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The purpose of this paper is to study the mixed Dirichlet-Neumann boundary value problem for the semilinear Darcy-
Forchheimer-Brinkman system in L,-based Besov spaces on a bounded Lipschitz domain in R3, with p in a neighborhood
of 2. This system is obtained by adding the semilinear term |u|u to the linear Brinkman equation. First, we provide some
results about equivalence between the Gagliardo and non-tangential traces, as well as between the weak canonical conormal
derivatives and the non-tangential conormal derivatives. Various mapping and invertibility properties of some integral
operators of potential theory for the linear Brinkman system, and well posedness results for the Dirichlet and Neumann
problems in L ,-based Besov spaces on bounded Lipschitz domains in R" (n > 3) are also presented. Then, employing integral
potential operators, we show the well-posedness in [,-based Sobolev spaces for the mixed problem of Dirichlet-Neumann
type for the linear Brinkman system on a bounded Lipschitz domain in R” (n > 3). Further, by using some stability results of
Fredholm and invertibility properties and exploring invertibility of the associated Neumann-to-Dirichlet operator, we extend
the well-posedness property to some [,-based Sobolev spaces. Next we use the well-posedness result in the linear case
combined with a fixed point theorem in order to show the existence and uniqueness for a mixed boundary value problem
of Dirichlet and Neumann type for the semilinear Darcy-Forchheimer-Brinkman system in L,-based Besov spaces, with
p € (2—¢,2+ ¢) and some parameter € > 0. Copyright (© 0000 John Wiley & Sons, Ltd.
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1. Introduction

Boundary integral methods are a powerful tool to investigate linear elliptic boundary value problems that appear in various areas
of science and engineering (see, e.g., [4, 18, 22, 45, 62]). Among many valuable contributions in the field we mention the
well-posedness result of the Dirichlet problem for the Stokes system in Lipschitz domains in R” (n > 3) with boundary data in
Lo-based Sobolev spaces, which have been obtained by Fabes, Kenig and Verchota in [23] by using a layer potential analysis.
Also, Mitrea and Wright [61] obtained the well-posedness results for Dirichlet, Neumann and transmission problems for the
Stokes system on arbitrary Lipschitz domains in R” (n > 2), with data in Sobolev and Besov-Triebel-Lizorkin spaces. By using
a boundary integral method, Mitrea and Taylor [62] obtained well-posedness results for the Dirichlet problem for the Stokes
system on arbitrary Lipschitz domains on a compact Riemannian manifold, with boundary data in L,. Their results extended the
results of [23] from the Euclidean setting to the case of compact Riemannian manifolds. Continuing the study of [62], Dindo%
and Mitrea [22] developed a layer potential analysis to obtain existence and uniqueness results for the Poisson problem for the
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Stokes and Navier-Stokes systems on C! domains, but also on Lipschitz domains in compact Riemannian manifolds. Medkova
in [45] studied various transmission problems for the Brinkman system.

Due to many practical applications, the mixed problems for elliptic boundary value problems on smooth and Lipschitz domains
have been also intensively investigated. Let us mention that Mitrea and Mitrea in [57] have proved sharp well-posedness results
for the Poisson problem for the Laplace operator with mixed boundary conditions of Dirichlet and Neumann type on bounded
Lipschitz domains in R® whose boundaries satisfy a suitable geometric condition introduced by Brown [7], and with data in
Sobolev and Besov spaces. Brown et al. [9] have obtained the well-posedness result of the mixed Dirichlet-Neumann problem for
the Stokes system on creased Lipschitz domains in R” (n > 3). In order to prove the desired well-posedness result, the authors
reduced such a boundary value problem to a boundary integral equation, obtained useful Rellich-type estimates, and used the
well-posedness result of the mixed Dirichlet-Neumann problem for the Lamé system that has been obtained in [8]. Costabel
and Stephan in [19] analyzed mixed boundary value problems in polygonal domains by using a boundary integral approach.
In [13, 15], direct segregated systems of boundary-domain integral equations equivalent to mixed boundary value problems
of Dirichlet-Neumann type for a scalar second-order divergent elliptic partial differential equation with a variable coefficient,
were analyzed in interior and exterior domains in R® (see also [14] for the mixed problems with cracks and [48] for united
boundary-domain integral equations). An interesting boundary integral equation method for a mixed boundary value problem of
the biharmonic equation has been developed in [11].

Boundary integral methods combined with fixed point theorems have been focused on the analysis of boundary value problems
for linear elliptic systems with nonlinear boundary conditions and for nonlinear elliptic systems with various (linear or nonlinear)
boundary conditions. Recently, the authors in [33] have used a boundary integral method to obtain existence results for a nonlinear
problem of Neumann-transmission type for the Stokes and Brinkman systems on Lipschitz domains in Euclidean setting and with
boundary data in various L,, Sobolev, or Besov spaces. The techniques of layer potential theory for the Stokes and Brinkman
systems was used in [36] to analyze Poisson problems for semilinear generalized Brinkman systems on Lipschitz domains in
R"” with Dirichlet or Robin boundary conditions and given data in Sobolev and Besov spaces. Boundary value problems of
Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains in Euclidean setting have been
investigated in [35] (see also [34, 37]). An integral potential method for transmission problems with Lipschitz interface in R®
for the Stokes and Darcy-Forchheimer-Brinkman systems and data in weighted Sobolev spaces has been recently obtained in
[32]. Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact
Riemannian manifolds have been recently analyzed in [39]. Well-posedness results for semilinear elliptic problems on Lipschitz
domains in compact Riemannian manifolds have been obtained by Dindo3 and Mitrea in [21]. Let us also mention that Russo and
Tartaglione in [67, 68] used a double-layer integral method in order to obtain existence results for boundary problems of Robin
type for the Stokes and Navier-Stokes systems in Lipschitz domains in Euclidean setting with data in Sobolev spaces. Maz'ya
and Rossmann [42] obtained Lp estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral
domains. Taylor, Ott and Brown in [70] studied Lp-mixed Dirichlet-Neumann problem for the Laplace equation in a a bounded
Lipschitz domain in R" with general decomposition of the boundary.

In this paper we analyze the mixed Dirichlet-Neumann boundary value problem for the semilinear Darcy-Forchheimer-Brinkman
system in L,-based Besov spaces on a bounded Lipschitz domain in R*, when the given boundary data belong to L, spaces,
with p in a neighborhood of 2. This system is obtained by adding the semilinear term |uju to the linear Brinkman equation.
First, we provide some results about equivalence between the Gagliardo and non-tangential traces, as well as between the weak
canonical conormal derivatives and the non-tangential conormal derivatives. Various mapping and invertibility properties of some
integral operators of potential theory for the linear Brinkman system, and well posedness results for the Dirichlet and Neumann
problems in L,-based Besov spaces on bounded Lipschitz domains in R” (n > 3) are also presented. Based on these results
we show the well-posedness result for the mixed problem of Dirichlet-Neumann type for the Brinkman system in a bounded
domain in R" (n > 3) with given data in L,-based Sobolev spaces. Further, by using some stability results of Fredholm and
invertibility properties, we extend the well-posedness property to the case of boundary data in L,-based Sobolev spaces, with

pE (2(””;11) —£,2+ s) N (1, +00), for some € > 0. The main idea for showing this property is the invertibility of an associated

Neumann-to-Dirichlet operator, inspired by the approach developed by Mitrea and Mitrea in [57]. Next we use the well-posedness
result in the linear case combined with a fixed point theorem in order to show the existence and uniqueness in L,-based Besov
spaces for a mixed boundary value problem of Dirichlet and Neumann type for the semilinear Darcy-Forchheimer-Brinkman system
in a Lipschitz domain in R®, when the boundary data belong to some L, spaces, with p € (2 —€,2 4 €) and some parameter
€ > 0. The motivation of this work is based on some practical applications, where the semilinear Darcy-Forchheimer-Brinkman
system describes the motion of viscous incompressible fluids in porous media. A suggestive example is given by a sandstone
reservoir filled with oil, or the convection of a viscous fluid in a porous medium located in a bounded domain, where a part of
the boundary is in contact with air and the remaining part is a solid surface or the interface with another immiscible material
or fluid. All these problems are well described by the Brinkman system, the semilinear Darcy-Forchheimer-Brinkman system, or
by the Darcy-Forchheimer-Brinkman system, the latter of these systems containing both the nonlinear convective term (u- V)u
and the semilinear term |u|u. For further details we refer the reader to the book by Nield and Bejan [65] (see also the theoretical
and numerical approach in [25, 26]).

It is supposed that the methods presented in this paper can be developed further, to analyze also the nonlinear boundary-domain
integro-differential equations, e.g., the ones formulated in [49, 50] for some quasi-linear boundary value problems.
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2. Functional setting and useful results

The purpose of this section is to provide main notions and results used in this paper. We recall the definition of a bounded
Lipschitz domain and give a short review of the involved Sobolev, Bessel potential and Besov spaces. Also we present the main
properties of the layer potential operators for the Stokes and Brinkman systems in Lipschitz domains in R”.

