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Abstract The field of data mining for software engineering has been grow-
ing over the last decade. This field is concerned with the use of data mining
to provide useful insights into how to improve software engineering processes
and software itself, supporting decision making. For that, data produced by
software engineering processes and products during and after software develop-
ment is used. Despite promising results, there is frequently a lack of discussion
on the role of software engineering practitioners amidst the data mining ap-
proaches. This makes adoption of data mining by software engineering prac-
titioners difficult. Moreover, the fact that experts’ knowledge is frequently
ignored by data mining approaches, together with the lack of transparency
of such approaches, can hinder the acceptability of data mining by software
engineering practitioners. In order to overcome these problems, this position
paper provides a discussion of the role of software engineering experts when
adopting data mining approaches. It also argues that this role can be extended
in order to increase experts’ involvement in the process of building data min-
ing models. We believe that such extended involvement is not only likely to
increase software engineers’ acceptability of the resulting models, but also im-
prove the models themselves. We also provide some recommendations aimed
at increasing the success of experts involvement and model acceptability.
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1 Introduction

The 21st century has been experiencing a rapid growth in the amount of data
produced by sensors, processes and activities. Data is everywhere. They are
produced by cameras monitoring public pathways, sensors monitoring indus-
trial machinery, customers making purchases in supermarkets, financial mar-
kets, hospital logs, elderly patients at home etc. Data has also been (and is
being) collected from software engineering processes and products, during and
after software development. We refer to these data as software data.

Software data has the potential to provide useful insights into how to im-
prove software engineering processes and software itself, supporting decision-
making. For instance, they can be used to gain insights into what software
modules are most likely to contain bugs [17,34], what amount of effort is
likely to be required to develop new software projects or Web applications
[14,30], what software changes are most likely to induce bugs [21,4], how the
productivity of a company changes over time [37], etc.

The data availability combined to the difficulty of manually browsing data
to retrieve knowledge and insights resulted in the emergence of research com-
munities exploring the use and development of data mining approaches for
software engineering. For instance, the Working Conference on Mining Soft-
ware Repositories (MSR) has experienced an increase in the number of paper
submissions since its first chapter in 2004 (see figure 1).

Fig. 1 Number of Paper Submissions to the Working Conference on Mining Software Repos-
itories

Despite the promising results being achieved in the field of data mining
for software engineering, there is frequently a lack of discussion on the role of
software engineering practitioners amidst the data mining approaches. Such
limitation can make industrial adoption of data mining for software engineer-
ing difficult. Moreover, despite the fact that software engineers have valuable
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knowledge, such knowledge is usually ignored by data mining approaches. To-
gether with the lack of transparency of the models created by most data mining
approaches and of the data mining approaches themselves, this can be an addi-
tional factor to hinder the acceptability of data mining by software engineering
practitioners.

In order to overcome these problems, this position paper provides a dis-
cussion of the role of software engineering experts when adopting data mining
approaches. It also argues that this role can be extended in order to increase
experts’ involvement in the process of building data mining models. We believe
that this extended involvement can (1) increase the acceptability of data min-
ing approaches in software engineering in practice, and (2) further improve the
field of data mining for software engineering by facilitating the integration of
knowledge automatically retrieved from data with human knowledge. We also
provide some recommendations aimed at increasing the success of software
engineering experts involvement and model acceptability.

This paper is further organised as follows. Section 2 provides an overview
of current work on data mining for software engineering. Section 3 discusses
the current role of software engineering experts in data mining for software
engineering. Section 4 argues in which ways software engineering experts’ par-
ticipation could be increased. Section 5 provides recommendations for involv-
ing software engineering practitioners. Section 6 concludes the paper with final
remarks.

2 Current Work on Data Mining for Software Engineering

Data mining has been used for several software engineering problems. This
section provides a brief overview of work done in three of the software en-
gineering problems most studied from the data mining perspective: software
effort estimation, software defect prediction, and prediction of bug-inducing
software changes.

2.1 Software Effort Estimation

Software effort estimation is the task of estimating the effort (e.g., in person-
hours, person-months) required to develop a software project. It is a task
of strategic importance for software companies, given that effort is the main
contributing factor for project cost. For instance, overestimations could cause
companies to waste resources or loose bids for projects. Underestimations could
cause companies to be unable to complete software projects.

