
KWM : Knowledge-based Workflow Model for Agile Organization

         Corresponds to : 
Prof. Sung Joo Park
Graduate School of Management,
Korea Advanced Institute of Science and Technology,
373-1 Kusong-dong, Yusong-gu,
Taejon, 305-701, S. Korea
Tel. +82 42 869 2913
Fax. +82 42 869 2910
Internet: sjpark@cais.kaist.ac.kr



KWM : Knowledge-based Workflow Model for Agile Organization

Ha Bin Lee*, Jong Woo Kim**, Sung Joo Park*

*Graduate School of Management, Korea Advanced Institute of Science and Technology
** Department of Statistics, Chungnam National University

Abstract

   The workflow management system (WFMS) in an agile organization should be highly 

adaptable to frequent organizational changes. To increase the adaptability of contemporary 

WFMSs, a mechanism for managing changes on the organizational structure and business 

rules  need  to  be  enhanced.  In  this  paper,  a  knowledge-based  approach  for  workflow 

modeling is proposed, in which a workflow is defined as a set of business rules. Knowledge 

on organizational structure and special workflow, such as role/actor mapping and complex 

routing rules, can be explicitly modeled in KWM (Knowledge-based Workflow Model). 

Using  knowledge  representation  scheme  and  dependency  management  facility,  change 

propagation  mechanism  is  provided  to  adapt  to  frequent  changes  on  organizational 

structure, business rules and procedures. 

Key words: Workflow management, agile organization, adaptive workflow, business rule, 

knowledge-based system, change management.

2



1. Introduction

   Increasing  agility  of  an  organization  is  considered  as  a  critical  success  factor  in  a  competitive 

environment of continually and unpredictably changing customer opportunities (Goldman et al., 1995). 

Agile organizations are apt to frequently change their business processes to satisfy fluctuating customers 

needs. The workflow management system (WFMS) as a technology that automates business processes 

should be highly adaptive to changes on business processes in agile organizations. In a WFMS, business 

processes are represented using workflow model which has three main constructs; routes, rules, and roles 

(Marshak,  1994).  Routing  construct  represents  task  sequences  and  a  role  represents  one  who  is 

responsible for a task. Based on organizational model, a role can be defined with actor’s department, 

position, and skills, etc. Rule is used to define routing and role constructs. It enables to define conditional 

or exceptional routings and conditional assignment of tasks to actors through role constructs. An adaptive 

WFMS should be flexible enough to handle the changes on these three constructs.

Some WFMSs are flexible (Reichert and Dadam, 1998; Casati et al., 1998; Dellen et al., 1997) in the 

sense that they provide adaptability for the changes on routing constructs such as adding or deleting tasks, 

or changing task sequences. These systems, however, do not provide capability to handle changes on the 

organizational structure and business rules. The role definition can be affected by the changes on the 

organizational  structure  such  as  the  merger  and  abolition  of  departments,  change  on  the  position 

hierarchy, and creation of temporal task force, etc. In an organization, there may exist heterogeneous 

departments and actor types, different routing conditions according to the types of actors, and flexible role 

instances  that  are responsible for  a  task.  The rules  change frequently  due to BPR (Business Process 

Reengineering), empowerment, or restructuring. The existence of exceptional rules that may be applied 

for special workflow instances aggravates the complexity of rule management. The business rules can be 

3



directly affected by the changes on the routing and role constructs,  of  which the effects can also be 

cascaded, i.e., change on a business rule can affect other related business rules. Thus providing a change 

propagation  facility  for  the  changes  on  the  three  constructs  is  an  inevitable  component  of  adaptive 

WFMSs.   

For an ideal adaptive WFMS for agile organizations, workflow models need to be enhanced in the 

following aspects:

 Expressiveness  :  It  should  provide  constructs  to  represent  conditional  mapping  relationships 

between  roles  and  actors  based  on  organizational  model  as  well  as  complex  business  rules 

including exceptional rules. 

 Model verification : It should allow analysis that assures the correctness of workflow specification 

including checking the occurrence of inconsistent, redundant, and incomplete business rules as 

well as non-terminality of processes.

 Change  management  :  It  should  allow  easy  development  of  propagation  mechanism  against 

changes on the organizational structure and business rules as well as organizational procedures to 

assure the correctness of workflow model.

   In this paper, a knowledge-based approach for workflow modeling and enactment is proposed. KWM 

(Knowledge-based Workflow Model) is designed and implemented to enhance the three aspects. First, the 

expressive power of business rules of KWM are improved using knowledge-based approach to represent 

complex and heterogeneous business rules.  Secondly,  properties that  assure correctness of KWM are 

proposed  which  can  be  analyzed  using  a  rule  verification  technique.  Thirdly,  management  of 

organizational  changes in KWM can be easier due to  change propagation mechanism. Dependencies 

between modeling constructs are explicitly represented in KWM, and organizational changes that affect 

routes, rules, and roles in a workflow are propagated to corresponding constructs using the dependencies 

4



to assure the correctness of KWM.

   This paper is composed as follows: Section 2 briefly reviews related research. The detail of KWM is 

described  in  section  3.  In  section  4,  properties  for  the  correctness  of  KWM are  introduced,  and an 

algorithm  for  checking  the  properties  is  described.  A change  propagation  mechanism  for  KWM  is 

presented in section 5. In section 6, KWM is applied to an example. Finally, section 7 concludes the 

paper. 

2. Review of Related Research

   Many works for workflow modeling are based on the input-process-output (IPO) approach (Gruhn, 

1995; Ellis and Nutt, 1993; Wolf and Reimer, 1996; van der Aalst, 1998). It provides task-oriented view 

on workflows, that is, a workflow is considered as a set of interrelated tasks which process inputs and 

produce outputs. This approach is good to model structured workflows such as business trip approval 

process and purchasing process. On the other hand, language / action approach is also used for workflow 

modeling (Winograd, 1987; Flores et al., 1988; Michelis and Grasso, 1994; Kaplan et al., 1992). It is 

based on the conversations between workflow participants,  and has merits  for  modeling unstructured 

workflow  such  as  project  planning.  Some  research  employ  object-oriented  approach  for  workflow 

modeling  and  enactment  (Bose,  1996;  Chang  and  Scott,  1996;  Jennings  et  al.,  1996).  Bose  (1996) 

presented five classes of objects as a key construct: roles, organization structures, procedures, transitions, 

and documents. In his model, workflows are executed through message passing between participating 

objects of the workflows. Both of Chang and Scott (1996) and Jennings et al. (1996) suggested agent 

based approach for workflow management. In their architecture, autonomous and problem solving agents 

5



interact via their own protocol to achieve workflow management goals.

