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Abstract 

Surfactant protein SP-D is a soluble C-type lectin, belonging to the collectin (collagen-

containing calcium-dependent lectin) family, which acts as an innate immune pattern 

recognition molecule in the lungs and other mucosal surfaces. Immune regulation and 

surfactant homeostasis are salient functions of SP-D. SP-D can bind to a range of viral, 

bacterial and fungal pathogens and trigger clearance mechanisms. SP-D binds to gp120, the 

envelope protein expressed on HIV-1, through its C-type lectin or carbohydrate recognition 

domain (CRD). This is of importance since SP-D is secreted by human mucosal epithelial 

cells and is present in the female reproductive tract including vagina. Another C-type lectin, 

Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-

SIGN), present on the surface of the dendritic cells, also binds to HIV-1 gp120 and facilitates 

viral transfer to the lymphoid tissues. Dendritic cells are also present at the site of HIV-1 

entry, embedded in vaginal or rectal mucosa. In the present study, we report a direct protein-

protein interaction between recombinant forms of SP-D (rfhSP-D) and DC-SIGN via their C-

type lectin domains. Both SP-D and DC-SIGN competed for binding to immobilized HIV-1 

gp120. Pre-incubation of Human Embryonic Kidney (HEK) cells expressing surface DC-

SIGN with rfhSP-D significantly inhibited the HIV-1 transfer to activated PBMCs. In silico 

analysis revealed that SP-D and gp120 may occupy same sites on DC-SIGN, which may 

explain the reduced transfer of HIV-1. In summary, we demonstrate, for the first time, that 

DC-SIGN is a novel binding partner of SP-D, and this interaction can modulate HIV-1 

capture and transfer to CD4
+
 T cells. In addition, the present study also reveals a distinct 

mechanism of host defense by SP-D against HIV-1. 
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Introduction  

Surfactant protein D (SP-D) is a collagen-containing C-type lectin, belonging to the collectin 

family (1). The primary structure of human SP-D is composed of three subunits of 

polypeptide chains; each subunit consists of a short N-terminal region, a triple-helical 

collagen-like region, an α-helical coiled-coil neck region, and a calcium-dependent highly 

conserved C-type lectin or carbohydrate recognition domain (CRD) at the C-terminus (2);(3). 

The primary structure can get cross-linked via the cysteine-containing N-terminal region to 

give rise to a cruciform structure, which can undergo further multimerization to yield a fuzzy 

ball, where the CRD regions are facing towards the exterior. SP-D, via its homotrimeric CRD 

region, is known to interact with a wide range of viral, bacterial and fungal pathogens and 

bring about clearance mechanisms that involve aggregation or agglutination, opsonisation, 

enhanced phagocytosis and super-oxidative burst (4);(3).  Primarily found in the lungs as a 

part of pulmonary surfactant, SP-D has been localized at a range of extra-pulmonary sites as 

a part of mucosal defense system (5). 

SP-D is present throughout the female genital tract, with likely involvement in the prevention 

of uterine infections (6). Epithelial linings of vagina, cervix, uterus, fallopian tubes and 

ovaries are positively stained for SP-D (7). SP-D has been shown to bind to different strains 

of HIV-1 (BaL and IIIB) at pH 7.4 (physiological) and 5.0 similar to the pH found in the 

female urogenital tract (8). Glycoprotein gp120, a highly conserved mannosylated 

oligosaccharide present on the envelope of HIV-1 virion, plays an important role in the viral 

entry and facilitates viral replication by activating the NF-κB pathway. SP-D has been shown 

to bind gp120 of various strains of HIV-1, and prevent HIV-1 interaction with CD4 receptor 

on T cells, thereby inhibiting viral entry and replication (9, 10).  

Another pattern recognition immune regulatory molecule, DC-SIGN/CD209, a type-II 

transmembrane protein of 44kDa present on dendritic cell (DC) surface (11), plays a major 

role in mediating dendritic cell (DC) adhesion, migration, inflammation and activation of T 

cell. DC-SIGN serves as a route of immune escape for pathogens and tumors (12) and is a 

known receptor for many viruses including HIV-1 and HIV-2. DC-SIGN is expressed by 

both mature and immature DCs in lymphoid tissues (11, 13), but not on follicular DCs, 

plasmacytoid DCs or CD1a
+
 Langerhans cells (14), monocytes, T cells, B cells, thymocytes, 

and CD34
+
 bone marrow cells. It is also expressed by polarized (M2) macrophages that 

infiltrate tumours (15), and on antigen presenting cells such as macrophages, and in chorionic 
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villi of placenta (16). Cells expressing DC-SIGN are located in T cell area of lymph nodes, 

tonsils and spleen, and dermal DCs in skin (CD14
+
 macrophages) (17). DC-SIGN expressing 

cells are seen in mucosal tissue of rectum (18) (with high antigen-presenting capacities), 

cervix and uterus, and in foetal tissues endothelial cells in hepatic sinusoid and lymphatic 

sinus (19, 20).  

