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Abstract 
 

This thesis is an attempt to bridge some research gaps in the area of behavioural finance 

and investment through adopting the three essays scheme of PhD dissertations.  

There is a widespread belief that the traditional finance theory failed to provide a 

sufficient and plausible explanation for (1) what motivates individual investors to trade, (2) 

the pattern of their trading and the formation of their portfolios, (3) the determinants of cross 

section of expected returns other than risk. Behavioural Finance, however, offers more 

realistic assumptions based on two building blocks; behavioural biases of irrational investors 

and the limits of arbitrage that prevent the arbitrageurs from correcting mispricing and 

pushing prices back to fundamental values. This dissertation is structured as follows: 

In the first essay, the disposition effect is defined as the propensity of investors to 

realize gains too early while being loath to realize losses. Capital gains overhang is a measure 

of unrealized capital gains and losses that is associated with the disposition effect and the 

trading activities of behaviourally biased investors. We discover that firm characteristics can 

play a role in explaining variations in the capital gains overhang that is consistent with the 

activities of behaviourally biased and disposition investors. Specifically, we find that capital 

gains overhang is increasing in firm attributes that attract behaviourally biased investors, 

namely, earnings per share, leverage, growth and size. Capital gains overhang is also 

declining in market liquidity, possibly because liquidity allows behaviourally biased investors 

to excessively trade shares and beta and corporate earnings, probably because when high risk 

and inefficient firms experience losses, disposition investors experience capital losses that 

they are reluctant to realize.  

In the second essay, quantile regressions are employed to analyse the relationship 

between the unrealized capital gains overhang and expected returns. The ability of the 

disposition effect to generate momentum is also considered for the extreme expected return 

regions (0.05
th

) and (0.95
th

) quantiles. To do so, 450,617 observations belonging to 5176 US 

firms are employed, covering a time span from January 1998 to June 2015. Following the 

methodology of Grinblatt and Han (2005), the findings show significant differences across 

various quantiles in terms of signs and magnitudes. These findings indicate a nonlinear 

relationship between capital gains overhang and expected returns since the impact of capital 

gains overhang as a proxy for disposition effect on expected returns vary across the expected 
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return distribution. More precisely, the coefficients of capital gains overhang are significantly 

positive and decline as the expected returns quantiles increase from the lowest to the median 

expected return quantiles. However, they become significantly negative and rise with the 

increase in expected returns quantiles above median expected returns quantiles. The findings 

also suggest that the disposition effect is not a good noisy proxy for momentum at the lowest 

expected return quantile (0.05
th

). However, interestingly it seems to generate contrarian in 

returns at the highest expected returns quantile (0.95
th

).   

In the third essays, we try to discover systematic disagreements in momentum, 

asymmetric volatility and the idiosyncratic risk-momentum return relationship between high-

tech stocks and low-tech stocks. We develop several hypotheses that suggest greater 

momentum profits, fainter asymmetric volatility and weaker idiosyncratic risk-momentum 

return relation in the high-tech stocks relative to the low-tech stocks. To this end, we divide 

5795 stocks that are listed in the Russell 3000 index from January 1995 to December 2015 

into two samples SIC code and analysed them using the Fama-French with GJR-GARCH-M 

term. The results show that the high-tech stocks provide greater momentum profits especially 

for portfolios that have holding and ranking periods of less than 12 months. In most cases 

momentum returns in the high-tech stocks explain a symmetric response to good and bad 

news while the momentum returns in the low-tech stocks show an asymmetric response. 

Finally, the idiosyncratic risk-momentum return relation is insignificant for high-tech stocks 

while it is significant and negative for low-tech stocks. That is, as idiosyncratic risk increases, 

momentum decreases for low-tech stocks. These findings are robust to different momentum 

strategies and to different breakpoints.  
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Chapter One 

Introduction 
 

The objective of this chapter is to present an overview of this thesis. In the first section, 

the motivation of the thesis is presented. In the second section, the theoretical development 

towards the behavioural paradigm shift is outlined. In the third section, we introduce an 

overview of the thesis including the research motivation, the objectives of each empirical 

paper, key contributions and main findings.  

1.1- Motivation of the thesis 

 

Traditional finance assumes that we are rational, while behavioural finance 

assumes we are normal. 

                                                                              ____Meir Statman
1
 

The first and foremost motivation of this thesis is the unrealistic assumptions of the 

standard finance based on CAPM/EMH framework. The standard finance studies financial 

phenomena assuming all investors are rational, well-informed, process all available 

information properly, process it and take rational decisions. Empirical evidence in the 

literature denied these assumptions and documented that investors oftentimes behave 

differently.  

Behavioural finance, however, is a research discipline that uses psychological theories 

for explaining and understanding investment decision-making. It studies finance from wider 

perspective that intersects finance and economics with psychology and sociology. In contrast 

to standard finance, the necessity of behavioural finance comes from a considerable amount 

of literature in psychology revealed that people commit systematic cognitive errors in 

decision making process based on bounded rationality and cognitive limitations. These errors 

stem from investors‟ preferences or improper beliefs such as overconfidence, regret 

avoidance, fear of loss, disposition effect, framing, mental accounting, naïve diversification, 

anchoring, availability bias, representativeness bias and conservatism bias, and cause 

impermanent excess supply or excess demand leading to temporary mispricing. Another 

                                                           
1
 See Gregory Curtis (2004) P.16 
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rationale for the necessity of behavioural finance is financial anomalies. Theses anomalies 

can be defined as systematic empirical patterns that are explained by traditional CAPM/EMH 

framework such as momentum, size effect, value effect and turn-of-the-year. While the 

CAPM was genuine idea to capture the risk-return relationship, it experienced many 

empirical failures in explaining such anomalies.  

Additionally, under the framework of standard finance it is often said arbitrageurs sell 

overpriced stock short and buy underpriced stocks long to correct any mispricing caused by 

irrational investors who prone to cognitive errors. This claim is unrealistic due to risk 

embodied in the long and short position or constraints on short selling or implementation 

cost. Moreover, arbitrageurs sometimes prefer not to trade or enter the market when the 

mispricing is too large.   

1.2- Towards a behavioural paradigm shift 

 

The clue of efficient market hypothesis devised by Eugene Fama first appeared in 

Journal of Business (1965). According to this hypothesis, Stock prices reflect all available 

information on capital assets (Frankfurter & McGoun, 2002). Fama (1970) then developed 

three different forms of informational efficiency, namely, weak form, semi-strong and strong 

market efficiency.  

Weak Form Market Efficiency- The current stock price fully reflects all information 

embodied in historical prices and volume. 

Semi-Strong Market Efficiency- the current stock price reflects historical price and volume 

data as well as all publically available information including news, analysts‟ reports and 

company reports. 

Strong Market efficiency- The current stock price reflects not only historical price and 

volume data, but also all public and private information.  

Sharpe (1964) and Lintner (1965) develop the capital asset pricing model (CAPM) 

which is an intuitive model to measure the investment risk and to capture the relation 

between risk and expected returns. The CAPM depends on three assumptions: first, the 

capital market is perfect which means there are no transaction cost or taxes and information is 
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available and can be obtained without costs. As a result, investors can lend and borrow at the 

risk-free rate. Second, the homogenous expectation assumption; this assumption is that all 

investors have the same expectations, and they are all rational and they are risk-averse. Third, 

the CAPM assumes all investors have only one holding period and they use expected return 

and standard deviation of return in evaluating their portfolios (Perold, 2004). However, the 

empirical tests indicate that unsatisfying performance of the CAPM is attributable to the very 

simplified and unrealistic assumptions (Fama & French, 2004). The efficient market 

hypothesis (EMH) and the capital asset pricing model (CAPM) framework are the hub of 

standard finance theory (Statman, 1999) and the word „anomaly‟ is always used to refers to 

the stream of research that focuses on the empirical invalidity of EMH/CAPM framework.  

Schwert (2003) provides a comprehensive summary of all anomalies in finance 

literature on the following lines:  

Size effect- the term size effect is used to point out the negative relation between size and 

average returns. Banz (1981) proved that small firms provide 0.40% higher average monthly 

returns than the other stocks did, using data on NYSE from 1936 to 1975
2
. Reinganum (1981) 

empirically supports the same anomaly through proving the small firms give higher average 

returns than large firms do.  

The value effect- the value effect is used to point out that the firms with high ratios of 

Earnings to price (E/P) and book-to-market provide higher average returns than firms with 

low ratios of Earnings to price (E/P) and book-to-market ratio do. Basu (1977) in his seminal 

paper was the first to document the value effect. Basu (1977) found that stocks with higher 

value-related variables such as earnings per share (P/E) can make positive abnormal returns. 

He also confirmed that the CAPM could not provide an explanation for this behaviour.  

Momentum effect- Jegadees & Titman (1993) form wide range of momentum strategies 

using market data from 1965 to 1989. They reveal that momentum strategies which entail 

buying past winners (stocks that have high returns over the previous three months to one 

year) and selling past losers (stocks that have low returns over the previous three months to 

one year) can generate monthly average returns of 1% for the next year.  

                                                           
2
 See Van Dijk (2011) P.3264 
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The turn-of-the-year effect / ‘January Effect’- this anomaly has two interpretations: the 

first hypothesis is the tax-loss-selling-pressure hypothesis. According to this hypothesis, 

individual investors tend to realize capital losses by selling stocks that have gone down in 

prices during the year. These capital losses help them reduce their year-end tax liability and 

create selling pressure through an increase in the number of transactions, leading to a drop in 

year-end stock prices (Berges, McConnell, & Schlarbaum, 1984). The second hypothesis is 

the window dressing hypothesis. According to this hypothesis, institutional investors tend to 

rebalance their portfolio holdings before the end of the year through selling losers and buying 

winners, hoping to enhance the perceived performance (Haug & Hirschey, 2006).  

The weekend effect- French (1980) is the first to use the term „weekend effect‟. He 

employed data on S&P 500 composite index from 1953 through 1977, and found negative 

average returns on Mondays and positive otherwise.  

The empirical success of previous anomalies and the challenging role they play in the 

traditional framework EMH/CAPM show the need for a change from traditional framework 

EMH/CAPM to behavioural theory. The behavioural theory of finance has two pillars:  

Limits to arbitrage- Shleifer & Vishny (1997) criticize the description of arbitrage as a no 

capital and no risk process which entails buying and selling similar financial security in two 

different markets to make profits through benefiting from different prices. Traditional finance 

assumes that arbitrage mechanism maintains market efficiency by assuming investors 

mistakes would impact on the market prices and pushing prices away from the fundamental 

value, while arbitrageurs -„rational investors‟- are always going to benefit from any 

mispricing to make profits and correct any devation from the fundemental value. However, 

behavioural finance defenders believe that market prices are not fair.  

In theory institutional investors play the role of rational investors because they have the 

required knowledge, analysts and wealth but they also have benefits to urge the way of 

trading that causes mispricing and motivates inefficiency (Baker & Nofsinger 2010). Barberis 

& Thaler (2003) mention that the limits to arbitrage that may prevent arbitrage and keep the 

market inefficient include: (1) fundamental risk because the short and long positions are 

prone to mismatch; (2) noise trader risk because the mispicing could be too large to be 

corrected and may lead to bankrupting the arbitrageurs; (3) Implementation cost. Thus, the 

limits to arbitrage may hinder the arbitrageurs from correcting any mispricing.  
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Behavioural biases- Ritter (2003) lists the key behavioural biases in the literature of 

behavioural finance as follows: 

1- Heuristics or rules of thumb: the employment of rules of thumb facilitates the 

decision making process but can also cause cognitive biases. Benartzi and Thaler (2001) 

discover that several investors follow the 1/N rule. For instance, if they encounter three 

alternatives that are available for investing their money, they allocate one-third of their 

money to each fund
3
.  

2- Overconfidence: overconfidence means that people sometimes overestimate their skills 

and capabilities. There are several forms of overconfidence such as insufficient 

diversification that may lead investors to over-invest in one asset. For instance, the finance 

literature documents that men are usually have higher levels of confidence than women 

but that women tend to outperform men.  

3- Mental Accounting: mental accounting means that people tend to split decisions that 

should not be split. This may also lead to cognitive biases, for example,  if several people 

allocate separate budgets for food and entertainment. They eat simple fish at home 

because shrimp is more expensive than fish but they prefer to eat shrimp at restaurant 

although the cost is higher than that of simple fish. If they combined eating at home and in 

restaurants they could save money through choosing to have shrimp at home and simple 

fish in restaurants.  

4- Framing : framing concerns how an idea or term is exhibited to people. In other words, 

it deals with ways of expression. For instance, cognitive pychologists found that doctors 

give one set of prescriptions and treatments if a diagnosis is presented in the form of 

survival probabilities and another set if it is presented in the form of mortality probabilities 

in spite of the fact that the survival probabilities and mortality probabilities together 

totalled 100%.  

5- Representativeness /‘Law of small numbers’: representativeness means that people 

have a propensity to overweigh contemporary events and underweigh ancient events. For 

instance, if the equities generate a high return for many years in succession, some 

investors start to believe that a high average return is customary.  

                                                           
3
 See Ritter (2003) P. 431.  
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6- Conservatism: representativess and conservatisim battle against each other. While 

representativeness leads to underweighing rates, people sometimes romanticize the base 

rates. In other words, when a change occurs, people tend to stick to the initial values and 

react slowly to the change. Therefore, the consevatism bias can be considered one source 

of underreaction.  

7- Dissposition effect: the disposition effect is the tendency of investors to realize gains 

too early and hold losers too long. For instance, if somebody purchases a stock at $10, 

which then goes down to $6 before going up to $8, most people are not willing to sell until 

the stock price exceeds $10. Through the disposition effect, investors try to realize plenty 

of small gains, and a few minimal losses. In other words, their decision conforms with 

taxes maximization behaviour. The disposition effect comes out in aggregate trading 

volume since stocks tend to have a higher trading volume during bull markets and a lower 

trading volume during bear markets.  

1.3- Overview of the thesis  

 

The main focus of this thesis is to shed more light on the field of behavioural finance as 

one of the most important topics in finance theory. In doing so, the researcher submits three 

empirical papers and adds a chapter for data. The overall structure is as follows: 

In Chapter 2, we provide a brief description of the Russell 3000 index together with its 

key characteristics; it is used throughout the thesis. The survivorship bias and some potential 

ruinous effects of survivorship bias are discussed and reviewed in chapter 2, since we 

updated our list of stocks each month to free our dataset from survivorship bias. Finally, this 

chapter details the definitions of all the variables used throughout the thesis and gives some 

descriptive statistics for each variable.   

The main motivation of chapter 3 is, there was a belief in the literature that irrational 

investors trade randomly and there is no systematic pattern beyond their trading. We 

motivated by whether the irrational investor trade systematically or not.  

Chapter 3 is dedicated to testing whether or not irrational investors prefer to buy and 

keep stocks of good companies. As a result, a number of characteristics of good companies 

are chosen such as their earnings per share („EPS‟) as proxy for profitability, leverage as 

proxy for debt burden of a company, cash flow to price as a proxy for corporate liquidity, 
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market to book ratio as proxy for growth opportunities and market capitalization as proxy for 

corporate size, and two market variables, namely, turnover and company beta as independent 

variables to run a panel regression model against capital gains overhang which is estimated 

following Grinblatt and Han (2005). The sample in this chapter contains 5,091 stocks and 

422,278 observations between January 1995 and September 2014. This chapter makes three 

contributions: the first contribution is highlighting the characteristics of good companies and 

linking these characteristics with capital gains overhang, which is novel and viable, to check 

how attractive these characteritics are to irrational investors and whether those investors 

really believe that “good stocks are the stocks of good companies” and decide to engage in 

trading it accordingly. The second contribution is our sample has several unique features: 

first, it contributes to the literature because we include all firms listed on Ruseell 3000 index, 

which consists of the large cap Russell 1000 index and the small cap Russell 2000 index. 

This means that our sample contains more smaller stocks than the literature has yet used; 

another unique feature is that, NASDAQ stocks represents up to 20% of our sample, while 

NASDAQ is completely ignored in the literature on disposition effect; Finally, to the best of 

our knowledge we are the first in the literature of disposition effect to construct a sample that 

is free from survivorship bias. The presence of survivorship bias leads to spurious findings 

and will make the reference price reflects stale price rather than disposition investors‟ beliefs.  

Our findings suggest that market variables; turnover and beta are negatively related to 

capital gains overhang. The cash flow to price is the only firm characteristic that shows a 

negaive relation to capital gains overhang, but all other firm characteristics such as stock 

EPS, leverage, market to book ratio and size are positively related to capital gains overhang. 

The coefficients of most of the above variables are stable over time since we run a cross 

section regression for each year and they are robust to growth measured by market to book 

ratio, systematic risk measured by beta, size measured by market capitalization, turnover, and 

financial crisis, since we divided our sample into before and after crisis, and they are also 

robust to capital gains versus capital losses.  

The main motivation of chapter 4 is the disadvatages of the conventional OLS methods 

that gives partial view of the relationship between dependent and independent variables 

through providing only one estimate that consider the average relationship of the dependent 

and each independent variable. Another important disadvantage of the conventional OLS 

technique is ignoring all information near the extreme regions.  
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Chapter 4 re-examines the momentum and disposition effect using the quantile 

regression approach. Quantile regression is suggested to address the shortcomings of 

conventional OLS methods that are: first, the OLS conventional technique is not a good tool 

for estimating the extreme observations or the tails of a probability distribution. Second, the 

OLS conventional technique produces one estimate to capture the mean relationship between 

the dependent and each independent variable and ignores the heterogenous impact of the 

independent variable on the dependent variable across the distribution. Finally, quantile 

regression is better at dealing with some unlikelable characteristics such as heteroscedasticity, 

skewness and heavy-tailed distribution.  

Once again, we use all the stocks listed on the Russell 3000 index between January 

1998 and June 2015. This sample involves 5,176 stock and 450,617 observations.  

This chapter has many developments of the theory of disposition effect which can be 

summarized as follows.  First, this paper is the first to use quantile regression in dealing with 

the determinants of capital gains overhang. Second, this paper is the first to investigate the 

relation between expected return and capital gains overhang using quantile regression 

technique. Third, this paper is the first to check the capability of disposition effect to generate 

momentum for the highest and lowest expected return quantiles (0.05
th

) and (0.95
th

). Fourth, 

this paper is the first to use all the stocks listed on the Russell 3000 index which is 

characterized by more smaller stocks and includes around 20% of NASDAQ stocks the way 

in which are ignored in the literature due to data unavailability. This paper is also the first in 

the literature of momentum and disposition effect to use a sample that is free of survivorship 

bias. 

This chapter has many new findings that can be structured as follows: 

1- the determinants of capital gains overhang 

In this section, we regress capital gains overhang on: (1) Cumulative returns over three 

different horizons, namely, the short horizon of the last three months (r-3:-1); the intermediate 

horizon between the last four months and 12 months (r-12:-4); and the long horizon between 

the last 13 months and 36 months (r-36:-13), (2) The average turnover over three different 

horizons, namely, the short horizon of the last three months (V-3:-1), the intermediate horizon 

between the last four months and 12 months (V-12:-4) and the long horizon between the last 13 
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months and 36 months (V-36:-13). (3) Size.  The most important findings here can be 

highlighted as follows: 

There is a heterogeneous and systematic impact of short-term cumulative returns, long-

term cumulative returns and size on capital gains overhang since the coefficients of short-

term cumulative returns, long-term cumulative returns and size declines systematically with 

the increase in capital gains overhang quantiles. The relation between the three above-

mentioned variables and capital gains overhang is significantly positive. Another new 

finding, the theory suggests a negative relation between average turnover and capital gains 

overhang because the higher the turnover, the faster the reference price converges to the 

market price. However, in the highest capital quantile (0.95
th

), the relation between short and 

long-term average turnover and capital gains overhang is positive and significant. In the 

lowest capital gains overhang quantile (0.05
th

), the relation between short-term average 

turnover and capital gains overhang is also positive, suggesting that the higher the turnover, 

the more slowly the reference price converges to the market price which creates a higher 

capital gains overhang. All the above findings are robust to size, leverage and institutional 

ownership.  

2- The expected returns, past returns and unrealized capital gains 

In this section, we regress capital gains overhang on: (1) Cumulative returns over three 

different horizons, namely, the short horizon of the last three months (r-3:-1), the intermediate 

horizon between the last four months and 12 months (r-12:-4), and the long horizon between 

the last 13 months and 36 months (r-36:-13). (2) Average monthly turnover over the past 12 

months. (3) Size. (4) Capital gains overhang. The most important findings here can be 

highlighted as follows: The first finding is the relation between expected returns and capital 

gains overhang is nonlinear since the relation is positive and significant at and below the 

median points. At the median and below the median points the coefficients systematically 

decrease with the increase in expected return quantiles. At the above median quantiles, the 

relation between expected returns and capital gains overhang is significantly negative and the 

coefficients systematically increase with the increase in expected returns quantiles. These 

findings can be interpreted to suggest that irrational investors follow the disposition 

behaviour at the median and below the median points but they follow the opposite behaviour 

at above the median data-points. The second finding is the relation between expected returns 

and short-term cumulative returns is always significant and positive („persistence in returns‟). 
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The coefficients systematically increase with the increase in expected returns quantiles. All 

the above findings are robust to size, leverage and institutional ownership.  

3- Disposition effect and momentum 

Based on the Grinblatt and Han (2005), three stages are followed to examine the ability 

of the disposition effect to drive momentum by running Fama-MacBeth (1973) two-step 

procedures and quantile regression with and without capital gains overhang as follows: 

  =   +         +         +           +                                (1) 

  =   +         +         +           +    +                       (2) 

  =   +         +         +           +    +     +    g        (3) 

where (r-3:-1), (r-12:-4) and (r-36:-13) are the cumulative return over the short, intermediate and 

long horizons respectively, V is the volume effect measured by average monthly turnover in 

the past 12 months. S is firm size proxied by the logarithm of market capitalization and g is 

unrealized capital overhang.   

Using the mechanism of before and after controlling for capital gains overhang, we find 

that at the lowest (0.05
th 

) expected returns quantile, disposition effect is not a good noisy 

proxy for intermediate momentum, while at the highest (0.95
th

) expected returns quantile, the 

disposition effect induces intermediate contrarian rather than momentum. All the above 

findings are robust to size, leverage and institutional ownership.  

Before I go to the chapter 5, it looks plausible to link the first two empirical papers with 

the third empirical paper. Basically, the main cornerstone of this work to emphasize the key 

role of human being in forming social phenomena either this human exists inside the firm or 

outside it in the market. The first two papers address the investor behaviour in the equity 

market and how this behaviour creates some patterns in returns and prices. The third 

empirical paper emphasizes this role by focusing on human capital inside the firm and the 

way this human capital through research and development activities, whish is key feature of 

high-tech firms, may produce unique patterns and unique relations.  

The main motivation of chapter 5 is the growing importance of intangible assets since it 

represents a significant portion of many leading companies. Moreover, this kind of assets has 

a unique nature. Therefore, we expect this uniqueness to produce new phenomena and new 
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relationships in finance theory. In this chapter, we shed some light on momentum, 

asymmetric volatility and idiosyncratic risk-momentum returns relation.  

Chapter 5 aims to detect the systematic differences in momentum returns, asymmetric 

volatility and idiosyncratic risk-momentum returns relationship between high-tech stocks and 

low-tech stocks using all stocks listed on Russell 3000 index between January 1995 and 

December 2015. To free our sample from survivorship bias, the list of stocks was updated 

every month which leads the number of stocks to go up to 5795 stocks. The methodology 

Jagadeesh and Titman (1993) is followed to construct a range of momentum portfolios and 

the Fama-French model with GJR-GARCH-M term is employed to test our hypotheses. 

This chapter like the two previous chapter makes many contributions to the literature, 

which can be summarised as follows: to our knowledge, we are the first to investigate the 

systematic differences in momentum returns between high-tech stocks and low-tech stocks. 

Second, to our knowledge, we are the first to investigate the systematic differences between 

high-tech stocks and low-tech stocks as to whether the variance responds symmetrically or 

asymmetrically to good and bad news. Third, to our knowledge, we are the first to investigate 

the systematic differences in idiosyncratic risk-momentum return relation between high-tech 

stocks and low-tech stocks. Finally, to our knowledge, we are the first to compare the 

performance of the Fama-French model with GJR-GARCH-M term in explaining momentum 

returns in high-tech stocks with low-tech stocks. 

This paper has many promising findings since we have succeeded in exploring several 

systematic differences in momentum returns, symmetric or asymmetric volatility, 

idiosyncratic risk-momentum returns relation and the performance of the Fama-French model 

with GJR-GARCH-M term in explaining momentum returns between high-tech stocks and 

low-tech stocks. The first finding has two integral dimensions: the first one indicates that the 

momentum returns in low-tech stocks never outperform the momentum returns in high-tech 

stocks. The second dimension indicates that four momentum strategies explain the larger and 

robust momentum returns in high-tech stocks relative to low-tech stocks, namely, the 3-3 

strategy, the 3-6 strategy, the 6-3 strategy and the 6-6 strategy. This finding is robust to 

different breakpoints. The second finding indicates that the volatility of high-tech stocks 

responds symmetrically to good and bad news. However, the volatility of low-tech stocks 

responds asymmetrically to good and bad news. This finding is robust to different 

breakpoints. The third finding indicates that there is no relation between idiosyncratic risk 
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and momentum returns for high-tech stocks, while there is a negative relation for low-tech 

stocks. This finding is robust to different breakpoints. It is also consistent with (Lesmond, 

Schill, & Zhou, 2004) and supports the role of high transaction cost in limiting the arbitrage 

process rather than idiosyncratic risk, which makes the relation of idiosyncratic risk and 

momentum is weaker among high-tech stocks relative to low-tech stocks. However, this 

relation is negative for low-tech stocks. This means, For the high-tech stocks that experience 

the higher transcation costs due to higher information asymmetry, the transaction costs limit 

arbitrage among momentum stocks. For the low-tech stocks that experience lower transaction 

cost due to lower information asymmetry, idiosyncratic risk limits arbitrage among the 

reversal stocks. Finally, the performance of the Fama-French model with GJR-GARCH-M 

term in explaining momentum returns is better for the high-tech stocks than for the low-tech 

stocks. This finding is robust to different breakpoints and robust to the simplified version of 

Fama-French with GARCH-M term.  

Chapter 6 of this thesis highlights the main conclusions along with some policy 

implications. It also discusses the research limitations and ends with some recommendations 

for future research.  
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Chapter Two 

Data 

 

2.1-Sample Selection 

 

This thesis focuses on all stocks listed on the Russell 3000 index throughout all 

chapters. According to Bloomberg, the Russell 3000 Index is composed of 3000 large US 

companies, as determined by market capitalization. This portfolio of securities represents 

approximately 98% of the investable US equity market and includes the large cap Russell 

1000 and the small cap Russell 2000 Indices. The choice of the Russell 3000 index comes 

from its comprehensiveness and its being representative of the market among other 

advantages, as follows: 

Transparent: The Russell 3000 index is designed with open, published, and easy 

methodology for any financial expert to understand.  

Representative of the market: The Russell 3000 index is designed to provide a broad and 

complete description of the whole market because it provides complete coverage of all stocks 

without gaps or overlaps.  

Accurate and Practical: The Russell 3000 index is developed to provide not only accurate 

data but also accurate representation.  

Furthermore, the methodology of the Russell 3000 index relies on a float-adjusted and 

market capitalization-weighted index to provide an objective and accurate description of the 

market. Since the size of firms change over time, the Russell 3000 index is rebuilt annually in 

June to maintain the accurate description of the market and to guarantee that firms continue 

to be placed in the appropriate Russell indices.  

The list of stocks in the Russell 3000 index was updated each month to free the dataset 

from survivorship bias. Survivorship bias means that stocks tend to disappear after poor 

performance, leading to bias in the performance of indices, funds or stocks. Survivorship bias 
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happens when a financial expert computes the performance using the „survivors‟ of the 

current list only at the end of the period and remove the funds, or stocks that no longer 

remain. Since survivorship bias comes from removing the underperforming stocks, the results 

always change in one direction and this makes the results look better than they actually are.  

Recent research in the finance literature demonstrates the negative effect of 

survivorship bias. For instance, Brown, Goetzmann, Ibbotson, & Ross (1992) focus on 

performance measurements in the period 1976 and 1987 and infer that studying the survivors 

leads only to weighty bias in the first and second moments of returns. They also document 

that the survivorship bias may lead to a spurious relationship between volatility and return. 

Elton, Gruber, & Blake (1996) target the performance of mutual funds and the impact of 

survivorship bias on performance. Elton, Gruber, & Blake (1996) highlight the necessity of 

amending the sample to include the survivors and delisted funds. The potential pitfalls of 

survivorship bias range from exaggerating the estimated returns to producing spurious 

correlations for the performance-relevant variables. Carhart, Carpenter, Lynch, & Musto 

(2002) measure the survivorship bias in performance („fund‟s return‟). They find the annual 

bias to be 0.07% for short term samples („usually one year‟) and reach 1% for long term 

samples („15 years period‟). They also ascertain that containing survivors only has an impact 

on the relationship between fund characteristics and persistence in performance and impairs 

the persistence in performance. However, Aggarwal & Jorion (2010) report a much higher 

survivorship bias, averaging more than 5% a year. Rohleder, Scholz, & Wilkens (2011) 

measure the survivorship bias in small and large funds separately. In their study, small funds 

are more probably to disappear. Large funds are more able to stay alive during periods of 

underperformance since they can maintain the revenues from management salaries and 

incentives.  

The sample selection yields a total of 9060 stocks and up to 734741 observations and 

covers the period between January 1995 and December 2015. The items include closing 

price, trading volume, shares outstanding, company beta, earning per share („EPS‟), leverage, 

cash flow to price, market to book ratio, market capitalization, institutional ownership, excess 

market returns and the 4-digit SIC code. All data are collected from Bloomberg except the 
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excess market return, which is collected from the Kenneth R. French data library. Table 2.1 

provides detailed definitions of all variables. 

<<Table 2.1 about here>> 

 

2.2- Descriptive Statistics 

 

Table 2.2 explains the summary statistics of the variables used in the three following 

chapters. The table contains mean, standard deviations, median, minimum and maximum. 

trading volume and shares outstanding are used to compute turnover which is a proxy for 

market liquidity. Company beta is used as a proxy for systematic risk. EPS is a proxy for 

company profitability. Leverage is a proxy for the debt burden of the companies. Cash flow 

to price is a proxy for firm liquidity. The market to book ratio is a proxy for growth 

opportunities and market capitalization is a proxy for company size. All the figures in Table 

2.2 are reported after winsorizing the data at the level of 2% to handle the problem of 

outliers. It is woth noting that the leverage has a very high mean because the finance sector 

represents around one-fifth of our sample.  

 

<<Table 2.2 about here>> 
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Tables of results 
 

Table 2.1. A description of the variables. 

Variable Definition 

 Closing price   The monthly closing price at the end of each month.  

 Trading Volume  The monthly total number of shares traded on a 

security during a specific month.  

 Shares outstanding   The combined number of primary common share 

authorized by the company; the number is also 

listed on the companies‟ balance sheet.  

 Company Beta  The sensitivity measure of the security returns to the 

volatility of S&P 500 index, which is the proxy for 

market index. To calculate this variable, Bloomberg 

employs the CAPM model and the two past years 

of weekly data.  

 EPS   Computed as net income available to common 

shareholders divided by the basic weighted average 

shares outstanding. Sum of the previous most recent 

12 months (trailing 12 months).  

 Leverage  The monthly ratio of equity to debt. 

 Cash flow to price (CF/P)  The monthly ratio of cash flow to price. 

 Market to Book ratio (M-B)  The monthly ratio of market capitalization to book 

value.  

 Market Capitalization   The proxy for corporate size. It is the monthly 

monetary value of all outstanding shares and is 

calculated by the number of shares outstanding 

times the monthly closing price.  

 Institutional Ownership  Percentage ratio of freely traded shares held by 

institutions to the number of float shares 

outstanding. 

 Returns  The change rate in monthly closing price. Gross 

dividends are included in the calculation.  
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Table 2.1. (Continued)  

Variable Definition 

 Market excess return (Rm-Rf)  The excess market returns and is computed as 

returns on market index minus risk-free. This 

variable is obtained from the Kenneth R. French 

data library.  

 

 SIC code  We depend on a 4-digit code. SIC stands for 

Standard Industrial Classification. This code was 

developed by US government in 1937 in order to 

indicate which industry the company was affiliated 

to.  
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Table 2.2. Summary statistics  

Variables 

 

Mean St. Deviation  Median Minimum Maximum Obs 

Closing price 

 

27.123 24.995 20.020 2.586 135.534 723251 

Volume 

(in thousands) 

 

871.992 1672.265 245.700 380.3 8797.800 730504 

Shares Outstanding  

(in millions) 

 

125.000 218.000 48.800 6.505 1190.000 724226 

Beta 

 

1.041 0.839 0.957 -0.685 3.365 734094 

EPS 

 

1.147 1.969 1.070 -4.380 6.930 692991 

Leverage 

 

2.737 3.744 1.255 0.080 16.800 701182 

CF/P 

 

0.119 0.103 0.090 0.008 0.531 577810 

M-B ratio 

 

3.104 3.241 2.124 -1.885 17.069 698035 

Market Cap. 

(in billion) 

 

3.550 7.720 2.124 0.103 42.700 721583 

Institutional Ownership  

 

63.814 45.286 82.490 0.000 129.450 644816 

Return 

(percentage)  

 

0.873 12.249 0.465 -30.491 34.529 734094 

Market excess returns 

(Rm-Rf) 

0.006 0.043 0.012 -0.101 0.082 240 
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Chapter Three 

Determinants of capital gains overhang 

 

Abstract 

 

The disposition effect is the propensity of investors to realize gains too early while they are 

loath to realize losses. Capital gains overhang is a measure of unrealized capital gains and 

losses that is associated with the disposition effect and the trading activities of behaviourally 

biased investors. We discover that value irrelevant firm characteristics can play a role in 

explaining variations in the capital gains overhang that is consistent with the activities of 

behaviourally biased and disposition investors. Specifically, we find that capital gains 

overhang increases in firm attributes that attract behaviourally biased investors, namely, 

earnings per share, leverage, growth and size. Capital gains overhang declines in market 

liquidity, possibly because liquidity allows behaviourally biased investors to excessively 

trade shares and beta and corporate liquidity, probably because when high risk and inefficient 

firms experience losses, disposition investors experience capital losses that they are reluctant 

to realize.  

Keywords: Capital Gains Overhang, Value-irrelevant Characteristics, Disposition Effect, 

Behavioural Finance 
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3.1- Introduction  

 

We relate unrealized capital gains and losses (hereafter unrealized capital gains) to the 

disposition effect, the tendency of behaviourally biased investors to excessively realize 

capital gains and to reluctantly realize capital losses. We also relate unrealized capital gains 

to firm level value irrelevant factors which we hypothesize behaviourally biased investors 

believe to be value relevant. In general, there is no rational reason why unrealized capital 

gains should relate to these factors other than by random occurrence. Therefore, we conduct 

extensive robustness checks to be sure that these factors do in fact systematically relate to 

unrealized capital gains. We find that these firm level factors are significantly related to 

unrealized capital gains in ways that are consistent with the activities of disposition and 

otherwise behaviourally biased investors. For the most part, these relationships are consistent 

in the robustness tests and in the very few instances where the relationships do change; they 

do so within the behaviourally biased investor paradigm.  

Over the past three decades, many authors have challenged the traditional notion that 

market prices are rational and reflect only relevant information. Importantly, Grinblatt and 

Han (2005) introduce an analysis of the way in which irrational behaviour can cause 

mispricing via a prospect theory and mental accounting (PT/MA) framework. The essence of 

prospect theory entails that investors are more risk adverse when dealing with gains, but are 

less risk adverse when dealing with losses, where gains and losses are proportional to a 

reference point. Mental accounting is the mechanism that investors follow to determine these 

reference points. Grinblatt and Han (2005) also distinguish between two types of investors in 

the economy: rational investors and behaviourally-biased irrational investors. If the demand 

and supply of irrational investors overcome the demand and supply of rational investors, 

irrational investors are expected, according to the Grinblatt and Han (2005) model, to push 

prices away from fundamental values. 

