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ABSTRACT

Context: Previous studies have shown that steered training
data or dataset selection can lead to better performance for
cross project defect prediction (CPDP). On the other hand,
data quality is an issue to consider in CPDP.

Aim: We aim at utilising the Nearest Neighbor (NN)-Filter,
embedded in a genetic algorithm, for generating evolving
training datasets to tackle CPDP, while accounting for po-
tential noise in defect labels.

Method: We propose a new search based training data (i.e.,
instance) selection approach for CPDP called GIS (Genetic
Instance Selection) that looks for solutions to optimize a
combined measure of F-Measure and GMean, on a valida-
tion set generated by (NN)-filter. The genetic operations
consider the similarities in features and address possible
noise in assigned defect labels. We use 13 datasets from
PROMISE repository in order to compare the performance
of GIS with benchmark CPDP methods, namely (NN)-filter
and naive CPDP, as well as with within project defect pre-
diction (WPDP).

Results: Our results show that GIS is significantly better
than (NN)-Filter in terms of F-Measure (p — value < 0.001,
Cohen’s d = 0.697) and GMean (p—value < 0.001, Cohen’s
d = 0.946). It also outperforms the naive CPDP approach in
terms of F-Measure (p — value < 0.001, Cohen’s d = 0.753)
and GMean (p — value < 0.001, Cohen’s d = 0.994). In ad-
dition, the performance of our approach is better than that
of WPDP, again considering F-Measure (p —value < 0.001,
Cohen’s d = 0.227) and GMean (p—value < 0.001, Cohen’s
d = 0.595) values.

Conclusions: We conclude that search based instance se-
lection is a promising way to tackle CPDP. Especially, the
performance comparison with the within project scenario
encourages further investigation of our approach. However,
the performance of GIS is based on high recall in the ex-
pense of low precision. Using different optimization goals,
e.g. targeting high precision, would be a future direction to
investigate.
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Software Defect Prediction (SDP) is among the most stud-
ied and challenging problems in the field of software engi-
neering [8]. Software testing can be very time consuming
while the resources might be limited, hence detecting de-
fects in an automated way can save lots of time and effort
[5, 17, 30].

Defect data from previous versions of the same project
could be used to detect defect prone units in new releases.
Prediction based on the historical data collected from the
same project is called within project defect prediction (WPDP)
and has been studied extensively [1, 6, 7, 19, 20, 21, 27]. New
code and releases in the same project usually share many
common characteristics that make them a good match for
constructing prediction models. But this approach is being
criticized as within project data is usually not available for
new projects. On the other hand, there are plenty of rele-
vant public datasets available, especially in the open source
repositories [16]. Using the available public datasets, one
can investigate the usefulness of models created on the data
from other projects, especially for those with limited or no
defect data repository [10, 17, 30].

Learning approach and the training data are two major
elements in building high performance prediction models.
Finding a suitable set with similar defect distribution char-
acteristics as the test set is likely to increase the performance
of prediction models [28]. Since defect detection and label
assignment is based on mining version control systems [12,
13, 26], the process could be prone to errors and data quality
can be questionable [25]. In other words, the labels of some
of the instances might not have been identified correctly, two
or more instances with same measurements can have differ-
ent labels, or undetected defects may not be captured in the
dataset.

In this study, we address this problem with a search based
instance selection approach, where a mutation operation is
designed to account for data quality. Using the genetic al-
gorithm, we guide the instance selection process with the
aim of convergence to datasets that match the test set more
precisely and consequently having better predictions. The
fitness function at each generation is evaluated on a valida-
tion set generated via (NN)-Filter. With these, we handle
the potential noise in data, while tackling the training data
instance selection problem with GIS. Accordingly, the aim
of this study is to answer the following research questions:

RQ1: How is the performance of GIS compared with
benchmark cross project defect prediction approaches?



RQ2: How is the performance of GIS compared with the
within project defect prediction approach?

This paper is organized as follows: The next section sum-
marizes the related studies on CPDP and briefly describes
how our study differs. Proposed approach, datasets and ex-
perimental procedures are presented in Section 3. Section 4
presents the results of our analysis and discussions. Section
5 discusses the threats to the validity of our study. Finally,
the last section concludes the paper with a summary of the
findings as well as directions for future work.

2. RELATED WORK

Cross project defect prediction (CPDP) has drawn a great
deal of interest recently. To predict defects in projects with-
out sufficient training data, many researchers attempted to
build CPDP models [10, 11, 12, 30, 31, 32, 35]. However,
most studies report poor performances for CPDP [30, 35].

Turhan et al. [30] observed that CPDP under-performs
WPDP. They also found that despite its good probability
of detection rates, CPDP causes excessive false alarms. To
overcome this problem, they proposed the (NN)-Filter to
select the most relevant training data instances from a pool
of cross project datasets. Although this method lowered
the false alarm rates dramatically, its performance was still
worse than WPDP.

