
mPower: A Component-based Development
Framework for Multi-agent Systems to Support

Business Processes

H Lee, P Mihailescu, and J. W. Shepherdson

One of the obstacles preventing the widespread adoption of multi-agent systems in industry is the difficulty of implementing
heterogeneous interactions among participating agents via asynchronous messages. This difficulty arises from the need to
understand how to combine elements of various content languages, ontologies, and interaction protocols in order to construct
meaningful and appropriate messages. In this paper mPower, a component-based layered framework for easing the
development of multi-agent systems, is described, and the facility for customising the components for reuse in similar domains
is explained. The framework builds on the JADE-LEAP platform, which provides a homogeneous layer over diverse operating
systems and hardware devices, and allows ubiquitous deployment of applications built on multi-agent systems both in wired
and wireless environments. The use of the framework to develop mPowermobile , a multi-agent system to support mobile
workforces, is reported.

1 Introduction
Multi-agent system technology has been used on many
occasions to automate business processes [][][][]. In such
cases, a business process is frequently viewed as a collection
of autonomous problem solving entities that negotiate with
one another and come to a mutually acceptable agreement
detailing how to co-ordinate their independent sub-activities.
Multi-agent system technology is preferred as it is deemed to
provide greater immunity against changes in business
process definition compared with other computing
technologies [6].

Not withstanding these advantages, the
development of multi-agent systems is considered difficult
because of its reliance on message-based communication.
The creation and interpretation of a message requires an
understanding of agent communication languages and their
associated ontologies, content languages and interaction
protocols [], which can be difficult for novice agent
programmers to grasp. Furthermore, due to a reliance on
asynchronous communication, the management of
conversations among participating agents can be a burden
for developers.

This paper describes a component-based framework that is
intended to ease the development of multi-agent systems
when automating business processes. This framework
utilises reusable conversational components (C-COMs) that
provide services for the execution of business tasks via

interaction with other agent roles (such as ‘Initiator’ or
‘Respondent’ which are described in section 3.2). These C-
COMs hide all the message composition and interpretation
details from developers and manage the interaction states
between collaborating agents. This framework also provides
a set of generic workflows that consists of one or more C-
COMs, which can be used as templates to automate domain-
or organisation-specific business processes. The generic
workflows can be used as an architectural pattern [], which is
applied to business processes that have different
requirements by replacing (or customising) one or more of
their components. The framework is based on JADE-LEAP
[] and is known as ‘mPower’. This paper consists of five
sections. The next section briefly reviews related work,
whilst section 3 describes the mPower framework which
shows the relationship between components, architecture,
and applications. Section 4 illustrates how a multi-agent
system (mPowermobile) to support mobile workforces, was
derived from the mPower framework. Finally, section 5
summarises this paper.

2 Literature review
Multi-agent systems are used as a core technology in various
applications, ranging from information retrieval [] to
business process automation []. Many multi-agent system
platforms are based on Java and must be run on
‘heavyweight’ (e.g. desktop or server) devices using Java 2
Standard Edition (J2SE) - examples include the Comtec
Agent Platform [] and Zeus []. This paper favours JADE-

1

LEAP [][] as a multi-agent system implementation platform
as it enables the key components of the system to run on a
wide range of computing devices. Therefore a mobile worker
can use a highly portable device (such as a PDA or mobile
phone) to access business process automation applications,
in preference to a luggable laptop computer when working
‘up poles and down holes’ or on a Customer’s premises.

Agent technology has long been used to support
business processes. Huhns and Singh [] summarise the state
of the art in agent-based workflows. Shepherdson et al. []
use a multi-agent system for the co-ordination of cross-
organisational workflows. Jennings et al. [] insist that a
multi-agent system has the necessary features for the support
of modern dynamic business processes and propose a
suitable multi-agent system architecture.

Multi-agent system reuse has been studied in some
detail. Kendal et al. [] applied object oriented design patterns
to implement agent concurrency, collaboration, and
reasoning. They put forward an agent pattern or architecture
which can be used for the development of multi-agent
systems in similar domains. On the other hand, Brazier et al.

[] propose a generic co-operative agent model that can be
refined to generate application-specific multi-agent systems.

The LEAP project introduced the concept of a
generic service component (GSC) [], which is a reusable
software component that provides a service through message
exchange with sub-components that implement one or more
agent roles. The C-COMs described within this paper are an
extension of the LEAP GSC concept.

A component-based approach to supporting
business processes has already been adopted by some
commercial companies. IBM’s SanFrancisco [] is a
framework that provides reusable components such as
business objects, functions, and core workflows. SAP [] also
provides reusable business components from which a
business application can be easily customised. The mPower
framework has a similar layered architecture to
SanFrancisco. However, the components used in mPower
have a different structure compared to those in SanFrancisco
and SAP because they abstract and implement the business
conversations among process actors, rather than business
objects or functions.