If behaviourally biased investors do push prices away from fundamental values, it is 

more probably to occur due to excess demand rather than to by excess selling pressure by 

behaviourally biased investors. Restrictions in short selling inhibit irrational investors from 

causing excess selling pressure in reaction to bad news and inhibit the ability of rational 

file://acfs3/ecpg/ecpgmma3/Desktop/My%20documents/Written%20Sample/Chapter%20one%201.docx%23_ENREF_25
file://acfs3/ecpg/ecpgmma3/Desktop/My%20documents/Written%20Sample/Chapter%20one%201.docx%23_ENREF_25
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investors from arbitraging excess buying pressure in reaction to good news.
4
 However, there 

are no such restrictions on buying shares. Therefore, we investigate the demand side of 

Grinblatt and Han (2005)‟s model. Specifically, we examine the characteristics of firms and 

how they relate to probably reference points. We hypothesize that firm factors that can be 

related in some way to increases in gains and losses will be inversely related to unrealized 

capital gains since disposition investors will react asymmetrically, immediately realizing 

gains but delaying losses. We also hypothesize that the characteristics of “good” firms would 

be positively related unrealized capital gains since “good” firms would be in demand by 

irrational investors who discount the importance of the more rational, future risk and return 

characteristics of these firms. In effect, we are trying to read the investor's mind about which 

stocks behaviourally biased investors feel attracted to and prefer to possess so that generally 

unrealized capital gains are positively related to the firm characteristics that behaviourally 

biased investors believe are attractive.  

This paper contributes to the theoretical development of behavioural finance in two 

ways. First, we suppose that there is a relation between value irrelevant firm characteristics 

and unrealized capital gains. Most research to date has addressed the impact of irrational 

behaviours on the supply side, while the personal preferences of the behaviourally biased 

investors have not yet been covered. Our contribution helps to grasp investor behaviour better 

through identifying buying preferences and their possible impact on prices by detecting the 

firm characteristics that can attract irrational investors' attention and affect stock prices. More 

precisely, we examine the ability of the measurable BARRA, Inc.,
5
 inspired company 

characteristics to act as explanatory variables for unrealized capital gains, namely, market 

liquidity (share trade volume), beta, earnings per share, leverage, corporate liquidity (cash 

flow to price), growth, and size. To the extent that these variables are associated with value, 

this information should be included in stock prices at the date of purchase and should not 

systematically affect future capital gains. 

                                                           
4
 Restrictions that prevent disposition investors from causing excess selling pressure include “circuit breaker” 

regulations that ban short selling altogether during severe bear market conditions and the requirement that short 

sales can only occur on an uptick in stock prices. Restrictions that reduce the incentive by rational investors to 

arbitrage excess demand include limitations on the use of the proceeds from short selling. 
5
 BARRA, inc is a software provider for portfolio risk and performance analytics. This company construct a 

proxy for quality companies and its stock based on 12 characteristics that are; market variability, success in the 

market, size, trading activity, growth, Earning-price ratio, Book-price ratio, Earnings variability, Leverage, 

foreign income, labour intensity, and dividend yield. For more details, see Clarke & Statman (1994). 

file://acfs3/ecpg/ecpgmma3/Desktop/My%20documents/Written%20Sample/Chapter%20one%201.docx%23_ENREF_25
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Second, we employ a much broader sample size by including the stocks that underlie 

the Russell 3000 index, whereas most of the literature uses a narrower sample that employs 

stocks listed on the NYSE/AMEX exchanges. The Russell 3000 index contains the largest 

3,000 US stocks representing 98% by market capitalization of the US market.
6
 Consequently, 

our data contains many more of the smaller companies that still actively trade on regional and 

not necessarily national stock markets, thereby improving the chance of detecting excess 

demand by irrational investors. We adjust for survivorship bias by including firms for as long 

as they remain in the Russell 3000 index.
7
 Having nearly 20 years of monthly data allows us 

to examine the robustness of our data over a wide variety of market conditions. Moreover, a 

significant portion of the literature focuses on NYSE and AMEX stocks and neglects stocks 

listed on NASDAQ. This also means that much of the literature ignores the technology 

sector, which is characterized by high volatility and high growth stocks and ignores the early 

performance of some of the best performers in the U.S stock market such as Apple and 

Microsoft. In contrast, our sample contains 986 stocks (around 20% of our sample) that are 

listed on NASDAQ. 

Our results show that value irrelevant firm characteristics that we hypothesize irrational 

investors to find attractive, specifically earnings per share, financial leverage, growth and size 

are positively related to capital gains overhang while another firm characteristic, namely, 

corporate liquidity, is inversely related to unrealized capital gains. The later can turn negative 

because corporate liquidity could also be associated with underutilized corporate assets 

leading to capital losses which disposition investors hang on to. In addition, beta is inversely 

related to capital gains overhang probably because high risk stocks sometimes have poor 

performance resulting in capital losses that disposition investors are loath to realize. 

Moreover, we find that the market liquidity of the firm‟s shares is inversely related to capital 

gains overhang probably because more liquid stocks encourage disposition investors to 

realize capital gains too early while being irrationally reluctant to realize losses. 

The next section briefly reviews the relevant literature while section 3.3 develops our 

hypotheses. Section 3.4 describes the sample and methodology. Section 3.5 presents our 

empirical analysis followed by concluding remarks and recommendations for future research 

in section 3.6.  

                                                           
6
 http://www.russell.com/indexes/emea/indexes/ 

7
 Attempting to include companies that have dropped out of the Russell 3000 index would include stocks that do 

not actively trade. This would mean that the reference price would reflect stale prices and not the beliefs of 

disposition investors. 
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3.2- Literature review 

 

The disposition effect is one of the best documented cognitive biases in the behavioural 

finance literature. The term "disposition effect" refers to the behaviour of realizing gains 

promptly and holding losing stock too long. Dechow and Sloan (1997) do not find any 

evidence that irrational investors commit systematic cognitive errors when perceiving firm 

performance. Later however, by using Ohlson‟s (1980) O-score, the return difference 

between high and low book to market stocks, Griffin and Lemmon (2002) do find that firms 

with current poor operating performance are more susceptible to mispricing.  

  Shefrin and Statman (1985) study how investors react to gains and losses. They develop 

a behavioural theory of the disposition effect through synthesizing prospect theory, mental 

accounting, regret aversion, and self-control. Odean (1998) uses 10,000 accounts of 

individual investors to investigate the disposition effect, showing that, while investors exhibit 

a strong preference for realizing winners rather than losers, they do not delay realizing losses 

in December so as to gain tax benefits. The latter is consistent with Lakonishok and Smidt 

(1986) who show that while investors delay realizing losses and recognize gains early, there 

has been a marked increase in tax loss motivated selling in December. Odean‟s (1998) results 

were generalized by Grinblatt and Keloharju (2001) who examine institutional as well as 

individual investors and by Locke and Mann (2005) who examine professional investors. 

Goetzmann and Massa (2008) use a large number of individual accounts to investigate the 

relationship between the percentage of disposition investors and the elasticity of stocks to 

financial bubbles confirming that returns, volatility and volume are inversely related to the 

disposition effect. 

  More recently, Hur et al. (2010) assume that individual investors suffer most from the 

disposition effect and find that stocks with greater individual ownership are also stocks where 

momentum profits are more strongly influenced by the disposition effect. Ben-David and 

Hirshleifer (2012) find that for short holding periods, investors are more probably to sell if 

the stock is a large loser. However, they affirm that the trading behaviour in the case of gains 

or losses is too complicated to be interpreted by direct tastes; factors such as future 

expectations, tax benefits and portfolios repositioning should be taken into account. Cici 

(2012) study U.S mutual funds, finding that most mutual funds like to realize losses more 

file://acfs3/ecpg/ecpgmma3/Desktop/My%20documents/Written%20Sample/Chapter%20one%201.docx%23_ENREF_16
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than gains to capture tax benefits. Ye (2014) focuses on institutional investors, providing 

evidence that institutional investors tend to ride losses too long.  

  Dhar and Zhu (2006) target the specification of individual differences in the disposition 

effect. While the study supports the notion that individual investors behave on average 

according to the disposition effect, 20% of investors react against the disposition effect by 

realizing losses immediately and holding winning stocks. Moreover, while white-collar, 

richer and financially savvy investors show only a slight disposition effect, investors who 

trade less frequently experience a higher disposition effect. Choe and Eom (2009) examine 

the disposition effect in the Korean futures market finding that individual, institutional and 

foreign investors all exhibit disposition. Choe and Eom (2009) as well as Da Costa et al. 

(2013) pay attention to investor characteristics, finding that there is less disposition among 

sophisticated and experienced investors.  

  Debondt and Thaler (1987) work on market overreaction to earnings that force prices to 

deviate from the intrinsic value. Frazzini (2006) examines 29,000 mutual funds using 

prospect theory and mental accounting (PT/MA) framework to examine the ability of the 

disposition effect to generate under-reaction to news and its contribution to predicting future 

returns. Frazzini (2006) supposes that disposition investors react predictably to information 

flowing from the firm so that price movements are foreseeable. He concludes that bad (good) 

news goes sluggishly (quickly) to the marketplace, generating negative (positive) price 

movements. 

  Fu and Wedge (2011) relate the managerial ownership of mutual funds to the 

disposition effect and gather data from statements prepared by investment companies. They 

report that funds without managerial ownership and funds with poorer performance suffer 

from a higher disposition effect while funds with more board independence manifest a lower 

one. Kaustia (2004) sheds light on the disposition effect of IPO investors and confirms that 

reference pricing is important for market wide activity. 

  Kaustia (2010) & Barberis and Xiong (2009) examine the ability of two models of 

prospect theory, the annual gains and the realized gains and losses models, to explain 

disposition. Barberis and Xiong (2009) find that while the annual gains and losses model is 

unable to predict the disposition behaviour, the realized gains/loss model is able to so. 

Kaustia (2010) uses a logit regression model to test the tendency to sell. Surprisingly, the 

results show that the prospect theory is unable to predict disposition. Later, Li and Yang 
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(2013) develop a theoretical equilibrium model to link prospect theory to disposition and 

asset pricing. Lehenkari (2012) uses Finnish data to explore the disposition effect by testing 

three possible sources of it, namely, prospect theory, mean reversion, and self-accountability 

in making the initial investment decisions. The results indicate that when they controlled for 

the ability of investors to make investment decisions by themselves, the disposition effect 

disappeared. Clearly, this implies that personal accountability for initial investments is the 

main source of the disposition effect. Frydman and Rangel (2014) & Weber and Camerer 

(1998) depend on the experimental approach to provide an explanation for the disposition 

effect behaviour.   

  Bhootra and Hur (2012) investigate the impact of cointegration on the relationship 

between stock prices and momentum profits. To do so, they divide the whole sample into 

cointegrated and non-cointegrated groups finding positive significant relationships between 

the capital gains overhang and stock returns for both groups. However, the relationships for 

the co-integrated group are weaker. More recently, Birru (2015) finds that investors do not 

follow disposition behaviour after stock splitting.  

 A. Value irrelevant cognitive biases  

 Hirshleifer et al. (2004), Hirshleifer and Teoh (2003) & Daniel et al. (2002) all agree 

that several cognitive errors can occur and create a deviation from fundamental values 

because the volume of information is too great to be handled by the limited capability of 

investors. Barber, Heath, and Odean (2003) assert that behaviourally biased investors usually 

require some rationale for choosing between different stocks. In this context, these reasons 

may be that the company excels in managing its operations, produces quality products and 

develops successful strategies. However, from a rational standpoint, the power of such 

reasons does not necessarily promote superior future stock performance.  

Barber and Odean (2008) argue that each investor faces a large number of options but 

choose only a few because human beings have a limited ability to attend to and to process 

available information. Barber and Odean (2008) also find that investors are more attracted to 

information that leads to buying decisions rather than selling decisions. Shefrin and Statman 

(1995) claim that the fluctuations in asset prices are mainly due to cognitive errors committed 

by uninformed irrational investors when they evaluate the role firm characteristics play in 

explaining expected returns. As a result, irrational investors mistakenly think "good stocks 

are the stocks of good companies". The reality refutes this belief because some superior 
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stocks subsequently experience inferior operating performance and some inferior stocks 

subsequently experience superior operating performance. Additionally, this systematic error 

is expected to push irrational investors to under or overreact, which eventually causes price 

distortion. Shefrin and Statman (1995) finally conclude that large companies with a 

moderately high book to market ratio are more probably to be viewed as good companies.  

The previous arguments are empirically supported by Lakonishok et al. (1994) who 

seek to explain the superior performance of value strategies to those of glamour strategies as 

determined by different book to market and cash flow to price ratios. Lakonishok et al. 

(1994) find evidence that behaviourally biased investors can be the primary cause of the 

significant association between firm characteristics and stock prices. Evidently, some 

investors associate good investment with good companies irrespective of price and so push 

stock market prices away from the intrinsic values. They conclude that investors tend to 

overprice stocks that are characterized by low book to market ratios and underprice stocks 

that are characterized by high book-to-market ratios.   

Clarke and Statman (1994) refer to two sets of criteria that make up the representative 

heuristics used by investors to describe a specific company as good and to romanticize the 

performance of its stock accordingly. The company focused set of criteria, prepared by 

Fortune Magazine, suggests that a company is good if it has quality management, financial 

soundness, quality products, highly talented people, efficiently use of corporate assets, value 

as a long term investment, innovation and community and environmental responsibility. The 

fundamental factor criteria are inspired by BARRA, Inc., and consist of stock volatility, prior 

success in the stock market, size, trading activity, growth, earnings price ratio, book to 

market value ratio, earnings variability, financial leverage, foreign income, labour intensity 

and dividend yield. All of these variables are irrelevant in a competitive market with rational 

investors because to the extent that these factors create value, this should already be reflected 

in stock prices. What should determine value are future earnings and the corresponding 

systematic risk of achieving them. 

  As is common in the literature, we employ unrealized capital gains based on 

cumulative past returns and trading volumes as a variable associated with the disposition 

effect and other cognitive biases. However, as far as we are able to determine, the role that 

firm characteristics play in explaining the disposition effect and other cognitive biases has not 

for the most part been examined in the literature.  
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3.3- Hypotheses Development  

 

Representativeness heuristics of (Tversky & Kahnmann, 1974) is the tendency of 

people to oversimplify the decision-making process by ignoring the laws of probability and 

judge events and subjects on their typicality and similarity to well-known events or subjects 

(Hirshleifer, 2001) and (Barberis, Shleifer and Vishny, 1998). Eaton (2000) defines 

representativeness as a cognitive bias where brain resorts to simplify the complication of a 

problem. According to this bias, investors assume that things that have limited number of 

similar features are the same and classify stocks as “good” or “bad” depending on few 

numbers of superficial characteristics and ignoring some other relevant characteristics. Also, 

they ignore underlying probabilities. Another example of this bias is that some investors in 

the stock market sometimes may deal with some stocks as growth stocks depending on past 

growth in earnings and disregard that the number of companies that continue growing is few. 

Many studies in the literature evidenced that investors are prone to representativeness bias by 

believing that past returns are representative to future returns Chen, Kim, Nofsinger and Rui 

(2007). De Bondt and Thaler (1985) supported the previous findings by explaining that 

Bayes‟ rule represents the level of appropriate reaction to new information. They also found 

evidence that people expose to representativeness heuristics by overweight recent events and 

ignore base rates. They also confirm that this representativeness heuristics induce over-

reaction to new information and lead past losing portfolios to outperform past winning 

portfolios. One kind of representativeness was reported in Cooper, Dimitrov & Rau (2001) 

who studied what so called investor mania by relating the change of companies‟ name to 

dotcom name with making abnormal returns. The findings documented that investors prefer 

to invest in internet companies and also documented that changing the company‟s name to 

dotcom name makes positive abnormal returns for the five days around the announcement 

date. Another kind of representativeness was documented in Shefrin & Statman (1995) who 

linked representativeness heuristics to characteristics of companies by examining whether 

investors believe good companies are representative of good stocks. They used Fortune 

magazine survey that was distributed to 8000 senior executives, outside directors and 

financial analysts from 311 companies in 32 industries. This survey aimed at asking 

respondents to rate companies based on eight characteristics that are quality of management, 

quality of products or services, innovativeness, long-term investment value, financial 

soundness, ability to attract, keep and develop talented people, social responsibility and wise 
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use of corporate assets. Manzan & Westerhoft (2005) develop a model for speculators who 

are prone to representativeness heuristics in the foreign exchange market. This model 

assumes that these speculators perceive news incorrectly which ultimately influencing 

demand and supply interaction by overreacting or underreacting to this news. This impact 

depends on the magnitude of historical volatility. If the volatility is high (low), the current 

news will be important (unimportant), causing overreaction (under-reaction) to this news.  

From the previous discussion we conclude that the belief of good stocks are stocks of 

good companies is kind of representativeness heuristics since some investors feel good 

companies are representative of good stocks and good investments. In other words, investors 

expect above mean expected returns from good operating performance companies, low risk 

“safe” companies and financially sound companies. In this case, representativeness leads 

investors to predict above mean returns from safe stocks.  

We depended on some characteristics of BARRA‟s quality proxy that generally used to 

classify companies as “good” or “bad”. BARRA‟s quality proxy includes 12 features that are; 

variability in the stock market, stock success, institutional popularity in the market, growth, 

earning-price ratio, book-price ratio, earnings variability, leverage, foreign income, labor 

intensity and dividend yield. These features are employed to describe and measure 

perceptions of admired companies.  

Representativeness best explains the buying patterns or investors use 

representativeness heuristics when purchasing Barber, Odean & Zheng (2000) and Barber, 

Odean & Zhu (2009). This leads investors to give too much consideration to stocks of these 

admired companies which inducing overreaction Wu, Wu, & Liu (2009) and causing excess 

demand for them. We can also say investors pay premium for holding stocks of good 

companies or require lower required return on stocks of good companies leading to higher 

market price or positive spread between market price and reference price. 

Our central hypotheses are first, that disposition investors react irrationally in the face 

of capital gains in accordance with a framework of mental accounting and prospect theory 

and, second, react to value irrelevant firm level characteristics. The latter assumes that firms 

with the characteristics irrational investors find attractive can be influenced by them provided 

that excessive demand by these investors overcomes supply by more rational investors. We 

measure the influence of disposition and behaviourally biased investors proxied by the 

unrealized capital gains and losses as proposed by Grinblatt and Han (2005) and use this as 
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the dependent variable to see first, if this proxy is associated with the irrational reluctance to 

realize losses and second whether this proxy is associated with the factors that irrational 

investors mistakenly believe are value relevant.   

A central aspect of the disposition effect is that disposition investors excessively sell 

winning stocks yet are reluctant to sell losing stocks. Lakonishok and Smidt (1986) and 

Odean (1998) show that with the exception of end of year tax loss selling, investors do delay 

realizing losses and recognize gains early. Later, Grinblatt and Keloharju (2001), Locke and 

Mann (2005), Choe and Eom (2009) and Ye (2014) all find evidence of the disposition effect.  

If so, the higher the trading volume of a given share, the more probably this is caused by 

disposition investors excessively realizing capital gains leading to lower unrealized capital 

gains. Moreover, the lower the volume of share trading, the more probably this is associated 

with disposition investors failing to realize losses, again leading to lower realized capital 

gains. In addition, high risk stocks will tend to have both higher losses and higher gains. Yet 

disposition investors will react asymmetrically, selling shares to realize capital gains early but 

holding shares with capital losses. Therefore, our first hypothesis can be stated as follows. 

H1. Ceteris paribus, there is an inverse relation between unrealized capital gains and 

stock liquidity and systematic risk.  

Shefrin and Statman (1995) suppose that behaviourally biased investors mistakenly 

think "good stocks are the stocks of good companies". Lakonishok et al. (1994) find that 

investors tend to overprice growth stocks that are characterized by low book to market ratios 

and underprice value stocks that are characterized by high book-to-market ratios. Similarly, 

Shefrin and Statman (1995) conclude that large companies with a moderately high book to 

market ratio are more probably to be viewed as good companies. None of these authors, 

however, have investigated the relationship between size and growth with unrealized capital 

gains. Inspired by the BARRA, Inc., listing of the measureable characteristics of a “good” 

company, we add earnings per share, and leverage, cash flow to price, growth and size as 

company characteristics that will attract the attention of behaviourally biased investors. 

There is no reason why these factors should be related to past capital gains or losses 

because to the extent that there is any value associated with these factors, it should be 

reflected in the current stock price. In other words, earnings per share, leverage, 

growth and size should not predict future gains and losses hence they should not be 
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related to unrealized capital gains either. Therefore, buying these shares should be 

innocuous on a shares future return. However, because disposition investors believe 

these characteristics to be valuable, they will cause excessive buying pressure that 

rational investors may have difficulty in arbitraging. Therefore, we expect capital gains 

overhang will be positively associated with firms with these characteristics. Therefore, 

our second hypothesis is stated as: 

 

H2. Ceteris paribus, there is a positive relation between capital gains overhang and the 

characteristics of “good” companies”, namely, earnings per share, leverage, growth and 

size.  

We are unable to sign a fifth company characteristic, corporate liquidity. On the one 

hand, we expect a high level of corporate liquidity to be viewed by behaviourally biased 

investors as an attractive characteristic. This suggests that if the demand by behaviourally 

biased investors overcomes the supply by rational investors, the stock price will rise leading 

to unrealized capital gains. On the other hand, for some firms, excess corporate liquidity can 

indicate inefficient use of resources via excess investment in inventories, a failure to collect 

receivables on time or, for financial firms, a failure to find quality lending opportunities. This 

can lead to losses by some but not all of these companies. Disposition investors will react 

asymmetrically by realizing gains for those companies with high corporate liquidity that have 

gains and by failing to realize losses for those companies with high corporate liquidity that 

have losses. This will lead to an inverse relationship between firms with high corporate 

liquidity and unrealized capital gains.  

3.4- Description of the sample and methodology 

 

We collect all the stocks listed on Russell 3000 index. To avoid survivorship bias, the 

list of companies was updated each month. We needed to estimate the capital gains overhang 

with respect to a reference price based on past data. Grinblatt and Han (2005) use five years 
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of data to estimate the reference price and note that estimates of the reference price are robust 

to using three and seven years of data. To avoid losing too much data and enhance our ability 

to conduct robustness tests, we relied on three years of observations to calculate the reference 

price. Therefore, we excluded all stocks that had fewer than 36 observations so that we ended 

up with data on 5,091 stocks with 422,278 stock month observations over the period January 

1995 to September 2014. Using the first three years of monthly data to estimate the initial 

reference price means that our empirical study commences in January1998 and ends in 

September 2014. 

Our dependent variable, capital gains overhang, is a measure of unrealized capital gains 

calculated with respect to a reference price. Unlike Grinblatt and Han (2005), we use monthly 

rather than weekly data because our sample included many smaller stocks and we wished to 

avoid any issues with thin trading. The reference price RPt is a turnover weighted average of 

past prices. We use Grinblatt and Han‟s (2005) calculation of the reference price RPt because 

we too are unable to differentiate between rational and disposition investors. Therefore, the 

market's reference price will be calculated as follows.  
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where Vt is date t's number of shares traded in the stock, Pt-n is the closing price at t-n and k is 

a constant that makes the weights sum to one. In other words, (1) is a geometrically declining 

volume weighted average of the past prices of a stock. Our measure of unrealized capital 

gains (capital gains overhang) was measured as the percentage difference between the current 

price and the reference price.  
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where CGOt is a capital gains overhang at the end of month t, Pt is the closing price at the end 

of month t, and RPt denotes the reference price at the end of month t.  

To test our first hypothesis, we measure stock liquidity as TURNOVER, the monthly 

share trading volume of a given stock and systematic risk as BETA the CAPM measure of 

systematic risk and included them as explanatory variables of capital gains overhang. As 
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mentioned previously, we expected both of these variables to be inversely related to capital 

gains overhang. 

To test our second hypothesis, we include several variables that we hypothesized 

behaviourally biased investors would mistakenly believe to be associated with attractive 

investment candidates. These variables are earnings per share EPS, a measure of recent 

profitability, LEVERAGE, measured as the ratio of debt to equity, corporate liquidity CF/P 

measured as the ratio of cash flow to price, GROWTH measured as the ratio of the market to 

book value and SIZE, the log of monthly market capitalization. We included these factors as 

explanatory variables of capital gains overhang. As mentioned previously, if the demand by 

behaviourally biased investors is excessive, then these variables will be positively associated 

with capital gains overhang. All data were winsorized at 2% and 98% to reduce the harmful 

effect of outliers.  A detailed description of the variables is reported in Table 3.1. 

 

<<Table 3.1 about here>> 

 

We used panel regressions because we wished to consider the time series and cross 

sectional behaviour of capital gains overhang. Following the approach of Petersen (2009), 

White (1980) standard errors were compared to standard error clustered by time to detect 

whether the data had time series dependence. The difference between White (1980) standard 

errors and standard errors clustered by time ranged from 50% to 260%, which clearly 

indicates that there is time series dependence in our data. White (1980) standard errors were 

compared again with standard errors clustered by firms to check the possibility of cross 

sectional dependence. In this case, the difference varies from 24% to 380%, which also 

indicated that our data suffered from cross sectional dependence. It is well known that a fixed 

effect model is more appropriate when the sample completely covers the whole population 

Brooks (2008). Since our sample “All stocks in Russell 3000 index” represents 98% of the 

US stock market and provides full and transparent coverage of the market as previously 

mentioned in Chapter 2, the fixed effects model was employed, also named the least square 

dummy variable approach (LSDV). To deal with joint time series and cross sectional 

dependence, the parametric approach was followed by including dummy variables for each 

time period and clustering our standard errors by firm. The same approach was previously 
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used by Lamont and Polk (2001), Anderson and Reeb (2004), Gross and Souleles (2004), 

Sapienza (2004), and Faulkender and Petersen (2006)
8
. Our model is therefore 

 

    (3) 

where CGOit is capital gains overhang, TURNOVER it is the turnover ratio, BETA it is the 

company beta, EPSit is earnings per share, LEVERAGE it is our measure of the debt burden, 

CF/Pit is the cash flow to price ratio, GROWTH it is the growth rate in market to book ratio, 

SIZEit is the natural log of monthly market capitalization, and u it is the error term.  

In Table 3.2, we provide summary statistics for the dependent and independent 

variables that cover the period from January 1998 to September 2014. The table shows that 

the mean of capital gains overhang is -0.0935 meaning that overall; investors are 

experiencing an unrealized capital loss. This mean is larger than -0.15 as reported by Frazzini 

(2006) whose sample is drawn from mutual funds and is smaller than 0.056 as reported by 

Grinblat and Han 2005) whose sample was drawn from stocks listed on the NYSE and 

AMEX. The standard deviation of 0.54 and skewness of -2.4 of capital gains overhang was 

very similar to the findings of Frazzini (2006) who reports 0.52 and -2.3 respectively. In 

addition, financial companies comprised nearly one fifth of our sample so the mean of 

leverage is somewhat high.  

 

<< Table 3.2 about here>> 

 

Table 3.3 shows the summary statistics for the capital gains overhang for each industry. 

From this table, we can conclude that all industries provide negative capital gains overhang. 

The wholesale industry gives the highest mean capital gains overhang, while finance, 

insurance and real estate is the second highest industry in terms of mean capital gains 

overhang. It is also observed that the public administration industry gives the lowest capital 

gains overhang. Regarding the standard deviation, the services industry and mining industry 

experience the highest standard deviation in capital gains overhang.  

                                                           
8
 See Petersen (2009) P.458 
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<< Table 3.3 about here>> 

 

We report the sample correlation amongst the variables in Table 3.4. According to Alm 

and Mason (2007), if the correlation coefficient amongst independent variables is less than 

0.70, there should be no issues with high collinearity. According to this criterion, we do not 

expect to have issues with collinearity since all our correlations are far less than 0.70. The 

first and second highest correlation coefficients are between earnings per share and size 

(0.40) and between cash flow to price and beta (0.26). The other correlation coefficients are 

quite low, all less than 0.18. All the correlation coefficients are statistically significant at 1% 

or 5% level except for the correlation between growth and turnover.  

 

<<Table 3.4 about here>> 

 

3.5- Empirical analysis 

 

Our main empirical results are shown in Table 3.5. According to the rational investor 

competitive market view, none of our variables should be systematically related to capital 

gains overhang, yet all of them are significant at the 1% level. Moreover, the R-square of the 

regression model is more than 20% and highly significant according to the F- Statistic.  

<<Table 3.5 about here>> 

 

We find very strong support for our first hypothesis. As expected, market liquidity 

TURNOVER and systematic risk BETA are inversely related to capital gains overhang. Both 

coefficients are significant at the 1% level. This is evidence of the activities of disposition 

investors who are reluctant to realize capital losses. Evidently, with higher stock market 

liquidity, disposition investors are realizing capital gains early yet are reluctant to realize 

capital losses and so induce an inverse relation between stock market liquidity and unrealized 

capital gains even though there is no rational reason why this relationship should exist. 

file://acfs3/ecpg/ecpgmma3/Desktop/My%20documents/Written%20Sample/Chapter%20one%201.docx%23_ENREF_1
file://acfs3/ecpg/ecpgmma3/Desktop/My%20documents/Written%20Sample/Chapter%20one%201.docx%23_ENREF_1
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We also find strong support for our second hypothesis. The four value irrelevant firm 

characteristics that we hypothesize will attract demand from behaviourally biased investors 

are indeed positively related to unrealized capital gains. All of these coefficients are 

significant at the 1% level. Evidently, firms with larger earnings per share, growth, size and 

leverage attract excess buying behaviour from behaviourally biased investors not 

counteracted by more rational investors.  

A fifth firm characteristic, corporate liquidity CF/P is inversely related to unrealized 

capital gains and is also significant at the 1% level. This suggests that the disposition effect is 

operative here rather than the irrational demand by behaviourally biased investors since 

evidently; some firms with high corporate liquidity are inefficiently deploying resources 

leading to losses that disposition investors are reluctant to realize. This finding is also 

consistent with Lakonishok, Shleifer, and Vishny (1994) who find that investors tend to 

overvalue growth stock "low cash flow to price", while they undervalue high cash flow to 

price stocks. 

Robustness checks 

The main reason why we implement robustness check is to ensure regression estimates 

are insensitive to different market conditions and are insensitive to different assumptions. The 

first robustness check was conducted through running cross section regression for each year 

to check the stability of the coefficients over time (see Table 3.6). Sixth further robustness 

checks were conducted through splitting the whole sample into two subsamples, the first five 

are based on median growth, median beta, median size, median turnover, before and after the 

financial crisis and the sixth on the basis of capital gains versus losses. We first divided the 

entire sample into two subsamples based on median growth in the market to book ratio. Then, 

we ran the same model (1) (see Table 3.7). Similarly, the previous procedure is replicated in 

beta, size and turnover in Tables 3.8, 3.9, and 3.10. To check the robustness of the relation to 

different economic circumstances, the sample periods was split on the basis of occurring 

before August 2007 or After August 2007 (see the subsamples in Table 3.11). Finally, we 

divided the entire sample into two subsamples periods based on the capital gains overhang: 

capital gains and capital losses (see Table 3.12). The main conclusion in Tables 3.6, 3.7, 3.8, 

3.9, 3.10, 3.11 and 3.12 is that the relation is stable over time except BETA. This instable 

relation between BETA and capital gains overhang can be attributed to the non-linear relation 

between them. The findings are also robust to higher- and lower- growth stocks, higher- and 

lower-beta stocks, higher- and lower-sized stocks, higher- and lower-liquidity stocks, boom 

file://acfs3/ecpg/ecpgmma3/Desktop/My%20documents/Written%20Sample/Chapter%20one%201.docx%23_ENREF_32
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and recession conditions and also robust to capital gains and capital losses. There are three 

differences between the main results and the robustness checks: the first difference lies in the 

main conclusion (see Table 3.7) that there is positive significant relationship between growth 

rate and capital gains overhang. But when we divided the whole sample according to growth 

rate (high growth vs low growth) (see Table 3.7), we noticed that the relation between growth 

rate and capital gains overhang became negative in the high growth subsample, indicating 

that the disposition investor to some extent prefers high growth stocks. However, he does not 

taste the extremely high growth stocks due to the high level of uncertainty that they represent. 

From this point, we can see also that there is a nonlinear relationship between growth rate and 

capital gains overhang. The second different story (see Table 3.12) is that we ran the panel 

regression model (1) to the capital gains and capital losses separately. In the case of capital 

gains the turnover coefficient became positive and significant at 10%, meaning that if the 

disposition investor expects to earn capital gains, he pays little attention to the stock's trading 

activity and likes to buy the higher-volume stocks rather than the lower-volume stocks, while 

he is very much concerned about the trading activity when facing capital losses as the 

turnover coefficient is highly significant in the capital losses subsample. The final different 

story is that, we still find in capital gains subsample (see Table 3.12) that the sign of the beta 

coefficient also becomes positive, referring to the fact that the disposition investors favour 

high-beta stocks when facing gains to maximize their benefits. All other robustness tests are 

quite consistent with the main conclusion.  

Finally, we consider some subsamples statistics. The above median sized subsample of 

"large sized companies" has a mean capital gains overhang of 0.05, while the smaller sized 

"below median" mean subsample is -0.24. There is thus no size effect here and the difference 

between the two subsamples is 0.29. However, the mean unrealized capital gains overhang on 

the above median turnover subsample is -0.12, while it is -0.06 on the below median 

turnover. Similarly, the below median subsample has a higher unrealized capital gains 

overhang and the difference in unrealized capital gains overhang is 0.18. 

3.6- Conclusion  

 

In this study, we aimed to determine the main factors that might attract the disposition 

investors to trade in, generating temporary price distortions. In doing so, we followed 

Petersen (2009) methodology to attain efficient and unbiased standard errors in the context of 

the panel regression models. The purpose of using the panel regression model is to describe 



37 
 

the time series and cross section behaviour of capital gains overhang. Turnover, firm beta, 

EPS, leverage, cash flow to price, growth, and size were chosen. The relationships between 

the capital gains overhang and turnover, beta and cash flow to price were negative, while it is 

positive between the capital gains overhang and earnings to price, leverage, growth and size. 

The conclusion introduced here is conformable with Lakonishok, Shleifer and Vishny (1994): 

that, - firm characteristics are the main reason for irrationality and price distortion.  

The main conclusion can be summarized as follows: there is strong evidence that 

disposition investors believe that "good stocks are the stocks of good companies", especially 

the strongest significant variables are, cash flow to price, growth and size, are firm 

characteristics, while the turnover variable that is used as a proxy for market activity is far 

less significant than firm characteristics mentioned above. The robustness checks were 

implemented through running cross sectional regression year by year and through dividing 

the whole sample on the basis of median growth, median size, median turnover, median beta, 

before and after the financial crisis and capital gains and capital losses separately. In general, 

the robustness tests support the main result. 

The main implication for this paper is that the rational investors who are less 

susceptible to cognitive errors can develop profitable trading strategies to benefit from the 

temporary mispricing caused by the irrational investors. In this context, we would encourage 

the rational investors to pay more attention to those good companies that attracted the 

irrational investors and in turn, provides a higher capital gains overhang such as more 

profitable firms, higher growth, higher levered firms, larger firms and firms with lower 

corporate liquidity. Finally, it may be useful to make some recommendations for theory 

development. Investigating other factors such as management efficiency, quality products, 

innovation and social responsibility and replicating this research in other developed and 

emerging markets would be interesting.  
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Tables of results 

 

Table 3.1. A description of the variables 

Variable Definition 

Capital gains overhang The capital gains overhang is calculated as the 

percentage difference between current prices and the 

reference price.  

t t
t

t

P RP
CGO

P


     

Turnover  The turnover is a measure of shares monthly trading 

volume divided by monthly shares outstanding as a 

proxy for liquidity. 

Company Beta  A measure of systematic risk: The beta value is 

determined by the CAPM for the past two years of 

weekly data using S&P 500. 

EPS  Is the Earnings per share and computed as net income 

available to common shareholders divided by the basic 

weighted average shares outstanding. Sum of the most 

recent 12 months (trailing 12 months). 

Leverage A measure of the debt burden of a company. It is equal 

to the ratio of debt to equity. 

CF/P Is the ratio of cash flow to price. 

The market to book ratio Is a proxy for growth. 

The company Size Proxied by monthly market capitalization. 
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Table 3.2. Descriptive statistics 

This table reports the descriptive statistics of the data. The capital gains overhang is (Pt-RPt)/Pt where Pt is the 

stock price at the end of month t and RPt is the reference price calculated according to Grinblatt and Han (2005). 

Turnover is measured monthly and is the trading volume divided by the number of shares outstanding. Beta is 

the CAPM beta calculated over the previous two years using weekly data. EPS is the net income available to 

common shareholders divided by the weighted average number of shares outstanding (trailing 12 months). 

Leverage is calculated as the ratio of debt to equity. Cash flow to price CF/P is the ratio of cash flow per share 

divided by the stock's price. The growth is the growth rate in a market to book ratio and computed as 

 1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the market to book ratio. Size is the natural 

logarithm of the market capitalization at the end of month t. 