For any point x = (x1, x2, .. ., x,) € R", we use the representation x = (x', x,), where x' € R™! and x, € R. First, we recall

the definition of Lipschitz domain (cf., e.g., [58, Definition 2.1]).
Definition 2.1 A nonempty, open, bounded subset 2 of C R" (n > 3) is called a bounded Lipschitz domain if for any x € 9Q
there exist some constants r, h > 0 and a coordinate system inR", (y1, ..., yn) = (V' va) € R™! x R, which is isometric to the
canonical one and has origin at x, along with a Lipschitz function ¢ : R™! — R, such that the following property holds. If C(r, h)
denotes the open cylinder {y = (y',yn) ER"™ ' xR : |y'| < r,|ya] < h} CR", then

Qnerh)={y=0"y) eR™ xR |y'| < r and o(y') < y» < h}. (2.1)
In view of the Definition 2.1, condition (2.1) implies that 8Q = 82 and the characterization (cf. [58, (2.4)-(2.6)])
aanc(rh)={y= (" y) ER" ' xR:|y| <randy, =)}

_ 2.2
R\ NC(rh)={y=(y) ER"" xR:|y|<rand —h<y, <o)} &2

Let all along the paper, Q4 denote a bounded Lipschitz domain with a connected boundary 8Q, and Q- := R"\ Q4 denote
the corresponding exterior domain. Unless stated otherwise, it will be also assumed that n > 3.
Let k = k(0QQ) > 1 be a fixed sufficiently large constant. Then the non-tangential maximal operator of an arbitrary function
u: Q2+ — R is defined by
M(u)(x) :={sup|u(y)| : ¥y € D+(x), x € 8Q}, (2.3)
where
Di(X) = Dt (x) 1= {y € Q4 : dist(x, y) < rdist(y, 0Q2), x € 90}, (2.4)

are non-tangential approach cones located in 24 and Q—, respectively (see, e.g., [61]). Moreover,
UE(x) = lim  u(y) (2.5)
D4Oy—x

are the non-tangential limits of u with respect to Q2+ at x € 02. Note that if M(u) € L,(892) for one choice of k, where
p € (1, 00), then this property holds for arbitrary choice of K (see, e.g., [47, p. 63]). For the sake of brevity, we use the notation
D4 (x) instead of Dx.+(x). We often need the property below (cf. [64, page 80], [75, Theorem 1.12]; see also [55, Lemma 2.2]).

Lemma 2.2 /f Q C R" is a Lipschitz domain, then there exists a sequence of C* domains Q; approximating Q (; — Q as
Jj — 00) in the following sense:

(i) Qj CQ, and there exists a covering of dQ with finitely many coordinate cylinders (atlas) that also form a family of
coordinate cylinders for 82}, for each j. Moreover, for each such cylinder C(r, h), if ¢ and ; are the corresponding Lipschitz
functions whose graphs describe the boundaries of 02 and 8%2;, respectively, inC(r, h), then ||V ;|| &1y < IVl &1
and Vy; — Vo pointwise a.e.

(ii) There exist a sequence of Lipschitz diffeomorphisms ®; : 92 — 98 such that the Lipschitz constants of ®;, <1>j’1 are
uniformly bounded in j.

(iii) There is a constant k > 0 such that for all j > 1 and all x € 82, we have ®j(x) € D1 (x) = Di.x(x), where Dy(x) =
D+ (x) Is the non-tangential approach cone with vertex at x. Moreover,

lim |®;(x) — x| = 0 uniformly in x € 89, (2.6)
J—oo
lim v9(®;(x)) = v(x) for a.e. x € 8Q, and in every space L,(8%), p € (1, 00), (2.7)
J—oo

where vV is the outward unit normal to 8, and v is the outward unit normal to 8%).

(iv) There exist some positive functions w; : 2 — R (the Jacobian related to ®;, j € N) bounded away from zero and infinity
uniformly in j, such that, for any measurable set A C 82, [, wjdo = f(DJ(A) doj. In addition, limjL w; = 1 a.e. on 82 and
in every space L,(0Q), p € (1, 00).

Lemma 2.2 implies that the Lipschitz characters of the domains €2; are uniformly controlled by the Lipschitz character of €.
The meaning of Lipschitz character of a Lipschitz domain is given below (cf., e.g., [58, p. 22]).

Definition 2.3 Let 2 C R” be a Lipschitz domain. Let {Ci(rx, h«) : 1 < k < N} (with associated Lipschitz functions {@x :
1 < k < N}) be an atlas for 89, i.e., a finite collection of cylinders covering the boundary 9Q2. Having fixed such an atlas
of 8Q, the Lipschitz character of Q is defined as the set consisting of the numbers N, max{[|[Vk|l, g1y :1 < k < N},
min{rc : 1 < k < N}, and min{h, : 1 < k < N}.
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2.1. Sobolev and Besov spaces and related results

o]

In this subsection we assume n > 2. We denote by D(R") := C&mp(R") the space of infinitely differentiable functions with
compact support in R” and by D(R", R") := C&mp(R", R") the space of infinitely differentiable vector-valued functions with
compact support in R”. Also, let £(Q2+) := C*(Q+) denote the space of infinitely differentiable functions and let D(Qy+) 1=
Coomp(Q2+) be the space of infinitely differentiable functions with compact support in Qx, equipped with the inductive limit
topology. Let’ £'(R") and D'(R") be the duals of £(R") and D(R"), respectively, i.e., the spaces of distributions on R”. The
spaces £'(Q2+) and D'(Q2+) can be similarly defined.

Let F denote the Fourier transform defined on the space of tempered distributions to itself, and F~! be its inverse. For
p € (1,00), L,(R") is the Lebesgue space of (equivalence classes of) measurable, p™ integrable functions on R”, and L (R") is
the space of (equivalence classes of) essentially bounded measurable functions on R". For s € R, the L,-based Bessel potential
spaces H,(R") and H,(R", R") are defined by

HS(R™) = {f :(I— A)?f €L,(R")} = {f : F°f €L,(R")}, (2.8)
Hy(R",R") = {f = (A, F. ..., f): i€ Hy(R"), j=1,..., n}, (2.9)

where J° : §'(R") — §'(R") is the Bessel potential operator of order s defined by JSf = F1(p*Ff) with
1
(&) = (L+ €1 (2.10)
(see, e.g., [44, Chapter 3]). Note that H;(IR") is a Banach space with respect to the norm
IFllbg@n= 11 FllL,@n = 1F (0" FF)llLo@n- (2.11)

For integer s > 0, the spaces H,(R") coincide with the Sobolev spaces W, (R").
The Bessel potential spaces H,(€2) and H;(Q2) are defined by

H3(Q) == {f € D'(Q) : 3 F € H3(R") such that Flg = f}, (2.12)
H3(Q) := {f € H3(R") : supp f C Q}, (2.13)

and the Bessel potential spaces H,(2,R") and ﬁ;(Q,R”) are defined as the spaces of vector-valued functions (distributions)

whose components belong to the spaces H3(Q2) and H3(Q), respectively (see, e.g., [44]). For any s € R, C*(Q) is dense in
H(2) and the following duality relations hold (see [29, Proposition 2.9], [24, (1.9)], [63, (4.14)])

s ! —s —s /s !

() = A7 (). H () = (A@) - (2.14)

1 1
Here and further on p, p' € (1, 00) are related as > + o =1.

Replacing €2 by Q_ in (2.12) and (2.13), one obtains the Bessel potential spaces H,(2-), ﬁ,ﬁ(Q_).

For p € (1,00) and s € (—1, 1), the boundary Bessel potential space H5(82) can be defined by using the space Hy(R" '), a
partition of unity and pull-pack. In addition, H*(8%) = (H,i((“)Q))’. We can also equivalently define H3(0Q) = L,(8Q) as the
Lebesgue space of measurable, pt power integrable functions on 8. In addition, H;(@Q) coincides, with equivalent norm, with
the Sobolev space

W, (69) == {f € Lp(092) < [Ifllwp(an) < 00}: I llwz o) = IIfllp62) + [ VeanfllLyo0)- (2.15)
Here the weak tangential gradient of a function f locally integrable on 62 is Vianf 1= (ukBTkj f)lg<n, where Oy, f is defined in the
weak form as (cf. e.g., [61, (2.9)]) (Or,;f, d)oq := —(f, O, P)a for any ¢ € D(R") with Oy, ¢ := vk (8;9) o — vj (0kd) loa, J. k =
1,..., n,and v=(v1,..., vp) is the outward unit normal to 2, which exists at almost every point on 92. If f is defined and
smooth enough in the vicinity of 02, then by integrating by parts it is possible to show that the weak definition coincides with
the strong one, given by Or, f 1= vk (§;f) |aa — v; (Okf) laa.