Foundation Layer
(Message Transportation, Ontology,

Language, Behaviours)

Components Layer
(Ontology Components,
Service Components)

Generic Workflow
Layer

(Job mgt, Travel mgt.,
etc.)

Application
Layer

(a)

MH MH
IPSIPS

AP APII

EI

II
Initiator Respondent

ISMISM

(b)

(c)

Element

Content
Element

Predicate Content
Element
List

Term

Agent
Action

IRE Concept

Primitive

Aggregate

Variable

Fig 1 (a) layered architecture of the mPower framework, (b) structure of a conversational component,
(c) hierarchy of ontology element in Jade [].

3 mPower: A reusable framework for the
development of multi-agent systems
The basic principle of mPower for supporting a business
process is to view the latter as a linked set of
conversations among participating process actor roles.
From this point of view, the application reuse means the
reuse of conversations occurring in the target
application. Hence the rationale of using a MAS as a
key technology to support business processes.

Fig. 1(a) shows a layered view of the mPower
framework, which is used to develop component-based

multi-agent systems. This framework consists of four
layers: foundation, components, generic workflow and
applications. The foundation layer contains all the
supporting functionality for a multi-agent system, such
as message transportation, ontology support, language
support etc.

The components layer consists of basic
ontology and C-COMs that are common across a
number of mobile workforce applications. The ontology
components are reusable ontology items such as
Customer, Job, and Shift etc. Each C-COM provides a

2

standard mechanism for accessing a service such as
work assignment, route planning and attendance
management.

The ontology components are used by C-
COMs to standardise and understand the contents of
service request and service response messages. The
generic workflow layer is a set of pre-composed
components (both of type ontology and service) that
support generic business processes. At the application
layer, a system is a customised collection of
components from the layers beneath it.

3.1 Foundation layer
The mPower framework has been implemented using
JADE-LEAP, which provides the foundation services,
thereby reducing the effort required to develop multi-
agent systems. JADE-LEAP provides the following
benefits: First, it complies with the FIPA Abstract
Architecture Specification; Second, it provides agent
management services such as agent
registration/deregistration and support for agent
lifecycle management; Third, application developers are
able to extend a generic agent provided by the JADE-
LEAP platform and customise it to meet the specific
requirements of a given application. The generic agent
is equipped with a behaviour scheduler which controls
the goal achieving behaviour of the agent; Finally,
JADE-LEAP provides support for the use of FIPA agent
communication languages used during inter-agent
communication, as it provides ontology support, allows
the use of content languages (FIPA SL and LEAP) and
comes complete with a number of FIPA-compliant
interaction protocols. With this support, developers are
more easily able to create messages that are exchanged
asynchronously among agents.

3.2 Components layer
The components layer consists of two types of
components (ontology and conversational) which are
based on the foundation services. The implementation
of the ontology components - an abstraction of the
JADE-LEAP common ontology items - is based on the
underlying ontology support schema. The hierarchy of
the ontology items supported by JADE-LEAP is shown
in Fig 2 (c). The ontology components map the common
ontology items into the hierarchy’s predefined
categories and detail the attributes of the items in target
domains, whereas C-COMs abstract and implement the
common message-based interactions among
participating agents in target domains. The content of a
message refers to the ontology components in order to
represent the intention of the message sender. From an
application developers’ point of view, a C-COM is a
black box that hides the details of the creation and
interpretation of a set of messages that need to be
exchanged by agents in order to achieve a service goal.