Data mining can be used to create software effort estimation models based
on data describing previously completed software projects. These data may
contain project features such as estimated software size, team expertise, pro-
gramming language, memory requirements, etc, besides the actual effort re-
quired to develop the completed software projects.
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There has been more than 400 studies in the effort estimation field, inves-
tigating new prediction techniques, and or comparing techniques. Jorgensen
and Shepperd provide details on a mapping study in this topic [18]. A sem-
inal work is that of Boehm, who proposed a regression-based model called
COnstructive COst MOdel (COCOMO) [9]. This approach learns an equation
for estimating effort, which can be easily interpreted by software engineering
experts. Another landmark study is the work of Shepperd and Schofield, who
used k-Nearest Neighbours for software effort estimation [46]. Their approach
was shown to usually outperform more traditional stepwise regression mod-
els. Chulani et al. proposed to use a Bayesian approach to combine a priori
information based on expert knowledge with a linear regression model based
on log transformation of the data [12]. Their approach showed promising re-
sults, outperforming linear regression models based on log transformed data.
However, their study was based on a single data set and its extended version.
It is difficult to know how much the results would generalise to other software
projects.

Dejaeger et al. provide a comparison of several machine learning approaches
applied to software effort estimation [14]. Their results show that ordinary
least squares regression in combination with logarithmic transformation ob-
tain competitive results. Studies involving ensembles of learning machines have
also been showing promising results when applied to software effort estimation
[25,36]. In particular, Minku and Yao showed that combining the power of en-
sembles with local learning through the use of bagging ensembles of regression
trees outperformed several other machine learning approaches [36]. A problem
of ensemble-based approaches is that they are difficult to interpret by software
engineering experts. Alternatively, despite not being the best ranked approach
for software effort estimation, regression trees can also obtain competitive re-
sults. These interpretable models have shown to be rarely considerably worse
than the best approach for a given software effort estimation data set [36].

Software effort estimation has also been investigated as a transfer (cross-
company) learning problem [37,24,52]; an online or incremental learning task,
where more software project data are used for training over time [37,35,
26]; a problem where estimations for latter phases of the project can be im-
proved based on the actual effort spent on previous phases [15,51,27]; a multi-
objective learning problem [38,45], and a semi-supervised learning problem
[23].

Finally, many of the techniques that were applied to software effort estima-
tion have also been used for Web effort estimation [6,29], which also include
the use of ensembles [7]. Mendes pioneered this field, and also led the creation
of the Tukutuku database, which is to date the only cross-company database
on Web project data [32]. The Tukutuku database has been used in numerous
studies in order to compare different effort prediction techniques. Mendes has
also applied one specific technique Bayesian Network, to building Web effort
prediction models using as basis expert knowledge [29]. Further details are
given in Section 3.
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2.2 Software Defect (Bug) Prediction

In 2002 IEEE Metric Panel, a group of noted researchers have agreed that
fixing defects in a software product after being delivered to the customer is
up to 100 times more expensive than finding and fixing them during the re-
quirements and design phases [10,47]. They have also argued that up to 50%
of effort is spent on avoidable work, 80% of which comes from a small number
of defects (i.e. 20%) in the system. The bottom-line is that software testing is
a costly challenge and practitioners seek the knowledge of where the defects
might exist before they start testing.

In this respect, defect predictors are data mining applications to help pri-
oritizing the list of software modules to be tested, in order to allocate limited
testing resources effectively and to detect as many defects as possible with
minimum effort.

Software defect prediction has been a popular area of software quality re-
search that has drawn the attention of significant organizations including, but
not limited to, Microsoft, NASA and AT&T [41,33,43]. Basically, software
defect prediction models require a set of features to characterize the problem
and to give estimation on the defect proneness of the system. In software qual-
ity, these attributes are referred to as software metrics and numerous previous
studies demonstrated defect predictors learned from product [33] (e.g., size,
complexity) and process [53,43] (e.g., code churn) metrics.

Once relevant data is available, a variety of data mining algorithms can
be applied to learn defect predictors, please see Hall et al. for a systematic
literature review [17]. Most defect prediction studies formulate the problem
as a supervised learning problem, where the outcomes of a defect predictor
model depend on historical data used for training. They can be either labels
indicating that a software module is or is not likely to contain defects, or the
predictive number of defects expected to be present in the software module,
or a ranking of software modules according to their defect proneness.

Majority of research focus on the algorithmic models and report simula-
tion results of defect predictors that are trained on a project and tested on
a reserved portion of the same project, i.e. retrospective analyses, or the ap-
plication of defect predictors to the newer versions of the same project in
terms of longitudinal case studies [50,53]. These attempts for defect predic-
tion modelling assume the availability of local project data (i.e. within project
predictors). In other words, building data mining models require a project to
have a historical data repository, where project metrics and defect information
from past are stored. However, this is rarely the case in reality.

