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Abstract—Optimal phasor measurement units (PMUs) 

placement refers to the strategic placement of PMUs to achieve the 

full observability of power systems with a minimum number of 

PMUs. A strategic placement is needed because of the economic or 

technical restriction that hinders the deployment of PMUs on 

every bus. A modified version of the binary particle swarm 

optimization (BPSO) method is proposed in this paper by 

integrating a mutation strategy and the V-shaped sigmoid function 

for placing the PMUs that maintains the full power system 

observability in the presence of zero-injection bus, single PMU loss 

and PMU’s channel limits while maximizing the measurement 

redundancy. The solution that has the highest measurement 

redundancy was selected as the best placement of PMUs. The use 

of mutation strategy and V-shaped sigmoid function in this paper 

improves the population diversity, thereby minimizing the chance 

of the particles being trapped in the local optima, consequently 

leading to a quality solution. In order to validate its effectiveness, 

the results obtained by the proposed method are compared with 

other published techniques to demonstrate the accuracy and 

validity of the proposed technique. The results of the IEEE 300-

bus system show that the proposed method effectively managed to 

reduce the number of PMUs needed. 

Index Terms— binary particle swarm optimization, PMU, 

mutation, smart grid 

I. INTRODUCTION 

hasor measurement unit (PMU) is a measurement device 

equipped with the Global Positioning System (GPS), hence, 

the measurement data provided are in real-time. As reported in 

the post-mortem report of the North American blackout in 

2003, the lack of real-time measurement provided through the 

state estimation at that time prevented the operating engineers 

to correctly execute the contingency plans they had in place [1]. 

Since the real-time measurements of the voltage and branch 

currents of the bus can be obtained when a PMU is installed on 

that bus, the state of the power system can be identified based 

on the direct measurements provided by the PMUs if they are 

all installed at every bus [2]. However, the PMUs are not 

necessarily needed to be installed at every bus since the voltage 

and currents of the bus can be obtained through indirect 

measurements using the Ohm’s Law and Kirchhoff’s Current 

Law (KCL) [2]. In general, the minimum number of PMUs 

required is in the range of 20-30% of the number of system 

buses [3]. Hence, the objective of the optimal PMUs placement 

(OPP) problem is mainly focused on finding the minimum 

number of PMUs required in a power system and its location in 

order to make the power system observable [4].  

 
 

 

Recently, numerous optimization methods have been 

proposed to solve the OPP problem. The integer linear 

programming (ILP) method is widely used for solving the OPP 

problem [5]–[8] since it is capable of solving the OPP problem 

in a very short time. The exhaustive search (ES) method [9]–

[11] and heuristic algorithms such as simulated annealing (SA) 

[12], genetic algorithm (GA) [13], [14], firefly algorithm (FA) 

[15], tabu search [16], differential evolution (DE) [17], [18], 

and particle swarm optimization (PSO) through a binary variant 

called binary PSO (BPSO) [19]–[25] have shown that they are 

also capable of finding the optimal placement of PMUs. In these 

existing studies, many constrained factors such as the effect of 

the zero-injection bus (ZIB), conventional measurement, a 

single PMU loss, line outage and PMU’s channel limits are 

considered while solving the OPP problem. Among these 

factors, the PMU’s channel limits is rarely considered while 

using the heuristic algorithms. The GA [13], [14] and FA [15] 

are the only heuristic algorithms considering the PMU’s 

channel limit when solving the OPP problem.  

The BPSO algorithm is easy to implement and can converge 

to the optimal solution [26]. However, it also tends to be stuck 

in the local optima especially when dealing with complex 

multimodal functions. In order to prevent the algorithm from 

being stuck in local optima in solving the OPP problem, various 

methods have been proposed to improve the performance of the 

algorithm. Many techniques such as modifying the velocity 

update equation [20]–[22], the exclusion of some buses from 

the placement of PMUs [23], and also incorporating techniques 

from other heuristic algorithms into BPSO algorithm [25] were 

among those being proposed to solve the OPP problem using 

the BPSO algorithm. Finally, the channel limit constraint was 

never considered while using the BPSO algorithm. 

The importance of the measurement redundancy as one of 

the most crucial parameters for the secure monitoring of the 

power systems has been highlighted in the recent years [27]. 

Therefore, it is used to differentiate the quality of each 

placement set of PMUs, where the best optimal result was 

chosen based on the placement set of PMUs that has the highest 

measurement redundancy. Recent papers showed that there is 

still room for further investigation in terms of measurement 

redundancy for the BPSO algorithm since the results obtained 

from the existing methods using the BPSO algorithm are not the 

optimal solution [27], [28]. 