The two main building blocks of a C-COM are
an interaction protocol and the role components. The
interaction protocol defines the sequence of
asynchronous messages sent between the role
components, and the role components perform the
actions necessary at each stage of the interaction
protocol to achieve the service goal. The role
components are installed into, and executed by, one or
more agents. Fig. 1(b) shows the internal structure of a
C-COM. There are two generic role components for
each C-COM - Initiator and Respondent. The Initiator
component starts an interaction by sending a message
and the Respondent component is activated when it
receives a message from an Initiator component. These
two generic role components can be specialised
according to the requirements of a given C-COM. Each
role component consists of an Interaction Protocol
Scheduler (labelled ‘IPS’ in Fig. 1), a Message Handler
(MH), an Action Pool (AP) and one or more Interfaces.
Each role component is in effect a Finite State Machine,
driven by internal state changes, and has a different set
of internal states according to the role the component
plays in the interaction protocol employed for a given
C-COM. The Interaction Protocol Scheduler schedules
and executes all the actions stored in the Action Pool of
a role component according to internal state changes.
For this purpose, each role component maintains an
Interaction State, which is managed by the Interaction
State Manager (ISM). The Message Handler is
responsible for validating outgoing messages and
interpreting incoming messages. A role component
provides a number of interfaces (i.e. sets of method
signatures) for customisation purposes. An Initiator role
component has two kinds of interfaces: External and
Internal (EI and II respectively). An External Interface
(which has a single method, named ‘execute’) defines
the input data and the service result which is returned to
the service consumer. An Initiator role component
contains the implementation of the External Interface.
The External Interface is a trigger for the entire C-
COM. Calling the execute method in the External
Interface activates the Initiator role component which
then activates all its other Respondent role components
in order. An Internal Interface is called by the role
component itself, and an agent (which installs the role
component) provides the implementation of that
interface. For example, if a Respondent needs access to
a knowledge source to retrieve information to populate a
response message, the developer should provide the
Respondent component with an implementation of an
interface when s/he installs the Respondent component
in an agent. Then the Respondent component interacts
with the application-specific interface implementation
to retrieve the required information. From this,
applications supporting different mobile business
processes can customise the same C-COM by providing
different implementations of the interface, which reflect
application specific contexts such as different

3

knowledge sources, business rules, and legacy system
APIs etc.

The implementation of C-COM was based on
the interaction protocol support within JADE-LEAP, as
the latter provides useful components that can be
extended to implement application-specific interaction
protocols: namely Achieve Rational Effect
Initiator/Respondent and Contract Net
Initiator/Respondent. These components have been
extended by specialising the actions executed at each
stage of the interaction protocol (via changes to agent
behaviour and ontology component selection) for each
target business process.

3.3 Generic workflow layer
A generic workflow is a set of linked C-COMs,

which can be reused to support similar business
processes in the same domain. shows an example of
generic workflow components for job management.
Each rectangle represents a C-COM and double
arrowhead represents the control transition between C-
COMs. The first conversation is between the roles Job
Distributor and Job Owner. Then, the Job Owner has
two options to start the next conversation, that is, Job
Trade or Job Update. The Job Owner role assumes a Job
Giver role in the JobTrade conversation and a Job
Executor role in the JobUpdate conversation. The
JobClose conversation can be reached only from the
JobUpdate conversation. This control flow enables an
agent to determine the next conversation that a human
worker might want to execute.

Job
Owner

Job
Giver

Job
Taker

Job
Executor Job

Manager

Job
Executor

Job
Manager

JobDelivery

JobTrade

JobUpdate

JobClose

T1

T2

T3

T4

Job
Distributor

Fig 2 A generic workflow component for job
management.

The following shows an example specification
of the generic workflow shown in Fig 2.

<Workflow name=”job management cycle”>

<C-COM name=”JobDelivery”>

<Role name=”JobDistributor” type=”Initiator”/>

<Role name=”JobOwner” type=”Respondent” />

</C-COM>

<C-COM name=”JobUpdate”>

<Role name=”JobExecutor” type=”Initiator”/>

<Role name=”JobManager” type=”Respondent” />

</C-COM>

<C-COM name=”JobTrade”>

<Role name=”JobGiver” type=”Initiator”/>

<Role name=”JobTaker” type=”Respondent” />

</C-COM>

<C-COM name=”JobClose”>

<Role name=”JobExecutor” type=”Initiator”/>

<Role name=”JobManager” type=”Respondent” />

</C-COM>

<Transition id=”T1” type=”XOR”>

<Resource id=”ontology.job_management.Job” />

<PreConversation name=”JobDelivery”

 linker=”JobOwner”/>

<PostConversation name=”JobUpdate”

 linker=”JobExecutor” />

<PostConversation name=”JobTrade”

 linker=”JobGiver”/>

</Transition>

<Transition id=”T2” type=”XOR”>

<Resource id=”ontology.job_management.Job” />

<PreConversation name=”JobUpdate”

 linker=”JobOwner”/>

<PostConversation name=”JobUpdate”

 linker=”JobExecutor” />

<PostConversation name=”JobTrade”

 linker=”JobGiver”/>

</Transition>

…
</Workflow>

Fig 3 Generic workflow specification example.

From Fig 3, it can be seen that each C-COM is
represented by a name, initiator role, and respondent
role. A Transition tag specifies a transition from one
conversation (specified by the PreConversation tag) to
another (specified by the PostConversation tag). The
selection of a conversation from multiple post-
conversations is done by checking the relationship

4

between the pre-conversation and potential post-
conversations. From the above specification, the
transition “T1” mandates that only one post-conversation
can be performed. Also job information (accessible via
the ontology.job_management.Job attribute in the
ontology base of the agent) is transferred from the pre-
conversation to the post-conversation. On the other
hand, the transition “T2” states that the JobUpdate
conversation can be performed iteratively (as JobUpdate
is one of the possible post-conversations) before it
transits to the JobClose post-conversation.