Now, for s € R and p, g € (1, c0), denote by B; ,(R") the scale of Besov spaces in R", see Appendix A. Similar to (2.12) and
(2.13), the Besov spaces B; ,(Q2) and B; ,(€2,R") are defined by

Bs.(Q) :={f € D'(Q):3 F € B, (R") such that Flo = f}, (2.16)
Bpo(QUR") = {f=(A.f..., f) i €Bpg(.j=1,..., n}, (2.17)
B o(Q) :={f € B} ,(R") : supp f CQ}. (2.18)

fIf X is a topological space, then X’ denotes its dual.
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For s €[0,1] and p, g € (1, 00), the Sobolev and Besov spaces H,(02) and B; ,(052) on the boundary 62 can be defined by
using the spaces H;(R”_l) and Bf,_q(R”_l), a partition of unity and the pull-backs of the local parametrization of 2. In addition,
we note that H;*(8Q) = (H5(8))" and By§ = (B ,(89))", where p', ¢’ € (1, 00) such that S+ =1land ;+ 5 =1 (for
further details about boundary Sobolev and Besov spaces see, e.g., [61, p. 35]).

A useful result for the problems we are going to investigate in this paper is the following trace lemma (see [30, Chapter VIII,
Theorems 1,2], [29, Theorem 3.1] and also [18, Lemma 3.6] for the case p = 2 and a discussion on the critical smoothness
index s =1).

Lemma 2.4 Assume that Q C R" is a bounded Lipschitz domain with connected boundary 8Q and let Q_ :=R"\ Q be the

corresponding exterior domain. Let p, g € (1,00) and s € (0, 1). Then there exist linear and continuous Gagliardo trace operators
1 1 _

Vi H;Jr"(Qi) — B, ,(02) and vz : B;t," (Q+) = B, 4(0%2), respectively, such that y+f = flaq for any f € C*(2+). These

1
operators are surjective and have (non-unique) linear and continuous right inverse operators yi* : B3 ,(0Q) — H,sf" (Qx) and
1
yit: By (09Q) — B (Qu), respectively.
Lemma 2.4 holds also for vector-valued and matrix-valued functions f. If f is such that y+f = v_f, we will often write ~yf.
We have the following trace equivalence assertion.
Theorem 2.5 Assume that Q C R” is a bounded Lipschitz domain with connected boundary 8Q and let Q_ :=R"\ Q be the

1 1
corresponding exterior domain. Let p, g € (1,00), and let u € B,s,:” (Qg) oru e H;Jr” (Q4) for some s > 0. Then the Gagliardo
trace v+ u is well defined on 02 and, moreover,

(i) if the pointwise non-tangential trace ut exists a.e. on 82, then uf = yiu;
(ii) if the pointwise non-tangential trace uZ; exists a.e. on dQ and s € (0, 1) then uf = ysu € B} ,(8Q);

(iii) if u € H3(0Q) for some s € (0, 1], then yru € H3(0S2) as well.

Proof. Item (i) for 0 < s < 1 is implied by Theorem 8.7(iii) in [6], while for s > 1 the equality y+u = uE still applies by an

imbedding argument. Item (ii) and (iii) follow from item (i) and the well known imbedding y+u € B, ,(092) for s € (0,1). O
Further on, (-, -)o will denote the dual form between corresponding dual spaces defined on a set Q'. For further details about

Sobolev, Bessel potential and Besov spaces, we refer the reader to, e.g., [1, 27, 44, 72, 73].

2.2. The Brinkman system and conormal derivatives in Bessel-potential and Besov spaces

In this subsection we also assume n > 2. For a couple (u,7), and a real number a > 0, let us consider the linear Brinkman
system (in the incompressible case)

Lo(u,m)=f, divu=0, (2.19)

where the Brinkman operator is defined as
Lo(u,m) ;= Au—ou— V. (2.20)

When a = 0, the Brinkmjn operator bicomes the Stokes operator.
Now, for (u, 7) € C}(Q+,R") x C%(Q4+), such that div u =0 in Qx, we define the classical conormal derivatives (tractions)
for the Brinkman (or the Stokes) system, t5*(u, 7), by using the well-known formula

t=(u, 1) = (vro(u, 7)) v, (2.21)
where
o(u, m) = —ml+ 2E(u) (2.22)

is the stress tensor, E(u) is the strain rate tensor (symmetric part of Vu), and v= v is the outward unit normal to Q, defined
a.e. on 9Q. Then for any function ¢ € D(R",R") we obtain by integrating by parts the first Green identity,

+ (t% (u, m), @) =2(E(u), E())a. + a(u, @)a. — (T, div @)a. + (La(u, ), 0)g, . (2.23)

If the non-tangential traces of the stress tensor, o (u, ) and the normal vector v exist at a boundary point, then the
non-tangential conormal derivatives are defined at this point as

th(u, ) =omv. (2.24)
For s € R and p, g € (1,00), we consider the spaces

v (Q+,R") = {ur € Hy(Q+,R") :divu=0in Qs }, (2.25)
Bpqain(Qx. R") == {ux € B; o(Q+,R") :divu=0in Qs}. (2.26)

We need also the following spaces (cf. [51, Definition 3.3]).

Math. Meth. Appl. Sci. 0000, 00 1-42 Copyright © 0000 John Wiley & Sons, Ltd.
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Definition 2.6 Let 2 be a Lipschitz domain (bounded or unbounded). For s € R, p, q € (1,00) and t > —1/p', let us consider
the following spaces equipped with the corresponding graphic norms:

5N, L) = {(u ™) e HTF QR x HPTHQ) - La(u,m) = flo, F€ AYQUR") and dvu=0 in Q},

p dIV

1w DI .5 =l Ly ) e + 1l -
5t ) HJ"(Q,R + 1( ) HE(Q.R")

ﬁp,div La

o+l srlo .
pqdw(Q Lo) = {(u,'/r) € B P (URY) x By Q) : La(u,m) =Flo, Fe BL(QURY) and dvu=0 in Q},

2 2 2 112
= flI2
=l I IR o

p,qydiv A

where Lo (u, ) is defined in (2.20).

If t1 > t2, the following continuous embeddings hold, ﬁp v (Q Lao) = ﬁp i tz(Q La), %pqdw (2, Lo) = %pqdw (2, La).
Let Dav(Q2,R") :={ve D(Q,R") : divv=0 in Q}. Similar to [52, Theorem 6.9], one can prove the following assertion.

Theorem 2.7 If Q2 is a Lipschitz domain (bounded or unbounded) or Q =R", « >0, p,g € (1,00), s€R and t > —ﬁ, then
— o s l, . s l,
D (QLR") x D(Q) is dense in 5, " (Q La) and in B> (Q, La).

Let p, g € (1,00). Let Ex be the operator of extension of functions defined on Q4 by zero on R"\ Q.. Following the proof
of Theorem 2.16 in [51], let us define the operator Ex on H5(Qx) and B 4(Q2+) as Ex == Ex for 0 <t < %, and as

. ~ o 1
(Exh, V), :=<(h, ExV)q, = (h, ExV)q,, when — E <t<O0,
for all h€ Hy(Qx), v € Hf(Q4), or for all h € By (), v € B, (Q4), respectively. Then, for —1/p" < t < 1/p, evidently

2 HY(Qs) = HY(Qs),  Ex: Bho(Qs) = Bjo(Q)

are bounded linear extension operators. Similar definition and properties hold also for vector fields.
Analogously to the corresponding definition for Petrovskii-elliptic systems in [51, Definition 3.6], we can introduce an operator
Lo as follows.

Definition 2.8 Let 2 bea Lipschitz domain (bounded or unbounded), p, g € (1,00),s €R, t > —1/p’. The operator Lo mapping

(i) functions (u, w) € 55 (Q La) to the extension of the distribution Lq(u, 7) € H5(2,R") to Ht (2, R")

P, dlv

or

(if) functions (u, ) € D (Q Lo) to the extension of the distribution Lo(u, T) € B (2, R") to B 4(Q,R"),

pqdlv

will be called the canonical extension of the operator L.

Remark 2.9 Similar to the paragraph following Definition 3.3 in [51], one can prove that the canonical extensions mentioned
in Definition 2.8 exist and are unique. If p, g € (1,00), s €R, t > —1/p’, then

ol ) goey < NN iy and el gy < O

Lo P (QLa)

p. dw

by deﬁnmon of the spaces 5’) (Q Lo) and D

Lo pqdw(Q Lo) = B 5.a(Q,R") are continuous. Moreover, if —1/p’ <t < 1/p, and 2 is a Lipschitz domain (bounded or
unbounded), then we have the representation £q = E+£a, or Lo 1= E_,Ca, respectively, cf. [51, Remark 3.7].