Zimmermann et al. [35] tested the CPDP approach for
622 pairs of 28 datasets from 12 projects (open source and
commercial) and found only 21 pairs (3.4%) that match
their performance criteria (precision, recall and accuracy,
all greater than 0.75). This means that the predictions will
fail in most cases if training data is not selected carefully.
They also found that CPDP is not symmetrical as data from
Firefox can predict Internet Explorer defects, but the oppo-
site does not hold. They argued that characteristics of data
and process are crucial factors for CPDP.

He et al. [10] proposed to use the distributional charac-
teristics (median, mean, variance, standard deviation, skew-
ness, quantiles, etc.) for training dataset selection. They
conclude that in the best cases cross project data may pro-
vide acceptable prediction results. They also state that
training data from the same project does not always lead to
better predictions and carefully selected cross project data
may provide better prediction results than within-project
(WP) data. They also found that data distributional char-
acteristics are informative for training data selection.

Herbold [11] proposed distance-based strategies for the
selection of training data based on distributional charac-
teristics of the available data. They presented two strate-
gies based on EM (ExpectationéASMaximization) clustering
and NN (Nearest Neighbor) algorithm with distributional
characteristics as the decision strategy. They evaluated the
strategies in a large case study with 44 versions of 14 soft-
ware projects and they observed that i) weights can be used
to successfully deal with biased data and ii) the training data
selection provides a significant improvement in the success
rate and recall of defect detection. However, their overall
success rate was still too low for the practical application of
CPDP.

Turhan et al. [31] evaluated the effects of mixed project
data on predictions. They tested whether mixed WP and
CP data improves the prediction performances. They per-
formed their experiments on 73 versions of 41 projects us-
ing Naive Bayes classifier. They concluded that the mixed

project data would significantly improve the performance of
the defect predictors.

Zhang et al [34] created a universal defect prediction model
from a large pool of 1,385 projects with the aim of relieving
the need to build prediction models for individual projects.
They approached the problem of variations in the distribu-
tions by clustering and rank transformation using the sim-
ilarities among the projects. Based on their results, their
model obtained prediction performance comparable to the
WP models when applied to five external projects and per-
formed similarly among projects with different context fac-
tors.

Ryu et al. [23] presented a Hybrid Instance Selection with
the Nearest Neighbor (HISNN) method using a hybrid clas-
sification to address the class imbalance for CPDP. Their
approach used a combination of the Nearest Neighbour al-
gorithm with Hamming distance and Naive Bayes to address
the instance selection problem.

While the abovementioned studies focus on the dataset
and instance selection problems, none of them are using
the search based approach. Search based approaches to
defect prediction problem have been considered by Liu et
al., who tried to come up with mathematical expressions
as their solutions that maximize the effectiveness of their
approach [15]. They compared their approach with 17 non-
evolutionary machine learning algorithms and concluded that
the search-based models decrease the misclassification rate
consistently compared with the non-search-based models.
In addition Canfora et al. proposed a search based multi-
objective optimization approach [3]. Using multi-objective
genetic algorithm NSGA-II, they tried to come up with an
optimal cost effectiveness model for CPDP. They concluded
that their approach outperforms the single objective, trivial
and local prediction approaches. These studies are not fo-
cused on the instance/dataset selection problem and hence,
differ from our approach.

In summary, we combine training data instance selec-
tion with search based methods with the purpose of ad-
dressing potential defect labeling errors and compare our
method’s performance with benchmark CPDP and WPDP
approaches.

3. RESEARCH METHODOLOGY

This section describes the details of our study starting
with a detailed discussion of our motivation. Then we present
the proposed approach as well as the benchmark methods,
the datasets and metrics, and the performance evaluation
criteria used in our study.

3.1 Motivation

If selected carefully, a dataset from other projects can pro-
vide a better predicting power than WP data [10] as the large
pool of the available CP data has the potential to cover a
larger range of the feature space. This may lead to a better
match between training and test datasets and consequently
to better predicting power.

One of the first attempts in this area was the idea of fil-
tering the training dataset instances [30]. In this approach,
the most similar instances from a large pool containing all
the training instances from other projects are selected using
the k-NN algorithm. Using the distributional characteris-
tics of the test and training datasets is another approach
used in multiple studies [9, 10]. Clustering the instances
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Figure 1: Summary of the search based training data instance selection and performance evaluation process used in this paper.

is yet another approach used in other studies [11, 12, 34].
While these methods have been shown to be useful, the
search based approach to selection is not considered by any
of these papers. An evolving dataset starting with the ini-
tial datasets generated using these approaches can be a good
candidate for a search based data selection problem.

Another inspiration for this work is the fact that the pub-
lic datasets are prone to quality issues and contain noisy
data [25]. For example, certain defects might not have been
discovered yet, hence, some of the items in the training set
may be misleading as non-defective, while with similar kind
of measurements defects can exist in the test set. In con-
trast, while some test instances are not defective, the most
similar items in the training set might be labeled as defec-
tive. In short, some of the instances in the test set can
have similar measurements with the training set, yet dif-
ferent class labels. Please note that mislabeling may not
be the only reason for such situations, and they can occur
naturally, i.e. the class labels of similar measurements can
differ. The acknowledgment of noise in the data and guiding
learning to account for that can lead to better predictions,
as we propose in this paper.