   In this paper, workflow is defined as a set of business rules. Business rules that control scheduling tasks 

and role/actor mapping are explicitly represented using knowledge representation scheme and a workflow 

is  executed  by  firing  the  rules.  The  rule-based  approach  for  workflow modeling  has  advantages  in 

expressive power, verification, and change propagation. Some researches use the rule-based approach for 

workflow modeling or enactment. Davulcu et al. (1998) use transaction logic (Bonner and Kiffer, 1994) 

for workflow modeling and analysis.  The main focus of  the researche is  representing and analyzing 

workflows  and  it  does  not  address  rule  change  propagation  mechanism and  implementation  details. 

Kappel et al. (1995) and Casati el al. (1996) use event-condition-action (ECA) rules provided by active 

database management systems for workflow modeling and enactment. However, they do not address rule 

management issues such as rule verification and rule change management. 

   Verification  issues  in  conceptual  workflow specifications  using  Petri-net  theory  are  addressed  in 

Hofstede et al. (1998), Adam et al (1998), and Van der Aalst (1998). It is possible to check termination of 

workflow and occurrence of dangling tasks using Petri-net but it is difficult to check the correctness of 

routing  condition  or  mapping  rule  between  role  and  actor.  The  rule-based  approach  for  workflow 

modeling given in this paper enables checking the correctness of the specification of routing conditions, 

the redundancy of rules, as well as the termination of workflow. Verification of a set of rules has been 

addressed in artificial intelligence (AI) field. Preece et al. (1992) summarize four main properties, i.e., 

redundancy, ambivalence, circularity, and deficiency, that should be checked for rule-base verification. 

They also compare some rule-base verification techniques that are used at expert system shells. Baralis 

and Widom (1994) suggest a propagation algorithm for verification of rule properties, i.e, termination and 

confluence, in expert database systems. In this paper, the soundness properties for workflow verification 

are defined based on the properties.

   The issue of flexible workflow management has been addressed in Casati et al. (1998), Reichert and 

6



Dadam (1998), Dellen et al. (1997), and Bogia and Kaplan (1995). Casati et al. (1998) suggested a set of 

primitives  that  allow modifications  of  workflow schema,  and  introduced  a  taxonomy of  policies  to 

manage  the  evolution  of  running  instances  when  the  corresponding  workflow  schema  is  modified. 

Reichert and Dadam (1998) defined a complete and minimal set of change operations (ADEPTflex) that 

support  users  in  modifying  the  structure  of  a  running  workflow  while  maintaining  its  structural 

correctness and consistency. Dellen et al. (1997) suggested CoMo-Kit system in which it is possible to 

refine and extend the software process model during process execution using dependency management 

and change notification mechanism. In these researches, managing the changes such as adding or deleting 

tasks and changing predefined task sequences are the main concern without considering mechanisms to 

handle changes on organizational structure and business rules. 

3. KWM : Knowledge-based Workflow Model

   The basic principles of designing Knowledge-based Workflow Model (KWM) are the flexibility of the 

model,  the expressiveness for complex business rules,  and the formality for enabling the analysis of 

workflow. In KWM, a workflow is defined as a set of business rules for scheduling of tasks, mapping role 

and actors and routing work items. Business rules restrict and guide a workflow execution according to 

the state of an organization. The state of organization is represented as a set of attribute values of the 

organizational  objects.  For  effective  modeling  of  business  rules  in  workflow,  two  heterogeneous 

knowledge, i.e., declarative knowledge representing state of an organization and procedural knowledge 

representing state-based behavior, are represented using frames. 

3.1 Formal Definition of KWM

7



   Definition 1(workflow model) A KWM defines a workflow with a 3-tuple, W = (E, Rl, Ru), where E is 

a set of entity frames and Rl is a set of relationship frames and Ru is a set of rule frames. A frame f in E, 

Rl, or Ru is defined as a product of slot and value pairs, that is,

   f = (s1, v1)× (s 2, v2)×……× (s n-1, vn-1)× (sn, vn).

   If two frames are the instances of the same class, these two frames have the same slots. Also, a slot of a 

frame can be a relationship of the frame, and the value of the slot can be another frame with which the 

frame has a relationship. 

KWM OBJECT ENTITY TASK

RESOURCE

ORGANIZATIONAL UNIT

ROLE

ACTOR

RELATIONSHIP IS_A

SUBPART_OF

User defined relationships

RULE PROCEDURAL-RULE

RESPONSIBILITY-RULE

METARULE

Figure 1. Hierarchy of frames in KWM.

  Figure 1 is showing frame hierarchy in KWM. The basic specification syntax of a KWM frame is as 

follows;

      <frame> ::= (<frame-identifier>, {<slot>})

        <slot> ::= (<slot-spec>, <slot-value>)

    <slot-spec> ::= ( <attribute-name, <domain-type>) | ‘CONDITION’

   <slot-value> ::= <attribute-value> | {<condition-predicate>}  

8



Definition 2 (Entity Frame) An entity frame in E belongs to one category among five kinds of objects; 

tasks, resources, organizational units, roles, and actors. That is, E = T ∪ Re ∪ U ∪ Ro ∪ A where T is a 

set of tasks, Re is a set of resources, U is a set of organizational units, Ro is a set of roles, and A is a set of 

actors.

Definition 3 (Relationship Frame) A relationship frame is 3-tuple, Rl = (so,  si,  P), where so is a source 

slot  that  contains  source entity  for  the relationship,  si is  a  sink slot  that  contains sink entity for  the 

relationship, and P is a set of property slots of the relationship.