(Q L«). Hence the linear operators Ly (Q Lo) = HE »(€2,R") and

p dlv

p. dlv P.q. dlv

Formula (2.23) suggests the following definition of the canonical conormal derivative in the setting of Besov spaces, cf., [18,
Lemma 3.2], [36, Lemma 2.2], [51, Definition 3.8, Theorem 3.9], [52, Definition 6.5, Theorem 6.6], [61, Proposition 10.2.1]).

Definition 2. 10 Let a>0,s€(0,1), p, q € (1,00). Then the canonical conormal derivative operators tX are defined on any

(u,m) € Sﬁp dw' ” (Qux, La), or (u,m) € B (Qu, La), in the weak sense, by the formula

pqdlv

+(tE(u, ), Yo, =2 <Ei]E(u),lE(’y;I(p)>Qi+a(Eiu,’yillp)szi—</::i7r, div(fy;I(p)> +{Lu(u, W),’Y;l(p>gzi, (2.27)

Y€ B, (00.R"), or Y€ B, (00.R"), respectively.
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Note that the canonical conormal derivative operators introduced in Definition 2.10 are different from the generalized conormal
derivative operator, cf. [37, Lemma 2.2], [51, Definition 3.1, Theorem 3.2], [52, Definition 5.2, Theorem 5.3]. Similar to [51,
Theorem 3.9], one can prove the following assertion.

Lemma 2.11 Under the hypothesis of Definition 2.10, the canonical conormal derivative operators

s+i-% _ s+1—
5T (O L) o BIAOORY), € BT (O L) — BA(O0,RY),

p,div p.q.div

are linear, bounded and independent of the choice of the operators v . In addition, the following first Green identity holds

S (u, 1), Yiwdon =2 <EiIE(u) ]E(w)>Qi + <Eiu, w>Qi - <Ei7r, div w>Qi + <Ea(u, ), w>Qi (2.28)

1 1 1

for all (u,m) € 5. 7 (Qu, L), WE H, 7 T Qe RN and all (um) € BT (Qu L), W E B,

p.div p,q.div
following second Green identity holds

/

(Qi,R”), and the

£ ((t5 (u, ), v4v)a0 — (tx (v, @), v+u)an) = (La(u, 7), Vg, — (Lalv.q) u)g, (2.29)

s+i-1 14+ s - . 75.—1
forall (u,m) € 9,4, " (2, La), (v. q) € H,, 4, ”(Qi R") and all (u, 7) € %p qu.v ) (Qx,La), (v, q) € % (Qx, R,
Remark 2.12 Similar to [32, Remark 2.6], we note that by exploiting arguments analogous to those of the proof of Theorem
3.10 and the paragraph following it in [51], one can see that the canonical conormal derivatives on 02 can be equivalently
defined as t£ (u, m) = r,,t (u, 7). Here t[li(ui) is defined by the dual form like (2.27) but only on Lipschitz subsets Q. C Q4
such that 8Q C 8 and closure of Q4 \ 2, coincides with Q4 \ Q4 (i.e., Q4 are some layers near the boundary 8%).

1
Moreover, such a definition is well applicable to the functions (u, ) from £ 5y (4, Lq) or ‘B o (4, La) that are

p,div p.q.div
41
not obliged to belong to Jﬁp dl'\’,’ 4 (Q4, La) or SBP qu,w 7 (Q4, La), respectively. It is particularly useful for the functions (u, )
1 l
that belong to jﬁp dw' 4 (Q ,Lo) or %pqd'w 7 (Q_, L4) only locally.

Now we prove the equivalence between canonical and non-tangential conormal derivatives (as well as classical conormal
derivative, when appropriate).

Theorem 2.13 Letn>2, o >0, and p, q € (1, 00).

(i) Let s>1 and (u, 7)€ qud.v(Qi R") x Bf, q1+P(Qi) or (u,m) € Hp d.v(Qi R") x H P(Qi) Then the classical

conorma/ derivative t(u, ) and the canonical conormal derivative t=(u, ) are well defmed and tZ(u, ) =t (u,7) €
1,(09, R").

If, moreover, the non-tangential trace of the stress tensor, o%.(u, ), exists a.e. on 82, then the non-tangential conormal

derivative, defined by (2.24), also exists a.e. on Q and tm(u, ™) =td(u, ) =t (u, 1) € L,(8Q, R").

(i) Let0<s <1, (um)e %pqdw(Qi L) or (u,m) € f)p v (Qi La), for some t > —;. Let also assume that the non-

tangential maximal function M(o(u, 7)) and the non-tangential trace of the stress tensor, o*.(u, w), exist and are finite
a.e. on 8Q and belong to the space L,(8Q, R™"). Then t(u, m) = tX(u, m) € L,(0Q,R").

Proof. We will give a proof in the case of a bounded domain Q4+ and the Besov spaces. For an unbounded domain 2_ and the
Bessel potential spaces the arguments are the same.

(i) Let (u, ) € B (24, R") x B,s, qH"(Q+) for some p, g € (1,00) and s > 1. Evidently, the stress tensor o (u, 7) belongs
s—1+1

to Bpg (2, R™"), which for 1 < s < 2 implies that y_a(u, 7) € Bj ' (99, R™") C L,(0Q, R™"). Taking into account that

the unit normal vector to the boundary, v, belongs to Lo (02, R"), we obtaln by (2.21) that t"(u, 1) € L,(062, R").

(Q4) x B; qH (Q4) for p,ge€ (1,00) and s> 1 implies that (u, ) €

pqdlv

On the other hand, the inclusion (u,7) € qudw

%pqdw(fh L) fort € (=1/p',s —1—1/p') and thus the canonical conormal derivative t£ (u, 7) is well defined and belongs to
B:1(8Q,R") for any s' € (0,1). For 1 < s < 2, the proof that t}(u, 7) = t5" (u, 7) € L,(8Q, R") is similar to [51, Corollary
3.14] (with evident modification to L,-based spaces), while for s > 2 the relation t£ (u, ) = t"(u, ) € L,(8Q,R") still stays
by imbedding.

If, in addition, the non-tangential trace of the stress, o (u, 7). exists a.e. on 8Q, then o (u, w) = vto(u, ) by Theorem
2.5(i) implying that t}(u, ) = t£(u, 7) =t (u, 7) € L,(0Q,R").

(ii) Let 0 < s <1 first, and the case s = 1 will follow by inclusion. Under the other hypotheses of item (ii), the canonical
conormal derivative, tf(u, ), is well defined on the boundary 8Q and belongs to Byt (09, R"). Let {Q;};>1 be a sequence
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of sub-domains in Q4 that converge to Q4 in the sense of Lemma 2.2, with the corresponding notations ®;, v¥ and wj also
introduced there.
Similar to the proof of Lemma 3.15 in [51], one can now prove that the canonical conormal derivative on 8% is a limit of the

(4. R).

1
+p,

1
canonical conormal derivatives on 8%, i.e., (t} ;o (u, ), Voq, Whan = Iimj%o(t;jaQ (u, ), Vg, W)ag, foranyw € B,

The inclusion (u, ) € B (Q+ L) means that the couple (u, 7) satisfies the elliptic Brinkman PDE system (2.19) with a

pqdlv
right hand side f € B;q(m R™), which implies that (u, m) € BSt2, () x BLEH(S)). Then vag,0(u, m) € qu "(an,R"X") C
L,(892;, R™") and t} a0, (U, T) = 55 (u,m) = 'ngjcr(u,w)u € L,(69;,R™) by item (i).

On the other hand, for a.e. pomt x € 092 the non-tangential function M(a(u, w))(x) exists and is finite, which particularly
implies that o (u, 7) is well defined and bounded in the approach cones D4 (x). We can consider o(u, w)(x) as strictly defined

(by its limit mean values lim,-g 3"5()( 1y o (u, m)(£)d€ in the sense of Jonnson & Wallin [30, p.15], see also [6, Theorem 8.7]); then
Yoq;0(u, T)(y) = o(u, 7r)(y) and hence t} 0% (u, m)(y) = t5h (u m)(y) =a(u, m)(y) - vi(y) for y € D1(x) NOQ;. In addition
O(_(an(u, m)(Pj(x)) = t5 (u ™) (Pj(x)) = cr(u ) (Pj(x)) - u(¢ (x)) tends to ok (u, ) (x) - ¥(x) =t} 5 (u, 7)(x) as j — oo for
a.e. x € 012, for which a'nt(u 7)(x) does exist.