3.2 Proposed Approach

Figure 1 visualizes the whole research process reported in
this paper. The details of the search based optimizer are
not present in the figure and instead, they are provided in
Algorithm 1 and discussed below.

The process starts with splitting the test set into p parts
randomly (p = 5 in our experiments). Partitioning the test
set into smaller chunks plays an important role in the over-
all procedure. By creating smaller chunks, the process of
optimizing and adjusting the dataset is easier as there are
less elements to consider and the datasets generated could
be better representatives for these smaller chunks than the
whole dataset. This procedure however, adds extra com-
plexity to the model and the run-time would increase con-
sequently, but since the goal is to optimize the effectiveness
of the method, we leave runtime overheads out of the scope
of the paper.

Each part (without the labels) is fed into the (NN)-Filter
instance selection method in order to select the most relevant
instances from the training set for the purpose of reserving a

validation set, on which optimize the search process. Please
note that the training set is a combination of all the instances
from other projects. The process then randomly creates an
initial population containing popSize datasets. Each popu-
lation element is a dataset selected randomly and with re-
placement from the large pool of training set instances. Each
population member is then evaluated on the validation set,
which is acquired via the (NN)-Filter in the previous step.
Then, for numGens generations, a new population is gener-
ated and the top elements are selected to survive and move
to the next generation. There is an alternative stopping
criterion for GIS (described below). These procedures are
repeated 30 times to address the randomness introduced by
both the dataset selection and genetic operations. Below,
the genetic operations and parameters are discussed in more
details:

e Initial Population: The initial population is gener-
ated using the random instance selection process from
a large pool of instances containing all elements from
other projects than the test project.

e Chromosome Representation: Each chromosome
contains a number of instances from a list of projects.
A chromosome is a dataset sampled from the large
training dataset randomly and with replacement.

e Selection: The Tournament selection is used as the
selection operator of GIS. Since the population size is
small in our experiments, tournament size was set to
two.

e Elites: A proportion of the population is moved to
the next generation; those that provide the best fitness
values. We transfer two of the top parents to the next
generation.

e Stopping Criteria: We place two limitations on the
number of iterations that the genetic algorithm could
progress. The first one is the maximum number of
generations allowed. In this case, this number was set
to 20. The other stopping criterion is the amount of
benefit gained from the population generated. If the
difference between the mean fitness of two population
is less than e = 0.0001, the genetic algorithm stops.



Algorithm 1 Pseudo code for GIS

32:

Set numGens = The number of generations of each genetic optimization run.

Set popSize = The size of the population.

Set DATA = {Ant-1.7, Camel-1.6, ivy-2.0, jedit-4.3, log4j-1.2, lucene-2.4, poi-3.0, prop-6, synapse-1.2, tomcat-6.0, velocity-1.6, xalan-

2.7,xerces-1.4}

Set FEATURES = { WMC, DIT, NOC, CBO, RFC, LCOM, LOC }

for TEST in DATA do
set TRAIN = Instances from all other projects
tdSize = 0.05 * Number of instances in TRAIN
for i =1 to 30 do
Set TestParts = Split TEST instances into p parts

for each testPart in TestParts do

Set vSet = Generate a validation dataset using 5-(NN)-Filter method (using three distance measures).
Set TrainDataSets = Create popSize dataset from TRAIN with replacement each with tdSize instances

for each td in TrainDataSets do

Evaluate td on vSet and add it to the initial generation

end for

for g in range(numGens) do

Create a new generation using the defined Crossover and Mutation function and Elites from the curent generation.

Combine the two generations and extract a new generation

end for

Set bestDS = Select the top dataset from the GA’s last iteration.
Evaluate bestDS on testPart and append the results to the pool of results.

end for

Calculate Precision, Recall and F-Measure and GMean from the predictions.

end for
Report the median of all 30 experiments
end for

e Fitness Function: F1-Score * GMean is used as the
fitness value of each population element. Each popula-
tion element (a dataset) is evaluated on the validation
set and fitness value is assigned to it. The selection
of this fitness function is not random as both of these
values (F1-Score and GMean) measure the balance be-
tween precision and recall, but in different ways.

e Mutation: The mutation function handles potential
data quality (e.g, noise, mislabelling etc.) issues. Ran-
domly changing the class value of the instances from
non defective to defective (and vice versa) mutation
guides the process through multiple generations for
yielding more similar datasets. With the probability
of mProb = 0.05, a number of training set instances
are mutated by flipping the labels (defective — non de-
fective or non defective — defective). Note that since
the datasets could contain repetitions of an element
(from the initial population generation and later from
the crossover operation), if an instance is mutated, all
of its repetitions are also mutated. This way, we could
avoid conflict between items in the same dataset. The
mutation process is described in Algorithm 2 formally.