 

 

 

 

 

 

 

Variable 

 

Mean Median Std. Dev. Min Max Skewness Obs 

CGO 

 

-0.093 0.062 0.547 -2.395 0.493 -2.394 422278 

Turnover 

 

0.008 0.006 0.009 0.000 0.040 2.148 422278 

Beta  

 

1.129 1.044 0.754 -0.310 3.205 0.595 422278 

EPS 

 

1.298 1.200 2.014 -4.280 7.240 0.231 415244 

Leverage 

 

2.793 1.329 3.715 0.109 16.823 2.211 410603 

CF/P 

 

0.123 0.093 0.100 0.012 0.520 2.053 367977 

Growth (%) 0.528 0.000 12.776 -32.075 39.204 0.345 410846 

Size (in 

billions) 

4.800 1.200 10.200 0.140 56.000 3.700 418730 
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 Table 3.3. Summary statistics for capital gains overhang by industry  

 
This table reports the capital gains overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of month t and RPt is the reference price calculated 

according to Grinblatt and Han (2005). Using the first two digits of SIC codes, all stocks are assigned into ten industries as follows: Agriculture (01-09), Mining (10-14), 

Construction (15-17), Manufacturing (20-39), Transportation and public utlity (40-49), Wholesale trade (50-51), Retail trade (52-59), Finance, Insurance and Real Estate 

(60-67), Services (70-89), and Public Administration (91-99). 

 

 

 

 

 

Industry Agriculture Mining Construction Manufacturing 

Transportati

on and 

Public Utility 

Wholesale 

Trade 

Retail 

Trade 

Finance, 

Insurance and 

Real Estate 

Services 
Public 

Administration 

Mean -.093 -0.115 -0.096 -0.110 -0.072 -0.0388 -0.060 -0.057 -0.136 -0.367 

Std. 

Dev 
0.464 0.597 0.576 0.559 0.520 0.480 0.528 0.494 0.604 0.569 

Min -2.395 -2.395 -2.395 -2.395 -2.395 -2.395 -2.395 -2.395 -2.395 -2.395 

Max 0.493 0.493 0.493 0.493 0.493 0.493 0.493 0.493 0.493 0.493 

Obs 631 17171 5273 163231 41334 11163 29618 91255 62536 66 
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Table 3.4. Correlation Matrix 

Table 3.4 reports the correlation coefficients of the panel regression model. The dependent variable is a 

capital gains overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of month t 

and RPt is the reference price calculated according to Grinblatt and Han (2005). Turnover is measured by 

monthly trading volume/ monthly shares outstanding. Beta is the CAPM beta calculated over the previous 

two years using weekly data. EPS is computed as the net income available to common shareholders divided 

by the basic weighted average shares outstanding (trailing 12 months). Leverage is the ratio of debt to 

equity. CF/P is the ratio of the cash flow per share divided by the stock's price. The growth is the growth rate 

in a market to book ratio and computed as  1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the 

market to book ratio. Size is the natural logarithm of the market capitalization at the end of month t. 

Variable CGO Turnover Beta EPS Leverage CF/P Growth 

M-B 

Log size 

CGO 1.00 

 

       

Turnover -0.113 1.00 

 

      

Beta -0.136 0.181 1.00 

 

     

EPS 0.361 -0.078 - 0.168 1.00 

 

    

Leverage -0.024 -0.078  0.004 0.039 1.00 

 

   

CF/P -0.403 0.050 0.036 -0.085 0.263 1.00 

 

  

Growth (%) 0.136 -0.001* 0.033 -0.035 -0.018 -0.054 1.00 

 

 

Logsize 0.341 0.08 -0.112 0.402 0.039 -0.170 0.013 1.00 

 (*) denote significance at 10% and 5% otherwise 
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Table 3.5. Panel regression output  

This table reports the coefficients of the panel regression model. The dependent variable is a capital gains 

overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of month t and RPt is the 

reference price calculated according to Grinblatt and Han (2005). Turnover is measured by monthly trading 

volume/ monthly shares outstanding. Beta is the CAPM beta calculated over the previous two years using 

weekly data. EPS is computed as the net income available to common shareholders divided by the basic 

weighted average shares outstanding (trailing 12 months). Leverage is the ratio of debt to equity. CF/P is the 

ratio of the cash flow per share divided by the stock's price. The growth is the growth rate in a market to 

book ratio and computed as  1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the market to book 

ratio. Size is the natural logarithm of the market capitalization at the end of month t.  

Variables 

 

Coefficients 

 

β t 

Intercept -7.005 

(0.195) 

 

-35.92 

Turnover -5.426 

(0.259) 

 

-20.94 

Beta -0.032 

(0.002) 

 

-13.24 

EPS 0.035 

(0.002) 

 

12.35 

Leverage 0.015 

(0.002) 

 

7.62 

CF/P -1.705 

(0.056) 

 

-35.60 

Growth (%) 

 

0.004 

(0.000) 

 

76.04 

Size 0.341 

(0.019) 

37.09 

  

R
2
 

 

40.49 

F-statitics 

P- Value 

115.37 

(0.000) 

 

 
 

Obs 

 

 

351062 

Figures in the parenthesis are robust standard errors 

         Significant at 1% level 
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Table 3.6. Robustness analysis based on cross section regression (year by year)  

This table reports the coefficients of the cross section regression. The dependent variable is a capital gains overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of 

month t and RPt is the reference price calculated according to Grinblatt and Han (2005). Turnover is measured by monthly trading volume/ monthly shares outstanding. Beta is the CAPM  beta 

calculated over the previous two years using weekly data. EPS is computed as the net income available to common shareholders divided by the basic weighted average shares outstanding 

(trailing 12 months). Leverage is the ratio of debt to equity. CF/P is the ratio of the cash flow per share divided by the stock's price. The growth is the growth rate in a market to book ratio and 

computed as  1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the market to book ratio. Size is the natural logarithm of the market at the end of the month.                                        

Coefficients                       1998                      1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Intercept 
-1.041 

(-8.33) 

-1.474 

(-11.45) 

-1.124 

(-8.27) 

-0.407 

(-3.34) 

0.610 

(-3.30) 

-0.265 

(-1.58) 

-0.222 

(-2.22) 

-0.620 

(-7.03) 

-0.778 

(-8.94) 

-1.1261 

(-12.28) 

-1.966 

(-14.44) 

-2.420 

(-15.40) 

-1.424 

(-11.89) 

-1.258 

(-12.96) 

-1.087 

(-8.26) 

-0.698 

(-7.40) 

-0.793 

(-8.67) 

Turnover 
-7.636 

(-6.22) 

-6.384 

(-5.03) 

-4.298 

(-4.15) 

-6.215 

(-5.05) 

-5.824 

(5.81) 

-2.590 

(-2.08) 

-2.975 

(-3.66) 

-1.101 

(-2.11) 

-0.636 

(-1.43) 

-3.441 

(-5.82) 

-5.615 

(-7.74) 

-0.390 

(-0.58) 

0.769 

(1.15) 

-2.750 

(-4.40) 

-4.810 

(-5.70) 

-3.770 

(-4.32) 

-1.261 

(-2.24) 

Beta  
-0.042 

(-4.49) 

0.024 

(3.05) 

0.005 

(0.70) 

-0.149 

(-15.15) 

-0.304 

(-20.22) 

-0.072 

(-6.92) 

-0.023 

(-4.41) 

0.012 

(3.13) 

0.015 

(4.27) 

0.001 

(0.19) 

-0.163 

(-18.45) 

-0.184 

(17.77) 

0.001 

(0.12) 

-0.003 

(-0.42) 

-0.043 

(-7.84) 

0.018 

(3.94) 

0.047 

(9.02) 

EPS 
0.058 

(9.62) 

0.063 

(10.47) 

0.062 

(10.02) 

0.090 

(15.11) 

0.099 

(14.79) 

0.117 

(16.39) 

0.049 

(11.51) 

0.041 

(12.27) 

0.033 

(10.64) 

0.030 

(9.63) 

0.051 

(11.43) 

0.039 

(9.94) 

0.047 

(12.77) 

0.032 

(9.14) 

0.038 

(10.33) 

0.032 

(10.60) 

0.024 

(8.91) 

Leverage 
0.010 

(4.56) 

-0.001 

(-0.42) 

-0.002 

(-1.14) 

0.007 

(3.91) 

0.010 

(4.52) 

0.009 

(4.34) 

0.004 

(2.99) 

0.001 

(1.47) 

0.000 

(0.09) 

-0.005 

(-3.11) 

0.006 

(2.90) 

0.003 

(1.36) 

-0.007 

(-2.75) 

-0.004 

(-1.62) 

0.004 

(1.56) 

0.008 

(4.59) 

0.007 

(4.40) 

CF/P 
-1.404 

(-9.63) 

-1.561 

(-11.97) 

-2.078 

(-16.94) 

-1.217 

(-11.68) 

-0.813 

(-7.42) 

-1.141 

(-11.39) 

-0.651 

(-6.65) 

-0.653 

(-6.59) 

-0.672 

(-7.49) 

-1.304 

(-12.39) 

-2.433 

(-28.24) 

-1.905 

(-23.34) 

-1.076 

(-12.70) 

-1.187 

(-12.20) 

-1.118 

(-11.72) 

-0.874 

(-10.71) 

-0.654 

(-8.69) 

Growth (%) 
0.007 

(22.81) 

0.007 

(24.02) 

0.008 

(25.70) 

0.005 

(18.20) 

0.003 

(17.94) 

0.004 

(12.43) 

0.003 

(19.87) 

0.006 

(24.02) 

0.004 

(26.09) 

0.006 

(24.23) 

0.007 

(35.67) 

0.006 

(22.25) 

0.004 

(20.26) 

0.005 

(23.31) 

0.004 

(17.79) 

0.005 

(18.70) 

0.005 

(15.35) 

Log size 
0.057 

(9.92) 

0.072 

(12.11) 

0.059 

(9.32) 

0.021 

(3.42) 

0.022 

(2.64) 

0.012 

(1.51) 

0.014 

(3.02) 

0.037 

(9.09) 

0.041 

(10.58) 

0.067 

(14.83) 

0.101 

(16.02) 

0.116 

(15.99) 

0.069 

(12.18) 

0.071 

(15.38) 

0.054 

(10.60) 

0.037 

(8.89) 

0.040 

(11.25) 

R2 34.77 33.99 37.08 30.51 33.06 29.25 16.73 19.48 18.25 31.04 54.40 48.49 31.19 30.40 25.93 21.36 21.67 

F-statistics 

P-value 

88.08 

(0.000) 

52.94 

(0.000) 

47.91 

(0.000) 

24.69 

(0.000) 

24.45 

(0.000) 

22.60 

(0.000) 

14.86 

(0.000) 

15.59 

(0.000) 

 

15.32 

(0.000) 

 

15.99 

(0.000) 

62.61 

(0.000) 

44.29 

(0.000) 

23.03 

(0.000) 

17.45 

(0.000) 

8.11 

(0.000) 

8.93 

(0.000) 

8.12 

(0.000) 

Obs                        11559  14550 16029 17105 18686 18102 21196 22430 23052 22777 22795 22807 24717 25429 25315 25511 19002 

Figures in the parenthesis are t statistics. Significant at 1% level 
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Table 3.7. Robustness analysis based on growth subsamples  

This table reports the coefficients of the panel regression model. The dependent variable is a capital gains 

overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of month t and RPt is the 

reference price calculated according to Grinblatt and Han (2005). Turnover is measured by monthly trading 

volume/ monthly shares outstanding. Company beta is the CAPM beta calculated over the previous two years 

using weekly data. EPS is computed as the net income available to common shareholders divided by the basic 

weighted average shares outstanding (trailing 12 months). Leverage is the ratio of debt to equity. CF/P is the 

ratio of the cash flow per share divided by the stock's price. The growth is the growth rate in a market to book 

ratio and computed as  1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the market to book ratio. Size 

is the natural logarithm of the market capitalization at the end of month t. 

Variables Above median growth Below median growth 

β t β t 

Intercept -6.111 

(0.198) 

-32.53 -7.274 

(0.202) 

-36.04 

Turnover -5.00 

(0.26) 

-19.22 -4.707 

(0.281) 

-16.77 

Beta -0.026 

(0.000) 

-14.62 -0.019 

(0.003) 

-6.63 

EPS 0.026 

(0.002) 

13.08 0.022 

(0.002) 

10.21 

Leverage 0.013 

(0.002) 

6.28 0.017 

(0.002) 

8.02 

CF/P -1.557 

(0.045) 

-32.46 -1.656 

(0.047) 

-34.71 

Growth (%) -0.002 

(0.000) 

-17.69 0.012 

(0.000) 

58.74 

Size 0.304 

(0.009) 

34.21 0.355 

(0.009) 

37.25 

R
2
 37.59 

 

44.71 

F-statitics 

P- Value 

40.82 

(0.000) 

 

85.64 

(0.000) 

 

Obs 

 

179367 171696 

Figures in the parenthesis are robust standard errors 

Significant at 1% level 
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Table 3.8. Robustness analysis based on beta subsamples  

This table reports the coefficients of the panel regression model. The dependent variable is a capital gains 

overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of month t and RPt is the 

reference price calculated according to Grinblatt and Han (2005). Turnover is measured by monthly trading 

volume/ monthly shares outstanding. Company beta is the CAPM beta calculated over the previous two years 

using weekly data. EPS is computed as the net income available to common shareholders divided by the basic 

weighted average shares outstanding (trailing 12 months). Leverage is the ratio of debt to equity. CF/P is the 

ratio of the cash flow per share divided by the stock's price. The growth is the growth rate in a market to book 

ratio and computed as  1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the market to book ratio. Size 

is the natural logarithm of the market capitalization at the end of month t. 

Variables Above median beta Below median beta 

β t β t 

Intercept -8.836 

(0.243) 

-36.30 -5.692 

(0.190) 

-30.02 

Turnover -6.158 

(0.331) 

-18.57 -3.572 

(0.236) 

-15.12 

Beta -0.0330 

(0.004) 

-8.13 -0.017 

(0.003) 

-5.40 

EPS 0.023 

(0.003) 

8.61 0.022 

(0.002) 

11.44 

Leverage 0.027 

(0.002) 

6.95 0.011 

(0.002) 

5.88 

CF/P -1.832 

(0.058) 

-31.70 -1.379 

(0.049) 

-27.88 

Growth (%) 0.004 

(0.001) 

45.82 0.005 

(0.000) 

55.37 

Size 0.429 

(0.015) 

37.30 0.277 

(0.009) 

31.10 

R
2
 45.72 34.51 

F-statitics 

P- Value 

78.57 

(0.000) 

53.34 

(0.000) 

 

Obs 172777 178286 

Figures in the parenthesis are robust standard errors 

Significant at 1% level 
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Table 3.9. Robustness analysis based on size subsamples  

This table reports the coefficients of the panel regression model. The dependent variable is a capital gains 

overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of month t and RPt is the 

reference price calculated according to Grinblatt and Han (2005). Turnover is measured by monthly trading 

volume/ monthly shares outstanding. Company beta is the CAPM beta calculated over the previous two years 

using weekly data. EPS is computed as the net income available to common shareholders divided by the basic 

weighted average shares outstanding (trailing 12 months). Leverage is the ratio of debt to equity. CF/P is the 

ratio of the cash flow per share divided by the stock's price. The growth is the growth rate in a market to book 

ratio and computed as  1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the market to book ratio. Size 

is the natural logarithm of the market capitalization at the end of month t. 

Variables Above median size Below median size 

β t β t 

Intercept -4.427 

(0.233) 

-19.00 -11.890 

(0.267) 

-44.58 

Turnover -4.342 

(0.305) 

-14.24 -7.261 

(0.347) 

-20.31 

Beta -0.025 

(0.003) 

-7.27 -0.034 

(0.003) 

-11.90 

EPS 0.019 

(0.002) 

9.08 0.028 

(0.004) 

7.94 

Leverage 0.012 

(0.002) 

5.83 0.019 

(0.003) 

6.45 

CF/P -1.429 

(0.063) 

-22.58 -1.533 

(0.059) 

-26.09 

Growth (%) 

 

0.004 

(0.000) 

58.87 0.004 

(0.000) 

50.60 

Size 0.213 

(0.011) 

20.20 0.599 

(0.013) 

45.13 

R
2
 32.11 44.84 

F-statitics 

P- Value 

55.33 

(0.000) 

 

78.42 

(0.000) 

 

Obs 184338 166724 

Figures in the parenthesis are robust standard errors 

Significant at 1% level 
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Table 3.10. Robustness analysis based on turnover subsamples  

This table reports the coefficients of the panel regression model. The dependent variable is a capital gains 

overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of month t and RPt is the 

reference price calculated according to Grinblatt and Han (2005). Turnover is measured by monthly trading 

volume/ monthly shares outstanding. Company beta is the CAPM beta calculated over the previous two years 

using weekly data. EPS is computed as the net income available to common shareholders divided by the basic 

weighted average shares outstanding (trailing 12 months). Leverage is the ratio of debt to equity. CF/P is the 

ratio of the cash flow per share divided by the stock's price. The growth is the growth rate in a market to book 

ratio and computed as  1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the market to book ratio. Size 

is the natural logarithm of the market capitalization at the end of month t. 

Variables Above median turnover Below median turnover 

β t β t 

Intercept -8.618 

(0.259) 

-33.16 -6.154 

(0.224) 

-27.52 

Turnover -3.581 

(0.256) 

-14.00 -17.732 

(1.321) 

-14.18 

Beta -0.037 

(0.003) 

-11.62 -0.012 

(0.002) 

-4.94 

EPS 0.018 

(0.002) 

7.33 0.032 

(0.002) 

12.60 

Leverage 0.019 

(0.002) 

7.93 0.009 

(0.002) 

3.71 

CF/P -1.880 

(0.059) 

-31.47 -1.385 

(0.054) 

-25.76 

Growth (%) 0.004 

(0.000) 

46.188 0.005 

(0.000) 

52.08 

Size 0.412 

(0.012) 

34.08 0.303 

(0.011) 

28.34 

R
2
 45.86 34.01 

F-statitics 

P- Value 

80.77 

(0.000) 

48.76 

(0.000) 

Obs 175588 175474 

Figures in the parenthesis are robust standard errors 

Significant at 1% level 
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Table 3.11. Robustness analysis based on before and after financial crisis subsamples  

This table reports the coefficients of the panel regression model. The dependent variable is a capital gains 

overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of month t and RPt is the 

reference price calculated according to Grinblatt and Han (2005). Turnover is measured by monthly trading 

volume/ monthly shares outstanding. Company beta is the CAPM beta calculated over the previous two years 

using weekly data. EPS is computed as the net income available to common shareholders divided by the basic 

weighted average shares outstanding (trailing 12 months). Leverage is the ratio of debt to equity. CF/P is the 

ratio of the cash flow per share divided by the stock's price. The growth is the growth rate in a market to book 

ratio and computed as  1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the market to book ratio. Size 

is the natural logarithm of the market capitalization at the end of month t. 

Variables Before August 2007 After August 2007 

β t β t 

Intercept -7.772 

(0.245) 

 

-31.67 -12.127 

(0.293) 

-41.39 

Turnover -3.572 

(0.363) 

-9.83 -2.434 

(0.245) 

-9.94 

Beta -0.015 

(0.003) 

-5.62 -0.017 

(0.002) 

-6.86 

EPS 0.026 

(0.000) 

9.25 0.009 

(0.002) 

6.27 

Leverage 0.019 

(0.000) 

6.49 0.011 

(0.003) 

3.65 

CF/P -1.341 

(0.062) 

-21.72 -1.597 

(0.059) 

-27.23 

Growth (%) 0.004 

(0.000) 

57.64 0.003 

(0.000) 

40.98 

Size 0.374 

(0.011) 

32.36 0.569 

(0.014) 

41.32 

R
2
 

 

34.24 55.95 

F-statitics 

P- Value 

52.7 

(0.000) 

106.95 

(0.000) 

 
Obs 175958 175105 

Figures in the parenthesis are robust standard errors 

Significant at 1% level 

 

 

 

 

 

 

 

 

 

 



 

49 
 

Table 3.12. Robustness analysis based on capital gains/losses subsamples  

This table reports the coefficients of the panel regression model. The dependent variable is a capital gains 

overhang. The capital gains overhang = (Pt-RPt)/Pt. Pt is the stock price at the end of month t and RPt is the 

reference price calculated according to Grinblatt and Han (2005). Turnover is measured by monthly trading 

volume/ monthly shares outstanding. Company beta is the CAPM beta calculated over the previous two years 

using weekly data. EPS is computed as the net income available to common shareholders divided by the basic 

weighted average shares outstanding (trailing 12 months). Leverage is the ratio of debt to equity. CF/P is the 

ratio of the cash flow per share divided by the stock's price. The growth is the growth rate in a market to book 

ratio and computed as  1 1/ /  / ( / ) 100t t tM B M B M B   , when M/B is the market to book ratio. Size 

is the natural logarithm of the market capitalization at the end of month t. 

Variables Capital gains Capital losses 

β t β t 

Intercept -1.395 

(0.063) 

-22.19 -8.901 

(0.278) 

-32.06 

Turnover 0.128 

(0.076) 

1.68* -7.629 

(0.347) 

-21.96 

Beta 0.009 

(0.001) 

11.85 -0.064 

(0.004) 

-17.73 

EPS 0.003 

(0.001) 

4.18 0.023 

(0.003) 

9.08 

Leverage 0.006 

(0.001) 

8.55 0.016 

(0.002) 

6.16 

CF/P -0.284 

(0.018) 

-15.52 -1.435 

(0.051) 

-28.26 

Growth (%) 0.002 

(0.000) 

75.12 0.003 

(0.003) 

45.85 

Size 0.077 

(0.003) 

26.06 0.418 

(0.013) 

31.71 

R
2
 14.44 37.40 

F-statistics 

P-value 

52.37 

(0.000) 

57.66 

(0.000) 

Obs 214535 136575 

Figures in the parenthesis are robust standard errors 

(*) significant at 10% and 1% otherwise 
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Chapter Four 

Revisiting disposition effect and momentum: A quantile 

regression perspective 

 

Abstract 

 

Adopting quantile regression, we analyse the relationship between the unrealized capital 

gains overhang and expected returns. The ability of the disposition effect to generate 

momentum is also considered for the extreme expected return regions 0.05
th

 and 0.95
th

. To do 

so, we employ 450,617 observations belonging to 5176 US firms, covering a time span from 

January 1998 to June 2015. Following the methodology of Grinblatt and Han (2005), we find 

significant differences across various quantiles in terms of signs and magnitudes. These 

findings indicate a nonlinear relationship between capital gains overhang and expected 

returns since the impact of capital gains overhang as a proxy for disposition effect vary across 

the expected return distribution. More precisely, the coefficients of capital gains overhang are 

significantly positive and decline as the expected returns quantiles increase from the lowest 

(0.05
th

) to the median expected return quantiles. However, they become significantly negative 

and rise with the increase in expected returns quantiles at the highest („above median‟) 

expected returns quantiles. The findings also suggest that disposition effect is not a good 

noisy proxy for inducing momentum at the lowest expected return quantile (0.05
th

). However, 

it seems interestingly to generate contrarian at the highest expected returns quantile (0.95
th

).  

 

 

Keywords Disposition Effect, Momentum, Quantile Regression; Grinblatt and Han (2005) 
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4.1- Introduction and Background 

 

The disposition effect is the tendency of investors to realize gains too early and hold 

losers too long. A main story is introduced by Grinblatt & Han (2005) who mentioned that 

the story has two sides. First, when good news arrives to the stock market, it leads the stock 

value to go up. Here the disposition investors sell the stock creating an excess supply 

resulting in downward pressure on the stock prices. This causes a smaller initial price impact 

and greater subsequent returns as the stock returns to its fundamental value. Second, when 

bad news arrives, it causes a decline in the fundamental value. Here the disposition investors 

prefer to hold the stock rather than selling it, leading to reduce the downward pressure on the 

stock prices which hinder the bad news to fully incorporating into prices. In this case, the 

subsequent returns will be smaller as the stock prices return to its fundamental value. In short, 

this investor behaviour together with the absence of perfectly elasticity demand for stocks 

generates return predictability and leads to under-reaction to news which eventually induces 

momentum in returns.  

Contradictory findings have been reached in the literature review on capital gains 

overhang as a predictor for expected returns. These findings may be grouped into two main 

categories: the first category claims that the unrealized capital gains overhang is a good 

predictor for expected returns and there is a positive and significant relation between 

expected returns and unrealized capital gains overhang. In this category, investors are shown 

to follow the disposition behaviour. For instance, Grinblatt & Han (2005) develop new 

framework depending on prospect theory and mental accounting to describe disposition 

behaviour proxied by reference price and estimated by the following equation: 

  1

1
1

1
1

T
n

t t n t n t n

n

RP V V P
k





   


                               (1) 

where Vt is the turnover ratio at date t, Pt-n is the probability that an investor bought a specific 

stock at date t-n and still hold it. In the parentheses, the mathematical term is a weight, and all 

weights total one. They support the positive relationship between unrealized capital gains 

overhang and expected returns. Birru (2015) follows the procedures of Grinblatt and Han 

(2005) to test the relation between capital gains overhang and expected returns using a 

sample period from 1967 to 2011. Birru (2015) supports the positive relation between capital 
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gains overhang and expected returns either for the whole sample or February-December 

subsample. Bhootra & Hur (2012) analyse the period from January 1980 to December 2005 

and find result consistent with Grinblatt &Han (2005) since the top capital gains portfolio 

gives the highest future returns per month, while the bottom capital gains portfolio provides 

the lowest future returns. Bhootra & Hur (2012) also divide the sample into co-integrated and 

non co-integrated subsamples and then they test the relation between unrealized capital gains 

overhang and expected returns in each subsample. According to their finding, this relation is 

positive for the two samples but stronger among non co-integrated stocks. Shumway & Wu 

(2006) use data on 13,460 investors in the Chinese stock market and confirm that the 

unrealized capital gains factor is a successful predictor for future return, and the relation 

between them is statistically positive. Finally, Hur, Pritamani, & Sharma (2010) cover the 

period 1980-2005 and demonstrate that the relation between capital gains overhang and 

expected returns is significant and positive. 

In contrast, the second category finds a negative relation between capital gains 

overhang and future returns. In this category, investors follow the opposite behaviour of the 

disposition effect through tending to sell losers too soon and holding winners too long. Kong, 

Bai, & Wang (2014) employ firm-level data in the Chinese market from January 1998 to June 

2013. They conclude that this relation between unrealized capital gains and future returns is 

negative for the whole sample and for February to December subsample. Goetzmann & 

Massa (2008) use daily data, follow Grinblatt and Han‟s methodology to estimate the 

reference price and reach the conclusion that the disposition factor, at the market level and 

stock level, is strongly and negatively related to future returns. Choe & Eom (2009) test the 

relation between disposition effect and profits in the Korean futures market using account-

level data including all transactions from January 2003 to March 2005. Using cross-sectional 

regression, they also discover negative relation between the disposition factor and account 

returns.  

The common drawback in most of the aforementioned studies, we claim they represent 

the main streams in the literature review, is that they use a regression model based on the 

conventional OLS technique. Therefore, these conflicting findings may reflect a nonlinear 

relationship between the unrealized capital gains overhang and the expected returns.  

The OLS technique is useful for estimating the average relationship of the dependent 

and independent variables. However, it is not probably to work well if one is considering the 
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performance of extreme observations that represent the tails of a probability distribution 

(Gowlland, Xiao, & Zeng, 2009). To simplify, the OLS produces the conditional mean and 

relationship between the dependent variable and each independent variable is always 

specified through only one estimate (Hallock, Madalozzo, & Reck, 2010). This means that if 

the sensitivities or the coefficients vary across different expected return quantiles, then a 

conventional OLS technique can be criticized for assuming homogeneity and concealing the 

potential heterogeneity of the impact of the independent variables „X‟ on the dependent 

variable „Y‟ across the distribution (Sula, 2011). Therefore, we use quantile regression to 

describe how different are the relations between the capital gains overhang and the expected 

returns across the conditional distribution of expected returns. In addition, the quantile 

regression is robust to some common but undesirable characteristics in financial datasets such 

as heteroscedasticity, skewness and heavy-tailed distribution (Pires, Pereiro, & Martins, 

2015), (Cameron & Trivedi, 2010) and (Gowlland, Xiao, & Zeng, 2009). 

This paper makes five contributions to the literature. As far as we know this paper is the 

first to use quantile regression to investigate the determinants of capital gains overhang. 

Providing a comprehensive picture of the relation between capital gains overhang and 

expected returns by using quantile regression is the second contribution of the paper. The 

third contribution is that we think we are the first to examine how linear the relationship 

between capital gains overhang and expected returns is through testing the equality of 

coefficients across different levels of expected returns. In other words, one motivation in our 

research was that the shape of expected return and capital gains overhang relation was still 

unknown since the OLS conventional technique does provide information about the possible 

nonlinearity between the unrealized capital gains overhang and expected returns. The fourth 

contribution is that we are the first, to our knowledge, to investigate the ability of the 

disposition effect to induce momentum for the extreme regions (0.05
th

 and 0.95
th

) of the 

expected return distribution. Our sample, the Russell 3000 constituents, represents in many 

ways the fifth contribution to the literature on the disposition effect and momentum: 1) we 

are the first, to our knowledge, to include NASDAQ stocks, which made up one-fifth of our 

sample. However, Grinblatt & Han  (2005), Birru  (2015), and Bhootra & Hur (2012) exclude 

NASDAQ stocks from their samples even though NASDAQ contains plenty of leading stocks 

especially the high-tech stocks, in the US stock market, which is characterized by high 

volatility and high growth stocks; 2) Another advantage that improves the reliability of our 

findings is that we free our sample of survivorship bias through updating the list of Russell 
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3000 index periodically; 3) depending on the Russell 3000 index which has the largest 3000 

stocks makes our sample representative and properly captures investors‟ beliefs, while 

including stocks that are excluded from the Russell 3000 index may lead to a spurious 

findings since the prices would represent stale prices rather than investors‟ current beliefs.   

The quantile regression findings explain that there is a heterogeneous impact on the 

unrealized capital gains overhang of past returns on three different horizons. Fortunately, the 

coefficients of short and intermediate past returns decline systematically with the increase in 

unrealized capital gains quantiles, meaning that the momentum is stronger in the lowest 

capital gains quantile and its strength reduces with the increase in capital gains quantiles.   

Regarding the relation between the unrealized capital gains overhang and expected returns, 

the coefficients are significantly positive and systematically decline with the increase in 

expected returns quantiles from the lowest quantile (0.05
th

) to the median. However, they are 

significantly negative and systematically increase with the increase in the expected returns at 

the above median quantiles, indicating that investors follow the disposition behaviour at the 

median and below the median points, while they tend to engage in the opposite behaviour 

above the median. Regarding the ability of disposition effect to generate momentum in 

returns, at the lowest expected returns quantile (0.05
th

), the disposition effect is not a good 

noisy proxy for inducing the intermediate momentum. Finally, it interestingly generates 

contrarian at the highest expected return quantile (0.95
th

).  

The reminder of this paper is organized as follows: the next section shows the 

hypotheses development, Section 4.3 presents a brief summary of the quantile regression 

model, section 4.4 describes our data, sample, and methodology, section 4.5 presents the 

empirical results, section 4.6 demonstrates momentum and the disposition effect, and 

conclusions are drawn in section 4.7.  

 4.2- Hypotheses Development  

 

Jagadeesh and Titman (1993) define momentum, as past winners tend to overcome past 

losers. Grinblatt and Han (2005) argue that relating past returns to capital gains overhang and 

momentum trading is lucrative since stocks that experience a positive spread between market 

prices and reference prices are expected to be future winners while stocks that experience 

negative spread between market prices and reference prices are expected to be future losers. 

In addition, we can proxy the unrealized capital gains facing disposition investors by using 



 

55 
 

past cumulative returns. The size of momentum mainly depends on the investors‟ reaction to 

new information. Some writers suggest that investors respond in different way to good and 

bad news. For instance, Epstein & Schneider (2008) claim that bad news is more effectual 

than good news and, in turn, investors‟ reaction to bad news is more powerful. Kelsey, 

Kozhan, & Pang, (2010) found various patterns in price persistence. They attribute this 

asymmetric momentum to investors‟ different reactions to past winners and losers. These 

different reactions are more probably  to produce different relations between past returns and 

capital gains overhang acrosss the unrealized capital gains distribution, which cannot be 

proved by using the OLS technique of Grinblatt and Han (2005). In summary, our first 

hypothesis can be stated as follows: 

H1. Ceteris paribus, the relation between past returns over the three horizons and unrealized 

capital gains is not uniform and varies across different quantiles. 

Our second hypothesis addresses the relationship between capital gains overhang and 

expected returns. Some studies indicate a positive relation between capital gains overhang 

and expected returns Grinblatt and Han (2005), Birru (2015), Bhoora and Hur (2012) & 

Shumway and Wu (2006). This positive relation means that investors adopt disposition 

behaviour through realizing gains too soon and holding losers too long. Others discover a 

negative relation between capital gains overhang and expected returns (Kong, Bai and Wang, 

2014), (Goetzmann and Massa, 2008) & (Choe and Eom, 2009). This negative relation refers 

to the converse of the disposition behaviour holding winners too long and realizing losses too 

soon. Because all of the above studies use the conventional OLS technique, which gives no 

information on possible nonlinearities, these conflicting findings may indicate a non-linear 

relation between unrealized capital gains and expected returns. The second hypothesis can be 

stated as follows: 

 

H2. Ceteris paribus, the relation between expected returns and capital gains overhang is 

nonlinear. 
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4.3- Quantile regression technique  

 

In this section, we first discuss the conventional regression based on central tendency 

including ordinary least square („OLS‟) and least absolute deviation („LAD‟). Then we 

discuss the more advanced quantile regression model 

4.3.1- OLS and LAD 

 

Koenker and Basset (1978) devised a quantile regression technique to tackle the 

shortcomings of traditional regression based on the conventional OLS technique. The 

quantile regression runs multiple estimations at different data-points of the distribution of a 

dependent variable „Y‟ rather than focusing only on the conditional mean (Davino, Furno, & 

Vistocco, 2014). The basic regression model can adopt the following formula: 

                                                    =   
 .𝛽 +                                 (2) 

where y is the dependant variable,   is the independent variable, u is the error term and 𝛽 is 

the coefficient “slope”. i= 1, 2, 3,….N and t= 1, 2, 3,…..   are the time and sample units 

respectively. The traditional regression technique seeks to minimize the sum of squared error 

(„SSE‟) using the following formula: 

   ∑      )
2 

= ∑       -    
 .𝛽)

2 
       (3) 

However, the least absolute deviation (“LAD”) takes the following formula: 

min ∑        = ∑      -    
 . 𝛽|                                               (4) 

It is worth mentioning that 𝛽 refers to the conditional mean in the traditional regression 

method and refers to the conditional median in the LAD technique and that both rely on one 

central distribution tendency. This means that both techniques ignore the observations in the 

two extremes of the distribution (Li & Hwang, 2011). To deal with this issue, the quantile 

regression model should be used.  

4.3.2- Quantile regression model 

 

The quantile regression model is a developmental extension of the least square 

conventional techniques. According to the quantile regression model, the conditional quantile 
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can be defined as a linear function of the independent variables. The basic formula of the 

quantile regression model can be expressed as follows: 

Y=   𝛽+ ε                                                                       (5) 

  (YX= x) =   (θ) and          0< θ < 1                          (6) 

where Y is the dependant variable, х is a matrix of independent variables, ε is the error term. 

  (YX= x) stands for the θth quantile of Y Conditional X =x. From Equation (6), we can 

infer that the error term ε restricted by    (∊∖X=x) = 0. 

The quantile regression coefficient (θ) can be produced by solving the problem below: 

    ∊   ∑             𝛽   ∑     )         𝛽              (7) 

If the quantile is set as 50
th

, then we deal with the median, and by going up from 0 to 1, we 

pursue the distribution of Y, conditional on X. This should provide more information on the 

relationship between the variables of interest (Koenker & Hallock, 2001)
9
.   

Finally, it should be noted that segmenting the sample and employ OLS technique for 

each subsample will produce a completely different results from the quantile regression since 

the quantile regression uses all the data for each estimation procedure (Hallock, Madalozzo, 

& Reck, 2010).  

4.4- Data, sample and methodology description  

 

We collect the monthly data of all constituents of the Russell 3000 index from January 

1995 to June 2015. To deal with the expected survivorship bias, the list of companies was 

updated every month. This leads the number of companies to increase substantially (about 

5176 firms after removing all firms that have fewer than 36 observations). The data includes 

closing price, trading volume and the number of outstanding shares to calculate the 

unrealized capital gains overhang based on Grinblatt and Han (2005) as detailed in section 

(4.1). However, we used the previous 36 months instead of 60 months to avoid losing a great 

deal of data, meaning that the period from January 1998 to June 2015 was subjected to the 

empirical analysis. We also used monthly rather that weekly data in calculating the unrealized 

                                                           
9
 See Tsai (2012) 
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capital gains because our sample included a larger number of smaller stocks that that might 

have been affected by thin trading if weekly data had been used.  