Let us now prove that t5& (u m)(P;(x)) converges to t, 5, (u, 7)(x) not only point-wise for a.e. x € 82 but also in the weak

1_
+p,

s
sense, i.e., Iimj_,oo(tggj (u, ), Yoo, W)a0, = (ty o0 (U, T), Voo, W)oo for any w € B, " (Q2+,R"). We have

| (55, (u, m), Yog, W)oo; — (theoa (U, T), Yoo, Whan| = [(tsh (u, ) 0 b;, WjYa, W © Pj)on — (toon (U, ), Yoo, Wag|
< (850, (u, ) 0 &) — to o0 (U, ), W) Yen, W © Pj)aa] + [{ta oo (U, ), (W) — 1) Ve, W o j)ag]

+ |<tnt aa(u, m), ’YaQJW od; — '769+W>6Q|- (2.30)
Let us prove that the summands in the right hand side of (2.30) tend to zero as j — co. To this end, we use the inequality
|(t55, (u, ) 0 Bj—ty; o (u, ), W Yo, W © Pj)oal < [[£58, (u, ) © D=t o0 (U, )|, (02) llwjYag, W o illL ;00 (2.31)

We have,
|55, (u, 1) (P,(x)) = taon(u, ) (x)] < M(a(u, 7)) (x) + [t o0 (u, ) (x)], (2.32)

the both terms in the right hand side of (2.32) belong to L,(89) and t5}, ,(u, ) 0 ®; — t! oo (u, ) — 0 pointwise a.e. on 9.

Then the Lebesgue dominated convergence theorem implies that the f|rst multiplier in the right hand side of (2.31) tends to

zero. Since Y, W € Bl 5(8%, R") C L;7°(8%;, R") and Vo, W © ®j = Yo, W (cf. [64, Chapter 2, Theorem 4.5]), the second

multiplier in the right hand side of (2. 31) is bounded and hence the whole right hand side of (2.31) tends to zero. The second

summand in the right hand side of (2.30) tends to zero since w; — 1, and the third, again, because Yoo, W © D = VoW
Combining this with the previous argument, we obtain,

+1-s

1
{ta o0 (U, T), Vo, W)oa = Jim M (t50, (U, ), Vag Whoa; = (treoa(U, 7). Vg Whoa VW E B, 7 (Q4,R")

Taking w = i 'g, this gives (tf o (u, ), @)oo = (t} oo (u, T), @)oo for any @ € B 5(6Q,R"), ie., ti(u, ) =t} (u, 7), and
since th(u, ) = af(u, M) v € L,(6Q,R"), this completes the proof of item (ii) for 0 < s < 1, while for s = 1 the statement
follows by inclusion. O

Remark 2.14 Due to Remark 2 12 Theorem 2.13 Will still valid for Q2_ if the functions belong to the corresponding spaces

only locally, i.e., if (u, 7) € B (Q_.R") x B (Q ) in item (i) and (u, 7) € B (Q-, L&) in item (ii).

pP.q, dlv loc P.q. Ioc P.q. dlv loc

3. Integral potentials for the Brinkman system
This section is devoted to the main properties of Newtonian and layer potentials for the Brinkman system.

3.1. Newtonian potential for the Brinkman system

Let a > 0 be a constant. Let us denote by G* and 1 the fundamental velocity tensor and the fundamental pressure vector for
the Brinkman system in R"” (n > 3), with the components (see, e.g., [43, (3.6)], [40, Section 3.2.1], [74, (2.14)])

XXk

Ix|"

Xk
|X|”

%®=%hiﬁmm+ &wm}ﬂm> (3.1)
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where A1(z) and Ax(z) are defined by

2\3 e, 2)2Kn(z )i, (2

(3.2)

K, is the Bessel function of the second kind and order 3¢z > 0, I is the Gamma function, and @, is the area of the unit sphere
in R". The fundamental solution of the Stokes system, (G, ), which corresponds to a = 0, is given by (see, e.g., [74, (1.12)])

Gjk(x) = - { L5 +ijk}, Mi(x) = L X (3.3)

20, | n—=21x|"2 " |x|" @ x|
Next we use the notations G¥(x,y) = G¥*(x —y) and M(x,y) = MN(x —y). Then
(Ox — a)G*(x,y) — V(% y) = =6, (X)L, divxG*(x,y) =0, Vy € R", (3.4)

where d is the Dirac distribution with mass in y, and the subscript x added to a differential operator refers to the action of that
operator with respect to the variable x.
The fundamental stress tensor S* has the components

G (x,y) 4 G (x,y)

Siie(x,y) = =T;(x, y)die + % ox

(3.5)

where §ji is the Kronecker symbol. Let A* be the fundamental pressure tensor with components Aj,. Then for fixed i and k,
the pair (Sjjx, Nj) satisfies the Brinkman system in R" if x #y, i.e.,

o o NS (y, x
AxSi(x,y) — aSji(x,y) — # =0,
vl
OSHik(x.y) (3.6)
—F—FF =0
0x;
The components A% (x,y) are given by (see, e.g., [74, (2.18)])
a _ 1 20k — xk) 26i 1 1 _
Ni(x,y) = wn { (vi — xi) ly — x|+ Iy — x| a =2 Iy —x"2 5/k} . (3.7)

For a = 0, we use the notations Sjjx := S, and Aix := Af.
Let * denote the convolution product. Let us consider the velocity and pressure Newtonian potential operators for the Brinkman
system,

(Nazo) () i= — (0% + 9) (%) = —(G*(x.). @), (Quzrp) (x) = (Qw@) () = — (M +9) () =—(N(x.).9) . (38)

where the fundamental tensor G is presented through its components in (3.1). Note that the Fourier transform of G*-components
is given by

Gy = @mM7E (o Gk

Then we have the following property (cf. [43, Theorem 3.10] in the case n = 3, s = 0).

Lemma 3.1 Let o > 0. Then for all p, q € (1,0) and s € R the following linear operators are continuous

Nere : Hy(R”, R") — H3P2(R",R"), (3.10)
Nere : Bpo(R”, R") — B3t2(R",R"), (3.11)
Qg : Hy(R",R") = HITL(R"), (3.12)
Qrr : B 4(R",R") — B (R"). (3.13)
Proof. Let p € Hy(R", R"). By (2.11),
||Na:R"‘P||Hg+2(Rn.R") = H]:_l (ps+2‘7:(N°‘:Rn(p))HLP(R”.R”)’ (3.14)

where p is the weight function given by (2.10). In addition, we note that

F (Noro@) = F (G* % @) = G°% (3.15)
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and hence by (3.14),

=||F Y (mF(re), (3.16)

- +2 A0
||Na:R"(p||HI§+2(Rn.Rn) = H]: (ps ga‘p) H(RARTY -

Lp(R7,R")
In view of (3.9), the matrix-function i := p2G® has the components
~ a1 ¢)? ( $k§j) .
My =0Q2n) 25— b— = |, kj=1,..., n,
kj(g) ( ) |£|2+a kj |€|Q J
and is smooth everywhere except the origin and uniformly bounded in R” x R”. Hence it is a Fourier multiplier in L,(R") (cf.
Theorem 2 in Appendix of [54]), i.e., there exists a constant M > 0, (which depends on p but is independent of ¢) such that
”Na:R”‘P”Hg*?(Rn.Rn) <M ”JS‘PHLP(R",R”) = MH‘P”H;(R",R")-
and thus [[Naol| s e gy He2@ermy < M. while operator (3.10) is continuous.
Moreover, by formula (A.12) we have the interpolation property
(H3(R",R"), HZ(R",R")), . = B; 4(R",R"), (HZ**(R",R"), HZ*(R",R")), = B;'(R",R"), (3.17)

where s = (1 —6)s; + 6s,. Then by continuity of operator (3.10), we obtain that operator (3.11) is also continuous for
p,q € (1,00) and any s € R.