e Crossover: The generated training datasets used in
the population could possibly have large sizes. The
time for training a learner with a large dataset and
validating it on a medium size validation set increases,
if the size of the train and validation datasets increase.
To avoid having very large datasets one point crossover
was used during the crossover operation. As we have
mentioned the chromosomes are a list of instances from
the large training set, selected randomly and with re-
placement. Since the chromosomes possibly contain
the repetitions of one item and the mutation operation

changes the label of an instance, conflicts might occur
in the chromosomes generated from combining the two
selected parents. In the case of conflicts, the major-
ity voting is used to select the label of such instances.
Algorithm 3 provides the pseudo-code for crossover op-
eration.

Algorithm 2 Mutation

Input => DS: a dataset
Output => A dataset with mutated items

set mProb = p // Mutation probability
set mCount = ¢ // Number of instances to mutate
set r = Random value between 0 and 1

if r<mProb then
for i in range(mCount) do
Randomly select an instance that is not been mutated in
the same round
Find all repeats of the same item and flip their labels
end for

. end if

3.3 Benchmark Methods

GIS is compared with three other approaches:

e (NN)-Filter (CPDP): In this approach, the most rele-
vant training instances are selected based on a distance
measure [30]. In this case, we used 10 nearest neigh-
bours and Euclidean distance. The simplicity of the
method and the comprehensive number of studies that
have tested the approach are the reasons for choosing
this method as a benchmark [23, 24, 30]. Also GIS
uses (NN)-Filter to select the validation dataset and
a benchmark is required to measure the performance
difference between (NN)-Filter and GIS.



Algorithm 3 One point crossover

Input => DS1 and DS2
Output => Two new datasets generated from DS1 and DS2

Set nDS1 = Empty dataset

Set nDS2 = Empty dataset

Set point = Random in the range of either of DS1 or DS2
SHUFFLE DS1 and DS2

for i = 1 to point do

10: Append DS1(i) to nDS1
11: Append DS2(i) to nDS2
12: end for

14: for i = point+1 to DS1’s length do
15: Append DS1(i) to nDS2

16: Append DS2(i) to nDS1

17: end for

19: for each unique instance in nDS1 and nDS2 do

20: Use the majority voting to decide the label of the instance and
its repetitions.

21: end for

e Naive (CPDP): In this approach, the whole training set
is fed into the learner and the model is trained with all
the training data points. These method has also been
tested in many studies and provides a baseline for the
comparisons [23, 24, 30]. The approach is easy and at
the same time demonstrates that while the availability
of large pools of data could be useful, not all the data
items are.

e 10-Fold cross validation (WPDP): In this benchmark,
we perform stratified cross validation on the test set.
Many studies have reported the good or at least bet-
ter performance of this approach compared with that
of cross project methods [30]. Outperforming and im-
proving WPDP is the main goals of many such studies.

While the first two benchmarks (CPDP) are used to answer
RQ1, the last benchmark (WPDP) is used to answer RQ2.
Each experiment is repeated 30 times to address the ran-
domness introduced by 10 fold cross validation and GIS.

3.4 Datasets and Metrics

We used 13 projects from the PROMISE repository for
our experiments. 12 of these projects are open source and
one of them is a proprietary project (prop-6). These datasets
are collected by Jureczko, Madeyski and Spinellis [12, 13].
The list of the datasets is presented in Table 1 with the
corresponding size and defect information. The reason for
using these datasets is driven by our goal to account for
noise in the data, which is a threat specified by the donors of
these datasets. Each dataset contains a number of instances
corresponding to the classes in the release. Originally, each
instance has 20 static code metrics. Among these 20 metrics,
we used seven of them while performing the experiments of
this study, as listed in Table 2. Please note that the reason
for choosing these specific set of metrics is that they were
also used in previous studies [4, 5]. In addition, please note
that the selection of the metrics is irrelevant to the topic of
this paper as it focuses on the instance selection problem
instead of feature selection, and using a reduced set that is
tried in other studies allows us to demonstrate the feasibility
of our approach as a proof of concept.

3.5 Performance Measures and Tools

Table 1: Datasets used in the study. DP= Defect Prone.

| Release | #classes | #DP | DP(%) | #LOC |
ant-1.7 745 166 22.3 208,653
camel-1.6 965 188 19.5 113,055
ivy-2.0 352 40 114 87,769
jedit-4.3 492 11 02.2 202,363
logdj-1.2 205 189 | 92.2 38,191
lucene-2.4 340 203 59.7 102,859
poi-3.0 442 281 63.6 129,327
prop-6.0 660 66 10.0 97,570
synapse-1.2 | 256 86 33.6 53,500
tomcat-6.0 | 885 7 09.0 300,674
velocity-1.6 | 229 78 34.1 57,012
xalan-2.7 885 411 46.4 411,737
xerces-1.4 588 437 74.3 141,180