HIV-1 virus, when exposed to genital and anal mucosal tissues, binds to DC-SIGN on tissue 

embedded DCs (21, 22)  and gets transmitted to CD4
+
 T cells, activating adaptive immune 

response (23, 24). DC-SIGN facilitates HIV-1 transmission in both cis and trans fashion (25). 

Expression of DC-SIGN is regulated by IL-4 during monocyte-DC differentiation pathway, 

along with GM-CSF (26). TGF-β and IFNs are known to be inhibitors of DC-SIGN 

expression, and, thus, indirectly regulate HIV-1 transmission (26). 

The interaction of HIV-1 with DC-SIGN takes place in the mucosal tract where SP-D is 

present. Since both SP-D and DC-SIGN can bind gp120, we set out to examine if interplay 

between these proteins can modulate DC-SIGN mediated viral transfer of HIV-1. This view 

was further substantiated by observations that SP-D levels are increased in the broncho- 

alveolar fluid of HIV-1 patients (27); and rfhSP-D can bind to gp120 of HIV-1, acting as a 

potent inhibitor of viral infection in vitro via inhibition of the interaction between CD4 and 

gp120 (10). In this study, we show, using recombinant forms of tetrameric and monomeric 

forms of DC-SIGN and its homologue, DC-SIGNR, that there is a protein-protein interaction 

between the two C-type lectins via CRD regions. They compete for binding to HIV-1 gp120, 

and thus, SP-D suppresses DC-SIGN mediated transfer of HIV-1 to CD4
+
 cells. 
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Materials and Methods 

Recombinant expression and purification of soluble tetrameric and monomeric forms of 

DC-SIGN and DC-SIGNR 

E. coli strain BL21 (λDE3) (Invitrogen, UK) was transformed with pT5T plasmid encoding 

DC-SIGN sequences (inserted at the Bam HI restriction site into Plasmid construct) with and 

without multimerizing neck region. In the presence of neck region, the bacterial cells 

expressed tetrameric DC-SIGN and DC-SIGNR; without the neck region, the corresponding 

constructs produced monomeric forms of DC-SIGN and DC-SIGNR (28). E. coli strain BL21 

(λDE3) cells containing ampicillin (50 µg/ml) (Sigma-Aldrich) resistant plasmids [except in 

the case of DC-SIGNR monomer expressing construct that was kanamycin (50 µg/ml) 

resistant (Sigma Aldrich)] were sub-cultured overnight at 37°C. One liter LB medium 

containing ampicillin or kanamycin was inoculated with 10 ml of overnight bacterial culture 

was grown at 37°C until the OD600 reached 0.7 and then induced with 0.5 mM isopropyl β-D-

1-thiogalactopyranoside (IPTG). After 3 h, the bacterial cells were centrifuged at 13,800 × g 

for 15 min to collect the bacterial pellet. Protein expression was analyzed on 12 % SDS- 

PAGE.  

The cell pellet was treated with 22 ml of lysis buffer containing 100 mM Tris, pH 7.5, 0.5 M 

NaCl, lysozyme (50µg/ml), 2.5 mM EDTA, pH 8.0 and 0.5 mM phenylmethylsulfonyl 

fluoride (PMSF), and left to stir for 1 h at 4°C. Cells were then sonicated for 10 cycles for 30 

seconds with 2 min intervals and the sonicated suspension was spun at 10,000 x g for 15 min 

at 4°C. The inclusion bodies, present in the pellet, were solubilized in 20 ml of 6 M Urea, 10 

mM Tris-HCl, pH 7.0 and 0.01%  β-mercaptoethanol (β-ME) by rotating on a shaker for 1 h 

at 4°C. The mixture was then centrifuged at 13,000 x g for 30 min at 4°C and the supernatant 

was drop-wise diluted 5-fold with loading buffer containing 25 mM Tris-HCl, pH 7.8, 1 M 