Let us now show the continuity of operators (3.12) and (3.13). To this end, we note that the pressure Newtonian potential
operator for the Brinkman system coincides with the one for the Stokes system and for any ¢ € D(R", R") can be written as

Qrrp = divNa g, (3.18)
where
(Nage®) (X) == = (Ga * 9) (%), (3.19)
1 . ) ) ) ,
and Ga(x,y) := is the fundamental solution of the Laplace equation in R”. Therefore, the mapping

(0= 2)wn [x — y[r2
properties of the pressure Newtonian potential are provided by those of the harmonic Newtonian potential Magn. Since Na.rn
is a pseudodifferential operator of order —2 in R”, the following operator is continuous,

Nazn : Hy(R") = HIZ(R"), Vs €R, p € (1, 00). (3.20)

Then by (3.18) and (3.20) we deduce the continuity property of the pressure Newtonian potential operator in (3.12). By using
an interpolation argument as for (3.11), we also obtain continuity of operator (3.13). a

Let « >0 and p € (1,00) be given. The Newtonian velocity and pressure potential operators of the Brinkman system in
Lipschitz domains Q2+ are defined as

Neo = roNagnEx and Qo = ro, QrnEx. (3.21)

Recall that £+ is the operator of extension of vector fields defined in Q4 by zero on R” \ Q4+, and rq, is the restriction operator
from R” to Q4. The operators £ : L,(Qx,R") = L,(R",R") and ro, : H2(R",R") — H2(Q+,R") are linear and continuous.
In addition, the volume potential operator Na:g» : Lp(R”, R") — H2(R”,R") is linear and continuous as well, for any p € (1, cc)
(cf., e.g., [43, Theorem 3.10], [20, Lemma 1.3] and Lemma 3.1). Therefore, the velocity Newtonian potential operators

Neo. | Lp(Qs+,R") = Hy(Qx,R"), p e (1,00), (3.22)
are continuous operators. A similar argument yields the continuity of the Newtonian pressure potential operators
Qq. : Lp(4.R") = Hy(). Qa1 Lp(Q-.R") = Hpioe(R-),  p € (1,00). (3.23)
Next, in view of (A.5), (A.6) and the first inclusion in (A.8) we obtain the inclusions
1 1 1
HAR",R") = W2(R", R") = W, "* (R", R") = B,,* (R",R") = B, »(R".R"), Vp>1, p"=max{p,2}, (3.24)
which are continuous. Then relations (3.22) and (3.24) imply also the continuity of the velocity Newtonian potential operator
1
Nao. : Lp(Qx,R") = B 7 (Qu, RY), p € (1,00). (3.25)
A similar argument yields the continuity property of the pressure Newtonian potential operator
1 1 _
Qua,  Lp(Q24,R") = B . (2),  Qaa 1 Lp(Q2-,R") = B} . ,(Q2-), p€(1,00). (3.26)

In addition, due to (3.21), we have the relations
ANg.o f — aNgo. f —VQOqo . f=f, div Nao ,f =0 in Q. (3.27)

This leads us to the following assertion.
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Corollary 3.2 [et a >0, p € (1,00), and p* = max{p,2}. Then the Brinkman Newtonian potentials satisfy equations (6.46)
and the following operators are continuous

(Naso, . Qa,) : Lp(Q24.R") = 92%,(2+. La),  (Naso_, Qo) 1 Lp(Q-,R") = 5% 10c(Q-, La). (3.28)
(N2, Qo) Lp(Q24+.R") = B0 4y (24, La),  (Naoo, Qo) Lp(Q2-,R") = B0 iy oc(2-, La). (3.29)

Remark 3.3 Letfy € L,(Q2+,R") for some p € (1, 00), and p* = max{p, 2}. Then Corollary 3.2, Lemmas 2.4, 2.11 and Remark
2.12 imply that

¥z (Nao,fr) € B,y (O R"),  ti (Nao.fs, Qo.fr) € By, (02, R"), Vse€(0,1). (3.30)

Moreover, due to (3.22), the first equality in (3.24), Theorem 2.13, and [10, Theorem 5], these inclusions can be improved
to the following ones

Y+ (Na;Qifi) € H,ﬁ;,,(aQ,R”), t: (Na;Qifj:, QQifi) =t (Na;Qifj:, QQifj:) € L,(692,R"). (3.31)

In (3.30), (3.31) and further on, the following space notations are used for p € (1,00), g € (1,00], s € (0, 1], and the outward
unit normal v to the Lipschitz domain Q4+ C R”,

Lpw(0Q,R") := {v € L,(02, R") : / v-vdo = O}, Hpw (02, R") := {v € H, (82, R") : / v-vdo = 0},
o0 o

B4 (0L R") := {v € B, ,(0Q,R") : v-vdo = O} . (3.32)

oQ

3.2. Layer potentials for the Brinkman system

For a given density g € L,(892, R"), the velocity single-layer potential for the Brinkman system, Vag, and the corresponding
pressure single-layer potential, Q°g, are given by

(Va@)(x) := (G%(x,), @an, (Q°@)(x) := (M(x,"),9)oe, x € R"\ 6. (3.33)

Let h e H,l,(aQ,]R”) be a given density. Then the velocity double-layer potential, Wa:00h, and the corresponding pressure
double-layer potential, Q. 50h, are defined by

(Wah);(x) := /a S5y () oy, (Q2h)(x) = /6 N (3)doy, ¥ x ERT\ R (3.34)

where vy, £=1,..., n, are the components of the outward unit normal v to €24, which is defined a.e. (with respect to the
surface measure o) on 82. Note that the definition of the double layer potential in [69, (3.9)] differs from definition (3.34) due
to different conormal derivatives used in [69, (1.14)] and in formula (2.22) of our paper.

The single- and double-layer potentials can be also defined for any g € B;z,l(aQ,R”) and h € B; ,(092,R"), respectively,
where s € (0,1) and p, g € (1, 00). For & = 0 (i.e., for the Stokes system) we use the notations Vg, Q°g, Wh and Q%h for the
corresponding single- and double-layer potentials.

In view of equations (3.4) and (3.6), the pairs (Vog, Q°g) and (W5h, QZh) satisfy the homogeneous Brinkman system in Qx,

(A —al)Vog — VO’g =10, divWeg=10 in R"\ 389, (3.35)
(A —al)Wosh — VQ°h =0, divWosh =0 in R"\ 0Q. (3.36)

The direct value of the double layer potential Wq.00h on the boundary is defined in terms of Cauchy principal value by

(Kah)i(x) = p.v./Sﬁe(y,x)w(y)hj(y)doy a.e. x € 9900 (3.37)
8Q

Lemma 3.4 Let Q. CR" (n> 3) be a bounded Lipschitz domain with connected boundary dQ and let Q- :=R"\ Q.. Let
a >0 and p € (1,00). There exist some constants C; >0, i=1,..., 4, depending only on p, a and the Lipschitz character of
Q.+, such that the following properties hold:

1M (VVa@) |l 00 + IM (Vag) llL,00) + IM(Q°9) lIL,00) < CillgllL,ear), Vg€ L(OQ,R"), (3.38)
IM(Vag) ”Lp(@Q) < C2||g||H;1(0Q_Rn)v Vgce H,:l(@Q,R”), (3.39)
[IM (Wah) [ 00) < Callhll 00k, VheE L (02 R"), (3.40)
IM (YWah) [|1,00) + IM (Wah) [|,@0) + IM(Q&h) 1,60 < Callhllyoarn. ¥ h € Hy(OQR"). (3.41)
Math. Meth. Appl. Sci. 0000, 00 1-42 Copyright © 0000 John Wiley & Sons, Ltd.

Prepared using mmaauth.cls



Mathematical

Methods in the

Applied Sciences R. Gutt, M. Kohr, S.E. Mikhailov, W.L. Wendland
|

Moreover, the following estimates hold for the non-tangential traces that exist at almost all points of 0X2:

(Va@)iill 000y, 1(VVa@)iilli 00z, 1(Q°0) w00z < Cillgll,eorny, YV g€ L,(0Q2 R"), (3.42)
[(Va@nillLp00) < Gllgllyzoarn. Y9E H," (892, R"), (3.43)
[(Wa@)3illp00.k) < Callhlloaze). ¥V h € Lp(02R"), (3.44)
[ (Wah)aill,00zm. [(VWah)iill, oz, 1(Qah)nlli, 6oy < Callbllpo0-m. VheE Hp(0Q, R"). (3.45)

Proof. In the case a = 0, inequalities (3.38)-(3.41) follow from [61, Propositions 4.2.3 and 4.2.8].

In the case a > 0, Inequality (3.38) has been obtained in [69, Lemma 3.2]. In addition, inequality (3.39) follows by the same
arguments as in the proof of its counterpart in the case a = 0 (cf. [61, (4.61)]). Indeed, if g € H,'(8Q, R"), then there exist
do = (go:1, . . -, Jon), 9re = (Gre1, .. -, Jren) € Lp(OQQ,R™), r,=1,..., n, such that

n n
9= ok + ) O grei N9oullioom + Y Ngrekllison) < 2Moulliony k=1, n, (3.46)
ré=1 ré=1

(cf. [61, Corollary 2.1.2 and relation (4.65)]), where 0r,, = 1,0, — 1,0, are the tangential derivative operators. Hence, integrating
by parts,

n n

(Vag)j(x) = /6&'2 gﬁ((x - y)QO:k(y)doy - Z Z /69 (8‘1’,@ (gﬁ((x - y))) grl:k(Y)day, VxeR" \ o (3-47)

k=1 rt=1

(cf. [61, (4.66)] for o = 0). Inequality (3.39) immediately follows from equality (3.47) and the estimates in (3.38) and (3.46).