Table 2: List of the metrics used in this study

Variable Description
CK suite (6)

WMC Weighted Methods per Class
DIT Depth of Inheritance Tree
LCOM Lack of Cohesion in Methods
RFC Response for a Class

CBO Coupling between Object classes
NOC Number of Children

Lines of Code (1)

LOC Lines Of Code

Naive Bayes (NB) is used as the base learner in all exper-
iments. NB is a member of the probabilistic classifier fam-
ily that are based on applying Bayes’ theorem with strong
(naive) independence assumptions between the features [29].
The good performance of NB has been shown in many stud-
ies. Menzies et al. [17, 18] and Lessmann et al.[14] have
demonstrated the effectiveness of NB with a set of data min-
ing experiments performed on NASA MDP datasets. Less-
mann et al. compared the most common classifiers on the
NASA datasets and concluded that there is no significant
difference between the performances of top 15 classifiers, one
of which is NB [14] .

To assess the performance of the models, four indicators
are used: Precision, Recall, F-Measure and GMean. These
indicators are calculated by comparing the outcome of the
prediction model and the actual label of the data instances.
To that end, the confusion matrix is created using the fol-
lowing values:

e TN: The number of correct predictions that instances
are defect free.

e F'N: The number of incorrect predictions that in-
stances are defect free.

e TP: The number of correct predictions that instances
are defective.

e FP: The number of incorrect predictions that in-
stances are defective.



Table 3: Median values of the 30 measurements for GIS, (NN)-Filter and Naive approaches.

Genetic (NN)-Filter Naive
Dataset Recall | Prec. | F | GMean | Recall | Prec. | F | GMean | Recall | Prec. | F | GMean
ant-1.7 0.946 0.236 | 0.379 0.472 0.295 0.591 | 0.394 0.417 0.337 0.577 | 0.426 | 0.441
camel-1.6 0.976 0.193 | 0.322 | 0.434 0.165 0.413 | 0.236 0.261 0.144 0.450 | 0.218 0.254
ivy-2.0 0.900 | 0.135 | 0.234 | 0.348 0.450 | 0.367 | 0.404 | 0.407 0.500 | 0.364 | 0.421 | 0.426
jedit-4.3 0.636 0.019 | 0.037 0.110 0.455 0.068 | 0.118 | 0.175 0.455 0.057 | 0.101 0.161
log4j-1.2 0.640 | 0.925 | 0.757 | 0.770 0.085 1.000 | 0.156 | 0.291 0.037 | 1.000 | 0.071 | 0.192
lucene-2.4 0.938 | 0.605 | 0.732 | 0.747 0.148 | 0.882 | 0.253 | 0.361 0.138 | 0.903 | 0.239 | 0.353
poi-3.0 0.929 | 0.670 | 0.778 | 0.790 0.107 | 0.857 | 0.190 | 0.303 0.132 | 0.822 | 0.227 | 0.329
prop-6 0.924 | 0.105 | 0.189 | 0.311 0.303 | 0.235 | 0.265 | 0.267 0.136 | 0.243 | 0.175 | 0.182
synapse-1.2 | 0.895 | 0.369 | 0.520 | 0.569 0.256 | 0.667 | 0.370 | 0.413 0.174 | 0.682 | 0.278 | 0.345
tomcat-6.0 0.948 0.089 | 0.163 0.290 0.597 0.293 | 0.393 | 0.418 0.597 0.279 | 0.38 0.408
velocity-1.6 | 0.821 0.367 | 0.504 | 0.542 0.128 0.667 | 0.215 0.292 0.141 0.688 | 0.234 0.311
xalan-2.7 0.800 0.992 | 0.886 | 0.890 0.156 1.000 | 0.270 0.395 0.160 1.000 | 0.276 0.400
xerces-1.4 0.749 0.805 | 0.788 | 0.789 0.130 0.934 | 0.229 0.349 0.101 0.978 | 0.183 0.314
Median 0.896 0.353 | 0.496 | 0.542 0.165 0.667 | 0.253 0.349 0.144 0.682 | 0.234 0.329
Mean 0.853 0.424 | 0.483 | 0.543 0.252 0.613 | 0.269 0.334 0.235 0.619 | 0.248 0.317

Using the confusion matrix, mentioned indicators are cal-
culated as follows:
Precision: The proportion of the predicted positive cases
that were correct is calculated using:
TP
Precision = ———— 1
TP+ FP (™)
Recall: Recall is the proportion of positive cases that
were correctly identified. To calculate recall the following
equation is used:
TP
Recall = ———— 2
TP+ FN 2)
F-Measure: To capture the trade-off between precision
and recall, F-Measure is calculated using the values of recall
and precision. The most common version of this measure is
the Fl-score which is the harmonic mean of precision and
recall. This measure is approximately the average of the two
when they are close, and is more generally the square of the
geometric mean divided by the arithmetic mean.
Precision x Recall

F1— Measure =2 x Precision + Recall )

GMean: While the F-Measure is the harmonic mean of
Recall and Precision, the GMean is the geometric mean of
the two. GMean is defined as follows:

GMean = \/precision x recall (4)

In this study, F1-Measure and GMean are selected as the
basis of our selection for the best approach when presenting
the results. F-Measure and GMean are also used as parts
of the fitness function for the genetic algorithm as it was
discussed earlier.

