÞ�Mj ðg–kÞXm

j¼1
½S1e24ðz;zjÞRgg=n� R

1ggðzÞT1e24ðzpg ;zjÞ�Mj ðg¼ kÞ

8<
:

In this approach, the distortional angle v(z) can be simplified as

vðzÞ ¼ 1
2k1k2EIcU24ðl; lÞ

Xn
i¼1

wii ð24Þ

For the warping function W(z), a matrix equation can also be
established similar to Eq. (23), and the elements agk (g, k = 1,2,. . .
n) in matrix a are

agk ¼
Xm

j¼1
½S2e24ðz;zjÞT1gkðzpgÞ=n� R

2gkðzÞT1e24ðzpg ;zjÞ�Mj ðg–kÞXm
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2gkðzÞT1e24ðzpg ;zjÞ�Mj ðg¼ kÞ

8<
:

Therefore, the function W(z) can be simplified as

WðzÞ ¼ 1
2k1k2EItU24ðl; lÞ

Xn
i¼1

wii ð25Þ
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Taking the node N (see Fig. 1b) of the cross section as an exam-
ple, the distortional warping displacement wdN and the stress rdN

are given by

wdNðzÞ ¼ �WðzÞbdbh
4ðbd þ 1Þ ;rdNðzÞ ¼ � EW0ðzÞbdbh

4ðbd þ 1Þ ð26Þ

where bd is the ratio of the distortional warping stresses between
nodes J and N, and bd ¼ 3bt3þht1

3bt3þht2
5. Verifications of IPM

5.1. Verifications with FEA

To verify the proposed IPM, simply supported girders with 2, 5
and 9 diaphragms are investigated for three diaphragm thick-
nesses, respectively by FEA using a commercial code ANSYS. All
girders are modeled with the Young’s modulus E = 2.1 � 1011 Pa,
the Poisson’s ratio t = 0.3, the span l = 1 m, the width b = 0.1 m,
the height h = 0.2 m and the flanges and webs thicknesses
t = 0.01 m. Diaphragms are evenly distanced along the span with
the thicknesses tp = 0.005 m, 0.01 m and 0.02 m, respectively.

Fig.4a, b and c show the meshing grids of the girders and dia-
phragms using Shell63 element in FEA model, where translations
in the x- and y- axial directions and rotations about the y- and
z-axes on both ends are restrained. A convergent test shows that
1650 to 2026 elements are adequate in terms of the diaphragm
number. Fig. 4d shows the loading conditions, where two concen-
trated distortional loads are applied along the flange and web in
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cross sections z1 = 0.45l and z2 = 0.55l, and Ph = 1.25 kN and
Pv = 2.5 kN, respectively.

Figs. 5–7 show 3D contours of the distortional warping defor-
mations and stresses for simply supported girders with 2, 5 and
9 diaphragms, respectively. The ‘amp’ indicates the amplified fac-
tor for deformations. It is seen that the largest displacement and
stress occur at the junction between webs and flanges at the load-
ing sections. With the increment of diaphragm number, the largest
stress reduces from 5.51 MPa to 1.55 MPa and the displacement
from 1.61 lm to 0.268 lm, and frame deformations at the loading
sections clearly become small.

Figs. 8–10 show the distortional angle, warping displacements
and stresses at node N from IPM and FEA for simply supported
girders with 2, 5 and 9 diaphragms, respectively, in the relative
diaphragm thickness tp /t = 0.5, 1 and 2. The distortional angle in
FEA results can be calculated byFig. 9

vðzÞ ¼ UXN � UXM

h
þ UYN � UYJ

b
ð27Þ

where UXN and UXM are x-axial displacements at nodes N and M
(see Fig. 1b), respectively; UYJ and UYN are y-axial displacements
at nodes J and N, respectively.