   The entity frame is an abstraction of all entities in an organization and the relationship frame is an 

abstraction  of  the  structural  and  behavioral  relatedness  between  two entity  frames.  The  entity  and  

FRAME Rule FRAME Procedural_Rule

   IS_A : KWM_object;    IS_A : Rule;

   PROCESS; <process-name>;       PRE_TASK: <task-entity>;

   DESCRITION: <string>;       PRE_TASK_STATE: <task-state>;

   CONDITION : {<condition-predicate>};       NEXT_TASK: <task-entity>;

END_FRAME END_FRAME

FRMAE Responsibility-Rule FRAME Metarule

   IS_A : Rule;    IS_A: Rule;

   ROLE: <role-entity>;       SOURCE_RULE: {<rule-frame>,};

   ACTOR: <entity> ‘.’ <slot>;      TARGET_RULE: {<rule-frame>,};

END-FRAME END-FRAME

Figure 2. The specification structure of rule frames

relationship frames contain information which is necessary to control workflow, that is, they are used to 

represent organizational model and resources. In the task set T, particularly, there are two artificial tasks 

called Initiate denoting the start of a workflow and Terminate denoting the end of a workflow. 

9



   Definition 4 (Rule Frame) A rule frame in  Ru belongs to one category among three kinds of rules; 

procedural rules, responsibility rules, and metarules. That is,  Ru = Rp ∪ Rr ∪ Rm where Rp is a set of 

procedural rule, Rr is a set of responsibility rule, and Rm is a set of metarule. The set Rp is a set of rules 

that conditionally connect tasks with the tasks followed. The set  Rr is a set of rules that conditionally 

relate roles with actors. The set Rm is a set of rules that conditionally relate two or more procedural rules 

or responsibility rules. 

   The rule frames contain rules that control execution of workflow based on the states of entity and 

relationship  frames.  Each  rule  frame  contains  multiple  slots  to  represent  attribute  values  for  rule 

management purpose as well as condition and action parts of a rule. Figure 2 shows the specification 

structure of rule frames. Every rule frame is a sub class of the Rule frame with three slots; PROCESS, 

DESCRIPTION,  and  CONDITION.  The  PROCESS  slot  represents  the  process  to  which  the  rule  is 

applied, and the DESCRIPTION slot represents verbal meaning of the rule. In the CONDITION slot, one 

or  more condition predicates  can be specified,  and multiple  condition predicates  are connected with 

conjunctive relationship, that is, all the conditions should be satisfied to fire a rule.

   The  Procedural-Rule  frames  represent  procedural  view  of  a  workflow.  They  define  conditional 

sequences between tasks and also establish a communication network among actors in charge of tasks. In 

Figure 2, a Procedural-Rule frame illustrates that if the state of the task in the PRE_TASK slot is the 

value  specified  in  the  PRE_TASK_STATE slot,  and  all  the  conditions  in  the  CONDITION slot  are 

satisfied, then the task that is specified in the NEXT_TASK slot is followed. 

   The  effective  role  modeling  protects  workflow  model  from the  frequent  organizational  changes 

including the changes on the department hierarchy, employment or retirement of employees, and changes 

on the job position in an organization. The role concept is implemented with the Responsibility-Rule 

frames in KWM. The Responsibility-Rule frame guides workflow engine to find actors who are in charge 

of a role. In a Responsibility-Rule frame, the ACTOR slot contains a frame and a slot from which the 

10



actor’s identifiers can be extracted. The CONDITION slot contains constraints that instances of the frame 

specified in the ACTOR slot should satisfy. 

   Lastly, metarule frames are needed to handle exceptional rules. Exceptional rules are defined as the 

rules that are applied to special workflow instances. It is often prescribed how to handle special workflow 

instances in an agile organization. Exceptional rules are defined to handle special instances such as a 

business process for a special task force, temporary appointment to reduce overload of a special position, 

and emergency measure to process special customer needs, etc. Conceptually, a special workflow instance 

can be handled by substituting rules for the workflow instance. The specification structure of a metarule 

in Figure 2 represents that the set of rules specified in the SOURCE_RULE slot is substituted by the set 

of rules specified in the TARGET_RULE slot if the conditions specified in the CONDITION slot are 

satisfied for a workflow instance. For instance, frames mr1, mr2, and mr3 in figure 3 represent metarules 

Figure 3. Metarule frames for procedural-rule frames

11

FRAME mr2
   IS_A : Meta_Rule;
   SOURCE_RULE: pr1, pr2, pr3;
   TARGET_RULE: pr4 pr5 pr6;
   CONDITION : ((CP21)…(CP2n));
END_FRAME

FRAME mr3
   IS_A : Meta_Rule;
   SOURCE_RULE: pr1, pr2;
   TARGET_RULE : pr1;
   CONDITION :
         (pr1 (CONDITION TRUE))
         (pr2 (CONDITION TRUE));
END_FRAME

FRAME mr1
   IS_A : Meta_Rule;
   SOURCE_RULE: pr1, pr2;
   TARGET_RULE : pr3;
   CONDITION : ((CP11)…(CP1n));
END_FRAME

A B C
pr1 pr2

pr3

A B C
pr1

pr2

pr6

D
pr3

pr4

pr5

A

B

C

pr1

pr2

pr3

a) skip task B

b) Change the order between two tasks B and C

c) Resolving conflicting rules

Normal Route
Exceptional Route



that handle exceptions for procedural rules. The metarule frame mr1 handles an exception that skips a 

task for a special workflow instance. The metarule frame mr2 is defined to change the order between two 

tasks. Lastly, the metarule frame mr3 is to resolve conflicts. It fires only procedural-rule frame pr1 when 

conditions of two procedural-rule frames (pr1 and pr2) are satisfied concurrently.

3.2 Routing Constructs

   One of the main issues for workflow management is the routing of tasks to be executed. The workflow 

management  coalition (WfMC) identified four  routing constructs  (WfMC, 1996).  In  KWM, the  four 

routing  constructs  are  represented  using  procedural-rule  frames.  The  procedural-rule  frames  are 

equivalent to well-formed formulas (wffs) of the first order predicate calculus for abstract representation. 