NaCl, and 2.5 mM CaCl2 with gentle stirring. This was then dialysed against 2 liters of 

loading buffer with 3 buffer changes every 3 h. Following further centrifugation at 13,000 x g 

for 15 min at 4°C, the supernatant was loaded onto a Mannan agarose column (5ml; Sigma) 

pre-equilibrated with the loading buffer. The column was washed with 5 bed volumes of the 

loading buffer and the bound protein was eluted in 1 ml fractions using the elution buffer 

containing 25mM Tris-HCl, pH 7.8, 1M NaCl, and 2.5mM EDTA. The absorbance was read 

at 280 nm and the peak fractions were frozen at -20. Purity of protein was analyzed by 15% 

w/v SDS-PAGE. 
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Expression and Purification of rfhSP-D 

E. coli BL21 (λDE3) pLysS plasmid pUK-D1 (containing cDNA sequences for Gly-X-Y 

repeat, neck and CRD region of human SP-D) was cultured in ampicillin (100µg/ml) (Sigma 

Aldrich) and chloramphenicol (50 µg/ml) (Sigma Aldrich) at 37°C overnight. Expression and 

purification was carried out as described earlier (29);(30). Bacterial cells were grown until 

the OD600 reached 0.6 to 0.8, then induced with 0.4mM IPTG and allowed to grow for 3 

additional hours. Cells were then pelleted via centrifugation and bacterial pellet was re-

suspended in 50ml of lysis buffer (50mM Tris-HCl, pH 7.5, 200mM NaCl, 5mM EDTA with 

freshly added 0.1 mM PMSF and 100 µg/ml lysozyme) at 4°C for 1 h. Cells were then 

sonicated at 4 kHz for 30 s with 2 min interval for 15 cycles. The sonicate was centrifuged at 

13,800 ×g for 15 min at 4°C to collect the rfhSP-D rich pellet containing inclusion bodies. 25 

ml of solubilization buffer (50mM Tris-HCl, pH 7.5, 100mM NaCl, 5mM EDTA, 6M urea) 

was used to re-suspend the pellet and incubated at 4°C for 1 h. The suspension was then 

centrifuged at 13,800 ×g, at 4°C for 15 min and the supernatant was dialysed against 

solubilization buffer containing 4M urea and 10mM β-ME for 2 h at 4°C. The dialysis buffer 

was serially changed to solubilization buffer containing 2 M, 1 M and 0 M urea at 4°C, 2 h 

each. Final dialysis was done in solubilization buffer containing 5mM CaCl2) for 3 h to 

completely remove any traces of urea. The dialysate was centrifuged at 13,800 ×g, 4°C for 15 

min and the clear supernatant containing rfhSP-D was affinity-purified using maltosyl-

agarose column (Sigma-Aldrich).  The bound protein was eluted with solubilization buffer 

containing 10mM EDTA, pH 7.5. Endotoxin levels were removed by passing the purified 

protein fractions through Polymyxin B column (Detoxi-Gel, Peirce & Warriner, UK) and the 

levels were measured using the Limulus Amoebocyte Lysate Assay (BioWhitaker, UK). The 

endotoxin level was found to be <5 pg/µg rfhSP-D. 

SDS-PAGE and Western blot analysis 

Proteins were separated on a 12% (w/v) SDS-PAGE under reducing conditions. After 

electrophoresis, the polyacrylamide gels were stained with Coomassie Brilliant Blue. For the 

western blotting, proteins were electro-transferred onto polyvinylidene difluoride 

nitrocellulose membrane (Sigma) and blocked with 5% w/v milk in PBS.  The membrane 

bound proteins were probed with primary antibodies (anti-DC-SIGN (1:5000) (ProSci) and 

anti-SP-D (1:5000) (Medical Research Council Immunochemistry Unit, Oxford) polyclonal 

antibodies. The blot was then probed with Protein A-HRP Conjugate (1:1000) (Sigma), 
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followed by color development with Diaminobenzidine (DAB) as a substrate (Sigma-Aldrich, 

UK). 

ELISA  

DC-SIGN and DC-SIGNR proteins were coated in carbonate/bicarbonate buffer, pH 9.6 in 

decreasing double dilutions (5µg/well to 0.625µg/well) in duplicates and left overnight at 

4
o
C. The microtiter wells were blocked with 2% w/v BSA in PBS for 2 h at 37

o
C. The wells 

were then washed 3 times with PBS + 0.05% v/v Tween 20 and incubated with a constant 

concentration (2.5µg) of rfhSP-D in 20mM Tris-HCl, pH 7.5, 100mM NaCl, 5mM CaCl2 or 

5mM EDTA at 37
o
C for 1 h, followed by 1h at 4

o
C. Following PBS + Tween 20 wash, the 

bound rfhSP-D was detected using anti-SP-D (1:5000) polyclonal antibody and Protein A-

HRP conjugate (1:5000). Colour was developed using o-Phenylenediamine (OPD) as a 

substrate and absorbance was measured at 490 nm.  