In order to address this issue, recently a branch of defect prediction research
emerged that makes use of transfer learning and deals with cross project pre-
dictors, where the goal is to learn a predictor model from a project and then
to apply the model to another project [11]. Cross-project defect prediction is a
challenge with important practical aspects. One such practical aspect is that
cross-project predictions may enable practitioners to use the available open-
source project data for defect prediction [54], without making big changes in
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or investments to their existing processes for data collection, and process im-
provement activities. Existing studies provide empirical evidence over a wide
range of software systems, advocating that cross-project defect predictors can
be effective. Considering that the idea behind cross-project prediction is to
make estimates of faulty locations in projects with no history, it is a viable
stop-gap choice [52] in data starving project environments.

2.3 Prediction of Bug-Inducing Changes

More recently, researchers have started to investigate the use of data mining
for predicting whether software code changes are likely to induce bugs [21].
This type of approach allows risky changes to be identified immediately after
the commit of the code related to the changes take place, rather than having to
wait a whole software module (e.g., software class) to finish being implemented.
As the changes have just been committed, the context of the changes is still
fresh in the developer’s mind, being much easier to investigate for finding bugs.

The problem of predicting bug-inducing changes can be formulated in
different ways. Existing work has investigated predictions at the individual
change level[21,22], and at the level of initial modification requests [40], which
may consist of several changes. Researchers have also investigated prediction
of whether commits are likely to lead to crash-related bugs [4], i.e., bugs that
result in an unexpected interruption of the software system in users’ environ-
ment.

Models for predicting bug-inducing changes for a given software can be
created based on data describing previous changes for this software, which can
be obtained when using version control systems. Input attributes describing
changes can be change metrics [21,40], such as the number of modified directo-
ries, the distribution of modified code across each file, number of lines of code
added / deleted, whether the commit is a bug fix change, number of developers
that modified the changed files in the past, developer experience, etc. Existing
work has also used code complexity metrics such as the ones typically used
for software defect prediction (section 2.2) and social network analysis metrics
computed based on the dependency among the changed files [4].

The data mining approaches used for these predictive tasks include logistic
regression [21,5], general linear model, naive bayes and random forest [40],
support vector machines [22] and K-nearest neighbours [5].

3 The Current Role of Software Engineering Experts

This section outlines the main current roles of software engineering experts in
different phases of the application of data mining for software engineering.

Problem definition. An important role of the experts is to help defining the
software engineering predictive problem itself. In order to address problems
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that are relevant to software engineering practice, qualitative research in the
form of interviews and questionnaires can be performed to understand soft-
ware engineering practitioners’ needs. As explained by Runeson and Host [44],
software engineering case studies differ from other areas in that the study
objects are developing rather than using software, they are project-oriented
rather than line or function-oriented, and the subjects have advanced software
engineering knowledge, rather than being people performing routine work. In-
terviews and questionnaires should be prepared with that in mind.

Data collection. Software engineering experts also play an important role in
creating and providing data that can be used by data mining approaches. They
have useful knowledge regarding data quality, which can be provided for data
mining experts to decide how to best process the data before applying data
mining approaches. As explained by Bener et al. [8], data mining professionals
can decide whether or not to include certain parts of the data in the training
set based on software engineering experts’ knowledge. Given that poor data
quality is likely to result in poor predictive models, software engineering ex-
perts may also have the key knowledge to identify the reasons for possibly
poorly performing predictive models.

Model building. A few studies use software engineering expert knowledge dur-
ing data-driven model building, which aims to select the best choice of data /
variables / relationships based on their expertise [12,31]. However, most work
on data mining for software engineering implicitly assumes that the role of
the software engineering experts in creating predictive models should be min-
imised. It is typically considered that software engineering experts should be
able to press a button that will not only build, but also automatically fine tune
the parameters of data mining approaches. Software engineering practitioners
are unlikely to have the data mining knowledge required to fine tune parame-
ters of certain data mining approaches, and such parameters can significantly
affect the performance of software engineering predictive models [48]. There-
fore, studies on optimisation algorithms to automatically tune parameters [42,
13,49] are likely to be useful in practice.