Every rule in a procedural-rule set Rp can be represented as the following wff;

   TS(x, C) ∧ CP1 ∧ … ∧ CPn ⇒ TS (y,I)

Table 1. Representation of routing constructs using procedural-rule frame

Routing Constructs Example
Sequential Routing Rp1 = { TS(X, C) ⇒ TS(Y, I)}
Parallel Routing Rp2 = { TS(W, C) ⇒ TS(X, I), TS(W, C) ⇒ TS(Y, I), TS(X, C) ∧ TS(Y, C) ⇒ TS(Z, I) }
Conditional Routing Rp3 = { TS(W, C) ∧ COND1 ⇒ TS(X, I), TS(W, C) ∧ ¬COND1 ⇒ TS(Y, I), TS(X, C) ⇒ 

TS(Z, I), TS(Y, C) ⇒ TS(Z, I) }
Iterative Routing Rp4 = { TS(X, C) ∧ COND2 ⇒ TS(Y, I), TS(X, C) ∧ ¬COND2 ⇒ TS(X, I) }

   The TS predicate, meaning "task state", contains two terms representing a task and a state of the task, 

respectively. The two terms are taken from the PRE-TASK slot and the PRE-TASK-STATE slot of a 

procedural-rule  frame.  The  constant  terms  “C”  and  “I”  are  used  to  represent  “COMPLETED”  and 

“INITIATED”,  respectively.  The  predicate  CPi represents  a  condition  predicate  specified  in  the 

CONDITION slot. The right-hand side of the rule represents the successor of the task in LHS.

12



   The four routing constructs represented using procedural rules are listed in table 1. Tasks are executed 

sequentially if the execution of one task is followed by the next task (Rp1). The parallel routing implies 

that X and Y can be executed at the same time or in any order if W is completed, and Z can be completed 

when X and Y have been completed (Rp2). On the other hand, conditional routing expresses that X or Y 

can be executed after W is completed according to the conditions. Z is executed after either X or Y is 

completed (Rp3).  Lastly,  the iterative routing means that  one or  more tasks should be repeated until 

certain condition is satisfied (Rp4).

4. Properties of KWM : Soundness

   The purpose of  workflow model  verification is  to  determine whether  the model  represents  target 

workflow correctly. There exist some verification techniques for workflow based on Petri-net (Hofstede 

et al., 1998; Adam et al.,1998; Van der Aalst, 1998). The techniques are limited to the verification of 

routes  such  as  checking  termination  of  workflow  or  occurrence  of  dangling  tasks.  The  rule-based 

approach of KWM allows verification of correct specifications of rules as well as routes of workflow 

model.  To  ensure  a  KWM  represents  a  workflow  correctly,  it  should  satisfy  a  specific  property, 

soundness. 

Definition 5 (Sound) A KWM, W={E, Rl, Ru}, is sound if and only if it satisfies the following properties:

(i)  Terminality : The set Ru assures termination of all instances of a workflow.

(ii) Task Completeness : The termination of a workflow instance assures termination of all task instances 

13



composing the workflow instance.

(iii) Compactness : The set Ru assures not occurring redundant rules.

(iv) Routing Consistency : There are no conflicting rules in the set Ru.

(v) Referential Integrity : There does not exist illegal reference in W.

   The first four properties guarantee the soundness apart from certain anomalies in the set of rule frames. 

Table 2 summarizes the anomalies that violate the soundness of KWM. The verification of the first four 

properties  can  be  performed  by  detecting  the  anomalies.  The  occurrence  of  non-termination  of  a 

workflow can happen in three cases; (1) if the inference engine enters a loop in the course of chaining 

procedural rules (occurrence of circularity) (2) if there are missing rules, and (3) if there are missing 

values. A dangling task is the task without defined predecessor or successor. The occurrence of dangling 

tasks can cause an anomaly that the tasks are not completed even though the workflow instance is 

completed. The compactness property can be violated if there are redundant rules. The occurrence of 

redundancy means that some rules or literals in a rule can be removed without affecting the soundness of 

a KWM. A rule is redundant if it is subsumed or duplicated with other rules. A subsumed rule is that the 

antecedents of the rule consist of a subset of the antecedents of other rule that has the same consequents 

with the subsumed rule. If two rules have the same antecedents and consequents, the rules are duplicated.

Table 2. Anomalies that violate soundness of KWM.

Rule Set Anomaly Explanation
Rp1 = {TS(Initiate, C) ⇒ TS(X,I), TS(X, C) ⇒ TS(Y, I),  

   TS(Y, C) ⇒ TS(X, I), TS(Y, C) ⇒ TS(Terminate, I) }

The  set  Rp1 has  circularity  so  that  a  workflow 

instance enters a loop between task X and Y.
Rp2 = { TS(Initiate, C) ⇒ TS(X, I), TS(Y, C) ⇒ TS(Z, I),

       TS(Z, C) ⇒ TS(Terminate, I) }

The sub set Rp2 is missing a rule that connects task X 

and task Y. In the case, the workflow instances can not 

progress after task X is completed. 

14



Rp3 = { TS(Initiate, C) ⇒ TS(X, I), 

       TS(X,C) ∧ LARGER(v,10)⇒ TS(Y,I), 

       TS(X,C) ∧ SMALLER(v, 5)⇒ TS(Z, I) }

If a workflow instance that binds the variable with a 

value  between  5  and  10  is  created,  the  workflow 

instance becomes dead.

Rp4 = {TS(Initiate, C) ⇒ TS(X, I),

      TS(X, C) ⇒ TS(Y, I),TS(X, C) ⇒ TS(Z, I), 

      TS(Y, C) ⇒ TS(Terminate, I) }

The  task  Z  does  not  affect  the  route  of  workflow 

instances. The task Z should be connected to the task 

Terminate.
Rp5 = { TS(X,C)∧COND1(x)∧COND2(y) ⇒ TS(Y, I), 

      TS(X, C) ∧ COND1(x) ⇒ TS(Y, I), 

      COND1(x) ∧ TS(X, C) ⇒ TS(Y, I)}

In the set Rp5, the first rule is subsumed by the second 

rule, and the second rule is duplicated with the third 

rule.
Rp6 = { TS(X, C) ∧ LARGER(x, 5) ⇒ TS(Y, I), 

       TS(X, C) ∧ SMALLER(x, 10) ⇒ TS(Z, I)}

The first two rules in the set Rp6 may infer conflicting 

hypotheses  when  a  workflow  instance  binds  the 

variable x with a value between 5 and 10.