In this paper, a novel BPSO algorithm with a new integrated 

mutation strategy to solve the OPP problem while considering 

the PMU’s channel limit, ZIB and single PMU loss is presented. 
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In contrast to the existing methods, this paper presents the use 

of V-shaped sigmoid function and a new position update rules 

while solving the OPP problem. The mutation strategy is also 

proposed to compliment the V-shaped sigmoid and the position 

update rules. The mutation strategy was designed to refine the 

local search of the algorithm more effectively and at the same 

time help to instigate the particles to move from their current 

location to prevent them from being stuck in the local optima. 

In addition, for the single PMU loss, this paper proposed a 

fitness function that integrates the problem constraint into the 

fitness function, for ease of implementation and at the same 

time reduce the computation burden. Aside from minimizing 

the number of PMUs used to achieve a complete observability 

of the power system, the measurement redundancy was also 

considered such that the placement set of PMUs will be of the 

highest quality. In order to determine the measurement 

redundancy, the bus observability index (BOI) and system 

observability redundancy index (SORI) were used. BOI refers 

to the number of times a bus was observed by placement of 

PMUs, while SORI refers to the sum of BOIs [6]. The 

placement set of PMUs that has a higher SORI value implies 

that it is more reliable and robust against contingencies. Hence, 

the placement set of PMUs that has the highest value of SORI 

indicates that it is the best optimal result. 

This paper is organized into five sections. Section II explains 

the PMU placement rules for problems under consideration and 

how each case considered in this paper was formulated. Section 

III describes the BPSO algorithm and the fitness function used 

in this paper. Section IV explains the proposed method used to 

solve the optimal PMU placement. The simulation results and 

discussion are covered in Section V, where the results are also 

compared with prior studies to evaluate its effectiveness. 

Section VI concludes the paper.   

II. PMU PLACEMENT FORMULATION 

Observability analysis used to analyze the power system can 

be categorized into two categories: numerical and topological 

observabilities. In the numerical observability, the full 

observability of a system is verified based on whether the 

Jacobian matrix was of full rank. However, it involves huge 

matrix manipulation and is computationally expensive [16]. 

Meanwhile, the topological observability analysis is based on 

whether a spanning tree of full rank can be constructed where 

each branch can be observed by direct measurements or 

calculations [22]. Therefore, this paper used the topological 

observability to identify a power system as observable. 

For a power system to be identified as fully observable, the 

voltage for all its buses must be known. In order to decide 

whether a bus is observable, its voltage must be known either 

through direct measurements or calculation by using other 

known parameters. A PMU installed bus can have its voltage 

and branch current measured directly by PMU. Meanwhile, by 

using indirect measurements, buses that are neighbors to the 

PMU installed bus can have their voltage values known through 

calculations using the Ohm’s law. Hence, with direct and 

indirect measurements, a power system can be identified as 

observable based on the following rules [5]: 

1. If the voltage at one end and its branch current are known, 

the voltage at the other end can be calculated. 

2. In a situation where the voltage of both ends is known, the 

branch current for the branch that connects both ends can 

be calculated. 

The following discussions expand the PMU formulation to 

integrate the specific characteristics of the power system in this 

paper. Three characteristics — zero-injection bus, single PMU 

loss, and PMU’s channel limits — are considered in this paper 

for solving the OPP problem. 

A. Effect of zero-injection bus 

A ZIB is a bus that has no power or load injected into it. Thus, 

the sum of flows on all branch currents associated with ZIB is 

zero according to the Kirchhoff’s current law (KCL). The 

following rules are considered in addition to the rules 

mentioned earlier when solving the OPP problem for power 

systems considering ZIB [5]: 

1. If all buses adjacent to an observable ZIB are observable 

except one, by applying KCL at the ZIB, it will make the 

unobservable bus as observable. 

2. An unobservable ZIB can be determined as observable, if 

every bus adjacent to it is observable, by applying KCL at 

the ZIB. 

3. A group of unobservable ZIBs can be determined as 

observable if every bus connected to them is observable. 

From the above rules, it can be concluded that when 

considering ZIB in a power system, the ZIB and buses that are 

adjacent to ZIB must be observable except one to ensure that it 

is observable through indirect measurement. Therefore, the 

number of PMUs needed is reduced since there are fewer buses 

that need to be observed. 

B. Effect of single PMU loss 

The power system may be exposed to several contingencies 

in the event when power system uncertainty happens. Hence, it 

is crucial that the observability of the power system is not 

affected in any contingency. With regard to PMU, according to 

the N-1 criterion, the optimal PMU placement problem should 

be able to endure the single PMU loss, in which the 

observability of the power system must be maintained [29]. 

Therefore, every bus must be observed by at least two PMUs to 

ensure a bus remains observable should one of the PMUs 

malfunction. 

C. Effect of channel limits 

Most studies assumed that PMU has unlimited channels. 

However, in practical situations, there is a fixed channel [27]. 

In the case where fixed channel is considered, the following 

approach can be used. For cases considering channel limits, 

consider bus 2 in the 7-bus system.  