Good agreements are observed between IPM and FEA in
Figs. 8–10 for the distortional angle, warping displacements and
stresses for simply supported girders with inner diaphragms. Com-
pared the girders braced by 2 diaphragms with those by 5 and 9
diaphragms, it’s worth noting that the mid-span diaphragm effec-
tively restrains the transversal deformation.
ion beam

ydraulic servo 
ding system

(b) loading equipment

imental scheme.

be

(b) actual picture 

es

se

of tested points.



Y. Ren et al. / Engineering Structures 145 (2017) 44–59 53
For the distortional angle, the largest error between IPM and
FEA occurs at the loading sections, where the FEA result is
23.68% higher than the IPM one for girders with two diaphragms,
and reduces to 13.86% for those with five diaphragms and 10.18%
for those with nine diaphragms. Since there is no diaphragms or
stiffeners at the loading sections, the error between IPM and FEA
can be attributed to the local stress concentration. So the distor-
tional angle obtained from IPM is susceptible to the influence of
stress concentration.

In addition, the influence of shear strains of the cross section on
distortional deformations and stresses are examined in Fig. 11 for
simply supported girders with 2 and 5 diaphragms, where the
compatibility condition between the girder and diaphragms is con-
sidered. It is seen that the shear strain of the cross section makes
little effect on warping displacements and stresses, but a large
influence on the distortional angle. The largest difference occurs
at the loading sections z = 0.45l and z = 0.55l, which is 14.9% for
girders with 2 diaphragms and 17.8% with 5 diaphragms. Also,
the error at the mid span for girders with 2 diaphragms is 13.3%.
Thus shear strains of the cross section cannot be ignored when
the transversal deformation of girders is considered.

5.2. Verifications with experiments

For further verification of the IPM, a series of experiments were
performed using four groups of samples – girders with no dia-
phragms, one, two and three diaphragms, subjected to distortional
loads. Diaphragms are equally distanced along the span. Both gird-
ers and diaphragms were fabricated from carbon structural steel
plates (yield strength 235 MPa) of 8 mm thickness. All girders are
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3 meters long, with height h = 0.6 m and width b = 0.346 m, giving
a 30� angle between the diagonal and the web. All girders are
sealed by a steel plate of 6 mm thickness on both ends.

To simultaneously produce two concentrated distortional loads,
as in Fig. 4d, two steps were taken as follows

(1) For distortional loads, as shown in Fig. 12, units were
designed with two groups of wheels anti-symmetrically
about the shear center O of the cross section. This is to
decompose the horizontal power force Psource produced by
FCS hydraulic servo system into two orthogonal loading
components Ph and Pv.

(2) For concentrated loads, as shown in Fig. 13, four stiff units of
1.5 m in length and 0.15 m and 0.350 m in width, respec-
tively, were welded onto flanges and webs symmetrically
over the mid span, and the loading sections were hence
located at z1 = 0.75 m and z2 = 2.25 m, respectively.

During the experiments, compressive loadings were applied
along the diagonal of the cross section by two anti-symmetrical
wheel units, as shown in Fig. 12a. The entire experimental setup
is shown in Fig. 14a, including two FCS hydraulic servo loading sys-
tems, two connection beams, two wheel units, four stiff units, the
tested girder and two supports. The maximum loading was set to
5t with a loading speed of 2 mm/s, controlled by a loading equip-
ment in Fig. 14b.

Fig. 15a shows measured points on the girder, with twelve
equally distanced points A1–A11 on webs and B1–B11 on flanges.
The transversal deformations on measured points were measured
by dial gages, magnetically attached to a rectangular tube of
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3.5 m length, as shown in Fig. 15b. Measurements at each point
gave the x- and y- axial deformations UXN and UYN (N = 1,. . ., 11),
and the distortional angle is calculated as