The meaning of referential integrity is twofold. First, it restricts the participants to relationships in KWM 

to  be  valid  entities.  That  is,  if  an  entity  instance  that  participates  in  a  relationship  is  removed,  the 

relationship  instance  should  also  be  removed.  Secondly,  the  referential  integrity  prevents  illegal 

constraints which constrain the state of non-existent entities or relationships. The rule frames constrain 

their activation time using the state of entities or relationships in the CONDITION slot. If the condition is 

defined on the state of non-existing objects, the referential integrity is violated.   

   For instance, the algorithm in Figure 4 determines whether there exists any missing value in a set of 

procedural-rule frames. The occurrence of missing values in a procedural rule set means that some parts 

of domain of an object, which is cartesian product of domains of the object’s slots, are not used for 

defining routing rules after the completion of a task. To check missing values in a set of procedural-rule 

frames, following steps are followed. At first, for each task  t in the task set  T, all the procedural-rule  

 ALGORITHM 1 (CHECKING MISSING VALUES)

  Given a set of procedural-rule frames Rp,

  for each task t ∈ T,

    Rp(t) = {pr ∈ Rp | pr.PRE_TASK = t}

    let O(t) = { o ∈ O | o is restricted in pr.CONDITION and pr ∈ Rp(t)}

    for each o ∈ O(t),

15



      check ∨for all pr∈Rp(t) pr.CONDITION|o != dom(o)  where pr.CONDITION|o is a projected 

                   condition of pr.CONDITION,which is restricted as a condition of object o.

Figure 4. Algorithm for checking missing values

frames that have task t as the value of the PRE_TASK slot are extracted. Secondly, all the objects that are 

used to define conditions in the CONDITION slot of the procedural-rule frames extracted in the first step 

are selected. Lastly, for each object in the second step, the union of restricted domains of the object that 

are determined by conditions of procedural-rule frames is calculated. If the union of restricted domain of 

the object is equal to the domain of the object, there is no missing value. Otherwise, the procedural-rule 

frames in the first step have missing values for the restriction of the object.

5. Propagation of Change Effect in KWM

 

   Propagation  rules  against  each of  the  changes are  defined using  dependencies  between  modeling 

constructs to assure the soundness of a KWM. Predicates that represent dependencies among frames of 

KWM are listed in Table 3.  Three types of  predicates are considered. The first  one is  predicate  that 

represents dependencies between entity frames. The relationships that are explained in section 3.1 are 

transformed  into  predicates  that  represent  dependencies  between  entity  frames.  The  second  one  is 

predicate that represents dependency between rule frames. Three predicates are considered; ‘XOR-firing’, 

‘AND-firing’, and ‘Substitute’. Only one of the rule frames that are used as arguments of the predicate

Table 3. The predicates that represent dependencies among frames of KWM.

16



Type Predicate Meaning
Entity vs. Entity IS_A(o1, o2)

SUBPART_OF(o1, o2)

works_for(a, u, p)

used_at(re, t)

responsible_for(ro, t)

…

Object o1 inherits from object o2

Object o1 is subpart of object2

Actor a work for organizational unit u with position p

Resource re is used at task t

Role ro is responsible for task t

…
Rule vs. Rule XOR-firing(r1, r2,…rn) One of the rules r1 , r2, …, rn can be fired

AND-firing(r1, r2,…rn) All of the rules r1 , r2, …, rn should be fired

Substitute(r1, r2, rm) Metarule rm substitute a set of rules r1 with a set of rule r2 

Rule vs. Entity Precedence(t1, t2, rp) Task t1 precedes t2 with procedural rule rp

Role-charge(ro, rr) A responsibility-rule frame rr finds actors who are in charge 

of role ro. 

 ‘XOR- firing’ can be fired. On the other hand, the rule frames that are used as arguments of the predicate 

‘AND-firing’  should  be  fired  concurrently.  The  predicate  ‘Substitute’  represents  the  substitution 

relationship between normal rules and special rules that are represented by a metarule frame. The last type 

of predicate represents dependencies between entity and rule frames. The predicates ‘Precedence’ and 

‘Role-charge’ correspond to the type. The predicate ‘Precedence’ is derived from procedural-rule frame. It 

represents dependencies between ordered tasks and a procedural rule that define the order. On the other 

hand, the predicate ‘Role-charge’ is derived from responsibility-rule frame. It represents dependencies 

among a role, charged actors, and a responsibility-rule frame that define the mapping relationship. 

   The algorithm for deriving XOR-firing dependencies between procedural-rule frames is to find a set of 

rule frames that exclusively constrain on the domain of the same objects. The exclusive procedural-rule 

frames can be found from conditional routing constructs.  The algorithm in Figure 5 constructs a set 

17



(Rp(t1)) of procedural-rule frames that should be checked after completion of a task. For each procedural-

rule frame in the set Rp(t1), the rule frame is added to a pseudo-exclusive rule set (XOR(pr1)). The other 

rule frames in the set  Rp(pr1) that constrain the same objects with the procedural-rule frame are, then,

  ALGORITHM 2 (FINDING EXCLUSIVE PROCEDURAL-RULE FRAMES)

  Given a set of procedural-rule frames Rp,

For each t ∈ T where T is set of tasks,

set Rp(t1) = {pr∈Rp| pr.PRE_TASK = t}

     for each pr1∈Rp(t),

set O(pr1) = {o | o is an object whose domain is restricted in pr1.CONDITION}

set Rp(pr1) = {pr | pr∈Rp(t1), O(pr)=O(pr1), where O(pr) is defined as similar with O(pr1)}

set XOR(pr1) = {pr1}

for each pr∈Rp(pr1),

if pr ∧ (∧pri∈XOR(pr1)pri.CONDITION) = ∅  

pr∈XOR(pr1)

if (∨pri∈XOR(pr1)pri.CONDITION = Xoi∈O(pr1)dom(Oi) where X means cartesian product)

exit

      if ∨pri∈XOR(pr1)pri.CONDITION = Xoi∈O(pr1)dom(Oi)

 Add predicate XOR-firing(pr1, pr2, …, prn) for all pr1, pr2, … , prn ∈ XOR(pr1)

Figure 5. Algorithm for finding exclusive procedural-rule frames.

successively compared to check whether their intersection of constrained domains of the objects is null or 

not. If the intersection is null, the procedural-rule frames are added to the set pseudo-exclusive rule set. If 

the comparison is finished for all other rule frames, the union of the constrained domain of rule frames in 

pseudo-exclusive rule set is calculated. If the union is the same with the entire domain of the objects, then 

the set of procedural-rule frames constitutes an XOR-firing dependency. 