 
Fig. 1 7-bus system 
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In order to observe bus 2 and its branch current with a single 

PMU, a PMU with the minimum of five channels is needed. 

One channel is used to measure the voltage on the bus, and four 

more channels are used to measure the branch currents (2-1, 2-

3, 2-6, 2-7). If the PMU has fewer channels, the possible 

combinations for each bus need to be identified. The situation 

can be simplified as follows [30]: 

 




if 
1 if 
i i

i
i

BC L BI
BR

BI L
 (1) 

where BRi is the number of branch combinations for bus i, L is 

the channel limit, BIi is the number of buses adjacent to bus i, 

BCi is the number of possible combinations of L out of BIi 

where it can be defined as: 


  

!
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i
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Now that the value of BRi is known for all buses, a binary 

connectivity matrix based on the possible combinations for 

each bus is defined as matrix [H], where bus i will have BRi 

rows. Assuming a channel limit of 3 is set for the PMUs, the 

total of possible combinations for the 7-bus system is 16. 

Accordingly, matrix [H] in this case can be defined as in (4).  

1 1 0 0 0 0 0 Bus 1

1 1 1 0 0 0 0

1 1 0 0 0 1 0

1 1 0 0 0 0 1 Bus 2

0 1 1 0 0 1 0

0 1 1 0 0 0 1

0 1 0 0 0 1 1

0 1 1 1 0 0 0
[ ]

0 1 1 0 0 1 0 Bus 3

0 0 1 1 0 1 0

0 0 1 1 1 0 0

0 0 1 1 0 0 1 Bus 4

0 0 0 1 1 0 1

0 0 0 1 1 0 0 Bus 5

0 1 1 0 0 1 0 Bus 6

0 1 0 1 0 0 1 Bus 

H
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7 (R16)

 (3) 

 

The number of branch combinations above can be reduced 

by considering the duplicate branch and the radial bus. For 

example, row 5 (R5) and row 9 (R9) carry the same branch 

combination. Thus, removing one of the combinations does not 

impact the topological observability. However, it also means to 

monitor the corresponding branch, the option is only restricted 

to one. In the case of considering the radial bus, row 14 (R14) 

can be eliminated since placing a PMU at bus 5 restricts the 

observability to only two buses, hence a waste of the extra 

channel that the PMU has.  

III. BINARY PARTICLE SWARM OPTIMIZATION 

PSO is a population-based optimization method inspired by 

the social behavior of bird flocking or fish schooling. It begins 

with the random initialization of a population (swarm) of 

individuals (particles) in the search space [31]. These particles 

will fly through the search space based on their experience and 

other particles’ experiences. The particle that holds the best 

experience will be promoted as the global best where the other 

particles will be attracted to it. The particles will continue 

exchanging their experience, and a new global best may be 

nominated throughout the algorithm. The optimization process 

ends based on the defined stopping criteria. In this paper, the 

number of maximum iterations is set as the stopping criteria. 

In the conventional PSO, the current velocity holds by each 

particle and their previous position are used to decide the next 

position for each particle. The velocity indicates the next 

trajectory of the particle from its previous position. The value 

of velocity, v, and position vector, x, is updated accordingly by 

using the following equations: 

 
  1 1t t t
ij ij ijx x v   (4) 

1

1 1 2 2[ ( ) ( )]t t t t t t

ij ij ij ij ijv K v c r pbest x c r gbest x       (5) 

 
where K is the constriction factor that can be defined as follows 

[32]: 

1 2
2

2
,  where , 4

2 4
K c c 

  
   

  
 

(6) 

xij(t) and xij(t+1) are the position vectors of the ith particle in 

the jth dimension at iteration t and t+1, respectively, while 

vij(t+1) indicates the velocity vector of the particle at iteration 

t+1; c1 and c2 are the two acceleration constants, where it is 

suggested that the values for both constants are equal to 2.05 

[32]; r1 and r2 are two random numbers that are uniformly 

distributed within the range of [0,1]. Meanwhile, pbestij(t) 

indicates the best position of particle ith in the jth dimension it 

has found so far while gbest(t) indicates the best position in the 

swarm at iteration t. The values for pbest and gbest are 

determined according to the best fitness value it holds.  

In regard to the PMU placement problem, a discrete PSO 

variant named binary PSO (BPSO) is used. It was developed by 

Kennedy and Eberhart to operate on the discrete binary 

variables [33]. In the conventional PSO, the velocity vector is 

used as the degree of change for particles’ position vector x. 

However, in BPSO, it is used as the probability threshold to 

change the position vector x to be in a state of 0 or 1. Based on 

the value of the velocity vector, the real values of velocities are 

transformed to the probability values in the interval of [0,1] by 

using the sigmoid function.  