The closing price is also used to calculate the stock return (r), the past cumulative 

returns over the short horizon of the last three months (r-3:-1), the intermediate horizon 

between the last four months and 12 months (r-12:-4) and the long horizon between the last 13 

months and 36 months (r-36:-13). The monthly trading volume and number of shares 

outstanding were collected in order to calculate the average turnover over the short horizon 

(V-3:-1), the intermediate horizon (V-12:-4) and the long horizon (V-36:-13). Monthly market 

capitalization was also collected and converted to a logarithm „log‟. Table 4.1 gives a detailed 

description of all the dependent and independent variables. 

 

<<Table 4.1 about here>> 

 

On the methodological side, we compare the Fama and MacBeth (1973) two step 

procedure with the quantile regression and we also control for the following: return effects, 

proxied by cumulative return over the short, intermediate and long horizons; the return 

premium effect of firm size proxied by logarithm of market capitalization, and the volume 

effect measured by average monthly turnover over the past 12 months. We can formulate the 

regression model as follows: 

  =   +         +         +           +    +     +    g          (8) 

where rt is the monthly stock return.           is cumulative monthly return from t-   to t-  . V    

is the average monthly turnover over the previous 12 months. S is log (monthly market 

capitalization. g is the capital gains overhang. 

This quantile regression model is run at 5
th

, 10
th

, 25
th

, 50
th

, 75
th

, 90
th

 and 95
th

 of the 

expected returns quantiles. The bootstrapping resampling technique with 400 replications was 

also run to estimate the standard errors. This bootstrapping helps to develop joint distribution 

and develop F-statistics to examine the significant differences in the coefficients across the 

conditional distribution quantiles. To address the shape of the relation between capital gains 

overhang and expected returns and to test the heterogeneity of the capital gains overhang 
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impact across different levels of expected returns, we follow Koenker and Bassett (1982) and 

Hendricks and Koenker (1991) who develop the following test  

1 1

1 2 1 2( ) (H JH )( )n T T T TT       
               (9) 

We test the hypotheses H0: βT1= βT2 against H1:βT1≠ βT2 where Η
-1

JH
-1 

is the 

“sandwich” formula developed by Hendricks and Koenker (1991). If the null hypothesis is 

not accepted, then we can confirm that there is a significant unequal coefficient across 

various expected return distribution quantiles.
10

 In this case, we could say that the relation 

between capital gains overhang and expected returns was nonlinear. Finally, in this paper we 

tested the differences between coefficients or slopes at the θ against (1- θ) quantiles. For 

instance, we compare the 0.05
th

 quantile versus the 0.95
th

 quantile, the 0.10
th

 quantile versus 

the 0.90
th

 quantile and the 0.25
th

 quantile versus the 075
th

 quantile.  

 

4.5- Empirical analysis 

 

This section is divided into three subsections. The first of these discusses the 

descriptive statistics, the second section highlights the determinants of capital gains overhang 

and the third section focuses on the relation between capital gains overhang and expected 

returns. 

4.5.1– Descriptive statistics  

 

In Table 4.2, we present the summary statistics for more than 454,400 stock-month 

observations. We note that the capital gains overhang is negative (-0.08) with standard 

deviation (0.48). However, the average returns in our sample is positive (0.01) with standard 

deviation (0.11). We also report the summary for the 10
th

 percentile, median and 90
th

 

percentile.  

<<Table 4.2 about here>> 

 

                                                           
10 Hallock, K.F, & et.al.(2010). CEO pay for performance heterogeneity using quantile regression. The financial 

Review, 45, 1-19 
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4.5.2- The cross sectional determinants of unrealized capital gains overhang 

 

The first step in our analysis was to investigate the relation between capital gains 

overhang and its determinants, including past cumulative returns over three different 

horizons, past average turnover over three different horizons and size.  

       =   +         +         +           +          +           +            +    S     (9) 

where gt is capital gains overhang.          is cumulative monthly return from t-   to t-  . 

         is average monthly turnover from t-   to t-  . Table 4.3 shows the correlation 

matrices. 

<<Table 4.3 about here>> 

 

Table 4.4 compare the Fama- MacBeth regression based on the conventional OLS 

technique with quantile regression at 0.05
th

, 0.10
th

, 0.25
th

, 0.50
th

, 0.75
th

, 0.90
th

, and 0.95
th

 

quantiles. This Table shows the consistent results of the Fama-MacBeth with Grinblatt and 

Han (2005), since there is a positive and significant relation between the unrealized capital 

gains and past cumulative returns over the past three horizons and a significantly negative 

relation between the unrealized capital gains and average turnover over the three different 

horizons and finally a positive relation between unrealized capital gains and size. 

<<Table 4.4 about here>> 

 

The quantile regression findings support our first hypothesis in terms of the impact of 

past returns over the three different horizons; Panel B shows significant differences 

for        and         across all capital gains overhang quantiles, while the long-term 

cumulative return          explains the uniform impact in some quantiles and the 

heterogeneous impact in others. Interestingly, the coefficients of short-term and intermediate 

cumulative returns decline systematically as the capital gains overhang increases. These 

systematic patterns indicate that the ability of past winners (losers) to generate unrealized 

capital gains (losses) is higher in the lowest quantiles and declines with the increase in capital 

gains quantiles. In other words, the momentum is stronger in the lowest quantiles on the short 



 

61 
 

and intermediate horizons. All the robustness checks in Tables 4.5, 4.6 and 4.7 support the 

previous conclusions.  

 

<<Table 4.5 about here>> 

<<Table 4.6 about here>> 

<<Table 4.7 about here>> 

 

Regarding the relationship between average turnover and capital gains overhang, the 

theory suggests a negative relation since the higher the turnover, the faster the reference price 

converges to the market price. However, the data-points close to the upper and lower 

extremes show surprising results especially the highest capital gains quantile (0.95
th

). In this 

quantile, the relation between capital gains overhang and average turnover in the short and 

long- term is positive and significant in almost all cases either in the main analysis (see Table 

4.4) or in all robustness checks (see Tables 4.5, 4.6 and 4.7). This result means that the higher 

the turnover, the more slowly the reference price converges to the market price, eventually 

creating larger unrealized capital gains. Finally, in the lowest capital gains quantile (0.05
th

) 

the average turnover behaves the same as it does in the highest quantile (0.95
th

) on the short 

and long- term. 

Size is the last variable in this model. The quantile regression shows a conclusion 

completely consistent with the theory since the relation between capital gains overhang and 

size is positive across all quantiles and in all cases including all robustness checks except the 

below median institutional ownership. This finding reflects that the giant companies produce 

larger unrealized capital gains, probably because the past cumulative returns may not be able 

to capture the past growth made by the giant companies. The quantile regression also 

provides some useful insights into the relation between size and capital gains overhang. In the 

main finding (see Table 4.4) and all robustness (see Tables 4.5, 4.6 and 4.7), the size 

coefficients decline systematically with the increase in capital gains quantiles, suggesting that 

the ability of large companies to generate greater unrealized capital gains and capture the past 

growth declines with the increase in capital gains quantiles.  
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4.5.3- Expected returns, past returns and unrealized capital gains 

 

The Fama-Macbeth regression based on OLS in Table 4.8 shows a strongly positive 

and significant cross-section relation between expected returns and capital gains overhang at 

1% significance level. This result is consistent with Grinblatt and Han (2005) and Birru 

(2015). However, it is hard using the OLS technique to distinguish the impact of unrealized 

capital gains on expected returns between more and less profitable stocks across the 

distribution and in the extreme regions. Quantile regression can deal with this issue.  

<<Table 4.8 about here>> 

 

Table 4.15 and 4.16 provide a well-organized summary of the relation between 

expected returns and unrealized capital gains across all quantiles including the whole sample, 

the seasonality subsamples and all robustness checks. From these tables, we can observe that 

the coefficients of capital gains overhang are significantly positive and decline as the 

expected returns quantiles increase from the lowest to the median expected return quantiles 

(below median and median data-points). However, they become significantly negative and 

rise with the increase in expected returns quantiles at the highest („above median‟) expected 

returns quantile. In Table 4.16, we compare the coefficients at θ against (1-θ) quantiles. F-

statistics indicate significant differences in the coefficients of unrealized capital gains across 

various expected returns quantiles, meaning that the observed nonlinearities extracted from 

the quantile regression confirm a significant difference in the impact of unrealized capital 

gains across various levels of expected returns including the extremely lucrative and the 

extremely unprofitable stocks. This conclusion provides a strong support to our second 

hypothesis and asserts the nonlinear relation between unrealized capital gains and expected 

returns. This conclusion provides some insights into the conflicting findings in the literature, 

although confirming these conflicting findings might be attributed to the nonlinear 

relationship between the two variables of interest. In sum, the irrational investors follow the 

disposition behaviour of selling the winners too soon and holding losers too long at the 

median and below median expected returns points, while they follow the converse pattern of 

disposition behaviour at the above median expected returns points.  

                    <<Table 4.15 about here>> 
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<<Table 4.16 about here>> 

 

Finally, Tables 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13, show strong persistence in the short-

term cumulative returns („  ‟) in all cases using either the whole sample or seasonal 

subsamples or robustness checks subsamples across all quantiles. The main reason why we 

implement robustness check is to ensure regression estimates are insensitive to different 

market conditions and are insensitive to different assumptions. Fortunately, the coefficients 

of short-term    and long-term cumulative returns    tend to go up systematically with the 

increase in expected returns quantiles. However, the intermediate cumulative return    shows 

a systematic pattern in December only since it increases with the increase in expected returns 

quantiles. Apart from December, there is robust evidence that the intermediate cumulative 

returns go up systematically from the lowest expected returns quantile to the median point 

and goes down systematically above the median to the highest expected returns quantile 

(0.95
th

).  

<<Table 4.8 about here>> 

<<Table 4.9 about here>> 

<<Table 4.10 about here>> 

<<Table 4.11 about here>> 

<<Table 4.12 about here>> 

<<Table 4.13 about here>> 

4.6- Disposition effect and momentum 

 

This section checks the ability of the disposition effect to drive intermediate 

momentum. Grinblatt and Han (2005) conclude that the disposition effect alone can induce 

the intermediate momentum effect described by Jagadeesh and Titman (1993) since the 

intermediate momentum disappears once the unrealized capital gains overhang is controlled 

for. Birru (2015) doubts the ability of the disposition effect alone to induce momentum and 

demonstrate that the momentum is too complicated to be generated by disposition effect 

alone. Shumway & Wu (2006) also produce evidence that the disposition effect drives 
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momentum using account-level data. Muga & Santamaría (2009) study the momentum and 

disposition effect in the spanish stock market. They recommend combining under-reaction 

theory based on the disposition effect with over-reaction theory when explaining the 

momentum effect since under-reaction and disposition successfully induce momentum in 

down markets, while over-reaction does the same in up markets. Hur, Pritamani, & Sharma 

(2010) relate the ability of the disposition effect to induce momentum with the proportional 

representation of individual investors. They believe that the higher the number of individual 

investors, the stronger the ability of the disposition effect to induce momentum. Despite the 

practical importance of the highest gains and the highest losses stocks, none in the literature, 

to our knowledge, attempts to check the sources of momentum for the most extreme expected 

returns quantiles (0.05
th

 and 0.95
th

).  

In this paper, we focus on the extreme expected return regions (0.05
th

 and 0.95
th

). From 

a practical point of view, the behaviour of the extreme regions attracts the particular attention 

of risk managers as well as investors since they represent the stocks with the highest gains 

and the highest losses (Nath & Brooks, 2015). In addition, the OLS conventional technique 

used by Grinblatt and Han (2005) and the other previous studies is not only not useful for 

understanding the behaviour of the extreme regions but also very sensitive to outliers and 

ignores the behaviours of data-points which are very far from the mean (Gowlland, Xiao and 

Zeng, 2009) & (Naifar, 2015). Moreover, the use of the OLS technique always leads to 

ignoring the information on the tails of a probability distribution (Chiang, Li, & Tan, 2010). 

The quantile regression, however, is more effective in dealing with outliers and heavy-tailed 

distributions (Pires, Pereira, & Martins,  2015). We conclude from the above discussion that 

the uniqueness of the extreme regions justifies examining them alone.  

Following Grinblatt and Han (2005), we proceed to examine in three stages the ability 

of the disposition effect to drive momentum by running Fama-MacBeth (1973) two-step 

procedures and quantile regression with and without capital gains overhang as follows: 

 

  =   +         +         +           +                                (10) 

  =   +         +         +           +    +                       (11) 

  =   +         +         +           +    +     +    g        (12) 
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where rt is the monthly stock return.           is cumulative monthly return from t-   to t-  . V    

is the average monthly turnover over the previous 12 months. S is log (monthly market 

capitalization. g is capital gains overhang. 

In this part, we were satisfied by presenting only the intermediate cumulative return 

(„  ‟) from the model 10 and model 11 outputs because it is the variable of interest, and other 

regression outputs were not needed. Table 4.14 includes the intermediate cumulative returns 

for the three regressions („before and after controlling for the unrealized capital gains‟) to 

facilitate reading and comparing the coefficients.  

<<Table 4.14 about here>> 

 

Focusing on the lowest (0.05
th

) and highest (0.95
th

) expected returns quantiles, it is 

worth noting that the intermediate cumulative return is strongly positive and significant in the 

lowest expected return quantile (0.05
th

) before the unrealized capital gains overhang is 

controlled for. Once we added the unrealized capital gains overhang, most of the intermediate 

cumulative returns coefficients turned significantly negative, meaning that the disposition 

effect was not a good noisy proxy to generate momentum at the lowest expected return 

quantile (0.05
th

). This finding is robust to institutional ownership, leverage and size. 

However, most of the highest expected returns quantiles (0.95
th

) have strongly significant and 

negative intermediate cumulative returns, which means that there is a reversal in return. In 

other words, the intermediate momentum of Jagadeesh and Titman (1993) is not profitable in 

the highest expected returns quantile (0.95
th

). Interestingly, when we control for unrealized 

capital gains, almost all the negative coefficients, except below median institutional 

ownership and large size subsamples, became insignificant. This conclusion means that the 

opposite behaviour of disposition can successfully drive intermediate contrarian rather than 

momentum at the highest expected return quantile (0.95
th

) in all cases except the above 

median size and below median institutional ownership stocks since the contrarian disappears 

when we control for unrealized capital gains. This occurs, when stocks experience significant 

capital gains and the investors tend to be risk lovers because the current gains protect them 

against future losses and, the prices are usually high. As a result, the investors look forward 

to lower expected returns. However, if the stocks experience unrealized capital losses and the 

investors are more risk-averse, the investors look forward to higher expected returns.   
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4.7- Conclusion 

In this paper, we have tried to extend the literature through using an unconventional 

quantile regression technique since previous studies on the relation between expected returns 

and capital gains overhang provide mixed findings. One important conclusion in our paper is 

that these contradictions in the literature can, to some extent, be attributed to the nonlinear 

relationship between the unrealized capital gains overhang and expected returns. Second, the 

disposition-prone investors follow disposition behaviour at the below median and median 

expected returns quantiles but they follow the converse behaviour at the above median 

expected returns quantiles. Our findings also explain that the disposition effect is not a good 

noisy proxy for inducing intermediate momentum at the lowest expected returns quantile 

(0.05
th

). Therefore, it would be of interest for future research to examine the other sources of 

momentum such as the risk-based explanation at the lowest expected return quantile (0.05
th

). 

At the highest expected returns quantile (0.95
th

) the opposite disposition effect contributes 

entirely in generating contrarian rather than momentum. These findings are robust to 

institutional ownership, leverage and size.  

In sum, we can conclude that the OLS estimates that neglect the embodied 

heterogeneity in the stocks can produce incorrect conclusions. Finally, this paper suggests 

several research points for future consideration, such as using the quantile regression to 

investigate the relation between the unrealized capital gains overhang and expected returns, 

and the ability of disposition effect to generate momentum in returns in a range of developed 

and emerging markets.  
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Tables of results 

Table 4.1. Description of the independent variables. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

Variable  Definition 

Capital gains overhang The capital gains overhang is calculated as the 

percentage difference between current prices and 

the reference price.  

t t
t

t

P RP
CGO

P


     

Where Pt is the closing price at time t and RPt is 

reference price calculated based on equation (1). 

Stock return The change rate in monthly closing price 

  
 = 

  
      

 

    
  

Where   
  is the closing price at month t and     

  

is the closing price at month t-1. 

r-3:-1 The past cumulative returns over the short horizon 

of the last three months. 

r-12:-4 The intermediate horizon between the last four 

months and 12 months. 

r-36:-13 The long horizon between the last 13 months and 

36 months. 

V-3:-1 The average turnover over the short horizon of the 

last three months. 

V-12:-4 The average turnover between the last four months 

and 12 months. 

V-36:-13 The average turnover between the last 13 months 

and 36 months. 

V A proxy for volume effect and computed as 

average monthly turnover over the past 12 months. 

Institutional Ownership The percentage ratio of freely traded shares held 

by institutions to the number of Float Shares 

Outstanding.  

Leverage A measure of the debt burden of a company. It is 

equal to the monthly ratio of debt to equity 

The company Size (S) Proxied by monthly market capitalization. 
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Table 4.2. Summary statistics 

This table demonstrates various descriptive statistics such as mean, median, standard deviations, minimum, 

maximum and skewness for capital gains overhang g, expected returns r, past returns over three horizons r-3:-1, r-

12:-4 and r-36:-13,  Size S and average volume V.  

 

 

 

 

 

 

Variables 

 

Mean Median Std. 

Dev. 

Min Max Skew 10
th

 

Pct. 

90
th

  

Pct. 

Obs 

g 

 

-0.0772 0.0633 0.4846 -1.8358 0.4454 -2.0530 -0.6490 0.3320 454432 

r 

 

0.0096 0.0086 0.1072 -0.2316 0.2651 0.0911 -0.1251 0.1446 454467 

r-3:-1 

 

0.0293 0.0253 0.1919 -0.3850 0.4931 0.1734 -0.2136 0.2728 454474 

r-12:-4 

 

0.0895 0.0692 0.3469 -0.5831 0.9948 0.4692 -0.3417 0.5341 454474 

r-36:-13 

 

0.2569 0.1789 0.6226 -0.7460 2.0176 0.8622 -0.4776 1.0745 454474 

S 

 

21.1036 20.9056 1.4325 18.8261 24.3868 0.5002 19.3370 23.2082 450658 

V 

 

0.0086 0.0066 0.0071 0.0008 0.0308 1.4827 0.0018 0.0250 454474 



 

69 
 

Table 4.3. Correlation matrices and Heteroscedasticity 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three 

past return horizons; r-t1:-t2; V-t1:-t2 = average monthly turnover from t-t1 through t-t2; V= average monthly 

turnover ratio (share volume divided by the number of shares outstanding) over the previous 12 month. S = 

natural logarithm of monthly market capitalization; return is the month-t return. 

Panel A correlation matrix for the determinants of capital gains overhang 

 

Variable 

 

CGO 

 

r-3:-1 

 

r-12:-4 

 

r-36:-13 

 

v-3:-1 

 

v-12:-4 

 

v-36:-13 

 

S 

g 1.00 

 

       

r-3:-1 

 

0.39 1.00 

 

      

r-12:-4 

 

0.59 0.53 1.00 

 

     

r-36:13 

 

0.66 0.30 0.52 1.00 

 

    

v-3:-1 

 

-0.14 -0.03 -0.04 -0.01 1.00 

 

   

v-12:-4 

 

-0.16 -0.03 -0.06 -0.04 0.87 1.00 

 

  

v-36:13 

 

-0.17 -0.02 -0.04 -0.07 0.76 0.88 1.00 

 

 

S 

 

0.35 0.09 0.17 0.28 0.07 0.06 0.05 1.00 

 

Panel B correlation matrix for expected returns, past returns and capital gains overhang 

 

Variable 

 

return 

 

r-3:-1 

 

r-12:-4 

 

r-36:-13 

 

V 

 

S 

 

CGO 

return 1.00 

 

      

r-3:-1 

 

0.54 1.00      

r-12:-4 

 

0.30 0.53 1.00     

r-36:-13 

 

0.18 0.30 0.52 1.00    

V 

 

-0.01 -0.03 -0.05 -0.05 1.00   

S 

 

0.05 0.09 0.17 0.28 0.06 1.00  

g 

 

0.24 0.39 0.59 0.66 -0.17 0.35 1.00 

Significance level at 5% 

 

  Panel C: Heteroscedasticity (Breusch-Pagan test) 

Model Model one Model two Model three Model four 

P- Value 0.000 0.000 0.000 0.000 

These results indicate that all models suffer from Heteroscedasticity which can be taken as a justification for 

using quantile regression because quantile regression is robust to heteroscedastictic data.  
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Table 4.4. Determinants of capital gains overhang: Fama-MacBeth and Quantile regression 

Panel A: Determinants of capital gains overhang: Fama-MacBeth and Quantile regression 

  =   +         +         +           +          +           +            +    S 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over 

three past return horizons; r-t1:-t2; V-t1:-t2 = average monthly turnover from t-t1 through t-t2; S = natural 

logarithm of monthly market capitalization. 

 Explanatory 

Variables 

 

 

Fama-

MacBeth  

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

   -1.2126 

(-30.98) 

-6.2631 

(-151.13) 

-3.7825 

(-177.15) 

-1.6731 

(-179.18) 

-0.6914 

(-155.05) 

-0.2888 

(-87.95) 

-0.0343 

(-8.96) 

0.1185 

(27.08) 

   0.2889 

(23.37) 

0.5066 

(26.10) 

0.3899 

(33.13) 

0.2571 

(47.81) 

0.1985 

(65.15) 

0.1718 

(79.36) 

0.1518 

(71.05) 

0.1467 

(52.87) 

   0.3786 

(33.11) 

0.3984 

(31.27) 

0.3415 

(44.88) 

0.2976 

(73.71) 

0.2754 

(118.26) 

0.2589 

(156.74) 

0.2448 

(136.15) 

0.2338 

(109.94) 

   0.3213 

(33.37) 

0.1641 

(31.59) 

0.1909 

(50.67) 

0.2209 

(100.13) 

0.2236 

(154.69) 

0.2126 

(198.30) 

0.1921 

(196.35) 

0.1707 

(160.24) 

   

 

-1.7863 

(-4.38) 

0.0017 

(1.80) * 

0.0012 

(1.75) * 

0.0002 

(1.04) 

0.0002 

(1.49) 

0.0003 

(3.96) 

0.0004 

(4.62) 

0.0004 

(3.36) 

   -1.6324 

(-2.51) 

0.0008 

(0.56) 

0.0005 

(0.48) 

0.0005 

(1.97)  

0.0000 

(0.21) 

-0.0004 

(-3.73) 

-0.0008 

(-5.37) 

-0.0011 

(-6.11) 

   -6.3299 

(-12.41) 

-0.0040 

(-4.23) 

-0.0027 

(-3.79) 

-0.0008 

(-5.18) 

-0.0002 

(-1.55) 

0.0003 

(5.11) 

0.0008 

(8.57) 

0.0012 

(13.05) 



(31.51) 

0.2435 

(145.65) 

0.1489 

(166.39) 

0.0674 

(162.73) 

0.0296 

(146.02) 

0.0151 

(98.14) 

0.0064 

(37.00) 

0.0014 

(7.34) 

R
2
 

 

60.40 15.12 16.16 18.67 22.18 25.63 27.31 27.11 

Panel B: Tests of the equality-of-slope estimates across quantiles 

 

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   353.75 (0.0000) 449.86 (0.0000) 378.40 (0.0000) 

   179.76 (0.0000) 198.52 (0.0000) 150.84 (0.0000) 

   1.77 (0.1839) 0.12 (0.7248) 28.45 (0.0000) 

   1.73 (0.1878) 1.19 (0.2743) 0.35 (0.5546) 

   1.75 (0.1853) 1.58 (0.2088) 15.19 (0.0001) 

   30.63 (0.0000) 24.92 (0.0000) 60.64 (0.0000) 

   20862.43 (0.0000) 26125.98 (0.0000) 19139.35 (0.0000) 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) 

and corrected by Newey-West for Fama-MacBeth. R
2
 for Fama-MacBeth is an average R

2
, however it is Pseudo R

2 

for Quantile regression. (*) Significance at 10% and 5% otherwise. 
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Table 4.5. Determinants of Capital gains overhang: Robustness analysis based on institutional ownership subsamples 

  =   +         +         +           +          +           +            +    S 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V-t1:-t2 = average monthly turnover from t-t1 

through t-t2; S = natural logarithm of monthly market capitalization. 

 Above median institutional ownership below median institutional ownership 

Coefficients 

 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

   -1.0901 

(-28.48) 

-5.7405 

(-112.42) 

-3.5719 

(-129.23) 

-1.6788 

(-137.31) 

-0.7636 

(-121.58) 

-0.3631 

(-70.04) 

-0.0866 

(-14.67) 

0.0609 

(9.25) 

-1.2090 

(-30.31) 

-7.4464 

(-103.92) 

-4.2877 

(-131.93) 

-1.7434 

(-135.30) 

-0.6551 

(-111.86) 

-0.2207 

(-51.82) 

0.0261 

(5.20) 

0.1797 

(27.68) 

   0.2590 

(21.82) 

0.3916 

(16.69) 

0.3148 

(23.47) 

0.2241 

(34.70) 

0.1863 

(50.40) 

0.1605 

(55.57) 

0.1417 

(52.39) 

0.1368 

(38.70) 

0.3073 

(21.91) 

0.6161 

(16.47) 

0.4558 

(21.22) 

0.2939 

(31.24) 

0.2103 

(39.19) 

0.1846 

(51.69) 

0.1647 

(40.74) 

0.1584 

(30.48) 

   0.3440 

(30.97) 

0.3313 

(28.71) 

0.2953 

(40.87) 

0.2690 

(64.61) 

0.2554 

(94.74) 

0.2421 

(118.01) 

0.2297 

(109.72) 

0.2203 

(85.38) 

0.4080 

(32.39) 

0.4521 

(18.71) 

0.3961 

(29.63) 

0.3299 

(46.33) 

0.2994 

(71.85) 

0.2773 

(101.45) 

0.2643 

(95.02) 

0.2520 

(76.68) 

   0.2835 

(32.99) 

0.1460 

(30.33) 

0.1708 

(50.87) 

0.1953 

(83.02) 

0.1991 

(123.48) 

0.1934 

(154.97) 

0.1794 

(150.40) 

0.1637 

(130.82) 

0.3679 

(33.28) 

0.1659 

(15.45) 

0.2082 

(29.45) 

0.2543 

(58.33) 

0.2555 

(97.96) 

0.2360 

(118.80) 

0.2044 

(120.77) 

0.1745 

(82.99) 

   -1.5006 
(-3.58) 

-0.0006 
(-2.33) 

-0.0004 
(-1.95)* 

0.0001 
(0.24) 

0.0002 
(1.07) 

0.0001 
(0.76) 

0.0001 
(0.80) 

0.0000 
(0.01) 

-2.2312 
(-4.49) 

0.0030 
(2.76) 

0.0019 
(2.51) 

0.0002 
(0.74) 

0.0003 
(2.27) 

0.0004 
(3.97) 

0.0006 
(6.45) 

0.0008 
(5.29) 

   -2.0000 

(-3.02) 

-0.0004 

(-1.38) 

-0.0003 

(-1.09) 

-0.0001 

(-0.56) 

-0.0003 

(-1.65) 

-0.0003 

(-1.44) 

-0.0006 

(-2.55) 

-0.0007 

(-2.44) 

-1.0557 

(-1.37) 

-0.0000 

(-0.01) 

0.0002 

(0.23) 

0.0009 

(2.04) 

0.0002 

(0.99) 

-0.0005 

(-3.85) 

-0.0009 

(-5.16) 

-0.0015 

(-7.44) 

   -5.3234 

(-9.41) 

0.0009 

(10.43) 

0.0005 

(5.28) 

0.0001 

(1.31) 

0.0002 

(2.67) 

0.0004 

(2.35) 

0.0008 

(7.01) 

0.0012 

(6.05) 

-8.0421 

(-13.81) 

-0.0045 

(-3.36) 

-0.0033 

(-4.47) 

-0.0014 

(-5.37) 

-0.0005 

(-4.00) 

0.0004 

(4.93) 

0.0008 

(6.42) 

0.0013 

(13.22) 

   0.0492 
(29.47) 

0.2309 
(106.98) 

0.1450 
(121.31) 

0.0698 
(128.16) 

0.0340 
(119.08) 

0.0194 
(81.35) 

0.0096 
(35.35) 

0.0046 
(15.32) 

0.0527 
(30.57) 

0.2857 
(101.00) 

0.1658 
(125.33) 

0.0684 
(123.16) 

0.0267 
(101.72) 

0.0109 
(55.12) 

0.0028 
(12.37) 

-0.0019 
(-6.73) 

R2 

 

60.38 18.90 20.12 23.20 27.22 30.50 32.10 31.95 61.65 13.32 14.18 16.12 18.79 21.87 23.53 23.32 

Panel B: Tests of the equality-of-slope estimates across quantiles 

   

 

 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth.  

R
2
 for Fama and MacBeth is an average R

2
, however it is Pseudo R

2 
for Quantile regression. (*) Significance at 10% and 5% otherwise. 

 

Below median institutional ownership 

 

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   156.09 (0.0000) 205.59 (0.0000) 202.78 (0.0000) 

   72.55 (0.0000) 109.58 (0.0000) 89.07 (0.0000) 

   0.73 (0.3942) 0.35 (0.5550) 35.71 (0.0000) 

   3.78 (0.0517)* 3.14 (0.0763)* 0.21 (0.6445) 

   0.53 (0.4666) 1.01 (0.3144) 11.83 (0.0006) 

   19.22 (0.0000) 32.67 (0.0000) 57.10 (0.0000) 

   10521.31 (0.0000) 16214.41 (0.0000) 14428.61 (0.0000) 

Above median Institutional ownership 

                            

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   121.95 (0.0000) 185.70 (0.0000) 147.68 (0.0000) 

   99.17 (0.0000) 97.55 (0.0000) 72.85 (0.0000) 

   15.11 (0.0001) 8.41 (0.0037) 1.39 (0.2390) 

   3.83 (0.0504)* 4.62 (0.0317) 0.07 (0.7892) 

   0.56 (0.4561) 0.85 (0.3577) 0.30 (0.5835) 

   1.56 (0.2122) 5.05 (0.0246) 1.92 (0.1660) 

   10844.25 (0.0000) 12963.84 (0.0000) 10539.38 (0.0000) 
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Table 4.6. Determinants of Capital gains overhang: Robustness analysis based on leverage subsamples 

  =   +         +         +           +          +           +            +    S 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V-t1:-t2 = average monthly turnover from t-t1 

through t-t2; S = natural logarithm of monthly market capitalization. 

Above median Leverage Below median Leverage 

Explanatory 

Variables 

 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 
 

0.95 

   -1.2241 
(-26.82) 

-7.2931 
(-102.42) 

-4.2155 
(-105.53) 

-1.7050 
(-123.23) 

-0.6510 
(-116.09) 

-0.27 
(-58.71) 

-0.0375 
(-7.31) 

0.1139 
(18.35) 

-1.2111 
(-34.90) 

-5.3972 
(-114.61) 

-3.4387 
(-125.88) 

-1.6568 
(-130.71) 

-0.7525 
(-107.56) 

-0.3320 
(-64.73) 

-0.0538 
(-8.56) 

0.1012 
(15.89) 

   0.2983 

(21.25) 

0.5130 

(17.61) 

0.3659 

(20.18) 

0.2373 

(27.99) 

0.1859 

(39.94) 

0.1645 

(44.13) 

0.1471 

(41.71) 

0.1449 

(32.93) 

0.2840 

(22.46) 

0.5309 

(21.31) 

0.4108 

(30.49) 

0.2787 

(40.58) 

0.2093 

(52.07) 

0.1770 

(63.48) 

0.1546 

(51.82) 

0.1491 

(35.16) 

   0.3837 

(33.24) 

0.4010 

(22.53) 

0.3404 

(27.92) 

0.2868 

(47.38) 

0.2678 

(73.05) 

0.2566 

(94.38) 

0.2447 

(95.05) 

0.2330 

(74.56) 

0.3768 

(30.93) 

0.3927 

(29.83) 

0.3527 

(45.53) 

0.3069 

(69.91) 

0.2813 

(99.98) 

0.2607 

(121.22) 

0.2465 

(107.80) 

0.2351 

(97.71) 

   0.3377 
(31.69) 

0.2231 
(28.78) 

0.2398 
(42.54) 

0.2575 
(85.95) 

0.2494 
(127.54) 

0.2321 
(157.85) 

0.2063 
(130.47) 

0.1810 
(104.03) 

0.3040 
(33.28) 

0.1158 
(15.22) 

0.1498 
(30.64) 

0.1888 
(66.66) 

0.2003 
(107.15) 

0.1953 
(125.98) 

0.1785 
(118.94) 

0.1611 
(104.49) 

   -2.6433 

(-5.32) 

0.0020 

(1.75)* 

0.0009 

(1.19) 

0.0000 

(0.06) 

0.0001 

(1.12) 

0.0003 

(4.37) 

0.0005 

(5.87) 

0.0001 

(3.75) 

-0.8526 

(-2.14) 

0.0015 

(0.88) 

0.0019 

(2.05) 

0.0005 

(1.33) 

0.0002 

(1.12) 

0.0003 

(1.97) 

0.0005 

(3.18) 

0.0007 

(3.22) 

   -2.1620 

(-2.86) 

-0.0000 

(-0.04) 

0.0011 

(0.83) 

0.0006 

(1.68) * 

0.0001 

(0.83) 

-0.0005 

(-3.48) 

-0.0009 

(-7.87) 

-0.0006 

(-4.99) 

-0.7337 

(-1.12) 

0.0002 

(0.05) 

-0.0008 

(-0.46) 

0.0003 

(0.56) 

-0.0001 

(-0.71) 

-0.0006 

(-2.60) 

-0.0012 

(-4.56) 

-0.0015 

(-6.01) 

   -6.1900 
(-11.41) 

-0.0034 
(-2.65) 

-0.0031 
(-3.46) 

-0.0008 
(-3.65) 

-0.0003 
(-3.16) 

0.0003 
(3.63) 

0.0007 
(10.22) 

0.0010 
(8.25) 

-7.3536 
(-12.43) 

-0.0028 
(-1.92) 

-0.0016 
(-1.58) 

-0.0007 
(-2.26) 

0.0002 
(2.27) 

0.0007 
(4.37) 

0.0013 
(7.38) 

0.0015 
(11.07) 

   0.0542 

(27.25) 

0.2851 

(97.80) 

0.1664 

(100.40) 

0.0682 

(113.59) 

0.0273 

(108.86) 

0.0136 

(63.93) 

0.0061 

(26.31) 

0.0009 

(4.47) 

0.0542 

(35.66) 

0.2085 

(107.07) 

0.1350 

(115.53) 

0.0672 

(118.55) 

0.0328 

(101.57) 

0.0176 

(72.17) 

0.0078 

(26.23) 

0.0027 

(8.91) 
R2 

 

60.61 15.13 15.41 17.06 20.10 23.47 25.15 24.99 60.90 16.32 17.95 21.07 24.96 28.35 29.84 29.47 

Panel B: Tests of the equality-of-slope estimates across quantiles 

 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth. 

R
2
 for Fama and MacBeth is an average R

2
, however it is Pseudo R

2 
for Quantile regression. (*) Significance at 10% and 5% otherwise 

 

Below median leverage 

 

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   241.62 (0.0000) 387.34 (0.0000) 303.72 (0.0000) 

   150.49 (0.0000) 209.34 (0.0000) 175.68 (0.0000) 

   37.29 (0.0000) 43.35 (0.0000) 10.89 (0.0010) 

   0.21 (0.6502) 2.46 (0.1169) 0.17 (0.6814) 

   0.32 (0.5689) 0.03 (0.8550) 3.23 (0.0723)* 

   8.88 (0.0029) 8.27 (0.0040) 20.12 (0.0000) 

   11139.65 (0.0000) 12235 (0.0000) 9369.66 (0.0000) 

Above median Leverage 

  

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   160.85 (0.0000) 159.09 (0.0000) 112.12 (0.0000) 

   95.13 (0.0000) 70.35 (0.0000) 44.66 (0.0000) 

   31.86 (0.0000) 43.36 (0.0000) 142.98 (0.0000) 

   1.55 (0.2133) 0.34 (0.5576) 2.51 (0.1129) 

   0.24 (0.6279) 2.40 (0.1214) 10.32 (0.0013) 

   11.35 (0.0008) 18.06 (0.0000) 28.38 (0.0000) 

   9540.41 (0.0000) 9543.94 (0.0000) 9893.68 (0.0000) 
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Table 4.7. Determinants of Capital gains overhang:  Robustness analysis based on size subsamples 

  =   +         +         +           +          +           +            +    S 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V-t1:-t2 = average monthly turnover from t-t1 through t-t2; S = 

natural logarithm of monthly market capitalization. 