All the experiments are conducted using WEKA® ma-
chine Learning tool version 3.6.13. The statistical tests are
carried out using the scipy.stats? library version 0.16.0,
Python® version 3.4.3 and statistics library from Python.

Thttp:/ /www.cs.waikato.ac.nz/ml/weka/
Zhttps:/ /www.scipy.org/
http://www.python.org

The plots are generated using the matplotlib* library ver-
sion 1.5.1.

4. RESULTS

Table 3 and Table 4 provide the median values of the
performance measures from the 30 experiments performed
for CPDP and WPDP benchmarks, respectively. In Table
3, the reported results are without variation for (NN)-Filter
and naive methods, since there is no randomness involved
in their setting. The results of within and cross project
predictions are presented separately to show the differences
in both within and cross project cases and to answer the
corresponding research questions properly. In Table 4, the
results of GIS are repeated to make the comparisons easier.
In both tables, the last two rows present the median and
mean values of all predictions.

To measure the performance of GIS in comparison with
the other methods, the Wilcoxon signed rank test is used.
Table 5 and Table 6 summarize the results of the statistical
tests based on F-Measure and GMean values respectively for
each dataset individually and for all 30 runs. The last rows
of each table compare all results of GIS with the other ap-
proaches. The first column of each approach in these tables
is the p — value obtained from the tests and the second col-
umn is the Cohen’s d value associated with the performance
obtained from GIS and the other approach that is subject
to comparison. A positive Cohen’s d means that GIS yields
better results than the compared counterpart. The results
of the experiments are also visualized in Figure 2. Note that
the thin continuous line in the plots is the median and the
thick dashed line represents the mean value of the results.

Based on the results achieved, the research questions are
answered as follows.

RQ1: How is the performance of GIS compared with
benchmark cross project defect prediction approaches?

Judging from the F-Measure values, we see in Table 3
that the predictions in eight out of 13 cases are improved
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Table 4: Median values of the 30 measurements for GIS and WP 10-Fold Cross Validation approaches.

Genetic Cross Validation

Dataset Recall | Prec. | F | GMean | Recall | Prec. | F | GMean
ant-1.7 0.946 | 0.236 | 0.379 | 0.472 0.407 | 0.636 | 0.496 | 0.509
camel-1.6 0.976 | 0.193 | 0.322 | 0.434 0.187 | 0.446 | 0.264 | 0.289
ivy-2.0 0.900 | 0.135 | 0.234 | 0.348 0.428 | 0.441 | 0.435 | 0.435
jedit-4.3 0.636 | 0.019 | 0.037 | 0.110 0.273 | 0.180 | 0.217 | 0.222
log4j-1.2 0.640 | 0.925 | 0.757 | 0.770 0.408 | 0.985 | 0.577 | 0.634
lucene-2.4 0.938 | 0.605 | 0.732 | 0.747 0.322 | 0.882 | 0.472 | 0.533
poi-3.0 0.929 | 0.670 | 0.778 | 0.790 0.233 | 0.859 | 0.367 | 0.448
prop-6 0.924 | 0.105 | 0.189 | 0.311 0.342 | 0.292 | 0.315 | 0.316
synapse-1.2 | 0.895 | 0.369 | 0.520 | 0.569 0.418 | 0.684 | 0.519 | 0.534
tomcat-6.0 0.948 | 0.089 | 0.163 | 0.290 0.294 | 0.301 | 0.298 | 0.298
velocity-1.6 | 0.821 0.367 | 0.504 | 0.542 0.207 | 0.594 | 0.307 | 0.351
xalan-2.7 0.800 | 0.992 | 0.886 | 0.890 0.695 | 0.998 | 0.820 | 0.833
xerces-1.4 0.749 | 0.805 | 0.788 | 0.789 0.502 | 0.921 | 0.650 | 0.680
Median 0.896 | 0.353 | 0.496 | 0.542 0.342 | 0.636 | 0.435 | 0.448
Mean 0.853 | 0.424 | 0.483 | 0.543 0.363 | 0.632 | 0.441 | 0.468
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(a) F-Measure of all predictions from all the datasets

(b) GMean of all predictions from all the datasets

Figure 2: Violin plots of F-Measure and GMean values from all predictions for each approach.

with GIS. The naive approach works better in two cases and
the (NN)-Filter approach is better in the remaining three.
With GMean, the performance of GIS is even better. The
number of test sets that have better predictions is increased
to ten out of 13 cases. (NN)-Filter has two and naive CPDP
has one better prediction. The overall mean and median
values from GIS are higher than that of both benchmark
cross project methods for F-Measure and GMean values.
The violin plots of the measurements for F-Measure and
GMean values in Figures 2a and 2b provide more insights
into the results. GIS has a higher mean, median and max
values compared with the CP benchmark methods. Of course,
one should note the wider range of the values as well. While
GIS performs quite well on most of the datasets, two of them

are causing the wide interval. From the results in Table 3, we
can see that GIS has difficulties in predicting JEdit dataset
and the median F-Measure is only 0.037. At the same time,
the performance of GIS on Xalan dataset causes the increase
in the max value. Nevertheless, the concentration of the pre-
diction results with GIS is promising. More than half of the
predictions are over the maximum values received by the
other two CPDP benchmark methods.