  

sig(v
ij
) =

1

1+ e
-v

ij

 (7) 

  

x
ij

t+1 =
1 if rand £ sig(v

ij
)

0 otherwise

ì
í
î

 (8) 

Constraint (9) is then used to update the position vector x 

replacing (5) in the conventional PSO. The parameter rand 

denotes a random number between [0,1]. It can be said from (9) 

that the probability of getting one is sig(vij) while the probability 

of getting zero is 1-sig(vij). Hence, it is important to note how 

significantly the value of the velocity vector influences the 

position vector x in BPSO. 
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In this paper, the main objective is to find the minimum 

number of PMUs and to maximize the measurement 

redundancy while ensuring the full observability of a power 

system. Therefore, the fitness function, Z which was introduced 

in [19] is used in this paper to evaluate every particle in the 

swarm. The minimization of fitness function is formulated as 

follows: 

1 2 1min{( ) ( ) ( )}obs PMUZ w N w N J C     

 

(9) 

where parameters w1, w2, and C are three weight values. Nobs 

signifies the number of observable buses, NPMU is the total 

number of PMUs and J1 is the measurement redundancy that 

can be defined as follows: 

1 ( ) ( )TJ M AX M AX     

 

(10) 

where A is a binary connectivity matrix, whose entries can be 

defined as follows:  

,

1 if 

1 if bus  and  are connected

0 otherwise

i j

i j

A i j




 

  

(11) 

The binary decision variable vector, X, is defined as: 

1 if a PMU is installed at bus 

0 otherwise
i

i
x


 
  

(12) 

M is the desired value of measurement redundancy which 

entries are defined as follows:  

 1 2 3 1

T

N N
M m m m m


  (13) 

If the desired value for measurement redundancy is 2, the 

element of M will be set to 3. Hence, the difference between the 

actual and desired number of times the bus is observed is 

computed using vector (M – AX). In all, it means that 

minimizing this difference is equivalent to maximizing the 

measurement redundancy. Thus, the value of parameters w1, w2 

and C must be comparable in magnitudes. Note that, the 

maximum value for each element in M depends on the number 

of bus incident to it. For example, bus 1 in Fig. 1 is only 

connected to bus 2, therefore, the maximum value that can be 

set for bus 1 is two (where PMU can only be placed either at 

bus 1 or bus 2 or both).  

IV. PROPOSED METHOD FORMULATION 

This paper proposed a mutation strategy, which is integrated 

with the V-shaped sigmoid and the new position update rules to 

solve the OPP problem.  

A. V-shaped sigmoid function 

The BPSO algorithm offers quick convergence speed but the 

particles are tend to trap themselves in the local optima [34]. 

The sigmoid function (8) and the position update (9) introduced 

for the BPSO algorithm were claimed to be the reason for it 

being trapped in the local optima because it encourages the 

particles to change position at every opportunity they get [35]. 

Fig. 2 illustrates the graph for S-shaped sigmoid and V-shaped 

sigmoid function where -5 ≤ v ≤ 5. The S-shaped sigmoid refers 

to the sigmoid function (8). For the S-shaped sigmoid, in the 

case where v=0, the probability of changing bit is sig(v)=0.5 as 

can be seen in Fig. 2. 

 

 
Fig. 2 S-shaped sigmoid (top) and V-shaped sigmoid (bottom) 

Based on the position updating rules (9), it will force the 

particles to take the value of 0 or 1. This means that the particle 

can quickly be at state 1 in the current iteration and 0 in the next 

iteration and vice versa. Moreover, this prevented the particles 

from converging, which led to the random positioning of 

particles – hence, this hindered the particles from exploiting 

their current position that most of the time led to an infeasible 

solution. The V-shaped sigmoid function was proposed to 

overcome this issue, where it can be defined as follows [36]: 

( 1)

1
( ) 2 0.5

1 ij
ij v t

sig v
e
 

  


 (14) 

Then, the probability values obtained from (15) are used to 

update position vectors x as follows: 

  

x
ij

t+1 =
(x

ij

t )-1 if rand < sig(v
ij
)

x
ij

t otherwise

ì
í
ï

îï
 (15) 

In contrast to the behavior of the S-shaped sigmoid and 

position update rules proposed in the conventional BPSO, the 

position update rules (16) and the V-shaped sigmoid shown in 

Fig. 2 stimulate particles to flip the current positions they are in 

to their complements when the velocity values are high and 

remain in their current positions when their velocity values are 

low [36]. 

B. Mutation 

Population diversity shows the difference among individuals. 