Panel B: Tests of the equality-of-slope estimates across quantiles 

 
 

 

 

 

 

 

 

 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth. 

R
2
 for Fama and MacBeth is an average R

2
, however it is Pseudo R

2 
for Quantile regression. (*) Significance at 10% and 5% otherwise. 

Above median size Below median size 

Explanatory 

Variables 

 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

   -0.3684 

(-18.03) 

-2.3130 

(-58.37) 

-1.4017 

(-66.29) 

-0.6135 

(-63.03) 

-0.2567 

(-49.63) 

-0.0787 

(-17.30) 

0.0539 

(9.40) 

0.1346 

(21.69) 

-3.4445 

(-47.60) 

-32.6994 

(-67.20) 

-18.8849 

(-89.90) 

-7.5017 

(-100.70) 

-2.7913 

(-91.6) 

-1.0659 

(-63.20) 

-0.4919 

(-25.30) 

-0.2192 

(-8.90) 

   0.2234 

(20.08) 

0.3762 

(22.68) 

0.3051 

(27.30) 

0.2303 

(40.10) 

0.1924 

(55.54) 

0.1600 

(55.20) 

0.1329 

(48.81) 

0.1213 

(35.81) 

0.3140 

(22.00) 

0.4632 

(19.30) 

0.3631 

(23.50) 

0.2703 

(33.70) 

0.2052 

(41.30) 

0.1813 

(53.70) 

0.1682 

(41.60) 

0.1764 

(31.00) 

   0.3070 
(27.27) 

0.2698 
(25.18) 

0.2659 
(42.76) 

0.2524 
(62.66) 

0.2411 
(85.27) 

0.2290 
(104.86) 

0.2160 
(117.24) 

0.2089 
(96.57) 

0.3892 
(34.10) 

0.2946 
(20.60) 

0.3089 
(33.00) 

0.2990 
(50.80) 

0.2949 
(79.90) 

0.2877 
(98.30) 

0.2772 
(92.60) 

0.2569 
(67.60) 

   0.2502 

(32.68) 

0.0805 

(16.83) 

0.1033 

(35.63) 

0.1349 

(58.58) 

0.1564 

(93.19) 

0.1665 

(122.37) 

0.1666 

(129.60) 

0.1604 

(123.96) 

0.3640 

(32.10) 

0.2798 

(38.60) 

0.3048 

(62.0) 

0.3308 

(88.20) 

0.3204 

(142.70) 

0.2783 

(163.60) 

0.2237 

(119.39) 

0.1815 

(81.90) 

   -2.2672 

(-6.15) 

-0.0006 

(-3.51) 

-0.0003 

(-1.40) 

0.0000 

(0.40) 

0.0001 

(1.21) 

0.0002 

(2.29) 

0.0003 

(3.91) 

0.0003 

(2.29) 

-2.8833 

(-5.80) 

0.0029 

(2.60) 

0.0021 

(1.90) 

0.0013 

(1.90) * 

0.0003 

(0.97) 

0.0007 

(3.20) 

0.0006 

(2.70) 

0.0010 

(4.20) 

   -5.5843 
(-8.53) 

0.0004 
(1.04) 

0.0002 
(0.68) 

0.0001 
(0.73) 

-0.0003 
(-2.12) 

-0.0005 
(-4.11) 

-0.0008 
(-6.83) 

-0.0011 
(-5.99) 

-0.7065 
(-0.90) 

-0.0016 
(-0.90) 

-0.0008 
(-0.40) 

0.0013 
(1.00) 

0.0012 
(3.10) 

-0.0001 
(-0.21) 

-0.0009 
(-3.30) 

-0.0015 
(-5.30) 

   0.9152 

(1.61) 

-0.0004 

(-1.15) 

0.0003 

(-2.62) 

-0.0002 

(-2.45) 

0.0002 

(3.15) 

0.0005 

(6.43) 

0.0008 

(9.21) 

0.0011 

(8.64) 

-10.8376 

(-18.40) 

-0.0053 

(-4.90) 

-0.0048 

(-3.90) 

-0.0041 

(-5.50) 

-0.0017 

(-6.60) 

-0.0002 

(-0.70) 

0.0010 

(5.00) 

0.0015 

(13.80) 

   0.0164 

(20.86) 

0.0823 

(48.21) 

0.0504 

(54.69) 

0.0233 

(55.04) 

0.0119 

(52.34)  

0.0068 

(34.22) 

0.0033 

(12.87) 

0.0011 

(4.07) 

0.1676 

(47.80) 

1.5547 

(65.80) 

0.8966 

(87.70) 

0.3549 

(97.30) 

0.1324 

(87.80) 

0.0528 

(62.70) 

0.0287 

(29.60) 

0.0180 

(14.60) 
R2 

 

63.38 13.61 16.83 22.61 29.26 34.87 38.19 38.90 60.66 20.01 19.27 19.12 20.09 21.53 21.65 20.50 

Below median size 

 

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   146.99 (0.0000) 171.78 (0.0000) 178.70 (0.0000) 

   7.42 (0.0065) 13.14 (0.0003) 6.15 (0.0131) 

   182.00 (0.0000) 283.58 (0.0000) 299.96 (0.0000) 

   2.70 (0.1005) 1.73 (0.1880) 0.98 (0.3216) 

   0.00 (0.9815) 0.00 (0.9513) 1.33 (0.2486) 

   39.87 (0.0000) 23.20 (0.0000) 31.48 (0.0000) 

   4222.17 (0.0000) 7237.63 (0.0000) 7887.91 (0.0000) 

Above median size 

 

Variable 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   238.79 (0.0000) 251.74 (0.0000) 220.82 (0.0000) 

   33.48 (0.0000) 73.68 (0.0000) 63.56 (0.0000) 

   323.95 (0.0000) 674.60 (0.0000) 494.68 (0.0000) 

   18.23 (0.0000) 7.49 (0.0062) 1.76 (0.1845) 

   11.80 (0.0006) 15.39 (0.0001) 18.18 (0.0000) 

   19.17 (0.0000) 56.86 (0.0000) 55.13 (0.0000) 

   2232.31 (0.0000) 2456.70 (0.0000) 1579.40 (0.0000) 
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Table 4.8. Expected returns, past returns and capital gains overhang: Comparison between Fama-MacBeth two step procedure and quantile regression 

  =   +         +         +           +    +     +    g 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V= average monthly turnover ratio (share 

volume divided by number of shares outstanding) over the previous 12 months. S = natural logarithm of monthly market capitalization; rt is the month-t return. 

Explanatory 

Variables 

 

 

Fama - MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

   0.0176 
(2.01) 

-0.3547 
(-65.80) 

-0.2770 
(-67.11) 

-0.1556 
(-56.12) 

-0.0204 
(-10.91) 

0.1513 
(56.65) 

0.3351 
(73.04) 

0.4656 
(68.03) 

   0.2983 

(61.28) 

0.2348 

(93.12) 

0.2521 

(130.44) 

0.2786 

(175.80) 

0.2972 

(219.47) 

0.3094 

(180.57) 

0.3454 

(137.38) 

0.3772 

(99.51) 

   -0.0000 

(-0.02) 

-0.0060 

(-4.30) 

-0.0029 

(-2.96) 

0.0033 

(4.11) 

0.0079 

(11.95) 

0.0049 

(7.00) 

0.0033 

(2.58) 

0.0019 

(1.15) 

   -0.0026 
(-2.75) 

-0.0100 
(-16.40) 

-0.0065 
(-15.36) 

-0.0018 
(-5.42) 

0.0008 
(3.62) 

0.0003 
(1.10) 

0.0058 
(9.28) 

0.0113 
(12.56) 

   0.1505 

(1.88) * 

-0.0000 

(-6.90) 

-0.0000 

(-3.96) 

-0.0000 

(-3.99) 

-0.0000 

 (-0.79) 

0.0000 

(2.74) 

0.0000 

(3.28) 

0.0001 

(2.54) 

   -0.0007 

(-1.80) * 

0.0105 

(43.25) 

0.0083 

(45.16) 

0.0048 

(39.07) 

0.0007 

(8.44) 

-0.0049 

(-40.88) 

-0.0107 

(-52.51) 

-0.0147 

(-47.67) 

   0.0124 
(7.96) 

0.0757 
(37.47) 

0.0546 
(36.61) 

0.0232 
(19.12) 

0.0013 
(2.53) 

-0.0044 
(-4.57) 

-0.0401 
(-18.12) 

-0.0748 
(-26.62) 

R2 

 

34.06 28.93 24.96 19.33 15.88 14.67 15.93 18.29 

Panel B: Tests of the equality-of-slope estimates across quantiles 

 

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   1104.69 (0.0000) 1036.18 (0.0000) 254.13 (0.0000) 

   13.09 (0.0003) 15.35 (0.0001) 3.47 (0.0624) * 

   348.56 (0.0000) 235.77 (0.0000) 25.90 (0.0000) 

   18.89 (0.0000) 29.43 (0.0000) 27.95 (0.0000) 

   3864.52 (0.0000) 4077.00 (0.0000) 3044.06 (0.0000) 

   1256.39 (0.0000) 787.88 (0.0000) 188.21 (0.0000) 
 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth. 

R
2
 for Fama and MacBeth is an average R

2
, however it is Pseudo R

2 
for Quantile regression. (*) Significance at 10% and 5% otherwise. 
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Table 4.9. Expected returns, past returns and capital gains overhang: February to November subsample 

  =   +         +         +           +    +     +    g 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V= average monthly turnover ratio (share 

volume divided by number of shares outstanding) over the previous 12 months. S = natural logarithm of monthly market capitalization; rt is the month-t return. 

Explanatory 

Variables 

 

 

Fama - MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

   0.0172 

(1.76) * 

-0.3627 

(-66.79) 

-0.2818 

(-64.50) 

-0.1563 

(-50.47) 

-0.0209 

(-10.10) 

0.1509 

(51.39) 

0.3355 

(61.50) 

0.4697 

(63.89) 

   0.3019 

(60.19) 

0.2434 

(91.26) 

0.2612 

(125.13) 

0.2893 

(178.23) 

0.3078 

(208.17) 

0.3200 

(175.01) 

0.3570 

(129.52) 

0.3883 

(98.97) 

   -0.0006 

(-0.26) 

-0.0069 

(-4.67) 

-0.0045 

(-3.93) 

0.0007 

(0.75) 

0.0047 

(6.82) 

0.0004 

(0.53) 

-0.0019 

(-1.41) 

-0.0026 

(-1.53) 

   -0.0029 

(-2.74) 

-0.0106 

(-14.15) 

-0.0066 

(-13.30) 

-0.0015 

(-3.83) 

0.0012 

(4.82) 

0.0008 

(2.47) 

0.0060 

(8.83) 

0.0113 

(10.75) 

   0.1493 

(1.70) * 

-0.0000 

(-3.92) 

-0.0001 

(-5.23) 

-0.0000 

(-3.22) 

-0.0000 

(-1.42) 

0.0000 

(1.58) 

0.0000 

(3.35) 

0.0000 

(2.49) 

   -0.0006 

(-1.42) 

0.0109 

(44.61) 

0.0086 

(43.78) 

0.0049 

(35.46) 

0.0008 

(8.32) 

-0.0048 

(-36.17) 

-0.0107 

(-43.69) 

-0.0148 

(-45.35) 

   0.0142 

(8.60) 

0.0771 

(34.61) 

0.0549 

(33.05) 

0.0234 

(17.95) 

0.0013 

(2.49) 

-0.0041 

(-4.04) 

-0.0396 

(-16.69) 

-0.0741 

(-23.16) 

R
2
 

 

34.63 29.63 25.73 20.06 16.47 15.11 16.34 18.77 

Panel B: Tests of the equality-of-slope estimates across quantiles 

 

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   1010.75 (0.0000) 877.54 (0.0000) 235.38 (0.0000) 

   3.41 (0.0648) * 1.96 (0.1618) 0.04 (0.8381) 

   257.99 (0.0000) 216.53 (0.0000) 22.46 (0.0000) 

   18.23 (0.0000) 35.08 (0.0000) 14.37 (0.0002) 

   3550.94 (0.0000) 3316.27 (0.0000) 3432.88 (0.0000) 

   965.82 (0.0000) 643.32 (0.0000) 160.93 (0.0000) 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth. 

R
2
 for Fama and MacBeth is an average R

2
, however it is Pseudo R

2 
for Quantile regression. (*) Significance at 10% and 5% otherwise. 
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Table 4.10.  Expected returns, past returns and capital gains overhang: January and December subsamples  

  =   +         +         +           +    +     +    g 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V= average monthly turnover ratio (share volume divided by 

number of shares outstanding) over the previous 12 months.  S = natural logarithm of monthly market capitalization; rt is the month-t return.  

Panel B: Tests of the equality-of-slope estimates across quantiles 

 

 

   

 

 

 

 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth. 

R
2
 for Fama and MacBeth is an average R

2
, however it is Pseudo R

2 
for Quantile regression. (*) Significance at 10% and 5% otherwise. 

 

January December 

Variables 

 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

   -0.0333 

(-1.58) 

-0.3648 

(-27.23) 

-0.2883 

(-26.14) 

-0.1800 

(-19.63) 

-0.0550 

(-6.86) 

0.0965 

(10.64) 

0.2741 

(17.75) 

0.4223 

(18.91) 

0.0756 

(2.62) 

-0.2735 

(-18.95) 

-0.2100 

(-18.79) 

-0.1058 

(-13.39) 

0.0283 

(4.30) 

0.2105 

(20.08) 

0.3853 

(23.48) 

0.5357 

(26.55) 

   0.3249 

(21.10) 

0.2514 

(37.40) 

0.2682 

(45.68) 

0.3039 

(56.19) 

0.3435 

(61.46) 

0.3793 

(67.83) 

0.4279 

(49.57) 

0.4535 

(38.75) 

0.2327 

(11.42) 

0.1343 

(19.56) 

0.1405 

(24.12) 

0.1642 

(33.81) 

0.1828 

(42.03) 

0.2001 

(34.03) 

0.2291 

(26.33) 

0.2531 

(21.12) 

   -0.0092 
(-0.77) 

-0.0266 
(-6.13) 

-0.0208 
(-6.47) 

-0.0121 
(-4.00) 

-0.0086 
(-3.29) 

-0.0192 
(-7.13) 

-0.0281 
(-7.36) 

-0.0339 
(-7.14) 

0.0155 
(1.95) * 

0.0164 
(5.03) 

0.0222 
(9.81) 

0.0292 
(13.09) 

0.0345 
(17.30) 

0.0366 
(15.38) 

0.0426 
(10.56) 

0.0446 
(9.86) 

   -0.0001 

(-0.03) 

-0.0089 

(-4.03) 

-0.0048 

(-2.95) 

-0.0021 

(-2.00) 

-0.0002 

(-0.21) 

0.0004 

(0.48) 

0.0077 

(4.25) 

0.0119 

(4.48) 

-0.0022 

(-0.62) 

-0.0054 

(-3.18) 

-0.0043 

(-2.98) 

-0.0008 

(-0.85) 

0.0000 

(0.03) 

0.0007 

(0.49) 

0.0113 

(5.60) 

0.0168 

(4.88) 

   0.5540 

(1.84) * 

0.0000 

(0.90) 

0.0000  

(0.30) 

-0.0000 

(-0.75) 

0.0000 

(0.48) 

0.0000 

(0.65) 

0.0001 

(1.31) 

0.0001 

(1.95) * 

-0.2637 

(-1.14) 

-0.0000 

(-0.33) 

0.0000 

(0.81) 

0.0000 

(0.44) 

0.0000 

(0.50) 

0.0001 

(1.79) * 

0.0002 

(1.91) * 

0.0002 

(2.95) 

   0.0007 
(0.82) 

0.0105 
(17.29) 

0.0082 
(16.62) 

0.0052 
(12.60) 

0.0016 
(4.43) 

-0.0031 
(-7.36) 

-0.0089 
(-12.84) 

-0.0136 
(-13.19) 

-0.0030 
(-2.35) 

0.0075 
(11.37) 

0.0060 
(11.90) 

0.0031 
(8.70) 

-0.0012 
(-3.90) 

0.0075 
(-16.26) 

-0.0132 
(-17.95) 

-0.0178 
(-20.01) 

   -0.0006 

(-0.10) 

0.0676 

(15.64) 

0.0506 

(14.68) 

0.0248 

(7.63) 

0.0053 

(2.08) 

-0.0011 

(-1.05) 

-0.0217 

(-5.88) 

-0.0476 

(-8.61) 

0.0085 

(1.44) 

0.0707 

(14.42) 

0.0509 

(11.83) 

0.0200 

(8.31) 

0.0002 

(0.14) 

-0.0123 

(-2.34) 

-0.0552 

(-8.11) 

-0.0872 

(-9.84) 
R2 

 

34.31 27.62 23.96 19.28 17.10 17.27 18.15 19.12 27.97 24.01 19.34 13.43 10.76 10.95 13.72 16.24 

December 

 

Variable 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   78.62 (0.0000) 77.77 (0.0000) 33.21 (0.0000) 

   27.17 (0.0000) 20.40 (0.0000) 7.18 (0.0074) 

   31.16 (0.0000) 35.81 (0.0000) 0.80 (0.3698) 

   6.31 (0.0120) 2.72 (0.0988) * 2.94 (0.0863) * 

   504.61 (0.0000) 441.47 (0.0000) 326.07 (0.0000) 

   169.59 (0.0000) 113.80 (0.0000) 21.39 (0.0000) 

January 

 

Variable 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   253.24 (0.0000) 270.88 (0.0000) 172.32 (0.0000) 

   1.30 (0.2542) 2.23 (0.1355) 4.43 (0.0354) 

   36.01 (0.0000) 29.58 (0.0000) 4.77 (0.0289) 

   1.78 (0.1820) 1.41 (0.2355) 1.14 (0.2867) 

   427.90 (0.0000) 390.45 (0.0000) 247.27 (0.0000) 

   206.52 (0.0000) 142.84 (0.0000) 52.98 (0.0000) 
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Table 4.11. Expected returns, past returns and unrealized capital gains: Robustness analysis based on institutional ownership subsamples 

  =   +         +         +           +    +     +    g 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V= average monthly turnover ratio (share 

volume divided by number of shares outstanding) over the previous 12 months. S = natural logarithm of monthly market capitalization; rt is the month-t return. 

 

Panel B: Tests of the equality-of-slope estimates across quantiles 

 

 

 

 

 

 

 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth. 

R
2
 for Fama and MacBeth is an average R

2
, however it is Pseudo R

2 
for Quantile regression. (*) Significance at 10% and 5% otherwise. 

Above median institutional ownership Below median institutional ownership 

Coff 

 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

   0.0236 

(2.30) 

-0.3425 

(-47.84) 

-0.2659 

(-56.64) 

-0.1509 

(-42.71) 

-0.0132 

(-4.07) 

0.1542 

(36.99) 

0.3294 

(46.43) 

0.4614 

(50.43) 

0.0148 

(1.75)* 

-0.3656 

(-49.66) 

-0.2839 

(-48.42) 

-0.1540 

(-39.40) 

-0.0194 

(-9.00) 

0.1427 

(47.49) 

0.3335 

(55.27) 

0.4745 

(51.07) 

   0.3026 

(59.47) 

0.2395 

(78.70) 

0.2530 

(96.47) 

0.2772 

(142.02) 

0.2925 

(146.94) 

0.3109 

(120.04) 

0.3427 

(99.28) 

0.3694 

(74.45) 

0.2949 

(59.58) 

0.2311 

(54.72) 

0.2491 

(76.27) 

0.2777 

(104.09) 

0.2985 

(143.53) 

0.3117 

(127.18) 

0.3520 

(93.38) 

0.3876 

(66.47) 

   -0.0017 
(-0. 67) 

-0.0122 
(-7.48) 

-0.0071 
(-6.42) 

-0.0001 
(-0.09) 

0.0068 
(7.88) 

0.0093 
(8.45) 

0.0091 
(6.66) 

0.0080 
(4.22) 

0.0013 
(0.55) 

-0.0039 
(-2.28) 

-0.0017 
(-1.20) 

0.0044 
(3.26) 

0.0074 
(7.56) 

0.0015 
(1.22) 

-0.0009 
(-0.40) 

-0.0029 
(-1.15) 

   -0.0023 

(-2.09) 

-0.0137 

(-19.17) 

-0.0096 

(-19.40) 

-0.0044 

(-10.68) 

-0.0008 

(-2.65) 

0.0021 

(4.55) 

0.0101 

(11.26) 

0.0158 

(16.45) 

-0.0030 

(-3.04) 

-0.0088 

(-9.10) 

-0.0048 

(-5.88) 

-0.0003 

(-0.74) 

0.0011 

(3.95) 

0.0000 

(0.00) 

0.0037 

(4.13) 

0.0090 

(7.61) 

   0.1783 

(1.93)* 

-0.0000 

(-1.43) 

-0.0000 

(-1.59) 

-0.0000 

(-1.22) 

-0.0000 

(-0.09) 

0.0000 

(1.04) 

0.0000 

(1.80) 

0.0000 

(2.41) 

0.1342 

(1.57) 

-0.0000 

(-3.58) 

-0.0000 

(-4.27) 

0.0000 

(-3.37) 

-0.0000 

(-1.68)* 

0.0000 

(2.78) 

0.0000 

(3.04) 

0.0001 

(2.53) 

   -0.0010 
(-2.18) 

0.0100 
(29.93) 

0.0078 
(35.85) 

0.0046 
(28.05) 

0.0004 
(2.72) 

-0.0050 
(-26.00) 

-0.0105 
(-31.83) 

-0.0145 
(-34.31) 

-0.0005 
(-1.48) 

0.0109 
(33.94) 

0.0087 
(33.68) 

0.0048 
(27.86) 

0.0007 
(6.88) 

-0.0046 
(-33.56) 

-0.0107 
(-40.37) 

-0.0150 
(-37.19) 

   0.0127 

(6.53) 

0.1027 

(45.89) 

0.0755 

(47.00) 

0.0388 

(36.35) 

0.0092 

(11.03) 

-0.0149 

(-12.00) 

-0.0653 

(-24.57) 

-0.1022 

(-35.40) 

0.0119 

(7.42) 

0.0635 

(24.81) 

0.0451 

(19.32) 

0.0176 

(11.60) 

0.0007 

(3.03) 

-0.0017 

(-2.79) 

-0.0295 

(-11.97) 

-0.0582 

(-16.05) 
R2 

 

35.16 28.52 24.89 19.68 16.03 14.71 16.15 18.45 34.27 29.44 25.29 19.28 15.76 14.67 16.09 18.53 

Below median institutional ownership 

 

Variable 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics 

 

P-value F-statistics P-value F-statistics P-value 

   507.87 (0.0000) 499.03 (0.0000) 153.98 (0.0000) 

   0.11 (0.7411) 0.07 (0.7857) 3.92 (0.0477) 

   132.53 (0.0000) 46.19 (0.0000) 0.44 (0.5070) 

   12.02 (0.0005) 27.35 (0.0000) 23.52 (0.0000) 

   2125.62 (0.0000) 2299.42 (0.0000) 2030.63 (0.0000) 

   478.37 (0.0000) 285.60 (0.0000) 95.83 (0.0000) 

Above median institutional ownership 

 

Variable 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

 

   543.79 (0.0000) 519.43 (0.0000) 213.58 (0.0000) 

   70.91 (0.0000) 105.94 (0.0000) 74.02 (0.0000) 

   691.90 (0.0000) 410.58 (0.0000) 144.80 (0.5070) 

   8.36 (0.0038) 5.68 (0.0171) 3.06 (0.0804) 

   2072.26 (0.0000) 2271 (0.0000) 1922.84 (0.0000) 

   2936.84 (0.0000) 1889.56 (0.0000) 986.53 (0.0000) 
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Table 4.12. Expected returns, past returns and unrealized capital gains: Robustness analysis based on leverage subsamples 

  =   +         +         +           +    +     +    g 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V= average monthly turnover ratio (share 

volume divided by number of shares outstanding) over the previous 12 months. S = natural logarithm of monthly market capitalization; rt is the month-t return. 

 

Panel B:     Tests of the equality-of-slope estimates across quantiles 

  

 

 

 

 

 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth. 

R
2
 for Fama and MacBeth is an average R

2
, however it is Pseudo R

2 
for Quantile regression. (*) Significance at 10% and 5% otherwise. 

 

Above median leverage Below median leverage 

Variable  

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

   0.0160 

(1.83)* 

-0.3471 

(-48.05) 

0.2645 

(-49.15) 

-0.1423 

(-36.46) 

-0.0201 

(-9.20) 

0.1370 

(39.81) 

0.3147 

(43.54) 

0.4481 

(43.97) 

0.0198 

(2.14) 

-0.3412 

(-47.26) 

-0.2736 

(-60.18) 

-0.1556 

(-40.97) 

-0.0161 

(-5.58) 

0.1528 

(37.55) 

0.3377 

(56.13) 

0.4667 

(48.46) 

   0.2967 

(57.27) 

0.2156 

(59.71) 

0.2390 

(78.27) 

0.2717 

(103.86) 

0.2928 

(150.46) 

0.3032 

(132.31) 

0.3440 

(94.53) 

0.3783 

(71.44) 

0.2994 

(61.12) 

0.2534 

(87.89) 

0.2655 

(133.48) 

0.2854 

(143.88) 

0.3009 

(151.25) 

0.3171 

(123.03) 

0.3488 

(101.35) 

0.3765 

(70.19) 

   0.0010 
(0.42) 

-0.0029 
(-1.84)* 

-0.0009 
(-0.77) 

0.0057 
(4.80) 

0.0089 
(10.36) 

0.0055 
(5.37) 

0.0030 
(1.63) 

0.0024 
(1.09) 

-0.0005 
(-0.20) 

-0.0124 
(-6.14) 

-0.0100 
(-5.01) 

0.0002 
(0.14) 

0.0063 
(6.82) 

0.0043 
(3.54) 

0.0033 
(1.84)* 

0.0021 
(0.79) 

   -0.0034 

(-2.95) 

-0.0053 

(-7.42) 

-0.0020 

(-3.13) 

0.0009 

(2.10) 

0.0011 

(3.54) 

-0.0012 

(-3.29) 

0.0005 

(0.75) 

0.0048 

(4.36) 

-0.0020 

(-2.12) 

-0.0145 

(-19.66) 

-0.0100 

(-18.15) 

-0.0047 

(-9.83) 

-0.0001 

(-0.29) 

0.0030 

(6.09) 

0.0104 

(14.14) 

0.0169 

(13.90) 

   0.1444 

(1.99) 

-0.0000 

(-4.64) 

-0.0000 

(-4.27) 

-0.0000 

(-4.67) 

-0.0000 

(-0.24) 

0.0000 

(2.56) 

0.0000 

(3.43) 

0.0001 

(2.63) 

0.1616 

(1.87)* 

-0.0001 

(-4.04) 

-0.0000 

(-4.72) 

-0.0000 

(-1.13) 

-0.0000 

(-1.55) 

0.0008 

(1.24) 

0.0000 

(2.24) 

0.0001 

(2.27) 

   -0.0006 
(-1.58) 

0.0103 
(32.16) 

0.0079 
(33.09) 

0.0043 
(25.15) 

0.0007 
(7.29) 

-0.0044 
(-28.22) 

-0.0100 
(-31.14) 

-0.0141 
(-30.96) 

-0.0008 
(-1.97) 

0.0097 
(29.07) 

0.0080 
(38. 47) 

0.0047 
(27.18) 

0.0005 
(3.87) 

-0.0048 
(-26.01) 

-0.0106 
(-38.02) 

-0.0145 
(-32.73) 

   0.0122 

(6.94) 

0.0734 

(28.56) 

0.0524 

(23.40) 

0.0205 

(11.68) 

0.0007 

(2.58) 

-0.0028 

(-2.90) 

-0.0367 

(-12.12) 

-0.0758 

(-17.28) 

0.0129 

(7.84) 

0.0818 

(34.11) 

0.0588 

(40.58) 

0.0279 

(21.36) 

0.0042 

(4.80) 

-0.0088 

(-7.47) 

-0.0438 

(-29.74) 

-0.0731 

(-21.14) 
R2 

 

34.41 30.64 25.62 19.08 15.65 14.34 15.78 18.87 34.12 27.46 24.39 19.57 16.13 14.99 16.05 17.80 

Below median Leverage 

 

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   438.82 (0.0000) 464.78 (0.0000) 163.92 (0.0000) 

   21.16 (0.0000) 22.94 (0.0000) 9.11 (0.0025) 

   439.30 (0.0000) 442.92 (0.0000) 130.85 (0.0000) 

   12.78 (0.0004) 16.50 (0.0000) 4.00 (0.0374) 

   1842.90 (0.0000) 3037.09 (0.0000) 1746.77 (0.0000) 

   1139.29 (0.0000) 1810.33 (0.0000) 326.75 (0.0000) 

Above median Leverage 

 

Variables 

 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   653.44 (0.0000) 512.57 (0.0000) 113.56 (0.0000) 

   3.62 (0.0572)* 2.99 (0.0840) 0.04 (0.8472) 

   46.54 (0.0000) 5.86 (0.0155) 14.78 (0.0001) 

   18.10 (0.0000) 26.55 (0.0000) 25.89 (0.0000) 

   1597.77 (0.0000) 1583.28 (0.0000) 1304.49 (0.0000) 

   554.33 (0.0000) 336.83 (0.0000) 85.06 (0.0000) 
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Table 4.13. Expected returns, past returns and unrealized capital gains: Robustness analysis based on size subsamples 

  =   +         +         +           +    +     +    g 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V= average monthly turnover ratio (share 

volume divided by number of shares outstanding) over the previous 12 months. S = natural logarithm of monthly market capitalization; rt is the month-t return. 

Panel B: Tests of the equality-of-slope estimates across quantiles 

   

 

 

 

 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth. 

R
2
 for Fama and MacBeth is an average R

2
, however it is Pseudo R

2 
for Quantile regression. (*) Significance at 10% and 5% otherwise. 

 

Above median size Below median size 

Variables 

 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

 

Fama - 

MacBeth 

 

 

0.05 

 

 

0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

   0.0145 

(1.67)* 

-0.2781 

(-36.80) 

-0.2200 

(-46.21) 

-0.1111 

(-34.12) 

-0.0094 

(-3.43) 

0.1077 

(29.09) 

0.2579 

(42.65) 

0.3790 

(45.17) 

0.0277 

(1.99) 

-0.3644 

(-15.33) 

-0.3087 

(-15.31) 

-0.2168 

(-15.37) 

-0.0565 

(-6.51) 

0.2058 

(16.49) 

0.4350 

(17.01) 

0.5576 

(14.66) 

   0.3006 

(53.27) 

0.2525 

(82.56) 

0.2623 

(100.56) 

0.2806 

(137.27) 

0.2947 

(162.35) 

0.3075 

(138.78) 

0.3334 

(106.04) 

0.3602 

(76.26) 

0.2966 

(62.86) 

0.2183 

(64.29) 

0.2402 

(77.83) 

0.2712 

(113.26) 

0.2952 

(137.99) 

0.3171 

(122.45) 

0.3607 

(91.53) 

0.3990 

(77.42) 

   -0.0035 
(-1.20) 

-0.0254 
(-13.87) 

-0.0178 
(-12.91) 

-0.0067 
(-7.52) 

0.0040 
(4.32) 

0.0109 
(10.30) 

0.0122 
(10.38) 

0.0109 
(4.86) 

0.0012 
(0.55) 

-0.0004 
(-0.25) 

0.0006 
(0.43) 

0.0058 
(4.44) 

0.0078 
(8.97) 

0.0039 
(3.32) 

0.0012 
(0.67) 

-0.0008 
(-0.36) 

   -0.0034 

(-2.97) 

-0.0253 

(-32.19) 

-0.0183 

(-32.70) 

-0.0098 

(-21.47) 

-0.0013 

(-3.95) 

0.0053 

(10.09) 

0.0166 

(23.30) 

0.0258 

(20.54) 

-0.0027 

(-3.03) 

0.0023 

(3.02) 

0.0040 

(4.51) 

0.0047 

(6.94) 

0.0028 

(6.74) 

-0.0041 

(-7.66) 

-0.0048 

(-5.79) 

-0.0023 

(-1.57) 

   0.1658 

(1.88)* 

-0.0000 

(-5.17) 

-0.0000 

(-4.56) 

-0.0000 

(-2.68) 

-0.0000 

(-0.31) 

0.0000 

(2.12) 

0.0000 

(3.62) 

0.0000 

(20.54) 

0.1655 

(2.03) 

-0.0001 

(-3.78) 

-0.0001 

(-5.27) 

-0.0000 

(-1.35) 

-0.0000 

(-1.80)* 

0.0001 

(1.95)* 

0.0001 

(4.63) 

0.0001 

(6.29) 

   -0.0006 

(-1.58) 

0.0074 

(22.01) 

0.0060 

(28.29) 

0.0029 

(20.55) 

0.0002 

(1.98) 

-0.0030 

(-18.61) 

-0.0000 

(-28.30) 

-0.0110 

(-30.02) 

-0.0012 

(-1.72)* 

0.0105 

(8.92) 

0.0096 

(9.64) 

0.0078 

(11.19) 

0.0025 

(5.81) 

-0.0075 

(-12.11) 

-0.0154 

(-12.19) 

-0.0189 

(-10.01) 

   0.0192 
(7.87) 

0.1451 
(53.93) 

0.1111 
(58.82) 

0.0624 
(39.25) 

0.0147 
(11.56) 

-0.0263 
(-15.22) 

-0.0075 
(-30.71) 

-0.1305 
(-29.59) 

0.0116 
(7.78) 

0.0555 
(28.72) 

0.0398 
(19.99) 

0.0162 
(11.51) 

0.0007 
(2.52) 

-0.0018 
(-3.31) 

-0.0271 
(-12.79) 

-0.0571 
(-17.23) 

R2 

 

35.66 27.62 24.22 19.48 16.25 15.14 16.08 17.65 32.89 27.70 24.00 18.71 15.52 14.43 15.35 17.52 

Below median size 

 

Variable 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   968.78 (0.0000) 767.53 (0.0000) 315.36 (0.0000) 

   0.03 (0.8709) 0.08 (0.7834) 1.96 (0.1613) 

   6.97 (0.0083) 44.67 (0.0000) 127.03 (0.0000) 

   51.59 (0.0000) 40.67 (0.0000) 8.61 (0.0033) 

   168.72 (0.0000) 216.39 (0.0000) 292.62 (0.0000) 

   589.92 (0.0000) 333.26 (0.0000) 101.39 (0.0000) 

Above median size 

 

Variable 

Quantiles 

0.05 vs. 0.95 0.10 vs. 0.90 0.25 vs. 0.75 

F-statistics P-value F-statistics P-value F-statistics P-value 

   420.85 (0.0000) 382.69 (0.0000) 150.17 (0.0000) 

   171.05 (0.0000) 325.18 (0.0000) 254.93 (0.0000) 

   1182.08 (0.0000) 1495.19 (0.0000) 483.27 (0.0000) 

   37.37 (0.0000) 41.12 (0.0000) 15.55 (0.0001) 

   1432.85 (0.0000) 1937.23 (0.0000) 1081.83 (0.0000) 

   2834.35 (0.0000) 3181.98 (0.0000) 1480.98 (0.0000) 
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Table 4.14. Capital gains coefficients across three models 

This table summarizes the ability of disposition effect to generate momentum at the lowest and highest quantiles (5% and 95% respectively). The table reports the intermediate 

cumulative return and t values in three cases; before size is added, after adding size and after capital gains overhang is added 

  =   +         +         +           +                                (10) 

  =   +         +         +           +    +                       (11) 

  =   +         +         +           +    +     +    g        (12) 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past return horizons; r-t1:-t2; V= average monthly turnover ratio (share 

volume divided by number of shares outstanding) over the previous 12 months. S = natural logarithm of monthly market capitalization; rt is the month-t return. 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 runs) and corrected by Newey-West for Fama-MacBeth. 

(*) Significance at 10% and 5% otherwise. 