Each workflow specification is shared by all
the agents participating in that workflow, and is used to
schedule the relevant C-COMs at run time. For
example, if an agent receives a job assignment for its
user as the result of the JobDelivery conversation, then
it enables the GUI menu items that allow its user to
launch the JobTrade and JobUpdate conversations,
while disabling the menu item that launches the
JobClose conversation.

5

Table 1: Identified services for mobile workforces.

Domain Services Description

Teamwork
Coordination

Schedule

Work

Request

Given a pool of work-requests, enable a mobile worker to add a work-request to his/her
current schedule. The pool of work-requests that a mobile worker sees may not be all of
those currently available. Only those work requests that a particular mobile worker is
can perform will be shown to him/her (this can be due to constraints imposed by the
current schedule, by the mobile worker’s experience and qualifications, and so on.)

GenerateWork
Schedule

Given a set of work requests, find a work schedule in which all of the constraints in the work
requests (times, distances, etc) are satisfied and find routes

TradeWork

Request

Enables mobile workers to swap work-requests from their current schedules.

Coordinate

SocialActivity

Enables mobile workers to arrange social meetings such as a lunch during the working day.
This may provide facilities for suggesting possible locations for lunch, determining who can
attend lunch at some location (given constraints of time and distance), finding routes to
locations and so on.

SwapShift Each Mobile Worker has an attendance pattern that defines the shifts they will work. A
MW wants to swap a shift on some day for some other shift (on possibly the same day).

Trade

Overtime

A Mobile Worker has registered for overtime that they are no longer able to complete. The
deadline for cancelling overtime has past, so the MW wants to find another MW willing to
do the overtime.

RequestLeave
Change

A Mobile Worker wants to book leave for some date but is declined due to colleagues
having leave booked for that date. The Mobile Worker can issue a request for colleagues to
change the dates of their leave.

CallFor

Overtime

Registrations

When a lot of unforeseen and urgent work arises, a Manager can request that Mobile
Workers register for Overtime. This may be further refined to allow the Manager to
target Mobile Workers with specific skills.

CallToCancel
Leave

Bookings

When a lot of unforeseen and urgent work arises, a Manager can request that Mobile
Workers forego LeaveBookings. This may be further refined to allow the Manager to
target Mobile Workers with specific skills.

Request

Expertise

When a mobile worker has a problem that they cannot solve alone, this service will
enable them to ask for help with the problem from an expert in the given problem area.

Communicate
WithMentor

As an inexperienced employee will often benefit from a mentoring relationship with a
more experienced colleague, this service component enables mobile workers to
communicate with a mentor.

MakeCollecti-
veDecision

Called by other agent service components in order to mediate the interactions between
mobile workers when a collective decision is necessary.

Travel
Management

PlanRoute Given two locations A and B, calculate a route between A and B, subject to any given
constraints (e.g. shortest distance, least time taken, must pass through intermediate
‘waypoints’ etc.)

RePlanRoute Following the initial generation of a route plan, the system identifies that the mobile
worker is no longer on schedule. This may be due to a number of reasons: the work
schedule being changed, new traffic information being received, the mobile worker
being delayed, and so on.

EstimateRoute
Cost

Given a route consisting of a set of legs and using information about current conditions,
calculate the cost of the route in terms of nominated dimensions such as time, mileage,
etc.

Knowledge
Management

Decompose

Job

Given a job request, identify one or more work-requests that need to be issued and
performed in order for the job to be completed.

FindRelevant

Information

Called by other agent service components in order to proactively provide mobile workers
with information relevant to the performance of their work.

Update

Knowledge

Base

Enable a mobile worker in the field to add knowledge to the knowledge base. Types of
knowledge identified so far include feedback from the customer, work reports,
technical experience and information about the customer.

FindExpert Given a problem, use the knowledge base to identify a colleague who is likely to be able to
help in the given problem domain

6

Fig 4 Some of the ontology components used to support mobile workforces.

4. mPowermobile : Customising mPower for mobile
workforces
The mPower customisation process, to derive an
application specific multi-agent system, consists of four
steps: Identification of Services, Identification and
Customisation of Components, Agent Identification, and
Component Distribution. This sub-section details the
process by illustrating how the generic components (C-
COM and ontology components) and workflows were
developed for mPowermobile, a multi-agent system to support
mobile workforces.