Therefore, by maintaining population diversity, the possibility 

of finding a final reasonable solution is great [37]. However, it 

is important that the balance between exploration and 

exploitation is maintained to ensure the search space is well 

scrutinized for the best solution. For the optimization 

algorithms that rely on the population to find a solution such as 

PSO, the mutation is adopted in the algorithm itself where 

changes are made to the particles so that the next iteration of 

particles explores the area in the landscape that was proven 

good for the prior iteration [10]. In PSO, mutation is achieved 

through random number r1 and r2, where the mutation 

magnitude is determined by the past velocity, pbest and gbest 

as derived in (6). Consequently, in the situation where prior 

experience is not reliable or bound to be trapped in local optima, 

the particles will not be able to mutate themselves to increase 

diversity. Hence, an external influence that can modify the 

position or velocity of the particle outside the velocity and the 

update rules may help in improving the chance of producing 
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quality solutions [25], [38], [39]. Therefore, in this paper, a 

mutation strategy is proposed to help refine the local search of 

the algorithm and subsequently help to prevent the algorithm 

from being stuck in the local optima. The proposed mutation 

strategy will make changes to the position of the particle by 

flipping the bit of 0 to 1, or 1 to 0 as illustrated in Fig. 3 as 

below. 

 
Fig. 3 Basic mutation 

The following is the list of procedures for the mutation 

strategy proposed in this paper for solving the OPP problem:  

Step 1: Select the particles to mutate based on the average 

number of PMUs from the pbest of the particles 

and store them in an array called the 

particleMutation. 

Step 2: Find the fitness values for all elements in 

particleMutation. Discard all but one particle that 

shared the same fitness value. 

Step 3: For each element in the particleMutation, find the 

bus/buses that have the maximum BOI and store it 

in an array called the busList and find all buses 

adjacent to the busList and store it in an array 

called the busToMutate. 

Step 4: Loop through the busToMutate, and at every 

iteration, mutate each bus in the list by 

complementing its current state. For example, if it 

is 0, flip it to 1. In addition, place a PMU at a bus 

that adjacent to a radial bus and remove any PMU 

placed at a radial bus. Store each mutated solution 

in an array called the mutatedList. 

Step 5: Evaluate each solution in the mutatedList by using 

fitness function and store the value in an array 

called the tempFitness. 

Step 6: Once finished, find the optimal solution based on 

the TempFitness. Compare the fitness function of 

the optimal solution with pbest fitness for the 

particle under scrutiny. If it is better, replace it. If 

it is not, discard it. Repeat steps 3-6 for all 

elements in the particleMutation 

 

The main principal behind the mutation strategy is to 

evaluate the possible solutions around the pbest of selected 

particles. If a better solution is found around the current pbest, 

it will be replaced by the better solution. Otherwise, the pbest 

remains for the next iteration.  

The mutation strategy is executed after pbest for each particle 

is updated as shown in Fig. 4. In order to select the candidate 

particles, the average number of PMUs from all the pbest in the 

current iteration is used. Any pbest which carries the same 

number of PMUs to the average number of PMUs are gathered. 

 
Fig. 4 Flowchart of BPSO algorithm 

In order to find the possible solutions around the pbest, the 

buses that are neighbors around the bus that has the highest BOI 

are mutated, including the bus itself. The bus that has the 

highest BOI tends to have a cluster of PMUs placed around it. 

Therefore, applying mutation to these buses may help in finding 

the better PMU around the bus.  

The mutation strategy also considered the presence of radial 

bus in a power system by having PMUs pre-assigned to the bus 

adjacent to the radial bus and prohibited PMU from being 

placed by the algorithm to the radial bus. Since there is only one 

bus connected to the radial bus, placing a PMU at a radial bus 

limits the PMU’s coverage to only two buses (itself and its 

neighbor) whereas placing a PMU at the bus that is located next 

to a radial bus will ensure more bus can be made observable and 

increase the network coverage of the power system. However, 

if the neighbor to the radial bus is a ZIB, a PMU does not need 

to be pre-assigned because the radial bus could be made 

observable through pseudo-measurement. This approach 

encourages particles to find more feasible solutions during the 

searching process and at the same time improves the algorithm 

convergence rate.  

The consequence of the mutation of each bus as described 

earlier will be evaluated and compared to find the optimal result 

from the mutation process, where, if the result of the mutation 

process is better, it will replace the current pbest. Otherwise, the 

current pbest will remain. The integration of the mutation 

strategy also presents a number of extra fitness evaluations, 

which consequently increases the computational cost and time. 

Therefore, to overcome this issue, if there are more than one 

pbest that have the same fitness value, only one pbest will be 

considered for the mutation process. This is because the pbest 
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of the same fitness value carry the same PMUs placement, 

hence, through the mutation strategy, the results of the mutation 

will be the same. Hence, discarding all but one pbest for the 

mutation process help to reduce the computation cost and time. 

The use of the V-shaped sigmoid and position update rules 

also means that if the particle no longer carry any velocity, it 

will never be able to change its position since it will remain in 

their current position as shown in (16). Therefore, the proposed 

mutation strategy will be able to instigate the particle to jump 

out from its current position if there is a better solution than it 

currently holds.  