vðzÞ ¼ 2UXN

h
þ 2UYN

b
ð28Þ

Compared with those from IPM, the transversal displacements
and distortional angle are depicted in Fig. 16 for girders without
Fig. 18. Comparisons of distortional warping stresses between IP
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diaphragms under the source loading of 5t. There exist some errors
between the IPM and experimental results at the singularity points
A1 for x-axial displacement and B10 and B11 for y-axial displace-
ment, which are mainly caused by the residual strains of welding
and manufacturing. Eliminating the influences induced by singu-
larity points, fitting lines were obtained from experimental results
by applying the quadratic fitting method provided in the software
MATLAB. Fig. 16 shows reasonable agreements between two
M and experiments (n being the total diaphragm number).
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results.For distortional warping stresses, strains (ed�0� ,ed�45� and
ed�90� ) in three directions were measured at points A1–A6 using
strain gauges shown in Fig. 17a and recorded by the static strain
equipment in Fig. 17b. The warping stress is calculated as

rd ¼ E
1� t2

ðed�90� þ ted�0� Þ ð29Þ

where E = 2.1 � 1011Pa and t = 0.3.
Fig. 18 shows calculated distortional warping stresses on the

tested points A1–A6 for girders with (a) no diaphragm, (b, c) one
diaphragm, (d, e) two diaphragms and (f) three diaphragms,
respectively. It is seen that the warping stresses obtained from
the IPM and experiments have the same up-and-down trend and
with apexes at A3 for girders with diaphragms. The errors mainly
come from the drop of dh (Fig. 12a) between two horizontal source
forces, which are mainly caused by the residual strain during man-
ufacturing and welding. And this will produce torsional warping
stress besides the distortional one.

6. Parametric study

In this section, the effects of the ratio of height to span of the
girder h/l, the diaphragm thickness tp and number n are examined
on the distortion of simply supported girders with equally dis-
tanced inner diaphragms, where the loading and boundary condi-
tions are referred to those in Section 5.1.
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Fig. 19 shows the non-dimensional warping stress rd/rd0 for
node N at the loading section z = 0.45l varying with the ratios h/l
and tp/t, where rd0 is the warping stress of girders without dia-
phragms. It is seen that except for the girder with two diaphragms
under h/l = 0.1, the non-dimensional stress rd/rd0 remains less
than 1 and becomes smaller with the increment of n, tp/t and h/l,
respectively. Besides, the rd/rd0 decreases substantially when the
number of diaphragm reduces from 2 to 1, or increases from 2 to
3, clearly indicating that the mid-span diaphragm plays a signifi-
cant role in the reduction of distortional warping stress.

Fig. 20 shows the non-dimensional distortional angle v/v0 at
the loading section z = 0.45l varying with h/l and tp/t, where v0 is
the distortional angle for girders without diaphragms. It is seen
that except for the girder with two diaphragms under h/l = 0.1,
the non-dimensional distortional angle v/v0 remains less than
0.25 and becomes smaller with the increment of n, tp/t and h/l,
respectively. This implies that the inner diaphragms are capable
of restraining the transversal deformation of the cross section,
especially when n > 3. Similarly, compared with the distortional
angle at n = 2, those at n = 1 and 3 decrease significantly due to
the restraint by the mid-span diaphragm.

Fig. 21 shows the non-dimensional warping displacement wd/
wd0 for node N at the loading section z = 0.45l varying with the
ratios h/l and tp/t, where wd0 is the warping displacement for gird-
ers without diaphragms. It is seen that except for the girder with
two diaphragms under h/l = 0.1, the non-dimensional displace-
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ment wd/wd0 in Fig. 21a remains less than 1.0 and converges to a
fixed value between 0.1 and 0.2 for large diaphragm numbers.
7. Buckling of both the local web plate and the mid-span
diaphragm

Taking a simply supported girder with uniform three inner dia-
phragms as an example, Fig. 22 shows 3D contours for the warping
displacements and stresses, where the measurement, loading and
boundary conditions are referred to those in Section 5.1. It is seen
from Fig. 22 that the maximum displacement occurs at the local
web plate at the loading sections, and the maximum stress occurs
at the edge of the mid-span diaphragm, which may result in local
buckling. It is thus necessary to check the stabilities for both local
web plate and mid-span diaphragm.