Results of the statistical tests and the calculated effect
sizes show that GIS is significantly better than the two
benchmark CPDP approaches and the effect sizes confirm
this conclusion. GIS outperforms (NN)-Filter in terms of
F-Measure (p — value < 0.001, Cohen’s d = 0.697) and
GMean (p — value < 0.001, Cohen’s d = 0.946). It also



Table 5: Wilcoxon signed rank test results for F-Measure. GIS (CP) vs. Cross Validation (WP), (NN)-Filter (CP) and Naive
(CP). Positives values of Cohen’s d show performance improvement with GIS.

Cross Validation (NN)-Filter Naive
Dataset p-value | Cohen’s d | p-value | Cohen’s d | p-value | Cohen’s d
ant-1.7 < 0.001 -12.415 | < 0.001 -1.434 | < 0.001 -5.074
camel-1.6 < 0.001 14.246 | < 0.001 19.923 | <« 0.001 24.955
ivy-2.0 < 0.001 -10.646 | < 0.001 -9.163 | <« 0.001 -10.068
jedit-4.3 < 0.001 -24.442 | <« 0.001 -11.730 | <« 0.001 -9.237
log4j-1.2 < 0.001 4.079 | < 0.001 13.394 | < 0.001 15.277
lucene-2.4 < 0.001 23.230 | < 0.001 43.658 | < 0.001 44.924
poi-3.0 < 0.001 40.823 | <« 0.001 59.379 | <« 0.001 56.348
prop-6 < 0.001 -17.911 | <« 0.001 -10.872 | <« 0.001 2.165
synapse-1.2 | 0.845 -0.063 | <« 0.001 9.205 | < 0.001 14.917
tomcat-6.0 < 0.001 -22.722 | < 0.001 -42.345 | < 0.001 -40.655
velocity-1.6 | < 0.001 9.087 | <« 0.001 13.850 | < 0.001 12.934
xalan-2.7 < 0.001 1.944 | < 0.001 19.837 | < 0.001 19.605
xerces-1.4 < 0.001 4.347 | <« 0.001 20.306 | <« 0.001 22.011
All | <0.001 ] 0.227 | < 0.001 | 0.697 | < 0.001 | 0.753

Table 6: Wilcoxon signed rank test results for GMean. GIS (CP) vs. Cross Validation (WP), (NN)-Filter (CP) and Naive
(CP). Positives values of Cohen’s d show performance improvement with GIS.

Cross Validation (NN)-Filter Naive
Dataset P-Value | Cohen’s d | P-Value | Cohen’s d | P-Value | Cohen’s d
ant-1.7 < 0.001 -3.689 | < 0.001 5.748 | <« 0.001 3.313
camel-1.6 < 0.001 24.553 | < 0.001 28.149 | < 0.001 29.619
ivy-2.0 < 0.001 -4.196 | < 0.001 -2.808 | < 0.001 -3.778
jedit-4.3 < 0.001 -5.010 | < 0.001 -2.840 | < 0.001 -2.147
log4j-1.2 < 0.001 3.588 | < 0.001 12.395 | <« 0.001 14.934
lucene-2.4 < 0.001 16.830 | < 0.001 30.803 | <« 0.001 31.452
poi-3.0 < 0.001 37.629 | <« 0.001 45.553 | < 0.001 52.021
prop-6 0.021 -0.513 | <« 0.001 4.243 | < 0.001 12.286
synapse-1.2 | < 0.001 2.231 | < 0.001 10.080 | < 0.001 14.436
tomcat-6.0 < 0.001 -0.855 | <« 0.001 -12.208 | < 0.001 -11.154
velocity-1.6 | < 0.001 7.485 | < 0.001 10.252 | <« 0.001 9.413
xalan-2.7 < 0.001 1.901 | <« 0.001 17.814 | < 0.001 17.600
xerces-1.4 < 0.001 3.521 | <« 0.001 16.438 | <« 0.001 17.772
All | <0.001 | 0.595 | < 0.001 | 0.946 | < 0.001 | 0.994

outperforms naive CPDP in terms of F-Measure (p — value
< 0.001, Cohen’s d = 0.753) and GMean (p—wvalue < 0.001,
Cohen’s d = 0.994). These performance improvements are
more visible with GMean, as the effect sizes are larger. We
should note that GIS is more focused on recall and has a
lower precision while the benchmark approaches focus more
on precision and have lower recall values. Even though the
fitness function is defined in a way that treats the recall
and precision equally, previous studies have shown that the
(NN)-Filter (on which the GIS is optimized) focuses on re-
call more than precision [30]. A fitness function with a focus
on precision could optimize the results for achieving values
with higher precisions. Of course, this might come with a
decrease in the recall as there usually is a trade-off between
the two, but careful fitness function selection is one of the
key areas to pursue further.