Let us now show inequality (3.40) for a > 0 (note that its analogue for a differently defined double layer potential in place
of Wy was given in [69, Theorem 3.5]). First, we note that Lemma 4.1 in [46] (see also [69, Theorem 2.5]) implies that there
exists a constant ¢y = co(Q4, @) > 0 such that

IVG(x,y) = VG(x,¥)| < calx —y*™", Vx,y € Qy, x#y. (3.48)

Then, in view of formula (3.5) and equality M =1, there exists a constant Cs = Cs(Q2+, &) > 0 such that

0G;(y. %) _ 0Gi(y.x) | ‘8973(%)() _ 9G(y.x)

< Cslx—y|*™", VxyeQy x ) 3.49
Oy« Oy Oyi Oyi < Gslx—yl y X7y ( )

[STk(y. x) = Sij(y, x)| <

Inequality (3.49) and [47, Proposition 1] (applied to the integral operator W, — W whose kernel is (S*(y, x) — S(y, x)) v(y))
show that there exists a constant Cs = Ce(052, p, @) > 0 such that

(1M (Wo — W) h)[lL,00) < CsllhllL,00rm. ¥V he L, (0Q,R"). (3.50)
Moreover, by [61, (4.56)], there exists a constant C; = C7(952, p) > O such that
1M (Wh) [|L,00) < Crllhll,oormy, ¥V he L,(Q,R"), (3.51)

and then, by (3.50) and (3.51), we obtain inequality (3.40).
Let us now show inequality (3.41) for o > 0. According to the second formula in (3.34) and formula (3.7) the kernel of the
Brinkman double-layer pressure potential operator Q2 is given by

a _1 2n(y; — X))k = xi)vk(y) | 2v5(y) 1 1 _
Nk (x, y)vi(y) = o {— Iy — x| = A=) [y = a2 u,(y)}. (3.52)

For o = 0, (3.52) reduces to the kernel of the Stokes double-layer pressure potential operator QY. Therefore,

a 1
n—2)ly —x|"2’

Nk ¥)e(y) = N y)ve W)l < = ( Vx€EQ, yeaQ, x#y. (3.53)

Then according to [47, Proposition 1] applied to the operator Q% — Q9, there exists a constant Cg = C(dQ, p, ) such that

|#((0z-2)n)

In view of [61, Proposition 4.2.8], the Stokes double-layer pressure potential operator QY satisfies the inequality
| (e%n)

Copyright © 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1-42
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with a constant Co = Co(052, p) > 0. Then by (3.54) and (3.55) there exists a constant Ci9 = C10(02, p, @) > 0 such that
d 1 n
HI\/I (in) HWQ) < Cuollhllyzoqny. V¥ h € HAOR). (3.56)
Next, we show that there exists a constant ¢z = c3(Q4, p, &) > 0 such that

1M (VWah) [|1,60) < cllhlloazny. ¥ h € Hy(82,R"). (3.57)

To this end, we use expressions (3.34) and (3.5) for the Brinkman double layer potential Wxh to obtain for any h € H3(8Q, R"),
0 (Wah); (x) = — / {ve(y) (8:0:Gjk) (v = x) + ve(y) (8:8:G) (y — %) — (¥) (B:Twe) (¥ — x) } he(y) doy
aQ
=- /69 {%(y) (8eGjk) (¥ = %) + 0r,y () (81Gak) (¥ — %) — B iy Mk (y — X)} h(y)doy
- /m {(WAGH(Y —x) + v (y) (8e8Gak) (y — x) = vr(y) (8iN) (y — %) } he(y) doy

= /GQ {(@Gi%) (v = %) (8r, 1) (y) + (8Gk) (¥ — %) (B, 1) () — My —x) (0r, 1) (¥) } doy

~a [ vy - Rh)de, =10 (3.56)
aQ
where 9; ;= % We also employed the following integration by parts formula, which holds for any p € (1, 00) (cf. [61, (2.16)]).
J
/ f (0r,9) do :/ (0r,f) gdo, Y f € Hy(0Q), ¥V g € Hy(8), (3.59)
aQ aQ

where 1 4 % = 1. The last integral in (3.58) follows from equations (3.4), which, in particular, yield that

(Ay — al)G*(y —x) — VyM(y —x) =0, divyG*(y —x) =0, Vx€R"\ 90, y € 8Q. (3.60)
In the case a = 0, formula (3.58) has been obtained in [61, (4.84)].

Now, from formula (3.58) and its counterpart corresponding to o = 0, we obtain for all j,r=1,..., n,

Or (Wah); = 6, (Wh); + 8, (Va — V) (85, h)); + 8; (Va — V) (85, h)), — @ (Va (v/h));, VheE Hy (89, R"). (3.61)

Further, by using estimate (4.86) in [61, Proposition 4.2.8] for the Stokes double layer potential, Wh, property (3.38) for the
Brinkman and Stokes single layer potentials involved in formula (3.61), and continuity of the tangential derivative operators
Ory Hy(8Q) — L,(892), we obtain inequality (3.57), as asserted (see also [38, (3.35)]).

Finally, inequalities (3.40), (3.56) and (3.57) imply inequality (3.41).

For any n > 3 and £ > 0, there exists a constant C = C(n, £, &) > 0 such that the inequality (cf. [69, Theorem 2.4])

Vg ()| < < (3.62)

= (1 +alx]?) x|
holds and implies that |G*(x —y)| < Colx — y|*~", with some constant Co = Co(n, &) > 0. Then in view of [47, Proposition 1],
for any g € L,(02, R") there exist the non-tangential limits of the Brinkman single layer potential V,g at almost all points of
0%2. Moreover, the existence of the non-tangential limits of VV,g at almost all points of Q2 follows immediately from [69,
Lemma 3.3]. For @°g such a result is valid since the Brinkman pressure single layer potential coincides with the Stokes pressure
single layer potential, for which the result is well known, cf., e.g., [61, Proposition 4.2.2] and [69, Lemma 3.3].

If g € H,' (89, R") then the existence of the non-tangential limits of Vag a.e. on 992 follows from formula (3.47) and the
corresponding statement for the existence of non-tangential limits for a single layer potential and the gradient a single layer
potential with a density in L,(8Q2, R").

Now let h € L,(8Q2,R"). Then the existence of the non-tangential limits of the Brinkman double layer potential Wh at
almost all points of 92 follows easily from the case a = 0. Indeed, estimate (3.49) and [47, Proposition 1] imply that the
difference

(Woh); (x) — (Wh); (x) = /m (SHk(y —x) — Sijk(y — x)) v (y) hi(y)doy (3.63)
oGii(y —x)  9Gii(y — X)) (agﬁ(y —x)  9Gk(y —x) ) }
— — + — hi(y)doy, x € Q2
/agz { ( Ayk dyk dy; oy vi()hi(y)doy, x € 2
Math. Meth. Appl. Sci. 0000, 00 142 Copyright © 0000 John Wiley & Sons, Ltd.
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has non-tangential limits ((Wah)j — (Wh)j)nit (xo0) at almost all points xo € 82. On the other hand, according to [61, Proposition
4.2.2] there exist the non-tangential limits of the Stokes double layer potential Wh at almost all points xo of 82. Therefore, the
non-tangential limits of the Brinkman double layer potential Wyh exist as well at almost all points x of 0.

Now let h € H;(aQ, R"). Then the existence of the non-tangential limits of VWyh at almost all points of 82 follows from their
existence in the case a = 0 (cf. [61, (4.91)]), formula (3.61), and the statement for the existence of non-tangential limits for a
single layer potential and the gradient a single layer potential with a density in L,(8Q2, R"), while the existence of non-tangential
limits of Qq4h a.e. on 8Q is provided by the corresponding result in the case a = 0 (cf. [61, (4.85)]) and [47, Proposition 1]
applied to the complementary term (QZ - Qd) h = aVa(h - v), which by (3.52) is the Laplace single layer potential with density
ah-v e L,(092).

Finally, note that inequalities (3.42)-(3.45) follow from inequalities (3.38)-(3.41) and the estimate || |1 00) < IM(F)llL,09)-
whenever f has the property that both £ and M(f) exist a.e on 8Q (see [16, Remark 9]). a

The mapping properties of layer potential operators for the Stokes system (i.e., for &« = 0) in Bessel-potential and Besov
spaces on bounded Lipschitz domains, as well as their jump relations across a Lipschitz boundary, are well known, cf., e.g.,
[23]. [27], [61, Theorem 10.5.3], [62, Theorem 3.1, Proposition 3.3]. The main properties of layer potential operators for the
Brinkman system are collected below (some of them are also available in [22, Proposition 3.4], [32, Lemma 3.4], [33, Lemma
3.1], [62, Theorem 3.1], [69, Theorems 3.4 and 3.5]).

Theorem 3.5 Let Qy CR" (n> 3) be a bounded Lipschitz domain with connected boundary 8Q and let Q_ =R"\ Q.. Let
p.q € (1,00), a>0, and p* ;= max{p,2}. Let t > —; be arbitrary, where ; + ; = 1.