In this section, the proposed IPM was carried to analyze the
critical buckling values Pcr1 and Pcr2 for the eccentric load Pj accord-
ing to the stabilities of the local web plate and the mid-span
diaphragm, respectively. Inner diaphragms include one fixed
Diaphragm I Diaphragm III
Mid diaphragm
(diaphragm II)

(a) 3D contour of distortional warping displaceme

(c) 3D contour of distortional warping stress

Maximum warping 

Fig. 22. 3D contours of warping displacement and stress of g

Fig. 23. Mixed stress bound
(diaphragm II) at the mid span and two (diaphragms I and III) sym-
metrical to the mid-span one. The loading and boundary conditions
are referred to those in Section 5.1.

Fig. 23 shows the mixed stress boundary condition for the local
web plate between the loading section and the mid span, in which
a = 0.05l. Under distortional loads, the warping stress rd varies lin-
early from rd1 at the loading section to rd2 (=brd1) at the mid span
and from rd1(2) on the top to –rd1(2) at the bottom. There also exists
a constant shear stress sd1 (=grd1) on all four sides of the cross-
section, and a parabola sd2 on both lateral sides. Both shear stresses
can be obtained from [26]

sdðs; zÞ ¼ �MdðzÞ
Itt

ðSdðsÞ �
H
F SdðsÞqdðsÞdsH

F qdðsÞds
Þ ð30Þ

where Md(z) is the distortional moment in Fig. 2; It is the distor-
tional warping constant in Eq. (1); t is the thickness of local web
plate, given by t = 0.01 m; F is the cross-sectional area; qd(s) is the
distance between the distortional center [6] and the mid line of
the cross-sectional profile; Sd(s) is the second moment of area, given
nt (b) deformation of mid-span diaphragm

(d) Stress of mid-span diaphragm

Original frame

Deformed frame

displacement

Maximum 
warping stress

irders with three uniform inner diaphragms (tp = 5 mm).

aries of local web plate.



Table 1
Several definite integral items used in Eq. (35).

Definite integrals u = p u– p and u + p :even u– p and u + p :oddR a
0 sin upz
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a dz a

2 0 0R a
0 cos upz
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Fig. 24. Convergence of critical distortional warping stress (rd1)cr.
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by Sd(s)=
R
ŵds, ŵ is the distortional sectorial coordinate [7], s is the

circumferential coordinate around the cross-sectional profile.
Under the mixed stress boundary condition, the out-of-plane

deformation wp for local web plate can be indicated by the combi-
nation of two orthogonal sinusoidal functions in z- and y-axial
directions, given by

wp ¼
X1
u¼1

X1
v¼1

Auv sin
upz
a

sin
vpy
h

ð31Þ

where u and v are the numbers of half waves in z- and y-axial direc-
tions; Auv is the undetermined coefficient, which is the maximum of
the combination of two sinusoidal functions.

For analysis, the distortional warping stress rd and the shear
stress sd for the local web plate can be presumed as [31]

rd ¼ rd1 1� 2
h
y

� �
1� 1� b

a
z

� �
ð32Þ

sd ¼ sd1 þ sd2 ¼ rd1gþ rd1
1� b
a

y� y2

h

� �
ð33Þ

where b is the ratio of the warping stresses rd1 to the rd2; g is the
ratio of the warping stress rd1 to the constant shear stress sd1. Both
ratios are calculated from IPM.

To obtain the critical buckling stress (rd1)cr for the local web
plate, Galerkin equation [32] is applied, given by (p, q = 1,2,. . .,1)

Z a

0

Z h

0

@4wp

@z4
þ 2

@4wp

@z2@y2
þ @4wp

@y4
þ trd

@2wp

@z2
þ 2tsd

@2wp

@z@y

 !