4.1 Identification of services
The first step was to identify the services required in the
target application. Consideration of the nature and activities
of mobile workforces pointed to four important service
groupings.

• Teamwork co-ordination - empowering
individuals to collectively co-ordinate activities
(e.g. by trading jobs, automatically negotiating for
work, and expressing personal preferences) within
an agreed policy framework; facilitating
‘buddying’ between mobile workers where team
members can exchange tacit knowledge, for
example between experienced and trainee workers.

• Travel management - providing up-to-date
information and guidance on travel planning.
Ensuring travel time is minimised, thus saving
resource and reducing traffic congestion. The
Travel Management service anticipates a mobile
worker’s travel needs, providing guidance and
time estimation so as to synchronise the
movements of virtual teams working over vast
geographic areas.

• Knowledge management - anticipating a mobile
worker’s knowledge requirements by accessing
and customising knowledge (based on the mobile
worker’s skill, location, current job and type of
display) and providing access to collective
knowledge assets in the team (e.g. by putting
novices in touch with experts, as and when
required).

• Job Management – providing support for
delivering jobs to assigned workers on the fly,
updating job progress status, and closing
assigned jobs with complete job closure data.

On closer inspection, each of the Job
Management services turned out to be similar to services
in one of the other three groupings, and as such could be
developed by simply customising other services. Table 1
details the services from the three remaining groupings.

7

Equipment
name : String

Party
name : StringCustomerKnowledge

knowledgeOf : Customer
Customer

hasService : Service10..1 10..1

Service
name : String

0..*

1..*

0..*

1..*

WorkItemKnowledge
knowledgeOf : WorkItem

Tool

ServiceProvider
providesService : Service
hasWorkRequestPool : WorkRequestPool

1..*
1

1..*
1

Employee
employeeReference : String
hasManager : Manager
hasMentor : Employee
hasWorkSchedule : WorkSchedule
hasAttendancePattern : AttendancePattern
hasLeaveAllocation : Integer
hasLeaveBooking : LeaveBooking
hasOvertimeRegistration : OvertimeRegistration
hasAbility : Knowledge
hasP references : EmployeePolicy
employedBy : ServiceProvider

0..1

0..*

0..1

hasMentor
0..*

10..* 10..*

Job
requiredFor : Customer
hasWorkRequest : WorkRequest
obligationUnder : Service
referenceNumber : String

1

0..*

1

0..* 1..*

0..*

1..*

0..*

WorkReport
forWorkRequest : WorkRequest

WorkItem
requiresTool : Tool
requiresKnowledge : WorkItemKnowledge

1

0..*

1

0..*

0..*

0..*

0..*

0..*

WorkRequestPool
hasWorkRequest : WorkRequest

1

1..*

1

1..*

RoutePlan
forRoute : Route
trafficConditions : TrafficCondition
estimatedDuration : Duration

WorkSchedule
hasWorkRequest : WorkRequest
hasRouteP lan : RouteP lan
isValid : Boolean

1

0..1

1

0..1

0..*

1

0..*

1

Site
hasLocation : Location
description : String

WorkRequest
hasPriority : Integer
isFixed : Boolean
forWorkItem : WorkItem
startTime : Time
estimatedEndTime : Time
atSite : Site
status : String

0..*
1

0..*
1

1

0..1

1

0..1

10..* 10..*
0..*

0..1

0..*

0..1 0..* 0..10..* 0..1

1

0..*

1

0..*

4.2. Identification and customisation of components
The next stage was to identify mPower components to
implement the services identified in the first stage. As the
services identified in the previous stage are generic, they
were implemented using functionality from the Foundation
layer and added to the components layer of mPower. First,
the ontology components that the necessary C-COMs rely
on were identified and implemented using the ontology
support provided by JADE-LEAP. Fig 3 shows an example
of the implemented ontology components. Second, based
on the ontology components, the necessary C-COMs were
implemented to produce the services identified in the
previous stage. Third, job management related C-COMs
were identified and customised from existing C-COMs
(JobDelivery from AchieveReInitiator/Respondent in the
Foundation layer, JobUpdate and JobClose from
UpdateKnowledgeBase C-COM in the Components Layer,
and JobTrade from TradeWorkRequest in the Components
Layer). These job management related C-COMs were
linked to form a generic workflow, as shown in Fig 2.