RQ2: How is the performance of GIS compared with the

within project defect prediction approach?

Considering Table 4, the performance of GIS in terms of
F-Measure is better than that of the within project scenario.
Seven out of 13 projects have a better prediction with GIS.
Five of the predictions are better in the WP scenario and
the performance of both methods on one project is similar
(synapse-1.2, p — value = 0.845 and Cohen’s d = —0.063).
In terms of GMean, eight of the 13 datasets have better
prediction with GIS and five favor WPDP. At the same time,
WPDP is better than both benchmark CPDP approaches.
As pointed out in the discussions for RQ1, the low precision
of GIS on a dataset like JEdit should be noted. Of course
a dataset like JEdit seems to be hard to predict since the
defect density (0.022%) is very low and the within project
scenario’s results are not very promising as well (and neither
are the benchmark CPDP results).

The mean and median values from GIS are both better



than those of WPDP. These differences are in terms of both
F-Measure (p — value < 0.001 and Cohen’s d = 0.227) and
GMean (p—wvalue < 0.001 and Cohen’s d = 0.595). Consid-
ering the F values, cross validation is worse than GIS, but
the effect size is not large whereas the difference between
GIS and cross validation is significant in terms of GMean
(p —value < 0.001) and the calculated effect size is medium
(Cohen’s d = 0.595). The shape of the violin plots also
support our claim as illustrated in Figure 2b. Especially,
they show that the number of predictions that are below
the min value of WPDP predictions are much less than the
density of predictions with better results from GIS than that
of WPDP. Again, we should notice the focus of GIS on recall
more than precision while the WP approach is more focused
on precision.

S. THREATS TO VALIDITY

During an empirical study, one should be aware of the
potential threats to the validity of the obtained results and
derived conclusions [33]. The potential threats to the valid-
ity identified for this study are assessed in three categories,
namely: construct, external and conclusion validity.

5.1 Construct validity

The metrics used in this study are CK and LOC which are
different from complexity or other size metrics in some other
papers. These metrics have been widely used in previous
studies [4, 5, 22]. Even though the static code metrics can
achieve good performance [22], the usefulness of this met-
rics has been widely criticised [17, 30]. The experimental
datasets are collected by Jureczko et al. [12, 13], who cau-
tioned that there could be some mistakes in non defective
labels as not all the defects had been found (regex search
through version control commit comments). This may be a
potential threat for defect models training and evaluation;
on the other hand, this is what GIS is designed to account
for.

5.2 External validity

It is difficult to draw general conclusions from empirical
studies of software engineering and our results are limited
to the analyzed data and context [2]. Even though many
researchers have used the same datasets as the basis of their
conclusions, there is no assurance about the generalization
of conclusions drawn from these projects. Particularly the
applicability of the conclusions for commercial, proprietary
and closed source software might be different.

5.3 Conclusion validity

Our experiments are repeated 30 times to address the ran-
domness and the results are compared using the Wilcoxon
signed rank statistical test. Further, to calculate the magni-
tude of the difference, Cohen’s d for related samples was used
as effect size. Another threat is the choice of the evaluation
measure. Other researchers might consider different mea-
sures to evaluate the methods and as a consequence, some of
the observations and conclusions may change. Even though
the method works better for the majority of the datasets
(compared with both WPDP and CPDP benchmarks), it is
not necessarily better for all of them and further investiga-
tion is required.

6. CONCLUSIONS

In this study, we presented a novel search based approach
to instance selection (GIS). Through an evolutionary pro-
cess, we tried to converge to an optimal training dataset
and at the same time, we considered the potential noise in
the labeling of the datasets. We incorporated (NN)-Filter
into the model by using it in generating the validation set
to optimize the performance of our approach. The proposed
method outperforms both within and cross project bench-
mark methods in terms of F-measure and GMean.

Based on the results of this study, we show the usefulness
of third party project data and the search based methods in
the context of cross project defect prediction. We observed
that the performance of a simple classifier like Naive Bayes
could be boosted with such approaches. In fact, using a
different fitness function targeting other measures like pre-
cision, AUC (Area Under the Curve) or other measures may
lead to different results while giving the practitioners the
flexibility of guiding the process toward their desired goals.

Other validation dataset selection techniques using ap-
proaches like clustering, distributional characteristics, and
tuning the parameters of the genetic model in addition to
designing other fitness functions with a focus on different
measures are among possible future work to pursue.
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