Competitive ELISA 

The ability of rfhSP-D to compete with and DC-SIGN for binding to gp120 was analyzed by 

competitive ELISA. Gp120 was coated at decreasing double dilutions from 250 ng/well in 

duplicates and left overnight at 4
o
C. Wells were blocked with 2% BSA in PBS for 2 hours at 

37
o
C. The wells were washed 3 times with PBS + 0.05% v/v Tween 20. We used two 

formats, one with a constant high concentration of SP-D (5µg/well) with decreasing 

concentrations of DC-SIGN tetramer (from 5µg/well double diluting to 0.312µg/well) and the 

other with constant high concentration of DC-SIGN tetramer (5µg/well) and decreasing 

concentrations of rfhSP-D (from 5µg/well double diluting to 0.312µ/well) in calcium buffer 

for 1h at 37
o
C and 1h at 4

o
C. Two identical plates of each format were probed with anti-DC-

SIGN (1:5000) and anti-SP-D (1:5000) to evaluate the respective binding of DC-SIGN and 

rfhSP-D to gp120.  Following washes, the wells were incubated with Protein HRP conjugate 

(1:1000). Colour was developed using OPD as a substrate. 

Fluorescence Microscopy 

A human embryonic kidney cells 293 (HEK 293), transfected with DC-SIGN construct (DC-

HEK) (31), were grown and maintained in DMEM (Life technologies, UK) containing 10% 

v/v fetal calf serum (FCS), 2mM L-glutamine, penicillin (100 units/ml)/streptomycin (100 

µg/ml) (Thermo Fisher), and blasticidin (5 µg/ml) (Gibco). HEK 293 cells were grown and 

maintained in DMEM (Life technologies) containing 10% FBS. Both cell lines were 
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incubated under standard conditions (37°C, 5% v/v CO2) until 80-90% confluency was 

reached. HEK 293 and DC-HEK cells (0.5 x 10
5
) were grown on the coverslips in a 24-well 

plate (Nunc) overnight to perform three different sets of immunofluorescence experiments; 

DC-SIGN expression (primary antibody: rabbit anti-DC-SIGN, 1:500 and secondary 

antibody: anti-rabbit/CY3, 1:500, Thermo Fisher), rfhSP-D (10 µg/ml) binding to DC-SIGN 

(primary antibody: monoclonal anti-SP-D, 1:500 and secondary antibody: anti-mouse 

conjugated/CY5, 1:500, Abcam) and co-localization of DC-SIGN and rfhSP-D (primary 

antibodies: anti-DC-SIGN polyclonal and anti-SP-D monoclonal, 1:500 and secondary 

antibodies: anti-rabbit/CY3 and anti-mouse/FITC, 1:500) on the cell surface of DC-HEK 

cells. HEK 293 cells were used as a control for all experiments and DC-HEK cells were 

incubated with secondary antibody alone as an additional control. Hoechst (1:10,000, Thermo 

Fisher) was used to stain the nucleus for all the staining experiments. The cells were 

incubated for 1 h with primary antibody followed by 1 h incubation with secondary 

antibodies as described earlier with three times phosphate-buffered saline (PBS, Thermo 

Fisher) washes between each step. For rfhSP-D binding with DC-SIGN analysis, the rfhSP-D 

was incubated with the cells for 1 h at 4°C. The cells were fixed with 4% paraformaldehyde 

(PFA, Sigma) before mounting on the coverslips to visualize under a HF14 Leica DM4000 

microscope. 

 

Viral transfer assay 

Pooled human Peripheral Blood Mononuclear Cells (PBMCs) (HI media Laboratories, India) 

were stimulated in RPMI 1640 medium (Sigma Aldrich) containing 10% v/v FBS, 1% 

Penicillin-Streptomycin and 5ug/ml phytohemaglutinin (PHA) and 10 U/ml of rhIL-2 

(Gibco) for 24 h. PHA/IL-2 was washed off and activated PBMCs were cultured further in 

complete RPMI medium. For the experiment, DC-HEK cells were grown in a 12-well tissue 

culture plate until 80% confluence in complete DMEM/F12 (Sigma Aldrich, USA) 

containing 10% FBS (Gibco) and blasticidin. Indicated concentrations of rfhSP-D containing 

5mM CaCl2 was added to each well and incubated for 2 h to allow binding to DC-SIGN. The 

wells without rfhSP-D were used as controls. Excess protein was removed and cells were 

challenged for 1 h with 5 ng/ml p24 of HIV-1 SF-162 strain (kindly provided by Dr. Jay 