Model usage and decision-making. The main purpose of data mining for soft-
ware engineering is to create models able to provide actionable insight to
support decision-making related to software [16]. In this context, the next role
of software engineering experts after the predictive models are created is to
use the predictive models to support decision-making. Software engineers can
use predictive models in different ways. For instance, they can use isolated
predictions for a given set of input attributes. For example, several studies
investigated the use of probabilistic models for decision making in software
engineering, within the context of effort estimation [29,28]. They may also try
several different sets of input attributes to find which of them would lead to
the most desirable outcome. When predictive models are transparent, soft-
ware engineering experts may also use them to gain insights into significant
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correlations between input attributes and the variable of interest. The trans-
parency of predictive models is also likely to increase their acceptance by
software engineering experts, as experts can understand the model and how
it makes predictions. However, care must be taken not to confuse correlations
with causations. We believe that software engineering experts can use their
domain knowledge in order to explain whether certain correlations are likely
to represent causations or not.

4 The Potential Role of Software Engineering Experts

Even though it is usually assumed that the software engineering experts’ role
in model creation should be minimised, we argue that, in software engineering:

1. involving experts in the process of building predictive models is likely to
increase the acceptability of data mining in software engineering and

2. experts have valuable knowledge that can improve predictive models, fur-
ther improving the field of data mining for software engineering.

A few studies can be used to support our arguments [29,28,20,12,8]. One
of the authors of this paper (Mendes) had the opportunity to collaborate with
six different companies in New Zealand and Brazil building expert-based Web
effort estimation models based on Bayesian networks [29,28]. The software en-
gineering experts who took part in the case studies were all project managers
of well-established Web companies in either Auckland (New Zealand), or Rio
de Janeiro (Brazil), each with at least 10 years of experience in project man-
agement. These companies varied in their size, measured as the total number
of employees. In addition, all six companies were consulting companies and as
such, developed a wide range of Web applications, from static & multimedia-
like to very large e-commerce solutions.

When approached, all six companies were looking at improving their cur-
rent effort estimates, and agreed to participate in the study for two main
reasons: i) because the models to be created were geared towards their specific
needs; and ii) because their expertise and participation were acknowledged as
essential to eliciting the models [29,28]. This shows how important the inclu-
sion of software engineering experts in the process of building models is in order
to increase their openness to the use of data mining. Given that many software
engineers will have been working in their field of several years, we believe that
the importance of acknowledging their expertise to support model building
also extends to other software engineering tasks than Web effort estimation.
Even though software engineers may lack the expertise to tune parameters of
certain data mining approaches, other data mining approaches such Bayesian
networks lend themselves for domain experts input.

Once the study finished, all companies except for the company in Brazil
were contacted for post-mortem interviews. The interviews revealed that not
only the resulting models, but also the process of building the models was itself
advantageous to the companies. This is because the process enabled software
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engineering experts to think deeply about their effort estimation process and
the factors taken into account during that process. This has been pointed out
by all the software engineering experts interviewed after the study finished. All
the companies remained positive and very satisfied with the results of the study
once it finished. In particular, the software engineering experts from the largest
company in terms of number of employees presented their effort estimation
models to their development teams and asked them to adopt the model in all of
their effort estimations. We believe that the successful development of these six
Web effort Bayesian network models was thanks to the involvement of software
engineering experts in the loop. It was greatly influenced by the commitment
of the participating companies, and also by the software engineering experts’
experience in estimating effort.

The Bayesian networks from the study above were created entirely based
on expert knowledge. However, given that software engineering experts can
have their estimations influenced by irrelevant and misleading information
[20], knowledge acquired from data could be used to improve expert-based
predictive models further. Knowledge acquired from data could also be used
to improve upon less experienced software engineers’ knowledge. Meanwhile,
software engineering is a domain where there is relatively limited data [8]. It is
not uncommon for datasets produced by a given company to contain less (or
much less) than 50 projects [32,39,3,19,2]. Therefore, models created solely
based on data may not perform so well. Knowledge from software engineering
experts can be used to overcome the problem of little data [12]. Carefully
combining expert knowledge with knowledge automatically retrieved from data
could bring the best of both worlds in software engineering.

5 Recommendations for Practitioners Involvement

Based on previous experiences, we would like to share some lessons gained in
terms of involving software engineering experts and ensuring successful adop-
tion of the resulting models by practitioners.

Initial engagement. In order to reach out to industry, researchers can organ-
ise seminars to provide an introduction to the approaches to be used, how
they use software engineering experts knowledge and what can be achieved
by companies using such approaches. These seminars can help practitioners to
understand the value of the approach. This has been successfully done in pre-
vious work [29,28], where companies saw the immediate value in expert-based
Bayesian networks, in particular because it enabled the very close and funda-
mental participation of in-house software engineering experts while building
and validating a company-specific model.