C. Single PMU loss  

In order to integrate the single PMU loss constraint, this 

paper expands the fitness function proposed in [19] by 

formulating the problem in fitness function as follows: 

1 2 3 4min{( ) ( ) ( ) ( )}obs PMU LZ w N w N w N w S       

 

(16) 

where,  

 | 0LN x D x    (17) 

1, where [2 2 2 2]T

ND AX b b     (18) 

1

N

i

i

S D


  (19) 

In (17), w3 and w4 are two weight values. The parameter NL 

refers to the number of buses that are not being observed twice 

by the PMUs placement and S is the measurement redundancy 

used when considering the single PMU loss. Therefore, the 

parameters J1 and C used for measurement redundancy in (10) 

are replaced with S when considering the single PMU loss. In 

(19), vector b refers to the binary vector variables that are 

equivalent to the number of times a bus needs to be observed. 

For the single PMU loss, the value is set as 2 since each bus 

needs to be observed at least twice.  

V. SIMULATION RESULTS AND DISCUSSION 

The proposed method was tested on IEEE 14-bus, 24-bus, 

30-bus, 39-bus, 57-bus, 118-bus and 300-bus systems and 

simulated for five cases — (i) base case, (ii) ZIB, (iii) single 

PMU loss, (iv) channel limit for base case, (v) channel limit 

considering ZIB.  

The value of each parameter used in the proposed method is 

given in Table I. MATLAB software was used to simulate the 

proposed method, and the technical specification of the 

computer used was Intel core i5 2.5 GHz with 8 GB of RAM. 
TABLE I: The value of each parameter used in simulation 

Parameters Value 

Number of particles 
4 * Number 

of bus 

Number of iterations 2000 

Weight value for the number of bus observed, w1 [19] -2 

Weight value for the number of PMUs, w2 [19] 1 

Weight value for bus that is not being observed twice by 

PMUs placement, w3 
2 

Weight value for single PMU loss measurement 

redundancy, w4 
-0.02 

Weight value for the measurement redundancy, C [19] 0.01 

 

Table II shows the number of PMUs, NPMU, the PMUs 

placement and the SORI value for every bus systems tested for 

the base case. For the case considering the ZIB, the PMUs 

placement and its SORI value is given in Table III. As can be 

seen from Tables II and III, the number of PMUs required to 

achieve complete observability of a power system are reduced 

when considering the ZIB compared to the base case. As noted 

earlier, it is because one of the neighbors to the ZIB can be 

indirectly measured when applying KCL at the ZIB, hence, 

reduced the number of bus that needs to be observed directly by 

the PMUs. 
TABLE II Result for base case 

IEEE Bus 

System 
NPMU Locations of PMUs SORI 

14-Bus 4 2, 6, 7, 9 19 

24-Bus 7 2, 3, 8, 10, 16, 21, 23 31 

30-Bus 10 2, 4, 6, 9, 10, 12, 15, 19, 25, 27 52 

39-Bus 13 
2, 6, 9, 10, 13, 14, 17, 19, 20, 22, 23, 25, 

29 
52 

57-Bus 17 
1, 4, 6, 9, 15, 20, 24, 28, 30, 32, 36, 38, 
41, 47, 51, 53, 57 

72 

118-Bus 32 

3, 5, 9, 12, 15, 17, 21, 25, 28, 34, 37, 40, 

45, 49, 52, 56, 62, 64, 68, 70, 71, 76, 79, 

85, 86, 89, 92, 96, 100, 105, 110, 114 

164 

300-Bus 87 

1, 2, 3, 11, 12, 15, 17, 20, 23, 24, 26, 33, 

35, 39, 43, 44, 49, 55, 57, 61, 62, 63, 70, 

71, 72, 74, 77, 78, 81, 86, 97, 102, 104, 
105, 108, 109, 114, 119, 120, 122, 124, 