Levy, AIDS Program, National Institutes of Health, U.S.A.). 5mM EDTA was added along 

with the virus in EDTA controls. Unbound virus was washed off and DC-HEK cells were co-

cultured with PHA/IL-2 activated PBMCs for 24 h to facilitate transfer. PBMCs along with 

the medium were then separated (siphoned off) from the DC-HEK monolayer and were 
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transferred to fresh plates. They were cultured further in RPMI 1640 medium containing 10% 

FBS for 7 days and viral titers were determined in supernatants on day 4 and 7 using HIV-1 

p24 antigen ELISA kit (XpressBio Life Science Products, Frederick, MD). 

Molecular modelling and Bioinformatics 

The crystal structures of trimeric human lung surfactant protein D (PDB ID: 1PW9), CD4 

bound to HIV-1 envelope glycoprotein gp120 (PDB ID:1GC1) and homo 10-mer DC-SIGN 

complexed with sugars (PDB ID:1K9I) were retrieved from Protein Data Bank.  The 

tetrameric form of non-glycosylated DC-SIGN was used for docking studies as this structure 

was found to bind to rfhSP-D in vitro experiments. DC-SIGN tetramer was docked to CD4 

already bound to HIV-1 envelope glycoprotein gp120 (PDB ID: 1GC1) using Patch Dock 

server with default parameters.  

The CRD mediated protein-protein interaction between trimeric SP-D and tetrameric DC-

SIGN, as observed in this study was further examined by docking these two molecules using 

ZDOCK algorithm of Discovery Studio (Accelrys Inc.). The best pose of these two molecules 

was subsequently docked into gp120 using Patch Dock server. The shortlisted poses from 

PatchDock and ZDOCK were further refined using Fire Dock and RDOCK, respectively. 

Results 

rfhSP-D and DC-SIGN can interact with each other via their C-type lectin domains 

Structurally, DC-SIGN is composed of an extracellular domain which exists as a tetramer, 

stabilized by an N-terminal α-helical neck region, followed by a Carbohydrate Recognition 

Domain (CRD). DC-SIGN and DC-SIGNR comprising of the entire extracellular domain 

(ECD) (tetramer) (Figure 1a) and the CRD region alone (monomer) (Figure 1a) were 

expressed in E. coli and affinity-purified on Mannose-agarose (28). The CRD regions of DC-

SIGN and SIGN-R bound mannose weakly as majority of the proteins appeared in the flow 

through. The ECD domains of both DC-SIGN and DC-SIGNR bound to mannose with much 

greater affinity in the presence of Ca
2+ 

and eluted with EDTA. A recombinant form of human 

SP-D, containing 8 Gly-X-Y repeats of the collagen, neck and CRD regions were expressed 

and purified as homotrimeric molecules, as described earlier (29);(30) (Figure 1b).
 
 

Tetrameric and monomeric forms of DC-SIGN and DC-SIGNR were checked for their 

respective interactions with rfhSP-D via ELISA (Figure 2), which showed a calcium- and 

dose-dependent interaction between the two lectins; tetrameric forms bound rfhSP-D better 
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that the monomers. This was confirmed by a far western blot (Figure 3a), which revealed that 

rfhSP-D was able to bind to DC-SIGN and DC-SIGNR proteins immobilized on PVDF 

membrane. The CRD-mediated protein-protein interaction between trimeric SP-D and 

tetrameric DC-SIGN was further studied by docking these two molecules. The docked pose 

showed that the two molecules likely interact via their CRD regions (Figure 3b).   

rfhSP-D: DC-SIGN interaction leads to competition for binding to HIV-1 gp120 

To examine if rfhSP-D can inhibit the binding of DC-SIGN to gp120, we carried out a 

competitive ELISA.  As expected, both rfhSP-D and DC-SIGN tetramer bound gp120 in a 

dose and calcium-dependent manner (data not shown) (32). In order to assess a likely 

interference by rfhSP-D in DC-SIGN: gp120 interaction, a constant concentration of rfhSP-D 

was used against different concentrations of DC-SIGN and added to solid-phase gp120 

(Figure 4). With decreasing concentration of DC-SIGN tetramer, rfhSP-D was able to inhibit 

DC-SIGN-gp120 interaction, suggesting that the binding sites on these two C-type lectins for 

gp120 may be overlapping. 

rfhSP-D co-localizes with DC-SIGN on the surface of transected HEK293 cells 

HEK cells transfected with DC-SIGN (DC-HEK cells) were shown to express DC-SIGN via 

immunofluorescence microscopy. The DC-SIGN expression was seen on the cell surface on 