 

Quantiles  

 

Fama-MacBeth 5% 95% 

Models Model 10 Model 11 Model 12 Model 10 Model 11 Model 12 Model 10 

 

Model 11 Model 12 

Whole sample 0.0049 

(1.99) 

0.0048 

(1.96) 

-0.0000 

(-0.02) 

0.0207 

(16.30) 

0.0177 

(13.40) 

-0.0060 

(-4.30) 

-0.0174 

(-10.98) 

-0.0150 

(-8.55) 

0.0019 

(1.15) 

Institutional 

 

 

Above median 0.0025 

(0.96) 

 

0.0029 

(1.12) 

-0.0017 

(-0.67) 

0.0205 

(14.17) 

0.0194 

(11.87) 

-0.0122 

(-7.48) 

-0.0147 

(-9.92) 

-0.0130 

(-6.63) 

-0.0080 

(4.22) 

Below median 0.0066 

(2.62) 

0.0064 

(2.55) 

0.0013 

(0.55) 

0.0203 

(9.35) 

0.0165 

(8.51) 

-0.0039 

(-2.28) 

-0.0207 

(-7.27) 

-0.0171 

(-5.18) 

-0.0029 

(-1.15) 

Leverage 

 

 

Above median 0.0059 

(2.38) 

 

0.0058 

(2.37) 

0.0009 

(0.42) 

0.0219 

(11.85) 

0.0200 

(10.08) 

-0.0029 

(-1.84) 

-0.0149 

(-6.49) 

-0.0141 

(-5.56) 

0.0024 

(1.09) 

Below median 0.0045 

(1.69)* 

0.0044 

(1.69)* 

-0.0005 

(-0.20) 

0.0172 

(10.39) 

0.0153 

(8.98) 

-0.0124 

(-6.14) 

-0.0195 

(-8.29) 

-0.0178 

(-7.91) 

0.0021 

(0.79) 

Size Above median 0.0029 

(1.01) 

 

0.0025 

(0.84) 

-0.0035 

(-1.20) 

0.0125 

(6.08) 

0.0123 

(6.14) 

-0.0254 

(13.87) 

-0.0095 

(-3.93) 

-0.0099 

(-3.79) 

0.0108 

(4.86) 

 

 

Below median 0.0060 

(2.61) 

0.0057 

(2.49) 

0.0012 

(0.55) 

0.0214 

(11.55) 

0.0150 

(8.12) 

-0.0004 

(-0.25) 

-0.0187 

(-8.81) 

-0.0144 

(-6.70) 

-0.0008 

(-0.36) 
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Table 4.15.  Capital gains coefficients across different quantiles 

The coefficients below belong to the capital gains overhang variable only which is included in the following 

regression.  

  =   +         +         +           +    +     +    g        (12) 

where g is capital gains overhang; r-t1:-t2 = cumulative returns from month t-t1 through t-t2 computed over three past 

return horizons; r-t1:-t2; V= average monthly turnover ratio (share volume divided by number of shares outstanding) 

over the previous 12 months. S = natural logarithm of monthly market capitalization; rt is the month-t return. 

Figures in brackets are t-statistics. Standard errors are corrected by bootstrapping for quantile regression (400 

runs) and corrected by Newey-West for Fama-MacBeth. (*) Significance at 10% and 5% otherwise. 

 

 

Explanatory 

Variables 

 

 

Fama -

MacBeth 

0.05 0.10 

 

 

0.25 

 

 

0.50 

 

 

0.75 

 

 

0.90 

 

 

0.95 

 

 

             

 

0.0124 

(7.96) 

0.0757 

(37.47) 

0.0546 

(36.61) 

0.0232 

(19.12) 

0.0013 

(2.53) 

-0.0044 

(-4.57) 

-0.0401 

(-18.12) 

-0.0748 

(-26.62) 

Seasonality  

(Feb-Nov) 

0.0142 

(8.60) 

0.0771 

(34.61) 

0.0549 

(33.05) 

0.0238 

(17.95) 

0.0013 

(2.49) 

-0.0040 

(-4.04) 

-0.0395 

(-16.69) 

-0.0741 

(-23.16) 

 

Seasonality  

(January) 

-0.0006 

(-0.10) 

0.0676 

(15.64) 

0.0506 

(14.68) 

0.0248 

(7.63) 

0.0053 

(2.08) 

-0.0011 

(-1.05) 

-0.0218 

(-5.88) 

-0.0476 

(-8.61) 

 

Seasonality  

(December) 

0.0085 

(1.44) 

0.0707 

(14.42) 

0.0509 

(11.83) 

0.0200 

(8.31) 

0.0002 

(0.14) 

-0.0123 

(-2.34) 

-0.0552 

(-8.11) 

-0.0872 

(-9.84) 

Institutional Above  

median 

0.0127 

(6.53) 

0.1027 

(45.89) 

0.0755 

(47.00) 

0.0388 

(36.35) 

0.0092 

(11.03) 

-0.0149 

(-12.00) 

 

-0.0653 

(-24.57) 

-0.1022 

(-35.40) 

Below 

median 

0.0119 

(7.42) 

0.0635 

(24.81) 

0.0451 

(19.32) 

0.0176 

(11.60) 

0.0007 

(3.03) 

-0.0017 

(-2.79) 

-0.0295 

(-11.97) 

-0.0582 

(-16.05) 

Leverage Above 

median 

0.0122 

(6.94) 

0.0734 

(28.56) 

0.0524 

(23.40) 

0.0205 

(11.68) 

0.0007 

(2.58) 

-0.0028 

(-2.90) 

-0.0367 

(-12.12) 

-0.0758 

(-17.28) 

 

Below 

median 

0.0129 

(7.84) 

0.0818 

(34.11) 

0.0588 

(40.58) 

0.0279 

(21.36) 

0.0042 

(4.80) 

-0.0088 

(-7.47) 

-0.0438 

(-29.74) 

-0.0731 

(-21.14) 

Size Above 

median 

0.0192 

(7.87) 

0.1451 

(53.93) 

0.1111 

(58.82) 

0.0624 

(39.25) 

0.0146 

(11.56) 

-0.0263 

(-15.22) 

-0.0846 

(-30.71) 

-0.1305 

(-29.59) 

 

Below 

Median  

0.0116 

(7.78) 

0.0555 

(28.72) 

0.0398 

(19.99) 

0.0162 

(11.51) 

0.0007 

(2.52) 

-0.0018 

(-3.31) 

-0.0271 

(-12.79) 

-0.0571 

(-17.23) 
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Table 4.16.  Tests of the equality-of-slope estimates across quantiles between expected returns 

and capital gains overhang 

(*) Significance at 10% and 5% otherwise 

 
 

 

 
 

 Quantiles 

 

0.05 vs. 0.95 

 

 

0.10 vs. 0.90 

 

 

0.25 vs. 0.75 

 

 

F-statistics P-Value F-statistics P-Value F-statistics P-Value 

             
 

1256.39 (0.0000) 787.88 (0.0000) 188.21 

 

(0.0000) 

February-November 965.82 (0.0000) 643.32 (0.0000) 160.93 (0.0000) 

 

January 206.52 (0.0000) 142.84 (0.0000) 52.98 (0.0000) 

December 

 

169.59 (0.0000) 113.80 (0.0000) 21.39 (0.0000) 

Institutional 

 

Above  

Median 

 

2936.84 (0.0000) 1889.56 (0.0000) 986.53 (0.0000) 

Below 

Median 

 

478.37 (0.0000) 285.60 (0.0000) 95.83 (0.0000) 

Leverage Above 

Median 

 

554.33 (0.0000) 336.83 (0.0000) 85.06 (0.0000) 

Below 

Median 

 

1139.29 (0.0000) 1810.33 (0.0000) 326.75 (0.0000) 

Size Above 

Median 

 

2834.35 (0.0000) 3181.98 (0.0000) 1480.98 (0.0000) 

Below 

Median  

589.92 (0.0000) 333.26 (0.0000) 101.39 (0.0000) 
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Chapter Five 

Momentum, asymmetric volatility and idiosyncratic risk: A 

comparison of high-tech and low-tech stocks 

 

Abstract 

 

This paper seeks to discover systematic disagreements in momentum, asymmetric volatility 

and the idiosyncratic risk-momentum return relationship between high-tech stocks and low-

tech stocks. We develop several hypotheses that suggest greater momentum profits, fainter 

asymmetric volatility and weaker idiosyncratic risk -momentum return relation in the high-

tech stocks relative to the low-tech stocks. To do so, 5795 stocks that are listed in the Russell 

3000 index from January 1995 to December 2015 were divided into two samples based on 

SIC code 3-digits into high and low-tech categories. We analyzed them using the Fama-

French with GJR-GARCH-M term. The results show that the high-tech stocks provide greater 

momentum profits especially for portfolios that have holding and ranking periods of less than 

12 months. In most cases the momentum returns in the high-tech stocks explain symmetric 

response to good and bad news while the momentum returns in the low-tech stocks show an 

asymmetric response. Finally, the idiosyncratic risk-momentum return relation is 

insignificant for the high-tech stocks while it is significant and negative for the low-tech 

stocks. That is, as idiosyncratic risk increases, momentum decreases for low-tech stocks. 

These findings are robust to different momentum strategies and to different breakpoint.  

 

Keywords: R&D intensity, High-tech stocks, Momentum, Asymmetric Volatility, 

Idiosyncratic Risk 
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5.1- Introduction  

 

According to many studies in the literature high-tech stocks invest more in R&D 

activities or knowledge-based investments and have higher level of unreported assets 

Watanabe, Hur & Lei (2006), Kwon and Yin (2015), Lim (2015), Junttila, et al (2005) & 

Kwon and Yin (2006). The key value drivers have lately become less peculiar to tangible 

assets. A contemporary study indicates that only 15% of the S&P 500 market capitalization 

belonged to tangible assets in 1988. However, it was 62% in 1982
11

. During the last quarter 

century, there has been renewed interest in knowledge-based organizations. These 

organizations possess a large proportion of unique intangible assets such as patents, R&D, 

brands and talented human capital. This uniqueness changes the shape and nature of 

organizations. According to Zingales (2000), the appearance of knowledge-based 

organizations challenges several aspects of the traditional theory of the firm: the traditional 

firm is vertically integrated and heavily monopolized by physical assets while knowledge-

based organizations are human capital-intensive organizations and non-vertically integrated. 

Moreover, the nature of the traditional firm enforces the power of the top management and 

control is practised through the ownership of the indispensable physical assets, whereas to 

gain a sustainable competitive advantage knowledge-based organizations must run a rigorous 

innovation process and product research and development activities which increases the need 

for talented human resources. In the knowledge-based economy human capital is, by nature, 

less specific to its current employers which diminishes the power and control of top 

management; in addition, the use of corporate governance and managerial incentives in the 

traditional firm eases the shareholders‟ control while putting in question the transparency 

and, accountability of top managers and coping with shareholder wealth maximization in the 

knowledge-based organizations.  

The theory of investment endorses the uniqueness of R&D, which like other 

intangible assets is more distinctive than typical investments because such assets have several 

unique features. One important feature is mentioned by Hall (2002) who reveals that more 

than 50% of R&D expenditures goes to financial allocations to scientists and engineers who 

work to produce intangible assets and are likely to contribute to increased firm‟s future 

earnings. The value of scientists and engineers is equal to the value of the tacit knowledge 

they have. This kind of assets can be transferred to another organization if they depart or are 

                                                           
11

 See Bagella, Becchetti, & Adriani  (2005), P.550  
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dismissed. This means that part of a firm‟s assets can disappear if the knowledgeable workers 

leave. This feature has valuable implications; for example, companies usually distribute the 

R&D expenditures over time to guarantee the continuation of knowledge workers and avoid 

high amendment cost. Covering this cost needs a high required rate of return and makes it 

harder to measure the change in the cost of capital in consequence of a departure of intangible 

assets.  The second important feature is that the outcome of R&D activity is also associated 

with a high level of uncertainty, especially in the initial stages of new proposals. In addition, 

some R&D proposals that have a low probability of great future benefits may be worth 

implementing even if the required rate of return does not exceed the cost of capital. In this 

case, the uncertainty is very high and cannot be simply captured by mean and variance.  

The stock market and finance theory are never far from these advances, show 

coincident attention with them. Some scholars note the importance of R&D, for example 

Chan, Lakonishok, & Sougiannis (2001) who document that the technology sector and the 

pharmaceutical sector have intensive R&D activities and investments represent around 40 

percent of the market capitalization of the S&P 500 index. Callimaci & Landry (2004) study 

the Canadian stock market and find that research and develoment costs are among the largest 

incurred by Canadian companies. We also found some support for the growing importance of 

research and development in emerging markets. In Taiwan, Chiao, Hung, & Lee (2008) 

found that the ratio of aggregate R&D to GDP rose from 1.14 percent in 1987 to 2.42 percent 

in 2003 and the number of companies that had R&D activities went up from 48 companies in 

1987 to 393 companies in 2003.  

Others link the R&D with other financial puzzles; for instance, Doukas & Switzer 

(1992) collect announcements that represent around 58% of US‟s firms-funded R&D in 1984 

to explore the link between R&D activity and market value and find significant relationship. 

Bhagat & Welch (1995) investigate the determinants of R&D using data on the US, 

European, British, Canadian and Japanese companies. They show that last year‟s debt ratio, 

two-year lagged stock return, size, and last year‟ tax payments play a role and correlated 

either positively or negatively with the current R&D expenditures. Aboody & Lev (2000) 

choose the period between 1985 and 1997 to examine the relation between R&D activity and 

insider profits. They find evidence that the information asymmetry is primarily caused by the 

R&D which creates an informational advantage to the insiders at the expense of outsiders. 

This informational advantage gives the insiders in the R&D-intensive firms the opportunity to 

make more generous profits than insiders in firms without R&D can make. Schmutz & 
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Santerre (2013) also specify the determinants of R&D expenditures in the medical device 

industry covering the period between 1962 and 2008. Schmutz & Santerre (2013) confirm 

that the previous year‟s cash flow and market value are positively related to the R&D 

expenditures. The relation between debt ratio and R&D expenditures is tested by Czarnitzki, 

Hottenrott, & Thorwarth (2011) who find that an increase in debt causes a reduction in R&D 

investments.  

The uniqueness of the intensive R&D firms is not limited to financial phenomena, but 

should be extended to accounting theories and practices. On the accounting side, Sougiannis 

(1994) tries to tie the corporate R&D with accounting earnings and the market value of 

equity. He uses cross sectional data and find that, on average, a one dollar investment in 

R&D increases profits by two dollars over a seven years period and raises market value by 

five dollars. Lev & Sougiannis (1996) use a huge sample of public companies to assess the 

value  of R&D. They obtain statistically and economically significant values and a significant 

relation between corporate R&D value and stock returns. This significant relation can be 

attributed to either a systematic mispricing in the R&D-intensive firms, or an extra premium 

for bearing the additional market risk associated with R&D.  Eng & Shackell (2001) examine 

the impact of institutional holding and long-term performance plans on the level of R&D 

expenditures. Their findings explain the positive relation between institutional holding and 

R&D expenditures because the horizon of institutional holding encourages managers to adopt 

long-term investments; however, the relation between preparing long-term performance plans 

and R&D expenditures is insignificant. Barron, Byard, Kile, & Riedl (2002) who target the 

degree of analyst consensus in the high-tech stocks using estimates over the period from 1986 

to 1988. They believe that if the R&D expenditures and the corresponding asymmetric 

information are high, the level of consensus thereby goes down. Kothari, Laguerre, & Leone 

(2002) devote a study to measuring the uncertainty embodied in the predictable earnings 

generated by R&D and that generated by Property, Plant and Equipment (PP&E) between 

1972 and 1997. Their findings stress that the future earnings generated by R&D embody a far 

higher degree of uncertainty relative to the predictable earnings generated by PP&E. Kwon 

and Yin (2015) introduce evidence that intensive R&D firms have lower earnings persistence 

than non-intensive R&D firms. Moreover, they catch stronger ties between earnings 

persistence and discretionary accruals in the intensive R&D firms.  

The above studies show the main issues discussed in the literature of accounting and 

finance among R&D-intensive firms. This paper makes four research contributions. To begin 
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with, this paper is the first to our knowledge to discover the systematic differences in 

momentum profits between high-tech stocks and low-tech stocks; Second, we are the first to 

discover the systematic differences in asymmetric volatility between high-tech stocks and 

low-tech stocks; Third, we are the first to discover the systematic differences in the 

idiosyncratic risk -momentum return relation between stocks with high-tech and stocks with 

low-tech; Finally, we are the first to compare the performance of the Fama-French model 

with GJR-GARCH-M term in explaining momentum return between stocks with high-tech 

and stocks with low-tech.  

Results indicate that the momentum profits in low-tech stocks never outperform those 

profits in high-tech stocks and some momentum portfolios, namely, the 3-3 strategy, the 3-6 

strategy, the 6-3 strategy and the 6-6 strategy, show robust higher momentum profits for 

high-tech stocks. The second finding is that high-tech stocks exhibit symmetric volatility in 

momentum returns or the variance in momentum returns responds symmetrically to good and 

bad news. However, low-tech stocks exhibit significant asymmetric volatility. This second 

finding is robust to different momentum strategies and to different breakpoints. Our third 

finding focuses on the idiosyncratic risk -momentum return relation; there is robust evidence 

on the no-idiosyncratic risk -momentum return relation for high-tech stocks and robust 

evidence on the significantly negative idiosyncratic risk -momentum return relation for stocks 

with low-tech. Finally, there is robust evidence on the better ability of the Fama-French with 

conditional variance term to explain momentum returns for high-tech stocks than for low-

tech.  

The rest of this paper is structured as follows. Section 5.2 reviews the previous 

literature. Section 5.3 demonstrates the research hypotheses. Section 5.4 presents the 

econometric framework. Section 5.5 contains the research data and the methodology. Section 

5.6 explains the empirical analysis. Section 5.7 contains the main concluding remarks and 

some recommendations for future research.  

5.2- Literature review 

 

In this paper, we discuss three main issues; momentum, asymmetric volatility and the 

idiosyncratic risk and momentum relation. Therefore, it may be useful to divide the literature 

accordingly.  
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5.2.1- Momentum 

Jagadeesh and Titman (1993) are the first to document the momentum profits. They 

confirm that using momentum strategies which entail buying past winners and selling past 

losers can generate significant abnormal returns. Rouwenhorst (1998) studies market return 

data from 12 European stock markets between 1978 and 1995 and found economically and 

statistically significant intermediate-term return persistence. Moskositz & Grinblatt (1999) 

contend that profitable momentum strategies involve a significant industry effect. An 

explanation of industry momentum comes from Hong and Stein (1999) model; they suggest 

that under-reaction to news due to the slowness of information spread can induce 

momentum
12

. In a different work, Hong et al. (2000) discover the higher momentum profits 

among smaller size firms and attribute this phenomenon to lower analyst coverage and the 

slower information spread experienced by smaller firms. This concept can be extended to the 

industry momentum since the information takes time to reach all firms in an industry and the 

leading firms capture the new information earlier than smaller firms in the same industry can, 

since the analysts cover the impact of the new information on the whole industry. This 

behaviour may lead to the lead-lag effect between the leading firms and the smaller ones 

within the same industry and eventually generate momentum. Chui, Titman, & Wei (2003) 

examine the momentum using REITs data. They conclude that the momentum returns for 

REITs are higher than for common stocks. Pan, Liano, & Huang (2004) investigate the 

sources of industry momentum and find empirical evidence that it is due to the returns 

autocorrelation in industry momentum portfolios.  

5.2.2- Asymmetric volatility  

 

It is well known that the asymmetric volatility means the different response of 

volatility to bad news and good news. In particular, negative shocks have a larger impact on 

volatility than positive shocks of the same magnitude do. One interpretation for this 

phenomenon is that investors react more quickly to bad news than good, which contributes 

more volatility to the market (Jones, Walker, & Wilson, 2004). 

Volatility has a pivotal role in modern finance theory. Black (1976) and Christie  

(1982) introduced the first explanation of this phenomenon. They attributed the negative 

relation between volatility and price to the „Leverage effect‟. This explanation suggests that a 

decline in stock prices leads to an increase in leverage measured by the debt to equity ratio, 
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resulting in an increase in the risk of the stock which causes a surge in volatility. Ericsson, 

Huang, & Mazzotta (2016) find a vastly higher leverage effect than is documented in Christie  

(1982). Talpsepp & Rieger (2010) document the larger importance of asymmetry over time. 

They study the asymmetric volatility for 49 countries and find evidence that the asymmetry in 

most countries increases constantly. In the US where the market of interest is, Ederington & 

Guan (2010) measure the impact of positive and negative return news of the same size on the 

predictive volatility. They find that the surge of predictive volatility after negative returns is 

much greater than that after positive returns. On the behavioural finance side, Avramov, 

Chordia, & Goyal  (2006) offer a behavioural explanation for the asymmetric volatility. 

According to their research, it can be fully interpreted by the interplay between contrarian 

and herding investors. They base their analysis on the clue that irrational „uniformed‟ 

investors divert the market prices away from the intrinsic value. The irrational investors 

purchase when the stock prices are high and vend when the stock prices are low. Rational 

„informed‟ investors push asset prices back to the intrinsic value through following the 

opposite behaviour. In other words, the rational „informed‟ vend when the stock prices are 

high and purchase when the stock prices are low. In their context, when stock prices fall, the 

herding investors control the volatility of the following period because they trade in the same 

direction as the change. They exaggerate the change and drive volatility upward. However, 

when the stock prices surges, contrarian investors control the volatility of the following 

period, which leads to declines in volatility because they trade in the opposite direction of 

change.  

EGARCH and GJR are well documented in the literature of asymmetric volatility 

because they are the most effective models for caliberating the asymmetry. Nelson (1991) 

introduces the exponential GARCH („EGARCH‟) model. The EGARCH is characterized as 

overcoming the non-negativity constraints in GARCH modelling and allows the capture of 

asymmetric responses to good and bad news. According to Heynen, Kemna, & Vorst (1994), 

the EGARCH model outperforms the basic GARCH of Bollerslev (1986). The second 

asymmetric GARCH is the GJR model developed by Glosten, Jagannathan, & Runkle (1993). 

Engle & Ng (1993) compare the GJR and EGARCH and conclude that the GJR is better at 

capturing asymmetric volatility. Barone-Adesi, Engle, & Mancini (2008) support the 

superiority of the GJR over the EGARCH model. Those two papers provide our justification 

for using the GJR model. Another virtue of the GJR is mentioned in Pilar & Rafael (2002), 

who prefer it for its lower sensitivity than the EGARCH model to outiers. One paper that 
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used the GJR model to examine the asymmetric response of winners‟ and losers‟ portfolios to 

good and bad news is written by Li, Miffre, Brooks, & O‟Sullivan (2008). They demonstrate 

that the effect of positive return news („past winners‟) on volatility is smaller than the effect 

in case of negative returns news („past losers‟), because past winners tend more to reveal 

news than past losers.  

5.2.3- Idiosyncratic risk -momentum return relation  

 

Pindyck (1984) and Kenneth, Schwert, & Stambaugh (1987) provide another 

explanation for this negative relation between the unexpected change in volatility and an 

unexpected change in price, namely, the „volatility feedback theory‟. According to this 

theory, if the increase in stock price volatility leads to an increase in future returns, then, 

ceteris paribus, stock prices should drop when stock price volatility goes up.  

The most common econometric model in the literature for testing the risk-return 

relation is GARCH in mean („GARCH-M‟). This model was developed by Engle, Lilien, & 

Robins (1987) to caliberate the relation between conditional variance and time-varying 

expected returns. In other words, the GARCH-M model embodies the impact of conditional 

variance on the conditional mean of the returns. A much debated question is whether the risk- 

return relation is positive or negative. For example Corrado & Miller (2006) used two 

measures of volatility, namely, past volatility and implied volatility and discover insignificant 

relation between historical volatility and expected returns, while the relation between implied 

volatility and expected returns is positive. Chan, Karolyi, & Stulz (1992) support the 

insignificant relation between future return and its conditional variance. Similarly, Poon & 

Taylor (1992) and Li, Yang, Hsiao, & Chang (2005) bring evidence for the insignificant risk-

momentum return relation. Nyberg (2012) uses monthly U.S stock market returns and 

contributed to the literature through allowing the business cycle to influence the risk-

momentum return relation. The business cycle apart, the risk-momentum return relation is 

significantly positive. A positive relationship is also demonstrated in Lundblad (2007), and 

Ludvigsona & Ng (2007). Lee, Jiang, & Indro (2002), and Whitelaw  (2000) calculate that 

the risk-momentum return relation is negative. Finally, Baillie & DeGennaro (1990) infer 

from their data that any portfolio‟s risk-momentum return relation is weak.  

Several papers in the literature address the relation between idiosyncratic risk and 

momentum returns. For instance, Arena, Haggard, & Yan (2008) adopt the behavioural 
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approach in investigating the sources of momentum profits through examining the relation 

between momentum and idiosyncratic risk. They used data to cover the period between 1965 

and 2002 and find a relation between momentum and idiosyncratic risk which is in line with 

the view that the momentum is sourced by the underreaction to firm-specific information and 

the limits to arbitrage deters arbitrageurs from correcting the momentum mispricing. Hung & 

Glascock (2010) use GARCH-M model to test the relation between time-varying 

idiosyncratic volatility and momentum in REIT. Hung & Glascock (2010) find evidence that 

momentum returns exhibit time-varying behaviour and also find that losers experience 

greater idiosyncratic volatility than winners and investors demand a smaller risk premium for 

bearing the higher idiosyncratic volatility of losers. This smaller risk premium leads to 

smaller returns, and hence to momentum in returns. McLean (2010) studies the possibility 

that the momentum effect is sourced by idiosyncratic risk hindering the arbitrage mechanism. 

In his paper, he emphasizes the role of transaction cost in preventing the arbitrageurs from 

correcting the momentum mispricing, supports the negative relation between idiosyncratic 

risk and momentum and specifies that the limits to arbitrage can induce momentum when the 

benefits of arbitrage are lower than the costs. He also confirms that reversal is predominant 

only among the stocks that experience higher idiosyncratic risk. Pyo & Shin (2013) use 

Korean data in replicating the study by Arena, Haggard, & Yan (2008). They find higher 

momentum among stocks with a higher level of idiosyncratic risk in particular among high 

idiosyncratic risk winners. Chichernea & Slezak (2013) provide evidence that the cross-

sectional variation in idiosyncratic risk premium can explain momentum profits using a 

sample of individual stocks, except for the momentum among lower idiosyncratic risk stocks. 

Under the incomplete information assumption, less diversified investors require higher risk 

premia (“idiosyncratic risk premia”) for bearing idiosyncratic risk. Di Iorio & Liu (2015) 

examine the relation between idiosyncratic risk and momentum using a sample of Australian 

equity pension funds. Their results are consistent with Arena, Haggard, & Yan (2008) and 

find that relation between momentum and idiosyncratic risk takes the form of U, which 

means that winners funds and losers funds both experience higher levels of idiosyncratic risk. 

The explanation here is that higher idiosyncratic risk embodies a higher level of information 

uncertainty, driving investors to under-react to news on the stocks with higher idiosyncratic 

risk and in turn induce momentum.  
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5.3- Hypotheses development 

 

As mentioned previously, high-tech stocks have intensive R&D expenditures. There 

are two channels why the intensity of R&D should be related to momentum profits. They are 

dividends channel and disclosure channel. According to the dividends channel, most stocks 

with intensive R&D activities pay little dividends and more frequent zero dividend payments 

than others because they tend to invest free cash in developing new products and services 

Bagella, Becchetti, & Adriani  (2005) & Kwon and Yin (2015). Paying dividends imparts 

information from the management about the expected future earnings (Bhattacharya, 1979). 

Chordia & Shivakumar (2006) link momentom returns with firms‟ future earnings and argue 

that past losers encounter a decrease in earnings while past winners encounter an increases in 

earnings, suggesting dividend payment by past winners and past losers imparts different 

information. 

The previous argument is an extension to (Asem, 2009) who analyzed the relation 

between paying dividends and momentum. Asem (2009) compares the momentum profits in 

dividend-paying-firms and non-dividend-paying firms separately. He provides empirical 

evidence that momentum profits are higher among non-paying-dividend firms. The 

explanation here is for example, not paying dividend by high-tech stocks when the 

performance is bad may impart negative sign to investors Cuellar, Callen, & Gadea (2011) 

due to their inability to value the R&D activities, the intentional ambiguity and secrecy by 

most firms associated with developing new products and service in the current rude 

competitive environment to protect these proposals from reaching their competitors as well as 

the outcome of R&D activities is highly uncertain. This may lead investors to predict the bad 

performance to continue „persist‟ in the future and generate momentum accordingly.  

On the other side, paying dividends „low-tech stocks‟ in the face of declining earnings 

indicates that management predicts the bad performance will not continue in the future, 

which is positive information for the losers „positive and good news but does not include 

persistence and does not lead to momentum accordingly because momentum linked to future 

earnings‟. For winners, dividend maintaince does not indicate that increase in their earnings 

are persistent and, hence, it does not convey good news. The above disscusion is called 

asymmetry in the dividend news conveyed by winners and losers.  

According to the disclosure channel, the disclosure of R&D new proposals is voluntary 

and firms have strategic interest in not disclosing or supplying any details of their proposals 
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to develop new products, new services or new technologies simply because this kind of 

disclosue may advantage their rivals (Jones, 2007). Cohen, Goto, Nagata, Nelson, & Walsh 

(2002) received surveys from 1478 of 3240 managers of R&D department in US industrial 

firms. Most of the respondents believe that secrecy is an effective way of avoiding 

competitive imitations. In addition, the future earnings generated by R&D activities are 

highly uncertain and difficult to measure (Kothari, Laguerre, & Leone,  2002). Lang & 

Lundholm (1996) argue that if the analysts play an intermediary role, i.e. if they acquire 

information and disseminate it in the stock market, it is cheaper for them to acquire 

information from the firm directly than try to capture it from other sources. In this case, the 

increase in disclosure and details provided by the firms, leads to a coincident increase in the 

quality of the reports sold by analysts and an increase in the demand for these reports which 

eventually attracts more analysts to follow the stock news and speed up the flow and 

dissemination of information in the stock market. As a result, we can expect the high-tech 

stocks that deliberately conceal information to have lower levels of analysts‟ coverage. Hong, 

Lim, & Stein (2000) use the analysts‟ coverage as a proxy for the flow of information and 

attibute the momentum effect to underreaction to the firm-specif information caused by the 

gradual dissemination of such information. This is because the lower level of analysts‟ 

coverage, all things being equal, slows the flow of information to the public investors and 

hinders the news from being fully reflected by the market prices. This means that the 

momentum effect is stronger among stocks that experience a slower dissemination of 

information. Our first hypothesis can be stated as follows: 

 

H1. Ceteris paribus, high-tech stocks experience higher momentum profits than do stocks 

with low-tech.  

Once more, high-tech stocks have intensive R&D expenditures. Our definition of the 

term „high-tech stocks‟ conforms to Kwon and Yin (2015). This definition uses the intensity 

of R&D investments and the heaviness of intangible assets to classify stocks and pick out the 

high-tech stocks. R&D investments have several unique characteristics such as not being 

recognized, being difficult to value, having related future earnings that embody higher levels 

of uncertainty, being untradeable, showing no related assets in the financial statement and not 

being disclosed in financial reporting. These characteristics harm the coordination between 

managers and investors and create an information gap between them, which induces a higher 
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level of information asymmetry and inhibits the firm‟s investment decisions (Aboody & Lev, 

2000), (Smith &Watts, 1992)
13

 (Choi, Mao, & Upadhyay, 2013), (Mohd, 2005), (Barth, 

Kasznik, & McNichols, 2001) & (Alam, Liu, & Peng 2014).  

A wide strand of literature has documented the tendency of investors, analysts and 

stocks to herd. For example, Hirshleifer & Teoh (2003) mention that investors may herd in 

deciding whether to participate in the market, what securities to trade, and whether to buy or 

sell. Analysts are also prone to herding in their estimates, while managers are also prone to 

herd in their investment and finance decisions. The relation between herding behaviour and 

information asymmetry is discussed in Choi & Skiba (2015), who observe widespread 

herding in 41 countries, including the US stock market, which is the market of interest in this 

research. Choi & Skiba (2015) provide empirical evidence that higher herding behaviour can 

be found where lower information asymmetry exists. Choi & Skiba (2015) focus on 

unintentional herding, which means that the investors receive the same information at the 

same time, form the same expectations and eventually trade similarly. In the case of low-tech 

stocks, firms disclose much more information relative to the high-tech stocks, which makes 

the probability of herding is higher among such stocks because the investors receive more 

information that has higher quality about them. Avramov et al (2006) propose that the 

asymmetric volatility
14

 can be fully accounted for herding behaviour and the interaction 

between herding and contrarian investors. Their model shows that when stock prices fall, 

herding investors control the volatility of the subsequent period, since they all act in the 

direction of price change. They exacerbate the move and cause the volatility to increase. 

However, when the stock prices rise, contrarian investors control the volatility of following 

period, which reduces the volatility because they trade in the opposite direction to the price 

change. In sum, the interaction between contrarian and herding investors can fully account 

for asymmetric volatility. In the low-tech stocks that disclose more information and have 

lower information asymmetry, the probability of investors to herd is higher as explained 

above and the probability of interacting with contrarian investors to induce asymmetric 

volatility is also higher. The second hypothesis can be stated as follows: 

 

H2. Ceteris paribus, low-tech stocks experience higher asymmetric volatility than high-tech 

stocks that have intensive R&D activities. 
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 See Kwon & Yin, (2015), P.649 
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 Means the negative relation between price and its volatility comes from the changes in firm‟s financial 

leverage which leads to changes in expectations over a firm‟s risk and hence its volatility 
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Behavioural finance provides two explanations why idiosyncratic risk relates to the 

momentum effect. First, the idiosyncratic risk works as a measure to the amount of firm-

specfic information. If the underreaction to firm-specific information is the proper source for 

momentum, idiosyncratic risk should be positively related to the momentum effect and firms 

with higher idiosyncratic risk, all else being equal, could be expected to have higher 

momentum returns (Arena, Haggard, & Yan, 2008). Second, the idiosyncratic risk 

successfully limits the arbitrage process and prevent arbitrageurs from correcting the 

momentum effect (Shleifer & Vishny, 1997). In other words, the arbitrageurs do not trade on 

mispricing because arbitrage is risky. According to (Shleifer & Vishny, 1997), arbitrage risk 

consists of systematic and idiosyncratic components but the idiosyncratic risk is more 

important in limiting the arbitrage mechanism.  

Nevertheless, Lesmond, Schill, & Zhou, (2004) and McLean (2010) provide empirical 

evidence that when the transaction cost is high, it can alone, rather than idiosyncratic 

volatility, play the major role in preventing the arbitrage process from correcting the 

momentum effect, which weakens the relation between idiosyncratic risk and momentum. In 

this paper, we separate our sample into high-tech that have higher R&D expenditure versus 

low-tech stocks. Aboody & Lev (2000) argue that the R&D is the key source of information 

asymmetry which means that high-tech stocks experience a greater level of information 

asymmetry. In theory transaction costs have two main components; 1) the inventory holding 

and clearing cost which is due to costs incurred by the dealer when organizing trades and 

executing transaction; 2) the adverse selection cost, which is due to information asymmetry. 

Glosten & Harris (1988) study the US stock market and find that a greater proportion of the 

bid-ask spread as a proxy for transaction costs comes from information asymmetry. This 

finding is consistent with Callahan, Lee, & Yohn (1997) who confirm that an increase in 

information asymmetry leads to a coincident increase in transaction costs. The third 

hypothesis can be stated as follows: 

 

H3. Ceteris paribus, high-tech stocks that have higher R&D expenditure experience a weaker 

idiosyncratic risk -momentum return relation than do low-tech stocks.  
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5.4- Econometric framework 

 

The use of GARCH (1,1) family models has two advantages: first, it successfully deals 

with the conditional heteroskedasticity problem. Second, the static asset pricing models 

assume that the variances of the error terms are constant. This assumption contradicts the 

empirical evidence provided by several studies, which emphasizes the time varying nature of 

error terms Li, Brooks & Miffre (2009). In this paper, we have two models as follows: 

5.4.1- The GARCH in mean (‘GARCH-M’) model 

 

The GARCH-M model was developed by Engle, Lilien, & Robins (1987) to measure 

the relation between expected return and variance. This model can be represented as follows: 

 ( )t mt f t t t t tR R R sSMB hHML         
                      

(3) 

2 2 2

1 t 1t t      
                                                   

(4) 

where (Rmt -Rft), SMB and HML make up the Fama-French three factor model (1993). εi,t is  a 

white noise error term, 
2

t
 is conditional variance of the momentum portfolios.   is the 

lagged squared error term which measures the impact of recent news on volatility.   is the 

lagged conditional volatility which measures the impact of old news on volatility. The δζt is 

the time-varying risk premium and δ measures the relation between idiosyncratic risk and 

momentum returns. This framework is used to test the third hypothesis.  