130, 132, 133, 134, 137, 139, 140, 143, 

153, 154, 159, 164, 166, 173, 178, 184, 
188, 194, 198, 204, 208, 210, 211, 214, 

217, 223, 225, 229, 231, 232, 234, 237, 

238, 240, 245, 246, 249, 9002, 9003, 
9004, 9005, 9007, 9012, 9021, 9023, 

9053 

432 

 
TABLE III Result for case considering ZIB 

IEEE Bus 

System 
NPMU Locations of PMUs SORI 

14-Bus 3 2, 6, 9 16 

24-Bus 6 2, 8, 10, 15, 20, 21 29 

30-Bus 7 2, 4, 10, 12, 15, 19, 27 41 

39-Bus 8 3, 8, 13, 16, 20, 23, 25, 29 43 

57-Bus 11 1, 6, 13, 19, 25, 29, 32, 38, 51, 54, 56 60 

118-Bus 28 

3, 8, 11, 12, 17, 21, 27, 31, 32, 34, 37, 

40, 45, 49, 52, 56, 62, 72, 75, 77, 80, 85, 
86, 90, 94, 102, 105, 110 

156 

300-Bus 69 

1, 2, 3, 11, 15, 17, 20, 23, 24, 26, 37, 41, 

43, 44, 55, 57, 61, 63, 70, 71, 72, 77, 97, 

104, 105, 108, 109, 114, 119, 120, 122, 
126, 139, 140, 145, 152, 154, 155, 166, 

175, 178, 184, 187, 188, 198, 205, 210, 
211, 214, 216, 223, 225, 229, 231, 232, 

234, 237, 238, 240, 245, 249, 9002, 

9003, 9004, 9005, 9007, 9021, 9023, 
9053 

393 

Tables IV and V compared the results between the proposed 

method and prior studies for the base case and the case 

considering ZIB, respectively. As can be seen in Table IV, 

although the number of PMUs required for all bus systems are 

similar, the SORI values are different. The result for the 

proposed method is either equal to or has the highest 

measurement redundancy across all IEEE bus systems, 

especially in the larger systems. The same thing can be 

observed in Table V for the case considering ZIB. However, for 

the IEEE 300-bus system, the proposed method managed to 

reduce the number of PMUs needed compared to the result 

obtained in [44] which used the binary semi-definite 

programming (BSDP) method.
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Table IV Comparison results with prior studies for base case 

IEEE bus 

system 
Parameter 

Proposed 

Method 
ES  [11] 

Binary 

Search [40] 
DE [17] BPSO [23] BPSO [19] SQP [27] BSDP [28] 

14-bus 
NPMU 4 4 4 4 - 4 4 4 

SORI 19 19 19 19 - 19 19 16 

24-bus 
NPMU 7 7 7 - 7 - 7 - 

SORI 31 31 31 - 29 - 31 - 

30-bus 
NPMU 10 10 10 10 10 10 10 10 

SORI 52 50 50 52 46 52 48 50 

39-bus 
NPMU 13 13 13 13 13 - 13 - 

SORI 52 51 52 52 50 - 52 - 

57-bus 
NPMU 17 17 - 17 17 17 17 17 

SORI 72 68 - 72 67 71 71 66 

118-bus 
NPMU 32 32 - - 32 32 32 32 

SORI 164 155 - - 159 145 163 159 

300-bus 
NPMU 87 - - - - - - 87 

SORI 432 - - - - - - 423 

 
Table V Comparison results with prior studies for case considering ZIB 

IEEE bus 

system 
Parameter 

Proposed 

Method 
ES  [11] 

Binary 

Search [40] 
Binary ILP 

[7] 
BPSO [23] BPSO [19] ILP [5] BSDP [28] 

14-bus 
NPMU 3 3 3 3 - 3 3 3 

SORI 16 16 16 16 - 16 16 16 

24-bus 
NPMU 6 6 6 - 6 - - - 

SORI 29 27 29 - 28 - - - 

30-bus 
NPMU 7 7 7 7 7 7 7 7 

SORI 41 36 39 41 37 34 36 36 

39-bus 
NPMU 8 8 8 8 8 - 8 - 

SORI 43 43 43 43 40 - 43 - 

57-bus 
NPMU 11 11 - 11 11 13 11 11 

SORI 60 60 - 59 59 64 60 57 

118-bus 
NPMU 28 28 - 28 - 29 28 28 

SORI 156 148 - 156 - 155 148 145 

300-bus 
NPMU 69 - - - - - - 70 

SORI 393 - - - - - - 378 

 

The minimum number of PMUs required for the case 

considering the single PMU loss is given in Table VI. As can 

be observed, more PMUs are required to achieve complete 

observability of the power system compared to the cases with 

and without considering ZIB. It is expected since at least two 

PMUs will be responsible for each bus in a power system to 

ensure the power system remains observable if one of the PMUs 

becomes malfunction. For instance, for the IEEE 57-bus 

system, the number of PMUs when single PMU loss is taken  
TABLE VI Result for case considering single PMU loss 

IEEE 

Bus 

System 
NPMU Locations of PMUs SORI 

14-Bus 9 2, 4, 5, 6, 7, 8, 9, 10, 13 39 

24-Bus 14 
1, 2, 3, 7, 8, 9, 10, 11, 15, 16, 17, 20, 21, 
23 

59 

30-Bus 21 
2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16, 18, 

20, 22, 24, 25, 26, 27, 28, 30 
85 

39-Bus 28 
2, 3, 6, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 
22, 23, 25, 26, 29, 30, 31, 32, 33, 34, 35, 

36, 37, 38, 39 

96 

57-Bus 33 
1, 3, 4, 6, 9, 11, 12, 15, 19, 20, 22, 24, 25, 
26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 41, 