� sin
ppz
a

sin
qpy
h

dzdy ¼ 0 ð34Þ

Substitute Eqs. (31)–(33) into Eq. (34), the latter is changed into

X1
u¼1

X1
v¼1

Auv

up
a

� 2þ vp
h

� 2
 �2 R a
0

R h
0 sinupz

a sinvpy
h sinppz

a sinqpy
h dzdy

�trd1
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� 2 R a
0

R h
0 1�2

hy
� 
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a z
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a sinqpy
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2uvp2
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R a
0

R h
0 gþ 1�b

a y� y2

h


 �h i
cosupz

a cosv npy
h sinppz

a sinqpy
h dzdy

8>>>><
>>>>:

9>>>>=
>>>>;

¼0

ð35Þ
where the definite integrals on variables u and p are given in
Table 1; and the integrals on v and q are obtained by replacing u
and p.

Eq. (35) can be translated into a matrix equation set and the
determinant of the coefficient matrix should be zero as the coeffi-
cient Auv cannot be zero. Therefore, the critical stress (rd1)cr can be
obtained.

In addition, since the dimension of the coefficient matrix affects
the calculation accuracy, the critical stresses (rd1)cr were examined
first in Fig. 24 under different dimensions of the coefficient matrix.
In the calculation, the span l = 1 m, the height h = 0.25 m, the width
b = 0.1 m, the thicknesses for webs and flanges t = 0.01 m, and the
diaphragm thickness tp = 0.005 m. It is seen that the critical stress
(rd1)cr tends to a converged value as the dimension of the coeffi-
cient matrix increases from 2 � 2 to 4 � 4. However, calculation
time increases significantly from 12 s to 51220 s. Considering both
the accuracy and time, the 3 � 3 coefficient matrix is regarded
most appropriate to calculate the critical stress (rd1)cr.

In order to obtain Pcr1, a linear relationship is established
between the critical moment Mcr1 and the critical stress (rd1)cr.

Mcr1

Me
¼ ðrd1Þcr

ðrd1Þe
ð36Þ

whereMcr1 is the critical value for external momentMj based on the
stability of the local web plate, given by Mcr1 = Pcr1�n1/2. Me is the
unit external moment, i.e. Me = 1Nm. (rd1)e is the corresponding
warping stress on top of the web at the loading section z = 0.45l,
produced by the unit moment Me.

Fig. 25 gives the critical load Pcr1 varying with the location zp1 of
diaphragm I for various ratios h/b, based on the stability of the local
web plate. It is seen that the critical load Pcr1 increases remarkably
when diaphragm I is located close to the loading section z1 = 0.45l,
implying that installation of a diaphragm at the loading section
will enhance effectively the stability of the local web plate.

While for the mid-span diaphragm (diaphragm II) subjected to
pure shear boundary conditions, the critical value (Mp2)cr for
moment Mp2 is given by [33,34]

ðMp2 Þcr ¼
Ep4t3p2

nð1� t2Þ ; ðh=b 6 2Þ

ðMp2 Þcr ¼
89h
200b

þ b
3h

� �
Ep2t3p2
1� t2

; ðh=b > 2Þ ð37Þ

where n ¼ 384b2h2

9ðh2þb2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
706
625 þ 81

25
h2þb2

h2þ9b2


 �2
þ 81

25
h2þb2

9h2þb2


 �2r
; t is the Pois-

son’s ratio and equals to 0.3; tp2 is the thickness of mid-span dia-
phragm and tp2 = 0.005 m.

Based on Eq. (21), the critical momentMcr2 for external moment
Mj can be calculated by

Mcr2 ¼ � ðMp2Þcr
Q21 þ Q22

ð38Þ

where Q21 and Q22 are defined in Eq. (21).
Furthermore, based on equation Mj = Pj�n1/2 [26], the critical

load Pcr2 can be finally obtained from Eq. (38). For the stability of
the mid-span diaphragm, Fig. 26 gives the critical load Pcr2 varying
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with the location zp1 of diaphragm I for various values of h/b. It is
seen that the critical load Pcr2 increases remarkably when dia-
phragm I is located close to the loading section z1 = 0.45l, indicat-
ing increased resistance to buckling.