5.4.2- The GJR –GARCH-M model 

 

According to Glosten, Jagannathan, & Runkle (1993), good news means positive return 

shocks and bad news means negative return shocks. The conditional variance of expected 

returns responds asymmetrically to this news. More precisely, the conditional variance of 

negative returns is higher than that of positive returns of the same magnitude. The GJR can 

be represented as follows: 
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, , ,( )i t i i mt f t i t i t i i t i tR R R s SMB h HML                                          (1) 

,

2 2 2 2

, 1 , 1 , 1 , 1i t i i i t i i t i t i i tI                                                 (2) 

where Ri,t is the return on momentum portfolio. (Rmt -Rft), SMB and HML are the Fama-

French three factor model (1993). εi,t is the white noise error term. 
,

2

i t
 is conditional variance 

of momentum portfolios. i is the lagged squared error term which measures the impact of 

recent news on volatility. i is the measure of the asymmetric response of volatility to bad 

and good news (commonly attributed to the leverage effect). Ii,t-1 =1 if 
2

, 1i t  < 0 (bad news, 

also called negative return shocks, and Ii,t-1= 0 otherwise, i is the lagged conditional 

volatility which measures the impact of old news on volatility. The δi ζi,t is the time-varying 

risk premium. This framework is used to test the second hypothesis. The coefficients of the 

conditional volatility refer to the impact and speed of the momentum portfolios respond to 

good and bad news. 

5.5- Data and methodology 

 

Monthly data for all stocks listed on the Russell 3000 index was collected and 

winsorized at 2%. To avoid survivorship bias, the list of companies was updated every month 

to include the delisted companies. All the poor representation stocks that had less than 30 

observations were deleted.  Following Kwon and Yin (2015) we classified all sample stocks    

into high-tech versus low-tech using the SIC 3-digit code and defined the high-tech stocks as 

stocks listed in the computer, electronic, pharmaceutical, technology and telecommunications 

industries. The technology stocks, as specified by CNNFN.com, are also included. These 

stocks are tech blue chips, cable, chips, computer/peripherals, internet, networking, satellite, 

software, tech retail, telecommunication and wireless, while the low-tech stocks include 

everything else. The pharmaceutical industry was added to the high-tech stocks because it 

shares the same characteristics especially heavy R&D expenditures and higher level of 

unreported assets. As a result, 2086 stocks of high-tech and 3709 of low-tech are considered. 

Table 5.2 presents a full description of each subsample.  



 

98 
 

The methodology of Jagadeesh & Titman (1993) was followed to construct equally 

weighted portfolios using two breakpoints 10% and 30%. This means that the securities in the 

bottom 10 (30) percent are positioned in the loser portfolio, while the securities in the top 10 

(30) percent are positioned in the winner portfolio. For the robustness checks, the 30% 

breakpoint was chosen following Chui, Titman, & Wei (2003). The main reason why we 

implement robustness check is to ensure regression estimates are insensitive to different 

market conditions and are insensitive to different assumptions. At the end of each month all 

stocks in the high-tech and low-tech samples were ranked in ascending order based on their 

past J-months cumulative returns with dividends (J= 3, 6, 12 months). Each of these 

portfolios is held for K-months (K=3, 6, 12 months). The momentum portfolio was measured 

as a J-K portfolio. This gaves a total of 18 portfolios (nine for the high-tech stocks and nine 

for the low-tech stocks). We skipped one -month between the portfolio formation period and 

the holding period to relieve the effect of nonsynchronous trading and bid-ask spread, leading 

to greater strength in our test. We constructed an overlapping portfolio that consisted of the 

winner (loser) portfolios in the previous K months. The returns on the winner/loser portfolios 

were the simple average of the returns on the K winner (loser) portfolios. For example, if we 

had been going to form a portfolio with 6-months holding period, we would have computed 

the simple average of the returns on the six winner (loser) portfolios. In other words, it is 

August return on the winner (loser) portfolio is the simple average of the August returns on 

the winner (loser) portfolios that constructed from January to June and July that was skipped. 

The momentum portfolio („zero-cost‟) in this context equals winners-minus-losers portfolio. 

All momentum portfolios were regressed on the three-factor model of Fama-French (1993), 

which is described as model 1. Table 5.1 provides detailed descriptions of all the dependent 

and independent factors.  

<<Table 5.1 about here>> 

 

5.6- Empirical analysis 

5.6.1- Summary statistics 

 

Table 5.2 provides the contribution of each industry in the high-tech stocks and low-

tech stocks determined by the SIC three digits for high-tech stocks and the Fama-French 

industrial classification for low-tech stocks. The computer and data processing industry is the 
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largest industry among the high-tech stocks, which represents 21.43%. The second largest 

industry is the pharmaceutical and represents 15%. They together make up one-third of the 

high-tech stocks. In the other category, construction materials and banks dominate 41.5% of 

the low-tech stocks.  

 

<<Table 5.2 about here>> 

 

Table 5.7 compares the descriptive statistics between the high-tech and low-tech stocks 

for each 6-6 momentum portfolio including price, institutional ownership, Beta, EPS, 

leverage, turnover and size. We did not notice any difference between the high-tech stocks 

and the low-tech stocks. For both subsamples, there is a U-shaped relationship between 

momentum returns and both of Beta and Turnover. However, the relationship between 

momentum returns and each of Price, Institutional Ownership, EPS, Leverage and Size 

formed an inverted U-shape. This means that the loser portfolio has lower Price, Institutional 

Ownership, EPS, Leverage and Size but has higher Beta and Turnover than the winner 

portfolio in both samples. Nevertheless, on average the high-tech portfolios had lower Price, 

lower Institutional Ownership, much lower EPS, much lower Leverage, and lower Size than 

the low-tech stocks but they had higher Beta and Turnover than the low-tech stocks. The t-

statistics in Panel B shows significant differences between the high-tech and low-tech for all 

variables and portfolios.  

 

<<Table 5.7 about here>> 

 

The noticeably high Leverage measured by debt to equity can be attributed to the 

finance sector since both categories have some financial companies; the miscellaneous 

investing in high-tech subsample represents 13% of the sample and the finance sector, 

including banks, insurance, financial trading and real estate represent about 25% of the low-

tech R&D sample.  
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5.6.2- Momentum  

 

Table 5.8 and 5.9 compare the summary statistics between the high-tech stocks and 

low-tech stocks including mean returns, standard deviation and reward-to-risk for each 

momentum portfolios. The rows represent the ranking periods (J=3, 6 and 12 months) and the 

columns represent the holding periods (K=3, 6 and 12 months). Our robust findings for the 

high-tech stocks, using the breakpoints 10% and 30%, challenge the rational expectation 

theory, since the portfolios with higher risk do not provide higher returns. For example, the 6-

6 strategy provides the highest risk-adjusted returns 0.205 and 0.169 for the breakpoints 10% 

and 30% respectively, while they do not embody the highest risk. Moreover, the 3-3 strategy 

is the lowest volatile strategy, but it does not provide the lowest risk-adjusted returns using 

the 10% and 30% breakpoints. For low-tech stocks, the finding provides strong support for 

inconsistency with the rational expectation theory. For example, the 12-12 strategy using the 

breakpoints 10% and 30%, is the highest volatile strategy, but it does provide the lowest risk-

adjusted returns for the two breakpoints.  

 

<<Table 5.8 about here>> 

<<Table 5.9 about here>> 

 

Panel D in Tables 5.8 and 5.9 provides t-statistics that are needed to test our first 

hypothesis. To facilitate the exposition, we can say that four strategies show larger significant 

momentum profits in high-tech stocks than low-tech stocks do, namely, the 3-3 strategy, the 

3-6 strategy, the 6-3 strategy and the 6-6 strategy, since the t-statistics show significant 

difference between them at 5% significance level. This finding is robust to different 

breakpoints. Another important support for the first hypothesis comes from the fact that the 

low-tech momentum portfolios never outperform the high-tech ones. In sum, we accept the 

first hypothesis for the above mentioned strategies and reject it otherwise. This finding 

appears consistent with that of (Wang, 1993) who develops a model of asset pricing under 

information asymmetry. In his model, the economy has two kinds of investors, informed and 

uninformed investors. He assumes that all investors know current dividends and stock prices, 

but informed investors („insiders in our case‟) have certain expectations of the growth rate of 
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future dividends and uninformed ones („outsiders in our case‟) do not. It is known that the 

increase in stock prices depends on the growth rate of dividends. As a result, any change in 

stock prices can be attributed to the growth rate of dividends. If we assume that the 

uninformed investors build rational expectation about the state of the economy using prices 

and dividends, then the stocks prices should be considered as true and fundamental values 

because the market has frictions and is incomplete. Under the incomplete market 

assumptions, investors face different information which leads them to reach different return 

expectations. Therefore, the less informed investors, the outsiders in our case who do not 

have sufficient information on future dividends and prices, base their trading on realized 

returns only to know about the state of the economy, which increases the reliance of  their 

expected returns on past returns and creates higher momentum for high-tech stocks compared 

to low-tech stocks. Therefore, it seems plausible for investors to follow the opposite of 

momentum strategy by adopting a long position in the loser portfolio and a short position in 

the winner portfolio for low-tech stocks 

5.6.3 Asymmetric volatility  

 

Consistently with the GARCH family models, the coefficients of the variance equation 

should be positive, except for the asymmetric coefficient in the GJR framework. We check 

this condition for all portfolios and it satisfied all of them except the 3-6 strategy in the high-

tech stocks, which has a negative intercept. Fortunately, however, it is insignificant.  

Table 5.10 and 5.11 report estimates of Fama-French models (1) and (2) that include a 

GJR-GARCH-M term. To facilitate the exposition, the average estimates across the ranking 

and holding periods of the coefficients are discussed. The coefficients of   and   In system 

(1) and (2) associate with the lagged square error term and, calibrate the effect of recent news 

on the volatility of momentum returns. For the high-tech stocks, using the 10% and 30% 

breakpoints the average  + /2 of the Fama-French model equals 0.597 and 0.643 

respectively, and 0.312 and 0.338 for low-tech stocks respectively. From this discussion, we 

found robust and valuable conclusions. The first is that the impact of recent news on the 

volatility of high-tech stocks is greater than this impact for low-tech stocks. This is consistent 

with the information asymmetry view since the flow of information in the case of higher 

levels of information asymmetry creates higher levels of dispersion of belief and leads to a 

higher level of volatility (Shalen, 1993). 
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<<Table 5.10 about here>> 

<<Table 5.11 about here>> 

 

The coefficient   in systems (1) and (2) reflects the effect of old news („lagged 

conditional variance‟) on the volatility of momentum returns. For high-tech stocks, the 

average   coefficients are 0.430 and 0.378 using 10% and 30% respectively. For low-tech 

stock, the average   coefficients are 0.554 and 0.416 using 10% and 30% respectively. 

The above discussion reaches the robust conclusion that the impact of old news on volatility 

for the high-tech stocks is smaller than that impact for the low-tech stocks. This result is 

robust to different breakpoints.  

In testing our second hypotheses, the empirical evidence provides a reasonably robust 

support. For high-tech stocks, the asymmetric coefficients are insignificant at 5% level for the 

whole nine momentum portfolios using the 10% breakpoint, while 7 out of 9 momentum 

portfolios show insignificant asymmetric coefficients 𝜂 using 30% breakpoint at 5% 

significance level. The insignificant coefficients indicate that the variance responds 

symmetrically to good and bad news, indicating high-tech stocks, which are characterized by 

higher information asymmetry, leading the investor to lack the required information to herd 

and to interact with contrarian investors to induce asymmetric volatility. This symmetric 

volatility is robust to different momentum strategies and to different breakpoints. However, 

for the low-tech stocks, the asymmetric coefficient 𝜂 in 7 out of 9 momentum portfolios is 

significant and 6 out of 9 momentum portfolios have significant asymmetric coefficients 

𝜂 at the 5% significance level using 10% and 30% breakpoints respectively. The 

significant coefficient means that the impact of bad news (‘  g t v    tu   s  cks’) on 

volatility is greater than the impact of good news (‘  s t v    tu   s  cks’), indicating 

that the non-intensive firms disclose more information, which helps the irrational 

investors to herd and to interact with contrarian investors to induce asymmetric 

volatility. 

Finally, the last row in each panel in Tables 5.10 and 5.11 presents the persistence 

in volatility proxied by 𝛾+ 𝜂/2+  . The above tables present robust evidence that the 
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volatility of high-tech stocks is more persistent than that of low-tech stocks. For the high-tech 

stocks, the average 𝛾+ 𝜂/2+   is 1.026 and 1.013, respectively, using 10% and 30% 

breakpoints. For the low-tech stocks, however, it is 0.886 and 0.754 respectively. In theory, 

volatility persistence means that shocks of current conditional variance have a significant 

impact on the variance of the next periods and this persistence is attributed to the persistence 

in the information flow proxied by trading volume. The explanation here is that when new 

information reaches the stock market, investors react by trading until stock prices attain a 

equilibrium point. Investors, then, form new expectations concerning the new equilibrium 

point (Andersen, 1996). Therefore, the more persistent volatility for the high-tech stocks is 

due to the higher ratio of turnover based on trading volume as shown in Table 5.7 as a proxy 

for information flow since the turnover for the high-tech stocks is 0.009 compared with 0.007 

for low-tech stocks. Table 5.7 shows that high-tech stocks experience higher levels of 

systematic risk measured by beta and smaller size. This conclusion is consistent with 

Koutmos, Lee, & Theodossiou (1994) who confirm that volatility persistence is stronger 

among stocks with higher systematic risk and among stocks with smaller size.  

5.6.4- Idiosyncratic risk -momentum return relation 

 

Tables 5.10 and 5.11 also present the impact of conditional volatility on return through

 coefficients that measure the idiosyncratic risk -momentum return relationship. For the 

high-tech stocks, 8 out of 9 momentum strategies show an insignificant relation between 

idiosyncratic risk and momentum returns at 5% significance level using the 10% breakpoint 

and 8 out of 9  coefficients are insignificant using the 30% breakpoint, which obviously 

indicates that there is no idiosyncratic risk -momentum return relation at 5% significance 

level. These results mean that idiosyncratic risk does not limit arbitrage among momentum 

stocks, while momentum is induced as a consequence of mispricing that continues due to 

limited arbitrage; and that the transaction cost is high enough to prevent the arbitrageurs from 

correcting the momentum effect.  

At the same time, for the low-tech stocks 6 out of 9 show a significant and negative 

idiosyncratic risk -momentum return relation using the 10% breakpoint and 9 out of 9 are 

significant and negative using the 30% breakpoint at 5% significance level. This finding 

strongly supports our third hypothesis that the idiosyncratic risk -momentum return for the 

high-tech stocks is weaker than that for the low-tech stocks and upholds the role of high 
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transaction cost rather than idiosyncratic risk in limiting arbitrage (Lesmond, Schill, & Zhou, 

2004).  

Since the negative relation between idiosynctratic risk and momentum return denies the 

standard finance theory, Another robustness check is ran using GARCH-M model to provide 

additional support for this negative relation using the same breakpoints 10% and 30%. The 

finding of GARCH-M supports the previous finding of GJR-GARCH-M which indicates the 

first conclusion is robust to the simplified GARCH-M model in Tables 5.12 and 5.13. For the 

high-tech stocks using GARCH-M, all nine coefficients are insignificant using 10% and 

30% breakpoints at 5% significance level. However, 8 out 9 of the  coefficients of the low-

tech stocks are significant and negative using the 10% and 30% breakpoints at 10% 

significance level.  Tables 5.8 and 5.9 show that most low-tech stocks generate losses and the 

corresponding t-statistics are significant for the longest holding period. This finding is 

consistent with De Bondt & Thaler (1985) who document the reversal pattern on the long -

term. This finding suggests that the transaction cost for low-tech stocks is too small to limit 

arbitrage, due to lower information asymmetry. Therefore, the idiosyncratic risk is the key 

player in limiting arbitrage and inducing reversal in returns. 

In contrast to the traditional asset pricing theory and risk-return trade-off, the negative 

relation between time-varying idiosyncratic risk and momentum returns means investors do 

not require greater risk premium for bearing higher risk and also means momentum returns 

are greater among stocks with low idiosyncratic volatility. Instead, in the absence of R&D, 

investors who bear higher idiosyncratic risk are penalized with lower momentum returns. 

This is consistent with Glosten, Jagannathan, & Runkle (1993) who confirm that this negative 

sign is possible in special circumstances such as in times of  peak interest rate on savings and 

scarce investment opportunities are available. From a behavioural perspective, this negative 

relation between predicted volatility and the corresponding risk premium is consistent with 

Black & McMillan (2006) and Nam, Pyun, & Kim (2003) who attribute this to investors‟ 

overreaction to certain market news, especially the negative ones („bad news‟). This news 

increases predicted volatility which results in higher required rate of return and lower current 

stock prices. The explanation here is, some investors, who believe in mean reversion, become 

more optimistic about the future after negative return shocks, accepting lower risk premium.   

While McLean (2010) confirms that transaction costs limit arbitrage for the smaller 

mispricing and idiosyncratic risk limits the arbitrage among the reversal stocks for the greater 
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mispricing, we find that the high-tech stocks that experience higher transcation costs due to 

higher information asymmetry, transaction costs limit the arbitrage among momentum stocks, 

while for the low-tech stocks that experience lower transaction cost due to lower information 

asymmetry, idiosyncratic risk limits the arbitrage among reversal stocks. 

 5.6.5- The Performance of Fama-French model 

 

Li, Miffre, Brooks, & O‟Sullivan (2008) contributed to the literature through 

demonstrating that momentum profits can be explained by a GJR-GARCH-M without 

following Lesmond et al. (2004)‟s methodology based on transaction costs since all 

coefficients were insignificant in the framework of GJR-GARCH-M. In our result, Tables 

5.10 and 5.12 show the following: 

For the high-tech stocks, the Fama-French with GJR-GARCH-M terms can moderately 

describe the momentum returns since Table 5.10 shows that 5 out of 9 momentum portfolios 

have insignificant  coefficients using the 10% breakpoint and Table 5.11 shows that 6 out 

of 9 have insignificant  coefficients using the 30% breakpoint at 5% significance level. 

Using Fama-French with GARCH-M in Tables 5.12 and 5.13 provides robust support for the 

previous finding, since Table 5.12 shows that 8 out of 9  coefficients are insignificant using 

the 10% breakpoint and all 9  coefficients are insignificant using the 30% breakpoint at 5% 

significance level.  

For the low-tech stocks, the Fama-French with GJR-GARCH-M terms acts very poorly in 

describing momentum returns. Table 5.10 shows that only 2 out 9  coefficient are 

insignificant using the 10% breakpoint and 1 out 9  coefficients is insignicant using the 

30% breakpoint in Table 5.11 at 5% significance level. Using Fama-French with GARCH-M 

term provides a robust support, since only 2 out 9  coefficients are insignificant using the 

10% breakpoint at 10% significance level in Table 5.12 likewise in Table 5.13 with the 30% 

breakpoint at 10% significance level.  

 

<<Table 5.12 about here>> 

<<Table 5.13 about here>> 
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From the analysis above, we can conclude that there is robust evidence that Fama-

French with its conditional variance term can apparently better explain momentum returns for 

high-tech stocks. Though there is no relation between idiosyncratic risk and momentum, the 

model performs better at explaining momentum returns. This confirms the third hypothesis 

and means that something else („transaction cost‟) other than idiosyncratic risk limits the 

arbitrage and induce momentum.  

5.7- Conclusion   

 

This research focused on investigating the systematic disagreements in momentum, 

asymmetric volatility and the idiosyncratic risk-momentum return relation between high-tech 

stocks and low-tech stocks. The SIC code was used to split the whole dataset into two 

samples based on the intensity of R&D expenditures; and the Fama-French with GJR-

GARCH-M term was also used to test our hypotheses. We find that; (1) the high-tech stocks, 

relative to low-tech stocks, show greater momentum profits in all portfolios that have a 

ranking or holding period of less than 12 months and an insignificant difference between the 

two samples otherwise; (2) the high-tech stock show symmetric response to good and bad 

news while the low-tech stocks show asymmetric response to good and bad news; (3) for the 

high-tech stocks there was no idiosyncratic risk- momentum return relation, while this 

relation was significant and negative for the low-tech stocks. Our results are robust to 

different breakpoints; (4) there is robust evidence that the ability of Fama-French with 

conditional variance term to explain momentum returns is better for high-tech stocks than to 

low-tech stocks.  

These conclusions have many implications: (1) the investor should increase the 

proportion of high-tech stocks when constructing the momentum portfolios at the expense of 

low-tech stocks to generate greater momentum profits; (2) for the high-tech stocks, the 

asymmetric coefficients are econmically and statistcally insignificant, which means that the 

variance responds similarly to the positive and negative shocks (good and bad news), while 

for the low-tech stocks, the asymmetric coefficients are economically and statistcally 

significant, which means that the variance responds to a greater degree in negative returns 

shock (bad news) than in positive returns shocks (good news); (3) the finding on idiosyncratic 

risk-momentum return relation indicates that, in the case of high-tech stocks, the momentum 

returns are compensation for market friction and transcation costs are the key player in 

limiting the arbitrage and persisting momentum, while with low-tech stocks that experience 
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lower transaction costs due to lower information asymmetry, idiosyncratic risk limits the 

arbitrage and persists reversal in returns. We believe that the next steps in this research 

should be to check the robustness of our findings either to data from the emerging markets or 

to higher frequency data, such as daily and weekly data or to the other aymmetric conditional 

variance models, such as EGARCH model.  
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Tables of results 

Table 5.1. Description of the independent variables 

 

Variable Definition 

 Ri,t   Is the return on momentum portfolio. 

 Winner    Includes the stocks in the top 10% (30%) based on past 

J-months cumulative returns with dividends. 

 Loser    Includes the stocks in the bottom 10% (30%) based on 

past J-months cumulative returns with dividends. 

 Momentum    Is a zero-cost portfolio and measured by winners‟ 

minus losers‟ portfolio. 

 ( )mt f tR R  The excess market returns.  

 SMB (small minus big)   The returns to small firms less the returns to large 

firms. We measure a firm‟s size by the market value 

of equity at the end of the fiscal year.  

 HML (high minus low)   The returns to high book-to-market firms less The 

returns to low book-to-market firms. We measure the 

book to market ratio as the fiscal year-end book value 

of common equity over the calendar year-end market 

equity (December). 
 

,i t    White noise error term. 

 
,

2

i t
    Conditional variance of the momentum portfolios. 

 
i   Lagged squared error term measuring the impact of 

recent news on volatility. 

 
i   Measure of the asymmetric response of volatility to 

bad and good news (commonly attributed to the 

leverage effect). 

 
i   Lagged conditional volatility measureing the impact of 

old news on volatility. 

 
t   Time-varying risk premium. 
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Table 5.2. Summarizes the proportion of each industry in the high-tech stocks versus low-tech stocks 

High-tech stocks 

 

Low-tech stocks 

  3-Digits SIC 

code 

  Industry   Number of 

firms per 

industry  

  Percentage 

  (%) 

  4-Digits SIC code   Industry   Number of firms 

per industry 

  Percentage 

  (%) 

  272   Periodicals 8 0.38  0100-0799 Agriculture 16   0.40 

  283   Drugs 318 15.20  1000-1119 

 1400-1499 

Mining 33 0.90 

  355   Special industry  

  Machinery 

26 1.20  1200-1299 Coal 17 0.40 

  357   Computer and office 

  equipment 

99 4.75  1300-1389   Petroleum and Natural gas 204   5.50 

  361   Electronic distribution  

  Equipment  

2 0.09  1500-1799 Construction 63 1.70 

  362 Electronic industrial 

apparatus  

16 0.70  2000-2099 Food, Soda and Beer   94 2.50 

  363   Household appliances 8 0.38  2100-2199 Tobacco 9 0.20 

  364   Electronic lighting and 

writing equipment 

15 0.72  2200-2399 Textiles 48 1.30 

  365   Household audio and video 

equipment 

8 0.38  2400-3996   Construction materials and steel 

works  

931 25.10 

  366   Communication equipment 111 5.32  4000-4789 Transportation 145 3.90 

  367   Electronic components and 

accessories 

213 10.21  4822-4839 Telegraph, Radio-TV broadcaster 

and communication providers 

71 1.90 

  369   Miscellaneous Electronic 

components and supplies 

28 1.34  4900-4991 Utilities, and power producer 213 5.70 
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Table 5.2. (continued) 

High-tech stocks Low-tech stocks 

 

  3-Digit 

SIC 

  Code 

  Industry   Number of firms per 

industry 

  Percentage 

  (%) 

  4-Digits SIC 

code 

  Industry   Number of firms per 

industry 

  Percentage 

  (%) 

  381  Search and navigation equipment 19 0.91  5000-5199 Wholesale 147 4.00 

  382 Measuring and controlling   

devices 

96 4.60  5200-5999 Retail 326 8.80 

  386    Photographic equipment and  

   supplies 

8 0.38  6000-6199 Banks 610 16.40 

  481 Telephone Communication 122 5.85  6200-6299 

 6700-6799 

 

  Financial trading  53   1.40 

  484 Cable and other pay TV services 33 1.60  6300-6411 

 

Insurance 231 6.20 

  573 Radio TV and Electronic stores 19 0.91  6500-6611 

 

Real estate 35 0.90 

  621 Security brokers and dealers 51 2.44  7020-8999   Personal and Business 

services 

463 12.50 

  679 Miscellaneous investing 274 13.13    

  733 

 

Mailing, reception and 

stenographic 

5 0.24 

  737 Computer and data processing  447 21.43 

  738 Miscellaneous business services 112 5.37 

  873 Research and testing services 47 2.25 

  Total   2086   99.79 Total                           3709 99.7 
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Table 5.3. Unit root test (Augmented Dickey-Fuller) Breakpoint 10% 

The regression is used to estimate Augmented Dickey-Fuller statistics. The regression includes up to 12 lags of 

the dependent variable with a constant and no trend. It is obvious that all ADF estimates are more negative than 

the critical value. This indicates that the null hypothesis H0: series contains a unit root should be rejected. This 

means the time series in the table are stationary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
High-tech stocks Low-tech stocks 

 

Holding period 3 

months 

Holding 

period 6 

months 

Holding 

period 12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding period 

12 

months 

 Panel A: Ranking period 3 months 

ADF 

 

-4.280 -3.796 -4.822 -5.087 -4.609 -4.008 

% Critical value 

 

-3.469 -3.470 -3.472 -3.469 -3.470 -3.472 

Panel B: Ranking period 6 months 

 

ADF  

 

-3.525 -3.626 -5.001 -4.079 -3.744 -3.572 

% Critical value 

 

-3.470 -3.471 -3.473 -3.470 -3.471 -3.473 

Panel C: Ranking period 12 months 

 

ADF 

 

-3.509 -4.556 -4.987 -3.810 -4.031 -3.855 

% Critical value 

 

-3.472 -3.473 -3.475 -3.472 -3.473 

 

-3.475 

Panel D: Fama-French Factors 

 

  

 

 
High-tech stocks Low-tech stocks 

 

 
(Rm-Rf) SMB HML (Rm-Rf) SMB HML 

ADF 

 

-4.030 -4.746 -4.043 -4.030 -5.409 -3.814 

% Critical value 

 

-3.467 -3.467 -3.467 -3.467 -3.467 -3.467 
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Table 5.4. Unit root test (Augmented Dickey-Fuller) Breakpoint 30% 

The regression is used to estimate Augmented Dickey-Fuller statistics. The regression includes up to 12 lags of 

the dependent variable with a constant and no trend. It is obvious that all ADF estimates are more negative than 

the critical value. This indicates that the null hypothesis H0: series contains a unit root should be rejected. This 

means the time series in the table are stationary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
High-tech stocks   Low-tech stocks 

 

Holding period 3 

months 

Holding 

period 6 

months 

Holding 

period 12 

months 

Holding 

period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

 Panel A: Ranking period 3 months 

 

ADF 

 

-5.023 -4.120 -4.723 -4.495 -4.298 -3.660 

% Critical value 

 

-3.469 -3.470 -3.472 -3.469 -3.470 -3.472 

Panel B: Ranking period 6 months 

 

ADF  

 

-3.916 -3.778 -4.757 -4.380 -3.897 -3.531 

% Critical value 

 

-3.470 -3.471 -3.473 -3.470 -3.471 -3.473 

Panel C: Ranking period 12 months 

 

ADF 

 

-3.777 -4.889 -4.572 -3.833 -3.775 -3.639 

% Critical value 

 

-3.472 -3.473 -3.475 -3.472 -3.473 -3.473 

Panel D: Fama-French Factors 

 

  

 

 
High-tech stocks Low-tech stocks 

 

 
(Rm-Rf) SMB HML (Rm-Rf) SMB HML 

ADF 

 

-4.030 -4.746 -4.043 -4.030 -5.409 -3.814 

% Critical 

value 

 

-3.467 -3.467 -3.467 -3.467 -3.467 -3.467 
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Table 5.5. ARCH effect „10% Breakpoint‟ 

Before running a GARCH-family model, it is plausible to check whether ARCH exists in the residuals or not by 

employing Engle (1982) test for ARCH effect. The presence of ARCH helps justify a GARCH-family model. P-

values here indicate that all test statistics are significant at 1%, meaning that ARCH exists in all momentum 

returns in both subsamples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
High-tech stocks    Low-tech stocks 

 

Holding period 

3 

months 

Holding 

period 6 

months 

Holding 

period 12 

months 

Holding 

period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

 Panel A: Ranking period 3 months 

 

Chi2 

 

45.010 36.948 41.238 59.135 98.489 137.941 

P-Value 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 Panel B: Ranking period 6 months 

 

Chi2 

 

60.609 118.515 99.505 105.136 123.858 136.470 

P-Value 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Panel C: Ranking period 12 months 

 

Chi2 

 

61.273 109.938 99.099 87.141 118.337 106.318 

P-Value 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
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Table 5.6. ARCH effect „30% Breakpoint‟ 

Before running a GARCH-family model, it is plausible to check whether ARCH exists in the residuals or not by 

employing Engle (1982) test for ARCH effect. The presence of ARCH helps justify a GARCH-family model. P-

values here indicate that all test statistics are significant at 1%, meaning that ARCH exists in all momentum 

returns in both subsamples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
High-tech stocks    Low-tech stocks 

 

Holding period 3 

months 

Holding 

period 6 

months 

Holding 

period 12 

months 

Holding 

period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

 Panel A: Ranking period 3 months 

 

Chi2 

 

25.927 39.720 71.674 69.522 126.990 174.258 

P-Value 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 Panel B: Ranking period 6 months 

 

Chi2 

 

68.324 93.349 115.380 118.479 139.339 162.204 

P-Value 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Panel C: Ranking period 12 months 

 

Chi2 

 

88.480 127.754 106.696 110.825 133.583 152.618 

P-Value 

 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
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Table 5.7. portfolios characteristics based on 6-6 momentum strategy using 10% breakpoint 

 
 High-tech stocks 

 

Low-tech stocks 

Portfolios Price INS Beta EPS LEV TUR Size 

(billions) 

Price 

 

INS Beta EPS LEV TUR Size 

(billions) 

 P1  16.061 

 

 50.834  1.390  -0.279  1.491  0.013  1.430  24.034  72.568  1.119  1.140  2.848  0.010  2.670 

 P2 

 

 20.385  58.433  1.292  0.231  1.422  0.010  2.860  28.069  73.021  1.017  1.648  3.075  0.008  4.020 

 P3 
 

 23.016  61.568  1.209  0.516  1.476  0.009  3.750  30.203  72.433  0.980  1.846  3.263  0.007  4.760 

 P4  24.991 

 

 64.044  1.163  0.701  1.606  0.009  4.460  31.716  72.226  0.951  1.957  3.411  0.006  5.190 

 P5 

 

 27.119  65.222  1.118  0.814  1.671  0.008  4.990  32.972  71.892  0.936  2.022  3.487  0.006  5.470 

 P6 
 

 28.529  66.913  1.094  0.877  1.738  0.008  5.400  33.184  72.743  0.935  2.042  3.511  0.006  5.630 

 P7  29.346 

 

 67.186  1.085  0.930  1.730  0.008  5.600  33.556  72.988  0.933  2.029  3.485  0.006  5.550 

 P8 

 

 30.052  66.712  1.098  0.875  1.710  0.008  5.390  34.176  73.768  0.956  2.001  3.365  0.007  5.550 

 P9 
 

 29.880  65.382  1.179  0.700  1.656  0.009  4.920  33.854  75.019  0.985  1.887  3.214  0.007  5.090 

 P10 
 

 28.818  61.632  1.329  0.270  1.558  0.012  3.350  33.572  76.578  1.085  1.557  2.924  0.009  4.010 

Average 

 

 25.820  62.793  1.196  0.563  1.606  0.009  4.215  31.534  73.324  0.990  1.813  3.258  0.007  4.794 

 

This table shows several characteristics of ten momentum portfolios that are formed following Jagadeesh and 

Titman (1993) and based on six-month returns and held for six months. P1 through P10 represent momentum 

portfolios, with P1 containing past losers and P10 containing past winners. Price is the average monthly closing 

prices. INS denotes institutional ownership and proxied by the average percentage ratio of free traded shares held 

by institutions to the number of float shares outstanding. BETA is the average systematic risk and was calculated by 

the CAPM for the past two years of weekly data using the S&P 500 in addition. EPS is computed as net income 

available to common shareholders divided by the basic weighted average shares outstanding and the most recent 12 

months (trailing 12 months) are summed. LEV denotes leverage and is the average ratio of debt to equity. TUR 

denotes turnover and is the average ratio of a shares monthly trading volume divided by the monthly shares 

outstanding. Size is the average monthly market capitalization.  
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Table 5.7. (Continued)  

Panel B: t-statistics for each portfolio and each factor 

 
  
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

(*) Significant at 10%, otherwise all is either significant at 5% or insignificant in two tailed tests. 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Portfolio  Price  Institutional  Beta  EPS  Turnover  Leverage  Size 

 (in billions) 

 P1  -37.044 

 

 -49.771  30.153  -78.443  24.540  -42.717  -23.473 

 P2 

 

 -34.989  -33.966  34.686  -80.949  28.890  -53.057  -14.974 

 P3 

 

 -31.721  -25.701  30.849  -76.881  29.306  -57.141  -11.303 

 P4  -28.955 

 

 -19.600  29.847  -72.639  26.615  -56.044  -7.506 

 P5 

 

 -24.268  -16.045  26.565  -68.520  25.964  -55.803  -4.688 

 P6 

 

 -19.159  -14.100  23.466  -66.485  23.619  -53.713  -2.205 

 P7  -17.274 

 

 -14.019  22.561  -63.464  21.088  -53.507  0.481 

 P8 

 

 -16.528  -16.886  20.767  -63.750  21.356  -51.048  -1.57 

 P9 

 

 -15.766  -22.646  26.842  -66.995  21.824  -48.191  -1.705* 

 P10 

 

 -18.183  -34.141  29.627  -69.285  25.857  -42.149  -8.846 
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Table 5.8. Summary statistics of momentum portfolios based on 10% breakpoint 

 
Momentum is a portfolio that buys the winner portfolio (top 10% of stocks) and sells the loser portfolio (bottom 

10% of stocks) short. Returns are measured as proportions rather than percentages. Reward-to-risk ratio is the 

ratio of monthly mean to the monthly standard deviation. The t-statistics in parentheses are for the significance of 

the mean. (*) indicates 10% significant level and we use 5% otherwise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
High-tech stocks Low-tech stocks 

 
Holding period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding 

period 12 

months 

 Panel A: Ranking period 3 months 

 

Mean 0.009 

(1.67)* 

0.017 

(1.44) 

-0.007 

(-2.31) 

-0.007 

(-0.67) 

-0.007 

(-1.20) 

-0.015 

(-2.05) 

St. Deviation 

 

0.081 0.123 0.178 0.063 0.097 0.122 

Reward-to-risk 0.111 0.138 -0.039 -0.111 

 

-0.072 -0.123 

 Panel B: Ranking period 6 months 

 

Mean 

 

0.017 

(2.53) 

0.026 

(2.85) 

-0.018 

(-1.37) 

-0.005 

(-1.35) 

-0.007 

(-1.05) 

-0.023 

(-2.59) 

St. Deviation 

 

0.097 0.127 0.197 0.066 0.108 0.136 

Reward-to-risk 0.175 0.205 -0.091 -0.076 -0.065 

 

-0.169 

Panel C: Ranking period 12 months 

 

Mean 0.010 

(1.37) 

-0.001 

(-0.10) 

-0.055 

(-3.69) 

-0.006 

(-1.30) 

-0.016 

(-2.20) 

-0.047 

(-4.23) 

St. Deviation 

 

0.105 0.150 0.219 0.076 0.115 

 

0.167 

Reward-to-risk 0.095 -0.007 -0.251 -0.079 -0.139 

 

-0.281 

Panel D: t-statistics between the two groups 

 

 

 
Holding Period 3 months  Holding Period 6 months Holding Period 12 months 

Ranking Period 

3 months 

 

2.159 2.553 0.637 

Ranking Period 

6 months 

 

2.840 2.863 0.389 

Ranking Period 

12 months 

 

1.876 1.301 -0.385 
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Table 5.9. Summary statistics of momentum portfolios: Robustness analysis based on 30% breakpoint 

 
Momentum is a portfolio that buys the winner portfolio (top 30% of stocks) and sells the loser portfolio (bottom 

30% of stocks) short. Returns are measured as proportions rather than percentages. Reward-to-risk ratio is the 

ratio of monthly mean to the monthly standard deviation. The t statistics in parentheses are for the significance of 

the mean. We use 5% significance level. 