4.3 Agent identification
Having identified the reusable components, the agents were
designed to take on the roles involved in those components.
Usually, an agent takes more than one role, which means it
is involved in multiple conversations. Furthermore, it is
possible for an agent to take on all the roles in a given
conversation. To support mobile workforces, four types of
agent were designed. First, a Personal Agent which plays a
personal assistant role to support a mobile worker for the
execution of their assigned tasks. The support includes
receipt of assigned tasks from other agents, update of job
status according to progress, delivery of relevant
information from knowledge sources, and coordination with
other personal agents to reassign jobs, organise group
meetings, swap shifts, swap annual leave, and so on.
Second, a Workflow (WF) Agent which is responsible for
interacting with a legacy Workflow Management System
(WFMS) via a predefined API. It retrieves all the tasks
assigned to a mobile team or a team member. The retrieved
tasks are stored in a local database that is managed by the
WF Agent, and notification sent to the Personal Agent of
the worker that the job is assigned to, either on occurrence
(push) or on demand (pull), as required. Task status is
updated via the interaction between a Personal Agent and
the WF Agent. Third, a Library Agent is an administrative
agent which should be present in every application as it is
responsible for the management of a library that contains
the C-COMs used for conversations between the
application agents. As all communication between
participating agents is performed via C-COMs, modifying
the conversation mechanisms used by the agents is
achieved by updating the C-COM library. Then, the
participating agents update corresponding C-COMs by
version checking. Finally, an Information Agent collects
information from various information sources, such as Web
services, Corporate knowledge management systems, and

Intranet directory services etc. As each knowledge source
potentially uses a different interaction protocol to provide
information to its client, the Information Agent must
register a C-COM with the Library Agent for the Personal
Agent to install and execute, in order to interact with it.

4.4. Component distribution
The last task is to install the identified components in the
various agents according to the roles played by the agents
in each conversation. This task is fairly straightforward,
however the developer should ensure that the linkage
between any two components corresponds to their
respective interface definitions.

Personal
Agent

Personal
Agent

WF
Agent

Information
Agent

Job
Distributor

Job
Taker

Job
Taker

Job
Giver

Job
Giver

Job
Owner

Job
Manager

Job
Executor

Job
Delivery

Job
Update

Job
Trade

Job
Close

FindRelevanInformation

Knowledge
Hunter

Knowledge
Consumer

Fig 5 Components distribution diagram.

Fig 5 shows an example diagram for component
distribution among identified agents. A component
distribution diagram shows a structural view of
conversations among participating agents in a target
application in terms of C-COM. Each black box represents
an agent, and each agent is annotated with its role
components in its participating conversations. An initiator
role component is represented by a small circle and a
respondent role component by a small grey rectangle. A
conversation between roles is represented as a dotted arrow
with a rectangle attached in the middle. From Fig 5, it can
be seen that the Personal Agent has three initiator
components, namely JobExecutor, KnowledgeConsumer,
and JobGiver, and two respondent components, namely
JobOwner and JobTaker.

4.5 Personal agent architecture for the management
of C-COM and generic workflows
The Personal Agent is comprised of four individual
modules, each of which supports a specific functional area:

User Manager is responsible for managing a user’s
preferences by monitoring their interaction with the user
interface. Through observing a user’s interaction behaviour
over a period of time, the User Manager is better able to
tailor the application’s functionality to meet the needs of
the user. For example, if the User Manager observes that
the user seldom views the routing information for a job, it

8

may decide to only download this information on demand
and not when the job details are first downloaded.

Coordination Manager is responsible for fulfilling a
service request by selecting a goal plan that meets the
requirements of the requested service from a list of
available goal plans. Each goal plan contains details of the
tasks involved and their execution sequence. Typically a
task will execute one or more C-COMs, or access a
resource from the Resource Manager or interact with the
user during its execution. The Coordination Manager is able
to execute multiple goal plans concurrently, and is able to
dynamically install new goal plans.

Resource Manager is responsible for managing all the
resources required to support the execution of the Personal
Agent, and application specific components. Resources can
be classified into one of three types: 1) Information
objects, 2) Executable objects, and 3) External objects.
Information objects represent a piece of information, such
as a list of user jobs, or a list of team members. Executable
objects are C-COMs which are used during the completion
of a service request. External objects are third party
programs such as Microsoft Pocket Word™ which can be
utilised to enhance the functionality of an existing service.

User Interface Manager is responsible for managing the
flow of information between the user and the Personal
Agent without restricting a user’s freedom. A non-blocking
approach is employed which does not force a user to wait
for a service to complete before they can interact with the
user interface. Instead, a user is able to launch multiple
service requests from one part of the user interface and still
be able to interact with another part of the user interface.

The four modules are able to directly interact with one
another by passing events. Currently there are three
recognised event types:

1. User interface event: This event is used to request a
change in the current state of the user interface. For
example, a goal plan may request a screen transition to
show the results from a completed service.

2. Goal event: This event is used to request the execution
of a service, and to report the status of an executing
service. For example, a user may request a job trade
service via the user interface to trade a job with other
team members.