DC-HEK cells distributed evenly as compared to HEK293 cells, which were used as a 

control, using anti-DC-SIGN polyclonal antibody (Figure 5a). DC-HEK cells, incubated with 

secondary antibody, alone did not show any expression (Figure 5a). rfhSP-D binding was 

visible on the cell surface of DC-HEK cells, whereas rfhSP-D binding could not be detected 

in either HEK293 cells or DC-HEK cells incubated with secondary antibody alone as controls 

(Figure 5b). rfhSP-D and DC-SIGN co-localised on the HEK cell surface transfected with 

DC-SIGN construct (Figure 5c).  

rfhSP-D inhibits DC-SIGN mediated viral transfer to PBMCs in a dose dependent 

manner 

To understand whether interaction between rfhSP-D and DC-SIGN impacted upon DC-

SIGN- mediated HIV-1 transfer to T cells, we performed a co-culture assay using DC-HEK 

cells and mitogen-activated PBMCs. Presence of rfhSP-D led to a significantly (p<0.005) 

reduced HIV-1 p24 levels in day 4 and day 7 PBMC culture supernatants in a dose-dependent 

manner (Figure 6). This suggested that in presence of rfhSP-D, the viral uptake by DC-HEK 
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was significantly inhibited resulting in reduced transfer and replication of HIV-1 in PBMC 

cultures. It is likely that rfhSP-D may have occupied sites on both DC-SIGN as well as HIV-

1 gp120 that resulted in reduced DC-SIGN interaction with HIV-1 gp120. EDTA 

significantly inhibited DC-HEK mediated viral transfer, as reported previously (33). 

Bioinformatics analysis revealed that HIV-1 gp120 and rfhSP-D may occupy the same 

site on the CRDs of DC-SIGN 

To strengthen our hypothesis that DC-SIGN once bound to rfhSP-D may not interact with 

gp120, we performed in silico analyses. The best-docked pose of rfhSP-D and DC-SIGN was 

subsequently docked to gp120 using Patch Dock server. The shortlisted poses from Patch 

Dock and ZDOCK were further refined using Fire Dock and RDOCK, respectively. Two 

poses suggesting that HIV-1 gp120 and rfhSP-D possibly occupy the same site on CRD of 

DC-SIGN (Figure 7). Thus, in the presence of rfhSP-D, it is likely that interaction of DC-

SIGN with gp120 could be inhibited. To validate our bioinformatics strategy, we evaluated 

the known interaction of gp120 with DC-SIGN followed by docking with CD4. DC-SIGN 

binds to gp120 at a site distant from its CD4 binding site, and hence, DC-SIGN bound HIV-1 

possibly interacts with CD4 for viral transmission (Figure 8). The global energy of these 

docked complexes has also been presented (Table 1). 

Discussion 

In this study, we report, for the first time, an interaction of DC-SIGN and Surfactant Protein 

D (SP-D), two C-type lectins and pattern recognition receptors; both proteins are known to 

bind to HIV-1 gp120. We demonstrate that this interaction involves their CRD domains, 

which is relevant in inhibiting DC-SIGN mediated HIV-1 trans-infection of CD4
+
 T cells. 

Interaction of HIV-1 gp120 with DC-SIGN not only increases the affinity of gp120 for CD4 

(34), but also leads to a productive infection via reactivation of provirus involving NF-B 

pathway (35);(36). This interaction also results in down-regulation of Nef-induced release of 

IL-6 (37)  and leads to Ask-1 dependent activation leading to induction of apoptosis of 

human DCs (38). Simultaneous binding of rfhSP-D to both gp120 and DC-SIGN, thus, may 

result in blockade of DC-SIGN mediated viral transmission and inhibition of replication.  

Structure-function studies have revealed that the CRD region of DC-SIGN is the specific 

ligand binding site that is reliant on the neck region within the ECD (39). This notion was 

validated in our binding ELISA type assays when we used the tetrameric forms of DC-SIGN 
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and DC-SIGNR (comprising of the extracellular domain and CRD region) as well as the 

monomeric forms, which only consist of the CRD region. The binding studies involving 

rfhSP-D highlighted that multimeric forms bind better, not surprisingly, due to multivalent 

nature of interactions. Since DC-SIGN promotes HIV-1 infection, we examined if rfhSP-D 

by virtue to its ability to bind gp120 as well as DC-SIGN can potentially interfere with HIV-

1, similar to earlier studies (40); (41); (42). We also included DC-SIGNR (DC-SIGN-

Related), a homolog of DC-SIGN, in our study. DC-SIGN-R, expressed on endothelium 

including liver sinusoidal, lymph node sinuses and placental capillary, can also bind gp120 to 

facilitate HIV-1 viral infection (43).  