Experts data collection. Besides collecting software engineering experts’ knowl-
edge through meetings, interviews and surveys, recent work has also success-
fully used decision-support tools as a way to collect data on software engineer-
ing experts decisions [1]. For the software engineers, such tools can be designed
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with the external purpose of helping software engineers to organise their tasks,
visualise data, record a diary of decisions, etc. For the data miners, these tools
can then collect and process data produced by the software engineering ex-
perts. An analogy of such tools can be made with software bug report tools,
which can be used to collect information about bugs from software.

Initial results. As highlighted by Bener et al. [8], it is advisable to involve
software engineering experts in discussions about the initial results achieved
with the models and any concerns related to them. Given software engineering
experts’ knowledge about the problem and the data being used, they may be
able to provide a clear explanation for poor performance or results that are
unexpected to the researcher.

Model improvement. Once a model has been validated and put into use, it is
important to obtain feedback from developers and managers on its use, as the
model may need to be updated at some point. Those who have participated in
building the model should ideally be the ones engaged in any model updates
that take place.

Company-wide model availability. Previous research building expert-based ef-
fort prediction models in collaboration with several software companies [29]
suggests that once such models have been built and validated it is important
that they do not remain within the boundaries of a single development team
and project manager (assuming the company has several development teams
and project managers). Our anecdotal evidence from post-mortem interviews
with some of the companies with whom one of the authors collaborated build-
ing such models provided us with a range of concrete and industry-informed
choices that can be used for that. For instance:

– In order to increase the chances of successful adoption of a model, it is
advisable to presenting a seminar to all developers and project managers
who participate in the development and management of the types of ap-
plications that were the focus of the expert-based model built. One of the
goals of this seminar is to elaborate on the value that the entire company
can gain from using such models.

– We suggest that the seminar focuses around presenting and detailing the
model and various what-if scenarios based on their most recent projects
for which the model was used. This provides concrete examples of how
the model is being used in the company. It is in our view also important
to detail all the factors and categories that were defined by the software
engineering experts who participated in building the model, such that all
those attending the seminar become familiar with the terminology.

– Once the seminar takes place, the documentation relating to the model
(description of factors and how to use the model) should become available
for all the participants. The tool that is used to run the model and the
model itself should also be made available to all development teams, so
they can all run what-if scenarios obtained using the model.
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– The nomenclature that was defined in the model should also become a
common vocabulary for all teams, to be used whenever they need to discuss
anything relating to the models. This is quite important as it guarantees
the model’s uptake by all relevant developers and managers.

– Depending on the purpose of the model being built, the model can also
be presented to clients of the software company. For example, software
effort estimation models can be presented as a way to provide clients with
reassurance that the effort estimates being put forward are not simply
guesses. Project managers and / or requirements analysts can take the
model to requirements elicitation meetings and use it as a guide in order
to obtain some of the evidence to be entered in the model in order to
obtain an effort estimate. Such approach can be effective and help making
the elicitation meetings focused, in particular whenever clients want quick
cost estimates based on very short elicitation meetings.

– Seminar to other branches and / or events on best practices can be organ-
ised within the company as part of a wider strategy to use such modelling
approach. In addition, such model, or experiences from using it, can also
be presented at industry events as examples of best practice.

6 Conclusions

The current role of software engineering experts is usually not discussed in pa-
pers on data mining for software engineering, making adoption of approaches
developed in this field difficult in practice. In order to fill in this gap, this
paper provided a discussion on the role of software engineering experts when
adopting data mining approaches. Even though this role ranges from prob-
lem definition to decision-making, there is a lack of involvement of software
engineering experts in the process of building data models. This lack of in-
volvement is a hindering factor when it comes to the acceptability of data
mining approaches by software engineering practitioners.

We argue that the involvement of software engineering experts in the pro-
cess of building data models is likely to not only help increasing acceptability
of data mining for software engineering in practice, but also to improve the
resulting data models themselves. This is because data mining for software
engineering is a particular field in the sense that (1) many software engineer-
ing experts will have valuable knowledge that can be used for performing
software engineering tasks, despite being potentially affected by irrelevant in-
formation, and (2) several software engineering tasks have a certain level of
data scarcity. Knowledge acquired from data can help to overcome potential
mistakes made by software engineering experts and provide useful insights that
they may otherwise not have identified. At the same time, experts’ knowledge
can help to overcome the problems resulting from little data. Our argument is
supported by previous successful collaborations with industry and papers con-
taining initial results on integrating software engineering experts’ knowledge
with knowledge acquired from data.
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