3. Resource event: This event is used to request access to
a resource. For example, a task within a goal plan may
request access to an installed C-COM in order to
complete its execution.

External components such as an application user
interface screen, or an external program are not permitted to
directly interact with any of the four Personal Agent
modules. Instead all events generated from external
components are captured centrally by the Personal Agent
which may perform any event filtering before dispatching
the event to the appropriate module, as shown in Fig. 5.

Each event type contains the following five properties:

1. Sender ID: This identifies where the event originated.

2. Type: This identifies the event type.

3. Action: This identifies the type of action requested,
which is dependent on the event type. For example, a
goal event requesting the execution of a service will
contain the ‘achieve goal’ value within its action
property, whereas a user interface event requesting a
screen transition will contain ‘transition’ within its
action property.

4. Action arguments: This is an optional property which
may contain multiple arguments, that are dependent on
the type of action. For example, a user interface event
with an action property set to ‘change cursor’, may
contain the ‘wait cursor’ value within its action
arguments properties.

User arguments: This is an optional property which may
contain multiple user-defined arguments that are dependent
on the event type and action. For example, a goal event
with the ‘achieve goal’ value within its action property may
contain some input values for the goal plan that will be
selected to fulfil this service request.

Table. 2 provides an example of some of the pre-
defined actions available for the three recognised event
types. The Personal Agent supports both asynchronous and
synchronous event delivery mode.

Event type Action

User interface Change cursor, transition, screen action

Goal Achieve goal, goal success, goal failure

Resource Put resource, get resource, delete resource

Table 2 List of pre-defined actions for event types.

Fig 5 Personal Agent event dispatching model.

An example of the flow of events that occur within the
Personal Agent architecture during a sample service request

9

User Interface Event
Goal Event

UI Event Goal Event

Resource Event

Resource
Event

Personal

Agent

User
Manager

Coordination
Manager

Resource
Manager

Agent External

Agent Internal

User
Preference

C-COM
Pool

Personal

Job Queue

Coordination
Engine

Goal
Plan

Exception
Handler

UI

Manager

Screen
Registry

UI
State UI Event

will now be presented. The simulated service is called
‘deliver jobs’, and retrieves all jobs that have been assigned
to a user. The flow of events is shown in Fig. 6, and
discussed below:

Fig 6 Sample service request event interaction scenario.

1. The service request is initiated by the User Manager
which sends a goal event direct to the Coordinator
Manager. The goal event contains the following
properties: (Sender: User Manager, Type: Goal Event,
Action: Achieve goal, Action arguments: Retrieve
jobs, User arguments: Blank).

2. Upon receiving the goal event the Coordination
Manager selects the most appropriate goal plan to
complete this service request and executes it.

3. During the goal plan’s execution it sends a user
interface event to the User Manager, requesting that a
progress bar is displayed in order to provide visual
feedback to the user on the progress of the service. The
user interface event contains the following properties:
(Sender: Goal Plan ID, Type: User interface event,
Action: Screen action, Action arguments: Job Queue
Screen, User arguments: Show progress bar). The
user interface event is then forwarded to the User
Interface Manager which will hand the event to the
user interface screen for processing.

4. The goal plan then dispatches a resource event to the
Resource Manager to retrieve an executable object.
The resource event contains the following properties:
(Sender: Goal Plan ID, Type: Resource event, Action:
Get resource, Action arguments: C-COM Retrieve
Jobs, User arguments: blank). Once the C-COM is
obtained it will be executed.

5. When the goal plan has fulfilled the service request it
dispatches a user interface event to the User Manager
requesting that the visual progress bar is removed. The
user interface event contains the following properties:
(Sender: Goal Plan ID, Type: User interface event,
Action: Screen action, Action arguments: Job Queue

Screen, User arguments: Remove progress bar). The
user interface event is then forwarded to the User
Interface Manager which will hand the event to the
user interface screen for processing.

6. Finally the goal plan sends a goal event to the
Coordination Manager informing it that it has
successfully completed the requested service. The
properties of the goal event are: (Sender: Goal Plan
ID, type: Goal event, Action: Goal success, Action
arguments: User Manager, User arguments: Service
result). The Coordination Manager may then choose to
release any resources which the goal plan may still
have open before forwarding the goal event to the User
Manager.

5. Conclusion
One of the critical success factors for the widespread
adoption of multi-agent system technology in industry is to
provide application developers with supporting tools that
reduce the burden of building multi-agent systems. The
mPower framework described in this paper aims to enable
application developers to assemble a multi-agent system by
customising pre-built components according to application
specific requirements.