The current study provides the first evidence that DC-SIGN is a novel immune receptor or 

adaptor for the CRD region of SP-D, modulating the HIV-1 infection. Interaction of gp120 

and rfhSP-D is calcium dependent as reported earlier (8-10). Tetrameric DC-SIGN also 

efficiently binds gp120 in a dose-dependent manner, which is not significantly inhibited in 

presence of sugars similar to previous reports (28, 44). The recombinant rfhSP-D has been 

shown to inhibit the gp120-CD4 interaction (10) while, DC-SIGN bound trimeric gp140 

interacts with CD4 more avidly (34). In vitro competitive assays and the bioinformatics 

analysis confirmed that rfhSP-D and DC-SIGN compete for gp120. The reduced p24 levels 

confirmed that rfhSP-D significantly inhibits the DC-SIGN mediated viral transfer.  

The rfhSP-D molecule (a recombinant fragment of human SP-D comprising homotrimeric C-

type lectins), with part of collagen region, α-helical coiled-coil neck and CRD region, has 

been extensively studied via in vitro, in vivo and ex vivo experiments. In a number of studies, 

rfhSP-D has worked at par with full-length SP-D, as evident from its ability to be therapeutic 

in murine models of allergic bronchopulmonary aspergillosis (45); (46)), invasive pulmonary 

aspergillosis (45), and dust mite allergy (47). It can also induce apoptosis in activated 

eosinophils  (29); (48) and PBMCs (49). Thus, rfhSP-D is an excellent well-tested 

therapeutically active molecule. 

Mannose binding lectin (MBL), another serum collectin, is also shown to inhibit DC-SIGN-

mediated trans infection of HIV-1 T cells (50) whereas SP-A and SP-D facilitate this transfer 

(51);(8). Madsen et al incubated SP-D-HIV-1 complexes with iMSDDCs and demonstrated 

increased viral uptake and transfer from DCs to PM-1 cells. However, the assay system 

employed in the two studies (Madsen and ours) significantly differed, thus the observed 

variation in the results. Further studies in appropriate animal models will help to determine 

the overall effects of SP-D and DC-SIGN binding during virus infections. Our findings have 
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revealed a new phenomenon in SP-D mediated viral transfer through DCs as rfhSP-D 

occupies similar sites as gp120 on DC-SIGN. Hence, pre-incubation of rfhSP-D may have 

occupied gp120 binding site on DC-SIGN (displacement of gp120 via ELISA and in silico 

analysis), resulting in poor uptake. This must have resulted in reduced transfer of viral 

particles to activated PBMCs, adding another aspect to rfhSP-D mediated anti-HIV activity.  

To summarise, rfhSP-D has the ability to directly inhibit the viral entry by interacting with 

gp120 and to significantly inhibit the DC-SIGN mediated viral transfer. Importantly, these 

molecular interactions inhibit the immuno-modulation mediated by gp120 and DC-SIGN 

further disfavoring the HIV-1 pathogenesis. DC-SIGN binding to SP-D could be of one the 

ligand-receptor interactions that in turn could play a major role in the inhibition of viral entry. 

Further, in vivo assays and clinical trials can elucidate the physiological conditions for 

therapeutic purposes against the infection. 
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Table 1. Energy for docked complexes of DC-SIGN and gp120 bound to CD4 refined using 

FireDock  

Rank No. Global Energy (Kcal/mol) 

1 -27.01 

2 -21.83 

3 -11.99 

4 -10.94 
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Figure Legends 

Figure 1. SDS-PAGE analysis of purified recombinant forms of DC-SIGN, DC-SIGNR 

and rfhSP-D. (a) 12% SDS-PAGE of affinity-purified tetrameric and monomeric forms of 

DC-SIGN and DC-SIGNR under reduced conditions. (b) 12% v/v SDS-PAGE of affinity-

purified rfhSP-D.  

Figure 2. Direct binding ELISA showing interaction between rfhSP-D and DC-

SIGN/DC-SIGNR. DC-SIGN tetramer (a), DC-SIGNR tetramer (b), DC-SIGN monomer (c) 

and DC-SIGNR monomer (d) were coated at decreasing double dilutions from 5µg/well to 

0.625µg/well and then probed with 2.5 µg of rfhSP-D in either in calcium or EDTA buffer. 