45, 46, 47, 50, 51, 53, 54, 56, 57 

130 

118-Bus 68 

2, 3, 5, 6, 9, 10, 11, 12, 15, 17, 19, 21, 22, 

24, 25, 27, 29, 30, 31, 32, 34, 35, 37, 40, 
42, 43, 45, 46, 49, 51, 52, 54, 56, 57, 59, 

61, 62, 64, 66, 68, 70, 71, 73, 75, 76, 77, 

79, 80, 83, 85, 86, 87, 89, 90, 92, 94, 96, 
100, 101, 105, 106, 108, 110, 111, 112, 

114, 116, 117 

309 

into account is 33 PMUs. It requires more PMUs than when it 

is compared to the base case and the case considering ZIB, 

where the number of PMUs required is 17 PMUs and 11 PMUs, 

respectively.  

For the case considering PMU’s channels limit for base case, 

the number of PMUs obtained is compared with the existing 

studies and presented in Table VII. As mentioned earlier, by 

considering PMU’s channels limit, the PMU has a finite 

number of branch lines that it can monitor. Hence, the number 

of PMUs will be influenced by the limitation. As can be 

observed, the number of PMUs when using different number of 

channels is different across all IEEE bus systems. With more 

channels, the number of PMUs needed is reduced. From Table 

VII, it can be concluded that the PMUs with 4 number of 

channels are ample to achieve a complete observability of the 

power systems with the minimum number of PMUs as obtained 

in the Table II for the case considering base case.  

Next, Table VIII compares the number of PMUs obtained for 

case considering PMU’s channels limit and ZIB with the 

existing studies. As can be seen from the Table VIII, the number 

of PMUs needed using the proposed method are comparable 

with the existing studies that used other optimization methods 

for all IEEE bus systems. It also must be noted that the number 

of channels needed is varies for case considering ZIB. For 

example, for IEEE 24-bus, 30-bus and 39-bus systems, the 

PMUs with 4 channels are enough to maintain the observability 

of the power systems with the most minimum number of PMUs, 

while PMUs with 5 channels are needed for IEEE 14-bus and 
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TABLE VII Comparison results for case considering PMU’s channels limit for base case 

IEEE bus 

system 

Channel 

Limit, L 

Number of PMUs, NPMU 

Proposed Method 
Binary Integer 

[41] 
ILP [42] ILP [30] 

14-bus 

2 7 7 7 7 

3 5 5 5 5 

4 4 4 4 4 

5 4 4 4 4 

24-bus 

2 12 - - - 

3 8 - - - 

4 7 - - - 

5 7 - - - 

30-bus 

2 15 15 15 15 

3 11 11 11 11 

4 10 10 10 10 

5 10 10 10 10 

39-bus 

2 21 - - - 

3 14 - - - 

4 13 - - - 

5 13 - - - 

57-bus 

2 29 29 29 29 

3 19 19 19 19 

4 17 17 17 17 

5 17 17 17 17 

 
Table VIII Comparison results for case considering PMU’s channels limit and ZIB 

IEEE bus 

system 

Channel 

Limit, L 

Number of PMUs, NPMU 

Proposed 

Method 
ILP [41] Firefly [15] ILP [30] GA [14] ILP [42] 

14-bus 

2 7 7 7 7 7 7 

3 5 5 5 5 5 5 

4 4 4 4 4 4 4 

5 3 3 3 3 3 3 

24-bus 

2 10 - - - - - 

3 7 - - - - - 

4 6 - - - - - 

5 6 - - - - - 

30-bus 

2 13 12 12 13 12 13 

3 8 8 8 9 18 8 

4 7 7 8 7 7 7 

5 7 7 7 7 7 7 

39-bus 

2 14 14 - - - - 

3 9 9 - - - - 

4 8 8 - - - - 

5 8 8 - - - - 

57-bus 

2 21 21 21 21 21 21 

3 14 14 14 14 14 14 

4 12 12 13 12 12 12 

5 11 11 12 11 11 11 

 

IEEE 57-bus systems. However, these results consistent with 

the results obtained by the existing studies. Therefore, the 

results proved that the proposed method is capable in solving 

the OPP problem considering PMU’s channels limit using 

BPSO optimization method, which constraint was never 

considered before. 

VI. CONCLUSION 

This paper proposed a new technique for the BPSO algorithm 

which integrates a new mutation strategy and V-shaped sigmoid 

for solving the OPP problem considering ZIB, single PMU loss 

and PMU’s channel limit, which was never considered before 

in the BPSO algorithm. In addition, this paper also proposed a 

new fitness function for the case of single PMU loss. The results 

show that the proposed method can produce a high-quality 

solution in terms of measurement redundancy compared to 

prior studies. The proposed method also managed to reduce the 

number of PMUs needed for IEEE 300-bus system. By 

applying this technique, particle diversity can be increased and 

particles can be avoided from being stuck in the local optima.  
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