The framework provides three layers of
components. The foundation layer provides the basic
functional components, via the JADE-LEAP platform. The
components layer provides ontology components and C-
COMs that abstract and implement the frequently used
interactions among participating roles for each business
domain. The generic workflow layer provides workflow
components that consist of two or more C-COMs to achieve
a business objective. A multi-agent system-based
application can be derived by reusing the components in
each layer (or by mixing components in different layers).

This paper has shown how the mPowermobile application was
derived from the mPower framework to support mobile
workforces. Finally, a Personal Agent architecture has been
proposed to explain how the components of mPower can be
installed and used by an agent to provide services to mobile
workforces.

Acknowledgements

The work described here was funded by BT Exact’s OSS
and Customer Satisfaction Venture – many thanks to Paul
O’Brien for his advice and guidance.

References

1. FIPA: The Foundation for Intelligent Physical Agents.
http://www.fipa.org/ (2002)

2. Berger, M., Buckland, B., Bouzid, M., Lee, H., Lhuillier, N.,
Olpp, D., Picault, J., and Shepherdson, J.W.: An Approach to
Agent-based Service Composition and it’s Application to

10

Forward (UI Event)

Forward (UI Event)

Inform
Goal Success

Goal Event:
Goal Success

Process
UI Event

UI Event:
Screen Action

Execute
C-COM

Resource Event:
Access Resource

Process
UI Event

UI Event:
Screen Action

Execute

Goal Event:
Achieve Goal

User
Manager

Coordination
Manager

Goal
Plan

UI
Manager

Resource
Manager

UI
Screen

http://www.fipa.org/

Mobile Business Processes. IEEE Transactions on Mobile
Computing, 2 (3), 2003.

3. Bose, R.: Intelligent Agent Framework for development
knowledge-based decision support system for collaborative
organisational processes. Expert Systems with Applications,
11 (3), (1996) 247-261

4. Brazier, F.M.T., Cornelissen, F., Jonker, C.M., and, Treur,
J.: Compositional Specification of a Reusable Co-operative
Agent Model. International Journal of Cooperative
Information Systems, 9, (2000) 171-207

5. Buschmann, F. et. al.: A System of Patterns – Pattern
Oriented Software Architecture. Wiley, ISBN 0-471-95869-
71 (1996)

6. Caire, Giovanni: JADE Tutorial –Application defined
content languages and ontologies. http://jade.cselt.it/ (2002)

7. Chang, J.W. and Scott, C.T.: Agent-based workflow: TRP
support environment (TSE). Computer Networks and ISDN
Systems. 28, (1996) 1501-1511

8. Klusch, M.: Intelligent Information Agents : Agent-based
Information Discovery and Management on the Internet.
Springer, Berlin-Heidelberg-New York, (1999)

9. Jennings, N. R., Norman, T. J., Faratin, P., O’Brien P., and
Odgers, B.: Autonomous agents for business process
management. Int. Journal of Applied AI 14(2), (2000) 145—
189

10. Comtec Agent Platform. http://ias.comtec.co.jp/ap/

11. Collis, J., Ndumu, D., Nwana, H., and Lee, L.: The Zeus
Agent Building Tool-Kit. BT Technology Journal, 16(3),
July (1998) 60-68

12. LEAP: Lightweight Extensible Agent Platform.
http://leap.crm-paris.com, (2002)

13. Huhns, M.N. and Singh, M.P.: Workflow Agents. IEEE
Internet Computing, 2 (4), (1998) 94-96

14. Shepherdson J.W., Thompson S.G. and Odgers B.: Cross
Organisational Workflow Co-ordinated by Software Agents.
WACC ‘99 (Work Activity Co-ordination and
Collaboration) Workshop Paper, February (1999)

15. Caire, G., Lhuillier, N. and Rimassa G.: A communication
protocol for agents on handheld devices. In Proceedings of
Workshop on ubiquitous agents on embedded, wearable, and
mobile devices, held in conjunction with the 2002 Conf. On
Autonomous Agents & Multiagent systems, Bologna, Italy,
(2002)

16. Kendall, E., Malkoun, M.T., and Jiang, C.H.: Multiagent
System Design Based on Object Oriented Patterns. The
Report on Object Oriented Analysis and Design in
conjunction with The Journal of Object Oriented
Programming, June (1997)

17. Rubin, B.S., Christ, A.R., and Bohrer, K.A.: Java and IBM
San Francisco Project, IBM Systems Journal, 37 (3), (1998)

18. SAP, http://www.sap.com/, 2003.

11

http://www.sap.com/
http://leap.crm-paris.com/
http://ias.comtec.co.jp/ap/
http://jade.cselt.it/