The binding was detected using anti-human SP-D polyclonal antibodies (1:1,000 dilutions). 

The data represents mean and SD values of at least five experiments. 

Figure 3. Far western blot to detect binding of rfhSP-D to PVDF bound DC-SIGN and 

DC-SIGNR. (a) Tetrameric and monomeric variants of DC-SIGN and DC-SIGNR were run 

on a SDS-PAGE and was transferred to a PVDF membrane followed by incubation with 5 

µg/ml rfhSP-D and then probed with anti-SP-D polyclonal antibody. (b) Docked structure of 

trimeric SPD (yellow cartoon) and tetrameric DC-SIGN (blue cartoon). The 2 molecules 

interact via their carbohydrate recognition domains 

Figure 4. Competitive inhibition ELISA to show that rfhSP-D inhibits DC-SIGN 

binding to immobilized HIV-1 gp120.  HIV-1 gp120 tetramer (500 ng per well) was first 

coated to which 5µg/well to 0.625µg/well of rfhSP-D and a constant concentration (5µg/well) 

of DC-SIGN tetramer were added.  Bound DC-SIGN tetramer was detected by anti-DC-

SIGN polyclonal antibodies. Protein A-HRP conjugate (1:1000) was used to detect the 

antibodies bound and colour was developed using OPD. Zero in the graph represents the 

control where only PBS was used instead of gp120 and the experiments were repeated 3 

times. 

Figure 5. Immunofluorescence microscopy to show rfhSP-D binding to DC-SIGN on the 

surface of the HEK cells transfected with DC-SIGN construct (DC-HEK cells). (a) DC-

HEK cells incubated with anti-rabbit/CY3 did not show DC-SIGN expression (control). DC-

HEK and HEK cells incubated with anti-DC-SIGN followed by anti-rabbit conjugated with 

CY3 showed the DC-SIGN expression in DC-HEK cells only and not HEK cells. Hoechst 

was used to stain the nucleus. (b) Analysis of rfhSP-D binding to DC-SIGN on the DC-HEK 
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cells via immunofluorescence. DC-HEK cells incubated with anti-SPD for 1 h and then 

probed with anti-mouse/CY5 did not show binding. DC-HEK cells incubated with rfhSP-D (5 

µg/ml) for 1 h, followed by anti-SPD for 1 h and then anti-mouse/CY5 showed the binding 

on the cell surface. (c) DC-SIGN expression and rfhSP-D binding co-localisation analysis via 

immunofluorescence microscopy. DC HEK cells incubated with secondary antibodies only 

(anti-mouse/FITC and anti-rabbit/FITC) for 1 h did not show immunofluorescence. DC-HEK 

and HEK cells incubated with rfhSP-D for 1 h prior to incubation anti-SP-D monoclonal and 

anti-DC-SIGN polyclonal for 1 h followed by anti-mouse/FITC and anti-rabbit/CY3 for 1 h 

showed co-localisation for rfhSP-D binding and DC-HEK expression.  

Figure 6. DC-SIGN-mediated HIV-1 transfer assay. DC-HEK cells were grown in a 12 

well plate until 80% confluence. 20 µg/ml, 10 µg/ml and 1 µg/ml of rfhSP-D concentrations 

were added to the cells and incubated for 2 h for binding. Unbound protein was removed and 

cells were challenged with 2.5ng/ml p24 of HIV-1 (SF-162 strain) for 1 hr (to bind to DC-

SIGN). After 1h, unbound virus was washed off and cells were co-cultured with PHA-

activated PBMCs for 24h. This allows the DC-SIGN captured virus to be transferred to 

CD4+ cells, where virus will multiply. PBMCs were separated from the monolayer and 

cultured separately for 4 days to determine viral titre. 

Figure 7. Two poses suggesting that HIV-1 gp120 and rfhSP-D possibly occupy the same 

site on CRD of DC-SIGN. Selected docked poses of tetrameric DC-SIGN (blue cartoon) and 

HIV-1 envelope glycoprotein gp120 (cyan cartoon) bound to CD4 (pink cartoon). The sugars 

present in gp120 are shown as sticks. The calcium ions of DC-SIGN are represented as green 

spheres 

Figure 8. Known interaction of gp120 with DC-SIGN followed by docking with CD4. 

Docked structures of SP-D trimer (yellow cartoon and calcium ions as red spheres) 

complexed with DC-SIGN tetramer (blue cartoon and calcium ions as green spheres) and 

HIV-1 envelope glycoprotein, gp120 (cyan cartoon). The sugars present in gp120 are shown 

as sticks 
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Figure 3b Dodagatta-Marri et al 
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