Back to the girder with equally-distanced three inner dia-
phragms in Fig. 22, the girder will reach its yield strength limit
of 235 MPa when the eccentric load Pj is 650kN, which is much
smaller than the critical buckling load Pcr2 of 8743kN at
zp1/l = 0.25 for the ratio h/b = 2 according to the stability of the
mid-span diaphragm. Simultaneously, the plastic yield load of
650kN is much larger than the critical load Pcr1 of 12.2kN at
zp1/l = 0.25 according to the stability of the local web plate. This
implies that buckling of the local web plate will be the primary
failure mode with the increment of eccentric loads Pj. Hence atten-
tions should be paid on the stability of the local web plate for the
design of girders subjected to eccentric loads.
8. Conclusions

In this paper, the initial parameter method (IPM) is applied to
investigate the distortion of simply supported girders with inner
diaphragms subjected to concentrated eccentric loads, where in-
plane shear deformation of diaphragms is considered. The main
conclusions can be drawn as follows

(1) Compared with results from FEA and experiments, accurate
analyses can be obtained by IPM for the distortional angle,
warping displacements and stresses for simply supported
girders with inner diaphragms. Both the in-plane shear
deformation of diaphragms and the compatibility condition
between the girder and diaphragms are taken into account
in IPM. Besides, comparison of results between considering
the shear strain of the cross section and not shows that
the shear strain of the cross section cannot be ignored when
calculating the distortional angle.

(2) Both the distortional angle and warping stresses decrease
with the increment of the ratio of height to span, the number
of diaphragms and their thickness. The warping displace-
ment converges to a fixed value between 0.1 and 0.2 for
large diaphragm numbers. And the mid-span diaphragm
plays a key role in reducing the distortional deformations
and stresses for girders under symmetrical loads.

(3) Stabilities of the local web plate and the mid-span
diaphragm were both investigated for box girders with sym-
metrical three inner diaphragms. Results show that both the
local web plate and the mid-span diaphragm increase their
resistance to buckling when the diaphragm I is located close
to the loading sections. Moreover, the local web plate will
buckle first as the primary failure mode. Therefore, atten-
tions are needed on the stabilities of the local web plate
for simply supported girders under eccentric loads.

Based on the IPM, it is possible to improve the warping
displacements and stresses of simply supported girders through
optimizing the positions and wall thickness of diaphragms. Future
work are needed for (1) optimization of the distortion of girders
with diaphragms; (2) mechanical properties of girders with
perforated diaphragms.
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Appendix A

The relationships between ui(z) (i = 1,2,3,4) and their differenti-
ations is

u0
1 ¼ k1u4 þ k2u2;u

0
2 ¼ k1u3 � k2u1u

0
3 ¼ k1u2 � k2u4;u

0
4

¼ k1u1 þ k2u3; ðA1Þ

u00
1 ¼ ðk21 � k22Þu1 þ 2k1k2u3; u00

2 ¼ ðk21 � k22Þu2 � 2k1k2u4;

u00
3 ¼ ðk21 � k22Þu3 � 2k1k2u1; u00

4 ¼ ðk21 � k22Þu4 þ 2k1k2u2;

ðA2Þ

u000
1 ¼ðk31�3k1k22Þu4þð3k21k2�k32Þu2; u000

2 ¼ðk31�3k1k22Þu3�ð3k21k2�k32Þu1;

u000
3 ¼ðk31�3k1k22Þu2�ð3k21k2�k32Þu4; u000

4 ¼ðk31�3k1k22Þu1þð3k21k2�k32Þu3:

ðA3Þ
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