   Using the predicates in Table 3, change propagation scope is  identified,  and proper update on the 

18



affected frames by the change is performed. The change propagation rules, then, are used to automatically 

modify frames of KWM or notify model builder the anomalies caused by the changes. For instance, some 

propagation rules against deletion operation on KWM frames are listed in table 4. The propagation rules 

can trigger other rules, and the propagation chain establishes change propagation scope for a change on a 

frame.

Table 4. Example of change propagation rules on the deletion operation.

Rule 

No.
Dependency Predicates

rule specification

Meaning
5-1 Responsible_for(ro, t) DELETED(t) ⇒ DELETE(ro)

If a task t is deleted, then charged role ro can be deleted
5-2 Precedence(t1, t2, rp) DELETED(t1) ⇒ DELETE(rp)

If a task t1 is deleted, then procedural rules that have the task as PRE-TASK 

can be deleted
5-3 Precedence(t1, t2, rp) DELETED(t2) ∧ EQUAL(t2, rp.NEXT_TASK) ⇒ DELETE(rp)

If a task set t2 is deleted, then procedural rules that have the set as a whole of 

NEXT-TASK can be deleted
5-4 XOR-firing(r1, r2) DELETED(r1) ⇒ UPDATE-SLOT(r2.CONDITION)

If a rule r1 is deleted, then other rules r2 that are connected with exclusive OR 

relationship should be updated

5-5 Role-charge(ro, rr) DELETED(ro) ⇒ DELETE(rr)

If a role is deleted, then responsibility rules that connects the role with actors 

can be deleted
5-6 Substitute(r1, r2, rm) DELETED(rm) ⇒ DELETE(r2)

If  a  metarule  rm is  deleted,  then  the  rule  set  r2 that  is  defined  for  the 

exceptional situation can be deleted

6. An Illustrative Example

   The KWM is applied to the business trip approval process at a university (KAIST: Korea Advanced 

19



Institute of Science and Technology) in Korea which has implemented BPR. The overall flow of the “AS-

IS” business trip approval process is depicted in Figure 6,  where each circle represents a task and a 

directed arc represents transition of a workflow instance. In a circle, task name and the role that is in 

charge of the task are specified. Each arc is attached with corresponding procedural rule, and tasks are 

attached with responsibility rules. The goal of the process is to deal with business trip requests and grants 

travel allowance according to the organizational rules. The trip applicants can be all members of the 

university,  professors,  students,  employees,  or  researchers  who work  for  affiliated  research centers.  

Figure 6. Business trip approval process at KAIST (AS-IS)

6.1 Modeling example workflow using KWM

   Figure 7 shows a part of KWM frames for representing the business trip approval process. The rp8, an 

instance  of  procedural-rule  frame,  conditionally  routes  workflow  instance  from  the  task  “Approve 

Subordinator’s Trip” to “Inspect Trip Purpose”. If trip duration that is specified in the ‘duration’ slot of 

20

rr1

I
Confirm Travel
[Trip Applicant]

Confirm Task
Delegation

[Task Mandatory]

Approve Traveling
Allowance

[Account Manager]

Check Trip
Request Form
[Dept. Officer]

Approve 
Subordinator’s Trip

[Supervisor]

Inspect Trip Purpose
[Supervisor]

Grant 
Traveling Allowance
[Account Controller]

Update 
Traveler Ledger

[Dept. of Personnel]

T

rp0

rp1

rp2

rp3

rp4

rp5

rp6

rp7

rp8

rp9

rp10
rp11

rp12

Create Trip
Request Form
[Form Creator]

rr2

rr3

rr4

rr5

rr6-1,rr6-2, rrs-1

rr7

rr8-1,rr8-2, rr8-3 , rr8-4

 rr9



the “Trip Request Form” frame exceeds 6 days, the rule frame is fired. 

   The frame rr6-1 is an instance of responsibility-rule frame which finds supervisors of the travelers. It 

represents that the supervisor of a trip applicant is the manager of the department where the trip applicant 

belongs. If a trip applicant is a manager of a department, however, his/her supervisor is the manager of 

the trip applicant’s next super department (rr6-2). On the other hand, the account controller of a trip 

account is determined according to the type of trip applicant. If the trip applicant is a student or professor 

without any administrative position, the account controller is the one who works for the academic & 

student services department (rr8-1 and rr8-2). Otherwise, the account controller is determined according 

Figure 7. Specification examples of procedural-rule frames

to the type of the account from which the traveling allowance is granted. If the traveling allowance is 

granted from the research project account, the account controller is the one who works for the research 

management department (rr8-3).  In other  cases,  the account controller  is  the one who works for  the 

21

FRAME rr6-1
   DESCRIPTION : “The traveler’s supervisor is one who works for the department with
                            manager position which the traveler belongs to”;
   ROLE: Supervisor;
   ACTOR: WorkFor.actor_id;
   CONDITION: (Traveler (Department ?dept-id))
                          (Department (dept_id ?dept-id) (mnger_pos ?m-pos))
                          (WorkFor (dept_id ?dept-id)(actor_id ?supervisor_id)(position ?m-pos));
END-FRAME

FRAME rp8
   DESCRIPTION : “If a supervisor approves the trip request and the trip duration
                                  exceeds 6 days, an auditor should inspect the trip purpose.”
   PRE_TASK : Approve_Subordinator’s_Trip;
   PRE_TASK_STATE : “Approved”;
   NEXT_TASK : Inspect_Trip_Purpose;
   CONDITION : (Trip_Request_Form (duration ?dur)) (test (>= ?dur 7)) ;
END_FRAME

FRAME rm1
   DESCRIPTION : “If a traveler is a director of an affiliated research institute,
              the supervisor is the vice President although his formal supervisor is the President.”;
   SOURCE_RULE: rr6-1;
   TARGET_RULE: rrs-1;
   CONDITION: (Traveler (T_Id ?t-id))
                             (WorkFor (actor_id ?t-id)(position “director-of-affiliated-research-institute”));
END-FRAME



finance department (rr8-4).