 

 
 
 
 
 
 
 
 
 
 
 

 

 
High-tech stocks Low-tech stocks  

 
Holding period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding 

period 12 

months 

 Panel A: Ranking period 3 months 

 

Mean 0.001 

(0.35) 

0.005 

(1.27) 

-0.003 

(-0.50) 

-0.007 

(-3.46) 

-0.008 

(-2.86) 

-0.014 

(-3.26) 

St. Deviation 

 

0.049 0.067 0.107 0.030 0.046 0.063 

Reward-to-risk 0.020 0.075 

 

-0.028 -0.233 -0.174 -0.222 

 Panel B: Ranking period 6 months 

 

Mean 

 

0.007 

(1.89)* 

0.012 

(2.37) 

-0.006 

(-0.96) 

-0.005 

(-2.33) 

-0.005 

(-1.56) 

-0.014 

(-3.00) 

St. Deviation 

 

0.056 0.071 0.112 0.031 0.052 0.071 

Reward-to-risk 0.125 0.169 -0.053 

 

-0.129 -0.096 -0.197 

Panel C: Ranking period 12 months 

 

Mean 0.004 

(0.98) 

-0.000 

(-0.07) 

-0.031 

(-3.87) 

-0.001 

(-0.87) 

-0.005 

(-1.58) 

-0.019 

(-3.57) 

St. Deviation 

 

0.059 0.081 0.120 0.032 0.054 

 

0.079 

Reward-to-risk 0.068 0.000 -0.258 -0.031 

 

-0.092 -0.240 

Panel D: t-statistics between the two groups 

 

 

 
Holding Period 3 months  Holding Period 6 months Holding Period 12 months 

Ranking Period 

3 months 

 

2.107 2.712 1.257 

Ranking Period 

6 months 

 

2.848 2.829 0.787 

Ranking Period 

12 months 

 

1.293 0.880 -1.262 
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Table 5.10. Fama-French with a GJR-GARCH-M based on 10% breakpoint    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
High-tech stocks Low-tech stocks 

 
Holding period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding period 

12 

months 

Panel A: Ranking period 3 months 

 α 

 

0.000 

(0.01) 

0.007 

(1.42) 

-0.004 

(-0.53) 

0.011 

(2.08) 

0.045 

(5.34) 

0.011 

(1.49) 

 𝛽 

 

-0.092 

(-1.07) 

0.150 

(1.49) 

0.200 

(1.65) 

-0.021 

(-0.28) 

-0.399 

(-4.35) 

-0.064 

(-0.57) 

 s 

 

-0.108 

(-0.74) 

-0.094 

(-0.78) 

-0.084 

(-0.41) 

-0.020 

(-0.15) 

-0.098 

(-0.68) 

0.017 

(0.08) 

 h 

 

-0.381 

(-2.51) 

-0.288 

(-2.14) 

-0.450 

(-2.24) 

-0.573 

(-4.24) 

-0.120 

(-0.84) 

-0.513 

(-2.42) 

 δ 

 

1.738 

(1.90) 

-0.091 

(-0.25) 

-0.435 

(-1.06) 

-4.057 

(-1.91) 

-6.262 

(-3.21) 

-1.025 

(-1.37) 

 𝜔 

 

0.000 

(1.15) 

-0.000 

(-0.55) 

0.000 

(0.41) 

0.000 

(2.15) 

0.001 

(3.19) 

0.001 

(2.26) 

 𝛾 

 

0.288 

(2.32) 

0.332 

(3.55) 

0.481 

(2.50) 

0.457 

(3.19) 

0.676 

(4.37) 

0.698 

(2.88) 

 𝜂 

 

0.192 

(1.17) 

0.190 

(1.23) 

-0.236 

(-1.34) 

-0.305 

(-2.19) 

-0.627 

(-4.10) 

-0.446 

(-1.93) 

   

 

0.609 

(7.29) 

0.609 

(13.12) 

0.697 

(9.30) 

0.606 

(8.40) 

0.533 

(8.37) 

0.420 

(4.74) 

𝛾+ 𝜂/2+   

 

0.993 1.036 1.060 0.912 0.896 0.895 

Panel B: Ranking period 6 months 

 

 α 

 

0.015 

(3.07) 

0.017 

(2.76) 

-0.003 

(-0.39) 

0.010 

(1.85) 

0.135 

(6.25) 

0.030 

(5.27) 

 𝛽 

 

-0.138 

(-1.61) 

0.028 

(0.28) 

-0.202 

(-1.30) 

-0.084 

(-1.08) 

-0.274 

(-3.68) 

-0.190 

(-1.80) 

 s 

 

-0.097 

(-0.80) 

0.265 

(1.67) 

-0.687 

(-2.73) 

-0.186 

(-1.71) 

-0.174 

(-1.26) 

0.246 

(1.43) 

 h 

 

-0.549 

(-3.76) 

-0.151 

(-1.03) 

-0.069 

(-0.32) 

-0.731 

(-5.07) 

-0.550 

(-7.78) 

-0.664 

(-4.36) 

 δ 

 

0.379 

(0.51) 

0.082 

(0.17) 

-0.582 

(-2.20) 

-2.538 

(-1.26) 

-31.798 

(-5.19) 

-1.230 

(-3.22) 

 𝜔 

 

0.000 

(1.77) 

0.001 

(2.52) 

0.001 

(1.68) 

0.001 

(2.74) 

0.001 

(3.75) 

0.002 

(3.09) 

 𝛾 
 

0.387 

(3.25) 

0.591 

(3.47) 

0.819 

(3.21) 

0.616 

(3.12) 

0.249 

(4.54) 

0.922 

(3.56) 

 𝜂 

 

0.396 

(1.54) 

0.183 

(0.72) 

-0.346 

(-1.31) 

-0.122 

(-0.51) 

-0.342 

(-4.91) 

-0.601 

(-2.29) 

   

 

0.430 

(5.59) 

0.294 

(3.45) 

0.423 

 (6.03) 

0.240 

(2.02) 

0.777 

(19.76) 

0.205 

(2.83) 

𝛾+ 𝜂/2+   1.015 0.977 1.069 0.795 0.855 0.827 
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Table 5.10. (Continued) 

 

 

This table reports the coefficient estimates for systems (1) and (2) for the momentum portfolios. Momentum is a 

portfolio that buys the winner portfolio (top 10% of stocks) and sells the loser portfolio (bottom 10% of stocks) 

short. α measures a portfolio‟s abnormal performance, 𝛽 measures the market risk of the portfolio, s and h are the 

portfolio loadings based on size and book-to-market factors as measured by Fama and French (1993), δ is the 

time-varying risk exposure. The conditional variance of the portfolio returns follows a GJR-GARCH structure as

,

2 2 2 2

, 1 , 1 , 1 , 1i t i i i t i i t i t i i tI               where 𝜔, 𝛾, 𝜂 and   are estimated parameters 

and It-1 takes a value of 1, when εt-1 is negative and a value of 0, otherwise. We use 5% significance level. The t-

statistics are in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 High-tech stocks Low-tech stocks 

Holding period 3 

months 

Holding period 6 

months 

Holding period 12 

months 

Holding period 3 

months 

Holding period 6 

months 

Holding period 12 

months 

Panel C: Ranking period 12 months 

 

 α 

 

0.002 

(0.37) 

0.014 

(2.52) 

-0.024 

(-2.35) 

0.025 

(4.15) 

0.098 

(4.91) 

0.185 

(5.70) 

 𝛽 

 

-0.074 

(-0.87) 

-0.030 

(-0.29) 

-0.179 

(-1.01) 

-0.044 

(-0.61) 

0.014 

(0.19) 

-0.268 

(-2.99) 

 s 

 

-0.141 

(-0.87) 

0.021 

(0.17) 

-0.628 

(-2.61) 

-0.221 

(-1.79) 

0.215 

(1.28) 

-0.603 

(-3.74) 

 h 

 

-0.793 

(-5.02) 

-0.096 

(-0.86) 

-0.069 

(-0.29) 

-0.710 

(-4.99) 

0.017 

(0.16) 

-0.566 

(-2.98) 

 δ 

 

0.480 

(0.56) 

-0.621 

(-1.76) 

-0.452 

(-1.47) 

-7.075 

(-2.53) 

-17.336 

(-4.11) 

-19.890 

(-4.71) 

 𝜔 

 

0.000 

(1.64) 

0.001 

(2.26) 

0.005 

(3.38) 

0.000 

(2.59) 

0.001 

(5.30) 

0.001 

(2.80) 

 𝛾 

 

0.191 

(2.67) 

1.334 

(3.00) 

0.961 

(2.77) 

0.479 

(3.38) 

0.205 

(4.35) 

0.060 

(4.47) 

 𝜂 

 

 

0.473 

(1.89) 

-0.615 

(-1.32) 

-0.263 

(-0.67) 

-0.244 

(-1.99) 

-0.216 

(-4.25) 

-0.214 

(-4.87) 

   

 

0.574 

(5.92) 

0.115 

(2.13) 

0.110 

(1.50) 

0.497 

(4.49) 

0.740 

(16.86) 

0.971 

(41.66) 

𝛾+ 𝜂/2+   1.002 1.141 0.939 0.854 0.837 0.924 
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Table 5.11. Fama-French with a GJR-GARCH-M: Robustness analysis based on 30% breakpoint  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
High-tech stocks Low-tech stocks  

 
Holding period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding period 12 

months 

Panel A: Ranking period 3 months 

 α 

 

0.002 

(0.93) 

0.001 

(0.41) 

0.004 

(0.82) 

0.001 

(0.46) 

0.022 

(5.02) 

0.060 

(4.40) 

 𝛽 

 

-0.195 

(-4.80) 

0.026 

(0.36) 

0.124 

(1.32) 

-0.055 

(-1.74) 

-00.123 

(-3.09) 

0.066 

(1.24) 

 s 

 

-0.275 

(-3.75) 

-0.027 

(-0.27) 

-0.278 

(-1.74) 

-0.149 

(-2.40) 

-0.186 

(-2.36) 

-0.014 

(-0.19) 

 h 

 

-0.200 

(-3.28) 

-0.089 

(-1.30) 

-0.210 

(-1.80) 

-0.309 

(-5.15) 

-0.183 

(-2.83) 

-0.162 

(-2.16) 

 δ 

 

0.506 

(0.33) 

0.173 

(0.17) 

-0.786 

(-1.37) 

-8.330 

(-1.99) 

-20.002 

(-4.10) 

-42.575 

(-3.89) 

 𝜔 

 

0.000 

(1.50) 

0.000 

(2.36) 

0.000 

(2.01) 

0.000 

(2.25) 

0.000 

(2.33) 

0.000 

(4.19) 

 𝛾 
 

0.181 

(2.36) 

0.499 

(3.12) 

0.779 

(2.99) 

0.257 

(3.01) 

0.338 

(3.95) 

0.265 

(3.66) 

 𝜂 

 

0.334 

(3.22) 

-0.013 

(-0.08) 

-0.292 

(-1.13) 

-0.072 

(-0.75) 

-0.360 

(-3.82) 

-0.386 

(-3.69) 

   

 

0.689 

(10.16) 

0.542 

(7.33) 

0.367 

(3.98) 

0.737 

(13.10) 

0.741 

(17.69) 

0.661 

(10.54) 

𝛾+ 𝜂/2+   

 

1.037 1.034 1.000 0.958 0.899 0.733 

Panel B: Ranking period 6 months 

 

 α 

 

0.002 

(0.70) 

0.011 

(2.88) 

-0.023 

(-5.52) 

0.005 

(2.51) 

0.015 

(4.66) 

0.015 

(4.35) 

 𝛽 

 

-0.118 

(-2.92) 

-0.038 

(-0.64) 

-0.024 

(-0.30) 

-0.098 

(-3.02) 

-0.147 

(-4.13) 

-0.024 

(-0.43) 

 s 

 

-0.194 

(-2.88) 

   0.024 

   (0.25) 

-0.367 

(-3.12) 

-0.148 

(-2.50) 

-0.187 

(-2.45) 

0.050 

(0.64) 

 h 

 

-0.216 

(-3.00) 

-0.139 

(-1.61) 

-0.061 

(-0.63) 

-0.282 

(-6.10) 

-0.218 

(-2.99) 

-0.143 

(-1.58) 

 δ 

 

2.291 

(1.96) 

-0.809 

(-0.91) 

0.820 

(1.53) 

-8.913 

(-2.35) 

-6.468 

(-2.60) 

-2.698 

(-3.86) 

 𝜔 

 

0.000 

(2.11) 

0.001 

(3.34) 

0.000 

(1.61) 

0.000 

(2.85) 

0.000 

(4.56) 

0.001 

(4.05) 

 𝛾 

 

0.328 

(3.67) 

0.769 

(2.89) 

0.491 

(3.42) 

0.662 

(3.37) 

0.840 

(3.20) 

0.980 

(4.33) 

 𝜂 

 

0.712 

(2.32) 

-0.100 

(-0.34) 

0.630 

(1.62) 

-0.264 

(-1.30) 

-0.663 

(-2.30) 

-0.744 

(-3.17) 

   

 

0.405 

(4.95) 

0.210 

(2.47) 

0.272 

(3.14) 

0.321 

(3.00) 

0.041 

(0.48) 

0.065 

(0.87) 

𝛾+ 𝜂/2+   

 

1.089 0.929 1.078 0.851 0.549 0.673 
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Table 5.11.  (Continued) 

 

This table reports the coefficient estimates for systems (1) and (2) for the momentum portfolios. Momentum is a 

portfolio that buys the winner portfolio (top 10% of stocks) and sells the loser portfolio (bottom 10% of stocks) 

short. α measures the portfolio‟s abnormal performance, 𝛽 measures the market risk of the portfolio, s and h are 

the portfolio loadings based on size and book-to-market factors as measured by Fama and French (1993), δ is the 

time-varying risk exposure. The conditional variance of the portfolio returns follows a GJR-GARCH structure as

,

2 2 2 2

, 1 , 1 , 1 , 1i t i i i t i i t i t i i tI               where 𝜔, 𝛾, 𝜂 and   are estimated parameters 

and It-1 takes a value of 1, when εt-1 is negative and a value of 0, otherwise. We use 5% significance level. The t-

statistics are in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 High-tech stocks Low-tech stocks 

Holding period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding period 12 

months 

Panel C: Ranking period 12 months 

 

 α 

 

0.004 

(1.50) 

0.004 

(0.97) 

-0.029 

(-5.05) 

0.024 

(4.56) 

0.040 

(7.55) 

0.035 

(8.24) 

 𝛽 

 

-0.143 

(-3.06) 

-0.024 

(-0.36) 

-0.047 

(-0.49) 

-0.221 

(-9.07) 

-0.130 

(-3.48) 

0.054 

(1.21) 

 s 

 

-0.118 

(-1.49) 

-0.037 

(-0.41) 

-0.215 

(-1.58) 

-0.223 

(-4.30) 

-0.331 

(-4.91) 

0.350 

(3.48) 

 h 

 

-0.330 

(-3.82) 

-0.155 

(-1.85)* 

0.068 

(0.59) 

-0.430 

(-9.55) 

-0.418 

(-6.43) 

0.038 

(0.38) 

 δ 

 

-0.115 

(-0.09) 

-0.910 

(-1.17) 

-0.004 

(-0.01) 

-30.224 

(-2.82) 

-29.832 

(-4.78) 

-6.943 

(-3.65) 

 𝜔 

 

0.000 

(1.52) 

0.001 

(4.12) 

0.000 

(1.81) 

0.000 

(6.61) 

0.000 

(2.91) 

0.000 

(2.43) 

 𝛾 

 

0.451 

(3.17) 

0.945 

(2.50) 

0.590 

(2.63) 

0.426 

(3.08) 

0.458 

(3.62) 

0.613 

(3.90) 

 𝜂 

 

0.151 

(0.61) 

-0.313 

(-0.80) 

0.251 

(0.80) 

-0.522 

(-3.34) 

-0.460 

(-3.72) 

-0.117 

(-1.32) 

   

 

0.473 

(4.84) 

0.156 

(2.02) 

0.293 

(3.07) 

0.133 

(1.73) 

0.633 

(8.27) 

0.409 

(6.58) 

𝛾+ 𝜂/2+   

 

0.999 0.944 1.008 0.298 0.861 0.964 
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Table 5.12. Fama-French with a GARCH (1,1)-M based on 10% breakpoint 

 

 

 

 

 

 

 

 

 

 

 

 
High-tech stocks Low-tech stocks 

Holding period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding period 12 

months 

Panel A: Ranking period 3 months 

 

 α 

 

-0.000 

(-0.09) 

-0.001 

(-0.15) 

-0.003 

(-0.50) 

0.007 

(1.80)* 

0.039 

(3.89) 

0.013 

(1.35) 

 𝛽 

 

-0.170 

(-1.90) 

-0.024 

(-0.13) 

0.203 

(1.34) 

0.019 

(0.22) 

-0.394 

(-3.21) 

-0.108 

(-0.71) 

 s 

 

-0.207 

(-1.56) 

-0.077 

(-0.43) 

-0.029 

(-0.12 

-0.004 

(-0.03) 

-0.177 

(-1.00) 

-0.008 

(-0.03) 

 h 

 

-0.277 

(-1.92) 

-0.433 

(-1.69) 

-0.372 

(-1.21) 

-0.544 

(-2.77) 

0.029 

(0.13) 

-0.430 

(-1.08) 

 δ 

 

1.283 

(1.26) 

0.084 

(0.15) 

-0.132 

(-0.63) 

-2.569 

(-2.47) 

-3.451 

(-3.02) 

-0.896 

(-1.67)* 

 𝜔 

 

0.000 

(1.36) 

-0.000 

(-0.00) 

0.000 

(0.78) 

0.000 

(1.30) 

0.001 

(2.24) 

0.001 

(1.77) 

 𝛾 

 

0.366 

(1.84) 

0.213 

(2.33) 

0.333 

(4.70) 

0.238 

(3.62) 

0.484 

(2.53) 

0.390 

(3.76) 

   

 

0.660 

(5.22) 

0.814 

(11.50) 

0.700 

(13.52) 

0.748 

(10.43) 

0.467 

(3.85) 

0.561 

(4.38) 

 𝛾+   

 

1.026 1.027 1.033 0.986 0.951 0.951 

Panel B: Ranking period 6 months 

 

 α 

 

0.016 

(2.95) 

0.017 

(1.93) 

-0.008 

(-0.81) 

0.011 

(1.70)* 

0.046 

(2.15) 

0.053 

(3.57) 

 𝛽 

 

-0.097 

(-1.01) 

0.079 

(0.50) 

0.112 

(-0.62) 

-0.082 

(-1.00) 

-0.082 

(-0.45) 

-0.134 

(-0.96) 

 s 

 

-0.127 

(-1.02) 

0.324 

(1.59) 

-0.823 

(-3.26) 

-0.190 

(-1.25) 

-0.174 

(-0.96) 

0.057 

(0.28) 

 h 

 

-0.491 

(-2.54) 

-0.089 

(-0.30) 

-0.037 

(-0.09) 

-0.739 

(-3.91) 

-0.168 

(-0.63) 

-0.508 

(-2.19) 

 δ 

 

-0.394 

(-0.72) 

0.027 

(-0.07) 

-0.404 

(-1.39) 

-3.329 

(-1.78)* 

-4.765 

(-1.86)* 

-3.785 

(-2.87) 

 𝜔 

 

0.001 

(1.75) 

0.001 

(2.01) 

0.001 

(1.59) 

0.000 

(1.78) 

0.001 

(2.12) 

0.001 

(3.22) 

 𝛾 

 

0.583 

(3.77) 

0.517 

(4.31) 

0.527 

(4.02) 

0.364 

(3.97) 

0.479 

(4.62) 

0.478 

(5.36) 

   

 

0.443 

(3.79) 

0.441 

(4.35) 

0.520 

(5.09) 

0.478 

(3.30) 

0.415 

(3.34) 

0.475 

(8.62) 

 𝛾+   

 

1.026 0.958 1.047 0.842 0.894 0.953 
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Table 5.12. (Continued) 

This table reports the coefficient estimates for systems (3) and (4) for the momentum portfolios. Momentum is a 

portfolio that buys the winner portfolio (top 10% of stocks) and sells the loser portfolio (bottom 10% of stocks) 

short. α measures the portfolio‟s abnormal performance, 𝛽 measures the market risk of the portfolio, s and h are 

the portfolio loadings based on size and book-to-market factors as measured by Fama and French (1993), δ is the 

time-varying risk exposure. The conditional variance of the portfolio returns follows a GARCH (1.1) structure as 

2 2 2

1 t 1t t        where 𝜔, 𝛾 and   are estimated parameters and It-1 takes a value of 1, when εt-

1 is negative and a value of 0, otherwise. (*) indicates 10% significant level and we use 5% significance level 

otherwise. The t-statistics are in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High-tech stocks Low-tech stocks   

Holding period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding period 12 

months 

Panel C: Ranking period 12 months 

 

 α 

 

0.008 

(1.20) 

0.012 

(1.76) 

-0.037 

(-1.72) 

0.022 

(3.17) 

0.038 

(0.95) 

0.119 

(3.73) 

 𝛽 

 

-0.079 

(-0.60) 

-0.015 

(-0.11) 

-0.097 

(-0.54) 

-0.008 

(-0.10) 

-0.068 

(-0.73) 

-0.113 

(-0.73) 

 s 

 

-0.102 

(-0.54) 

0.010 

(0.06) 

-0.614 

(-2.26) 

-0.192 

(-1.29) 

0.056 

(0.21) 

-0.343 

(-1.32) 

 h 

 

-0.815 

(-4.15) 

-0.166 

(-0.96) 

-0.386 

(-0.97) 

-0.678 

(-3.51) 

-0.477 

(-1.71) 

-0.222 

(-0.92) 

 δ 

 

-0.425 

(-0.69) 

-0.157 

(-0.67) 

-0.110 

(-0.35) 

-5.467 

(-3.40) 

-3.322 

(-0.60) 

-9.865 

(-3.20) 

 𝜔 

 

0.000 

(1.95) 

0.001 

(2.00) 

0.005 

(3.45) 

0.000 

(2.44) 

0.001 

(2.24) 

0.001 

(3.71) 

 𝛾 

 

0.331 

(3.46) 

0.923 

(5.47) 

0.952 

(5.01) 

0.398 

(4.23) 

0.634 

(1.52) 

0.300 

(6.53) 

   

 

0.642 

(7.49) 

0.201 

(1.87) 

0.054 

(0.76) 

0.491 

(5.43) 

0.208 

(0.56) 

0.590 

(20.44) 

 𝛾+   

 

0.973 1.124 1.006 0.889 0.842 0.890 
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Table 5.13. Fama-French with a GARCH (1,1)-M: Robustness analysis based on 30% breakpoint 

 

 

 

 

 

 

 

 

 

 

 
High-tech stocks Low-tech stocks 

Holding 

period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding period 12 

months 

Panel A: Ranking period 3 months 

 

  α 

 

0.004 

(1.09) 

0.001 

(0.31) 

-0.004 

(-0.51) 

0.001 

(0.48) 

-0.001 

(-0.31) 

0.010 

(2.52) 

 𝛽 

 

-0.183 

(-2.59) 

0.027 

(0.35) 

0.141 

(1.59) 

-0.051 

(-1.15) 

-0.095 

(-1.56) 

0.055 

(1.09) 

 s 

 

-0.231 

(-2.50) 

-0.027 

(-0.27) 

-0.283 

(-1.88) 

-0.146 

(-1.84) 

-0.255 

(-2.53) 

-0.106 

(-1.11) 

 h 

 

-0.125 

(-1.23) 

-0.089 

(-0.69) 

-0.223 

(-1.40) 

-0.305 

(-3.23) 

-0.355 

(-2.67) 

-0.132 

(-1.22) 

 δ 

 

-1.212 

(-0.63) 

0.205 

(0.33) 

-0.107 

(-0.20) 

-7.579 

(-2.92) 

3.168 

(1.12) 

-3.185 

(-2.26) 

 𝜔 

 

0.000 

(1.30) 

0.000 

(1.68) 

0.000 

(2.42) 

0.000 

(1.31) 

0.000 

(1.58) 

0.001 

(3.22) 

 𝛾 

 

0.192 

(2.14) 

0.491 

(3.83) 

0.489 

(4.33) 

0.213 

(2.86) 

0.179 

(3.79) 

0.824 

(3.79) 

   

 

0.803 

(10.56) 

0.542 

(4.92) 

0.509 

(5.66) 

0.753 

(8.00) 

0.800 

(17.04) 

0.124 

(0.97) 

 𝛾+   

 

0.995 1.033 0.998 0.966 0.979 0.948 

Panel B: Ranking period 6 months 

 

 α 

 

0.004 

(1.39) 

0.005 

(0.97) 

-0.009 

(-0.80) 

0.007 

(1.92)* 

0.014 

(2.23) 

0.063 

(5.22) 

 𝛽 

 

-0.116 

(-1.98) 

-0.084 

(-0.90) 

-0.064 

(-0.59) 

-0.084 

(-2.07) 

-0.163 

(-2.26) 

-0.018 

(-1.04) 

 s 

 

-0.223 

(-2.49) 

0.047 

(0.51) 

-0.480 

(-309) 

-0.185 

(-2.19) 

-0.261 

(-2.45) 

-0.004 

(-0.03) 

 h 

 

-0.171 

(-1.32) 

-0.081 

(-0.64) 

-0.004 

(-0.03) 

-0.258 

(-3.10) 

-0.234 

(-0.87) 

-0.225 

(-4.09) 

 δ 

 

-0.211 

(-0.18) 

0.589 

(1.01) 

-0.153 

(-0.35) 

-9.538 

(-2.61) 

-4.688 

(-1.81)* 

-25.336 

(-3.24) 

 𝜔 

 

0.000 

(1.93) 

0.001 

(2.15) 

0.000 

(1.55) 

0.000 

(1.46) 

0.000 

(1.28) 

0.000 

(2.63) 

 𝛾 

 

0.471 

(4.12) 

0.637 

(4.79) 

0.409 

(3.80) 

0.443 

(3.62) 

0.448 

(2.58) 

0.394 

(3.18) 

   

 

0.544 

(6.58) 

0.316 

(2.28) 

0.580 

(4.75) 

0.424 

(2.21) 

0.545 

(3.36) 

0.434 

(5.77) 

 𝛾+   

 

1.015 0.953 0.989 0.867 0.993 0.828 
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Table 5.13. (Continued) 

 

This table reports the coefficient estimates for systems (3) and (4) for the momentum portfolios. Momentum is a 

portfolio that buys the winner portfolio (top 30% of stocks) and sells the loser portfolio (bottom 30% of stocks) 

short. α measures the portfolio‟s abnormal performance, 𝛽 measures the market risk of the portfolio, s and h are 

the portfolio loadings based on size and book-to-market factors as measured by Fama and French (1993), δ is the 

time-varying risk exposure. The conditional variance of the portfolio returns follows a GARCH (1.1) structure as 

2 2 2

1 t 1t t        where 𝜔, 𝛾 and   are estimated parameters and It-1 takes a value of 1, when εt-

1 is negative and a value of 0, otherwise. (*) indicates 10% significant level and we use 5% significance level 

otherwise. The t-statistics are in parentheses. 

 

 

 

 

 

 

 

 

 

 
High-tech stocks     Low-tech stocks  

Holding 

period 3 

months 

Holding 

period 6 

months 

Holding period 

12 

months 

Holding 

period 3 

months 

Holding period 

6 

months 

Holding period 12 

months 

Panel C: Ranking period 12 months 

 

 α 

 

0.005 

(1.77) 

0.002 

(0.32) 

-0.025 

(-1.12) 

0.014 

(2.35) 

0.011 

(3.83) 

0.055 

(9.10) 

 𝛽 

 

-0.126 

(-2.03) 

-0.017 

(-0.19) 

0.026 

(0.25) 

-0.085 

(-1.33) 

-0.036 

(-0.67) 

-0.030 

(-0.89) 

 s 

 

-0.104 

(-1.30) 

-0.052 

(-0.49) 

-0.151 

(-0.91) 

-0.249 

(-2.56) 

-0.090 

(-0.87) 

0.018 

(0.24) 

 h 

 

-0.358 

(-3.56) 

-0.151 

(-1.08) 

-0.072 

(-0.23) 

-0.418 

(-3.56) 

-0.756 

(-6.80) 

-0.182 

(-2.42) 

 δ 

 

-0.620 

(-0.68) 

-0.325 

(-0.73) 

-0.444 

(-0.66) 

-14.737 

(-1.91)* 

-1.750 

(-3.21) 

-19.259 

(-6.88) 

 𝜔 

 

0.000 

(1.75) 

0.001 

(3.03) 

0.001 

(2.19) 

0.000 

(1.29) 

0.000 

(4.44) 

0.000 

(2.83) 

 𝛾 
 

0.391 

(4.21) 

0.792 

(5.35) 

0.694 

(5.28) 

0.417 

(2.35) 

1.066 

(3.84) 

0.409 

(7.41) 

   

 

0.624 

(10.10) 

0.150 

(1.27) 

0.296 

(3.33) 

0.352 

(1.27) 

0.010 

(0.32) 

0.595 

(15.95) 

 𝛾+   

 

1.015 0.942 0.990 0.769 1.076 1.004 
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Chapter Six 

Concluding Remarks 
 

The traditional framework EMH/CAPM has faced plenty of criticisms concerning its 

empirical failures that are attributed to its unrealistic assumptions such as assuming that all 

agents in financial markets are rational and able to perceive all information and form proper 

expectations. In addition, this traditional framework suffers from a failure to explain how 

individual investors take their investments decisions and a failure to explain the way that they 

follow in forming their portfolios. Behavioural Finance employs the principles of cognitive 

psychology to construct a more realistic body of knowledge and is formed of two building 

blocks: (1) people are susceptible to systematic cognitive biases and these biases have an 

impact on asset prices; (2) involving human beings in financial markets studies helps improve 

our understanding of financial phenomena.  

This thesis makes a number of concluding remarks and suggests several policy 

implications that can be organized as follows: 

The main conclusion of Chapter 3 is that irrational investors think “good stocks are the 

stocks of good companies”. As a result, they prefer to buy the stocks of good companies that 

are characterized by higher earnings per share as profitability, higher financial leverage, 

higher growth, larger size and lower  CF/P since the lower level of liquidity reflects the 

underuse of corporate assets leading to corporate losses. The policy implications come from 

the idea in behavioural finance that stipulated irrational („uniformed‟) investors destabilize or 

divert prices away from fundamental value. Rational („informed‟) investors stabilize asset 

prices and back prices to the fundamental value through exploiting the systematic cognitive 

biases of the irrational investors. In this paper, we use the capital gains overhang as a proxy 

for the unrealized capital gains encounted by the PT/MA investors to forecast a cross section 

of expected returns. Therefore, we expect the momentum in stock returns to be the most 

important implication of the PT/MA framework. In this context, our paper has wide 

implications because it guides the momentum traders to increase the proportion of stocks of 

good companies that are characterized by higher earnings per share, higher financial leverage, 

higher growth, larger size and lower turnover in their portfolios, because stocks of this kind 
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are more susceptible to being traded by irrational investors and accordingly generate a higher 

capital gains overhang. Finally, further research is required especially in emerging markets to 

provide empirical support for the applicability of our findings to emerging markets.  

Chapter 4 contains new findings. For instance, the impact of capital gains overhang on 

expected returns differs across the expected returns distribution, which indicates that the 

relation between capital gains overhang and expected returns is nonlinear. This finding offers 

implications for researchers that the OLS conventional technique is less informative and not 

appropriate for introducing a full description of the relation between capital gains overhang 

and expected returns; instead, a broader and more flexible quantile regression technique 

should be used. The second contribution of this chapter is to show how well the disposition 

effect works in driving momentum profits at the 0.05
th

 and 0.95
th

 expected returns quantiles. 

However, there is robust evidence that the disposition effect is not a good noisy proxy for 

inducing intermediate momentum at the lowest 0.05
th

 expected returns quantile. At the 

highest 0.95
th

 expected returns quantile, the disposition effect induces contrarian rather than 

momentum returns. The implications are that the disposition effect can be considered the 

principal element in discerning return persistence anomalies at the 0.95
th

 expected return 

quantile and the principal element in discerning the price reversal anomaly. However, it 

seems that the risk-based explanation plays the major role at the lowest 0.05
th

 expected 

returns quantile. Finally, future works might do to shed light on emerging markets especially 

fast growing markets such as the Chinese stock market, to empirically support these 

interesting new findings.  

Chapter 5 bridges at least three research gaps through examining the systematic 

differences in momentum, asymmetric volatility and the idiosyncratic risk-momentum returns 

relation between high-tech stocks and low-tech stocks. The first conclusion is that four 

momentum strategies explain the significant and robust larger momentum returns in high-

tech stocks than low-tech stocks. These strategies are the 3-3 strategy, the 3-6 strategy, the 6-

3 strategy and the 6-6 strategy. The implication here is that the momentum traders should 

increase the fraction of high-tech stocks in their portfolios at the expense of low-tech stocks 

to make greater momentum profits. The second conclusion is that there is robust evidence 

that the volatility responds symmetrically to good and bad news in high-tech stocks, while it 

responds asymmetrically in low-tech stocks. This finding has many implications for investors 
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and policy makers. For instance, in low-tech stocks the risk and cost of  equity may surge 

more when facing negative market returns shocks than when facing positive market returns 

shocks, because of the asymmetric volatility. However, in the high-tech stocks the negative 

and positive market returns shocks make the same impact on volatility and in turn they make 

the same impact on risk and the cost of capital. Another implication is in the area of option 

pricing because the stock market volatility is a key determinant of option prices. For low-tech 

stocks, the arrival of good and bad news leads to higher volatility in response to negative 

return shocks than to positive return shocks which results in higher option price in the case of 

negative return shocks than positive return shocks. For the high-tech stocks, the arrival of 

good and bad news should have the same impact on option prices.  

The third conclusion is that, there is no robust evidence of idiosyncratic risk-

momentum return relation in the high-tech stocks, while this relation is significantly negative 

in the low-tech stocks. This finding is robust to different breakpoints. It is also consistent 

with the behaviourally-based explanation and supports the role of high transaction cost in 

limiting the arbitrage process rather than idiosyncratic risk, which makes the relation of 

idiosyncratic risk and momentum is stronger among low-tech stocks than high-tech stocks. 

However, this relation is negative for low-tech stocks. This means that, for the high-tech 

stocks which experience the higher transcation costs associated with higher information 

asymmetry, the transaction costs limit arbitrage among momentum stocks, while for the low-

tech stocks that experience lower transaction cost due to lower information asymmetry, 

idiosyncratic risk limits arbitrage among reversal stocks.  

Finally, a replication of this research using emerging markets data is recommended to 

ensure that these findings are generalizable to emerging markets. The implication for 

researchers here is that this finding improves our understanding of the relative importance of 

idiosyncratic risk and transaction costs in the limiting arbitrage mechanism and inducing 

momentum. It also serves the theoretical debate on the sources of momentum between the 

risk-based school of thought and behaviourally-based school of thought.  

This first limitation in this thesis is that it considers two cognitive biases only, namely, 

disposition effect and herding behaviour. However, other cognitive biases such as heuristics, 

representativeness, framing, overconfidence and conservatism are part of our research agenda 

for future works. The data used throughout the thesis focused mainly on the US stock market. 
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Therefore, our findings can be generalized to developed markets. However, the uncertain 

applicability of our thesis to emerging markets can be considered as another of its limitations 

because the emerging markets are characterized by unique features and require empirical 

evidence before our findings can be generalize to.  
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