   Two exceptional rules exist in the example workflow. At first, if a trip applicant is a director of an 

affiliated research institute, the vice President of KAIST becomes the applicant’s supervisor although the 

formal supervisor of the research institute is the President (rm1). This exceptional rule existed temporarily 

to reduce the workload of the President. Secondly, if trip applicant is an employee who is delegated to 

another  department,  then the sequence between tasks “Approve Traveling Allowance” and “Approve 

Subordinator’s Trip” is reversed (rm2). In Figure 7, metarule frame rm1 handles an exceptional situation 

for the trip of a director of an affiliated research institute. The responsibility-rule frame rr-s1 represents 

mapping relationship between an actor and the deterministic role ‘Vice_President’.

6.2 Change Propagation

   The business trip approval process in Figure 6 has been changed as a result of BPR project at KAIST. 

At first, the task “Check Trip Request Form” executed by a department officer is going to be removed 

from the process because computerized form processing system automatically checks the correctness of 

the form (Event1). Secondly, the task “Grant Traveling Allowance” is going to be executed only in the 

finance department and the academic & student services department (deletion of rule rr8-3),  and the 

mapping conditions of other rule frames that are related with XOR-firing dependency should be changed 

(Event2). Lastly, the exceptional rule for delegated employees is going to be removed, and the workflow 

instances for the trip of delegated employees should be processed as other normal instances (Event3). 

Figure 8 shows the change propagation chains using the rules defined in Table 3. The change propagation 

chains are used to notify workflow modeler the frames that should be updated.

6.5 Advantages of KWM

   Applied to business processes at KAIST, KWM has been proved to be useful to automate the business

22



 For Event1 = DELETED(Check_Trip_Request_Form),

(1) DELETED(Check_Trip_Request_Form) ⇒ DELETED(rp5) ∧ DELETED(rp7)

     // By [Rule 5-3] and [Rule 5-2]

DELETED(rp5) ⇒ UPDATE-SLOT(rp6.CONDITION)  // By [Rule 5-4] 

// In this case, condition spec. of rp6 should be removed

(2) DELETED(Check_Trip_Request_Form) ⇒ DELETED(Department_Officer) // By [Rule 5-1]

DELETED(Department_Officer) ⇒ DELETE(rr5)  // By [Rule 5-5]

// rr5 is a responsibility rule for the role Department Officer

 For Event2 = DELETED(rr8-3),

DELETED(rr8-3) ⇒ UPDATE-SLOT(rr8-1.CONDITION) ∧ UPDATE-SLOT(rr8-2.CONDITION)

   ∧ UPDATE-SLOT(rr8-4.CONDITION)  // By [Rule 5-4]

 For Event3 = DELETED(rm2),

DELETED(rm2) ⇒ DELETE(rp-s1, rp-s2, rp-s3, rp-s4, rp-s5)  // By [Rule 5-6]

Figure 8. Change propagation chains for the example workflow.

processes  in  organizations  under  changing  environment.  Three  main  advantages  for  workflow 

management are observed. First,  the rule-based approach of KWM enables one to represent  complex 

business  rules  of  conditional  routing  and  role/actor  mapping  under  organizational  context.  It  is  also 

appropriate to represent exceptional rules that are applied to special workflow instances. KAIST consists 

of heterogeneous actor types such as student, professor, employee, and researchers. KWM is applicable 

for modeling the business rules that are changing according to the user type. Furthermore, with the rule 

expression  power,  KWM  can  be  used  as  a  computerized  rulebook  that  reflects  the  organization’s 

contextual  knowledge.  Agostini  (1996)  and  Kirn  (1994)  addressed  the  importance  of  modeling 

organization’s  contextual  knowledge  in  cooperative  information  systems.  Organizational  context 

knowledge serves workflow participants as a virtual expert in workspaces. Secondly, workflows that are 

executed by complex business rules are apt to be specified incorrectly. Representing the rules in workflow 

model can easily result in redundant, inconsistent, and incomplete rules. Providing model verification 

techniques  for  KWM  increases  the  correctness  of  workflow  specifications.  Lastly,  increasing  the 

23



adaptability of model is the main advantage of WFMS. KWM is an adaptive model in that organizational 

changes on the organizational structure and business rules as well as procedures are reflected through 

firing the change propagation rules. Furthermore, providing metarule frames for representing exceptional 

rules mitigates the modification burden of dynamic workflow model. All the exceptions that are expected 

before execution of workflows can be explicitly represented using the metarule frames. 

7. Conclusion

   This  paper  presents  a  knowledge-based  approach  to  increase  the  adaptability  of  WFMS against 

organizational  changes.  KWM is  useful  for  agile  organizations  that  frequently  change their  business 

processes under turbulent organizational environment. Particularly, it has been designed to be adaptable to 

the changes on organizational structure,  business rules and procedures represented as task sequences. 

KWM has the following features; 

   First, expressive power of workflow model is improved. The rule-based approach of KWM enables 

representing  complex  business  rules  such  as  routing  works  to  actors  and  assigning  tasks  to  actors 

according to responsibilities of organizational roles. Furthermore, exceptional rules that are applied to 

special workflow instances are also represented explicitly. 

   Secondly, verification technique for KWM has been suggested to check inconsistent, incomplete, and 

redundant rules as well as non-termination of workflow. 

   Lastly,  the  dependencies  between  frames  of  KWM  are  maintained  via  predicates,  and  change 

propagation rules have been defined using the dependencies. The change propagation rules assure the 

correctness of KWM against the changes on the organizational structure, business rules and procedures.

24



   K-WFMS (Knowledge-based  Workflow Management  System)  has  been  fully  implemented  using 

CLIPS and integrated as a component of a campus-wide information system called Intelligent Campus at 

KAIST (Park et al, 1995 & 1996). K-WFMS is integrated with other application information systems for 

executing tasks in business processes. With the successful real application, KWM has proven to be a 

useful framework to implement the fully automated workflow under the agile environment.

 References

Adam, N.R., Atluri, V., and Huang, W. (1998). Modeling and analysis of workflows using Petri Nets,  

 Journal of Intelligent Information System, 10, 131-158.

Agostini, A., Michelis, G.D., Grasso, M.A., Prinz, W., and Syri, A. (1996). Contexts, work processes, and 

 workspaces, Computer Supported Cooperative Work, 5, 223-250.

Bogia, D. P. and Kaplan, S.M. (1995). Flexibility and control for dynamic workflows in the worlds  

 environment. Proc. of the Conference on Organizational Computing Systems (ACM 1995).

Bose, Ranjit (1996). Intelligent agents framework for development knowledge-based decision support  

 system for collaborative organizational processes, Expert System With Applications,11(3), 247-261.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G. (1996). Deriving active rules for workflow enactment, In 

Proceedings of DEXA 96, Zurich(CH), 94-110.

Casati,  F.,  Ceri,  S.,  Pernici,  B.,  and  Pozzi,  G.  (1998).  Workflow  evolution,  Data  and  Knowledge

 Engineering, 24, 211-238.

25



Chang, J.W. and Scott, C.T. (1996). Agent-based workflow: TRP Support environment (TSE), Computer 

 Networks and ISDN Systems. 28, 1501-1511.

Dellen B., Maurer, F., and Pews, G. (1997). Knowledge-based techniques to increase the flexibility of  

 workflow management, Data and Knowledge Engineering, 23, 269-295.

Ellis,C.A. and Nutt, G.J. (1993). Modeling and enactment of workflow systems. Application and Theory 

 of Petri Nets 1993, 14th International Conference Proceedings, Chicago, Illinois, USA, 1-16.

Flores, F., Graves, M., Hartfield, B., and Winograd, T. (1988). Computer systems and the design of  

 organizational interaction, ACM Transactions on Office Information Systems, 6 (2), 153-172.

Goldman, S.  L.,  Nagel,  R. N.,  and Preiss,  K. (1995).  Agile Competitors and Virtual  Organizations:  

 Strategies for Enriching the Customers, Van Nostrand Reinhold, 1995.

Gruhn, Volker(1995). Business process modeling and workflow management,  International Journal of  

 Cooperative Information Systems. 4(2&3), 145–164.

Hofstede,  A.H.M.,  Orlowska,  M.E.,  and  Rajapakse,  J.  (1998).  Verification  problems  in  conceptual  

 workflow specifications, Data and Knowledge Engineering, 24, 239-256.

Jennings,  N.R.,  et  al.  (1996).  Agent  based  business  process  management,  International  Journal  of  

 Cooperative Information System. 5 (2), 105-130.

Kappel, G., Lang, P., Rausch-Schott, S., Retschitzegger, W. (1995). Workflow management based on  

 objects,  rules,  and  roles,  IEEE  Bulletin  of  the  Technical  Committee  on  Data  Engineering,  18(1).

26



Kaplan, S., Tolone, W., Bogia, D., and Bignoli, C. (1992). Flexible, active support for collaborative work 

 with ConversationBuilder. Proc. of the Conference on Computer Supported Cooperative Work (Toronto, 

 Canada) (378-385). NY, ACM/SIGCHI and SIGOIS.

Kirn,  S.  (1994).  Supporting  human  experts’ collaborative  work:  Modeling  organizational  context  

 knowledge in cooperative information system. In John H. Connolly, and Ernest A. Edmonds (Eds.),  

 CSCW and Artificial Intelligence. Springer-Verlag. 127-139.

Marshak,R.T. (1994). An overview of workflow structure.  Proc. of Workflow(13-42).  San Jose, USA:  

 Future Strategies Inc.

Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. (1992). The action workflow approach to  

 workflow management technology. Proc. of Computer Supportive Cooperative Work (281-288).Toronto, 

 Canada.

Michelis, G. D. and Grasso, M. A. (1994). Situating conversations within the language/action perspective: 

 The Milan  conversation model.  Proc.  of  Computer  Supported  Cooperative  Work  (89-100), Chapel  

 Hill, NC, USA.

Park, J.Y. and Park, S.J. (1998). IBPM: An integrated systems model for business process reengineering, 

 Systems Engineering, forthcoming.

Park, S.J. (1996). Development of future management information system for intelligent campus, Project 

 Report, KAIST, Korea.

27



Park, S.J., Kim, J.W., Lee, H.B., Cho, K.H., and Kim, G.J. (1995). Open Workflow Automation Systme in 

 Client/Server Environment. Proc. of the Korea Society of Management Information Systems (149-158). 

 Seoul, South Korea. 

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice-Hall Inc.

Preece,  A.  D.,  Batarekh,  A.,  and  Shinghal,  R.,  (1992),  Verifying  rule-based  systems,  Knowledge  

 Engineering Review, 7(2), 115-141.

Reichert, M. and Dadam, P. (1998). ADEPTflex-Supporting dynamic changes of workflows without losing 

 control, Journal of Intelligent Information Systems, 10, 93-129.

van  der  Aalst,  (1998).  The  application  of  Petri  nets  to  workflow  management.  The  Journal  of  

 Circuits, Systems and Computers, forthcoming.

WfMC (1996).  Workflow management coalition terminology and glossary (WfMC-TC-1011). Technical  

 Report, Workflow Management Coalition, Brussels.

Winograd, T. (1987). A language/action perspective on the design of cooperative work, Human-Computer 

 Interaction, 3 (1), 3-30.

Wolf,  M.  and  Reimer,  U.  (1996).  Proc.  of  the  International  Conference  on  Practical  Aspects  of  

 Knowledge Management (PAKM ’96), Workshop on Adaptive Workflow, Basel, Switzerland, Oct.

28