(i) Then the following operators are linear and continuous,

Valo,  Lp(0Q,R") — Bpp dw(m,R"), Q%la, 1 Ly(0QLR") — pr*(m), (3.64)
(Vala,. Q%la,) : Lp(892, R”) - %pp* (. L), (3.65)
Volo, 1 Hy (8Q,R") — Bpp (4, R”), Q%la, : H; (0 R") — B "(Q+) (3.66)
(Vala., Qla,) : H ' (092, R") — %pp* (4, La), (3.67)
Wolo, : Hp(8Q, R") — Bppfidiv(QJr,R") Qa\Q THA(OQLR") — ij*(Q+), (3.68)
(walm,Q:ikh) HAOQUR™) = BL2" (Q La). (3.69)
Wolo, : L,(0Q,R") — B”p (24, R7), Qa|Q L,(3Q,R") — Bpp (Q+) (3.70)
(Wa|s2+. Qa|§2+) DLy (09, R") — %pp aiv(Q24, La). (3.71)

(ii) Moreover, the following operators are also linear and continuous for s € (0, 1),

Vo : B0, R") - qudw(R” R"), Q7 BIA (02, R™) — BT (R, (3.72)
Valo, | B (02,R") = BLYE (24, R"), () la, : BIT (OUR) - oy (), (373)
(Valo,. Q°la.) : Big (092, R") — %pqdw(m La), (3.74)
Wolo, - B;.qu,R"HB,iqu(m,R") e, : BLo (0L R") — By (@), (3.75)
(Walo.. Qdlo. ) : B3q(B2,R") B, 7i0(1 La), (3.76)
Valo @ BSH(OQR") — B,j*q@iv(Q, R"), Q°lo : BS (O R") — quloc L), (3.77)
(Valo_, Q°la.) : By (0%, ]R”) a%pqdlvloc(Q L), (3.78)

opl_
. R”) QY. B (BLR") = B o

Walo : B;4(0Q,R") — B e (S2-), (3.79)

P.q; dlv loc

(WO‘|Q* ' Qik}*) (aQ Rn) - %p q, dlv Ioc(Q EO‘) (380)

(iif) The following relations hold a.e. on 852,

(Vag)+ = (Vag), = Va9, Vg€ H, (0Q R"); (3.81)
fh + (Woh)i = —%h + (Wgh)y, =: Koh, YV h € L,(8Q,R"); (3.82)
Copyright © 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1-42
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1 1 — s * n
—59 +t7 (Vag, Q°g) = 59+t (Vag, Q°g) =:K,g, Vge L,(00,R"); (3.83)
th (Wah, Qih) =t (Woh, Q2h) =: Doh, V¥ h € Hy (89, R"); (3.84)

where K, is the transpose of Ky.0q, and the following boundary integral operators are linear and bounded,

Va 1 Lp(8Q,R") = Hy (092, R"), Ko 1 Hp(8Q,R") — Hp (09, R"), (3.85)
Va : Hy (0, R™) = L,(8Q2,R"), Ko : (092, R") — L,(892, R"), (3.86)
K @ Lp(8Q,R") = L,(8Q,R"), Da: Hy(8Q, R") — L,(8Q, R"). (3.87)

Forh € B} ,(09.,R") and g € B5;H (09, R"), s € (0, 1), the following relations hold a.e. on 0%,

¥+ (Vag) = 7-(Vag) =: Veg, (3.88)
%h-l-wur(wah) — —%h+’y_(Wah) — Kah, (3.89)
1 ) 1 . \

—59+1ta (Vag, Q°9) = 59+ ta (Vag, Qiag) = Kag, (3.90)
td (Weh, Q5h) = t; (W)ah, Q% 50h) =: Doh, (3.91)

and the following operators are linear and continuous,

Vo : BydH(OQR") — B34 (0, R"), Ka : Bj4(0Q,R") — Bj4(092, R"), (3.92)
K. : B H(0Q,R") — By (O R"), Dq : By (892, R") — By (02, R"). (3.93)

Proof. (i) First of all, we remark that all range spaces of the velocity vector-valued layer potential operators in (3.64)-(3.80)
are divergence-free due to the second relations in (3.35)-(3.36). Further, let us note that by (3.33) and (3.8) the single layer
potential can be presented as (cf. [18, (4.1)]),

Vag = (YG%(x,-), @)oo = (G*(x,-), Y'@)rn = Nagn 0 Y'g (3.94)

s=1-2 o
for any g € Byt (0%, R”) p € (1,00) and s € (0,1). Here the operator ' : Byt (0 R™) = Bp gcomp(R”, R") is adjoint to

the trace operator 7 : Bp q, - " (R",R") — B:l (62, R") and they both are continues due to Lemma 2.4.

Next, we show the continuity of the first operator in (3.64) in the case a > 0 (i.e., for the Brinkman system). To this end,
we split the Brinkman single-layer potential operator into two operators, as Vo = V 4+ V.0, where Vq.0 is the complementary
single-layer potential operator, i.e.,

Voo :=Va—V =Ngor 0oy o, (3.95)

where the imbedding operator ¢ : [,(0Q, R") — B, (6(2 R") is continuous for any s € (0,1) and p € (1,c0). In addition,
Naorr = Norn — Noro is a pseudodifferential operator of order —4 with the kernel G*° := G* — G (see formula (2.27) in [33]),
and hence the linear operator

5—
Na;O;R” . Bpp comp(R Rn) pp Ioc (R” Rn) (396)
is continuous for any s € (0,1) and p € (1,00), where 5; =1 — 7, and Bpp cOmp(R” R") is the space of distributions in

B;p " (R”,R") with compact supports. Then formula (3.95) and the continuity of the involved operators imply that the

operators
n n mn n s+2+1 n
Vao : Ly(02,R") = B2 (R R), (Vao)lo,  L(02,R") = Byl # (4 )
are continuous as well. Now, the continuity of the embedding B; (Q JR7) — B " of (24, R") for any s € (0, 1) shows that

Vao : Lp(0Q,R") = BL0F (94, RY) (3.97)

is a continuous operator, even compact.

Moreover, the Stokes single layer potential operator V : L,(0Q,R") — L,(Q4,R") is continuous (cf., e.g., the mapping
property (10.73) in [61] and the continuity of the embeddings L,(0%2,R") — B, 1(89 R") and B "(Q+ R") < L,(Q24+,R™)
for any s € (0, 1)).

Math. Meth. Appl. Sci. 0000, 00 1-42 Copyright © 0000 John Wiley & Sons, Ltd.
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]
On the other hand, the kernel VG of the integral operator VV satisfies the relations
VG € C¥(R"\ {0}), (VG)(—x) = =(VG)(x). (VG)(Ax) =X "D (VG)(x), ¥ X > 0. (3.98)
Then, in view of [58, Proposition 2.68], there exists a constant Co = Co(2+, p) > 0 such that

||VV9||B% < Collgll, 0, Vg€ Ly(OQ,R"). (3.99)

nxn
2 (@ RXT)

Consequently, there exists a constant € = €(Q4, p) > 0 such that

\/ = ||V m + ||[VV <c my, Vg€ Ly(Q2+,RM), 3.100
VOl g oy = VSl + 19V Ly < Clglligia, . ¥ 8 € (@0 R (3.100)
which shows that the Stokes single layer potential operator
n 1+l n
V:Lp(0Q,R") = B, 2 (Q24+,R") (3.101)

is also continuous (cf., e.g., [62, Theorem 7.1, (3.33)], see also [23] for p = 2). This mapping property and the continuity of

1
operator (3.97) show that the Brinkman single layer operator Vo : L,(0Q2, R") — B;;f’ (Q4,R") is continuous, as well.
Let us show the continuity of the second operator in (3.64). To this end, we note that the Stokes single layer pressure
potential Q°f with a density f = (f1, ..., fn) € Lp(82, R™) can be written as

(Q°F) (x) = (divVaf) (x), Vx€eR"\0Q, (3.102)
where Va g is the harmonic single layer potential with density g € L,(0%2), given by

1

(VAg)(x) == (n — 2)(:}”

1 \
/GQ Ry E)de. xER\ 00, (3.103)

1
Then the continuity of the single layer pressure potential potential operator Q° : L,(0Q2,R") — B;px(QJr) for any p € (1, )
is a direct consequence of Proposition 4.23 in [59]. Note that Proposition 2.68 in [58] applies as well, and shows the desired
continuity of the single layer pressure potential operator in (3.64) (see also [62, Theorem 3.1, (3.30)]). Thus, we have proved
the continuity of the operators in (3.64).
Continuity of the first operator in (3.66) follows from the continuity of operators involved in the right hand side of equality
(3.47). Continuity of the second operator in (3.66) follows from equality (3.102), which is valid also for any f € H;'(8, R"), and

1
by the continuity of the harmonic single layer potential operator Va from H;I(BQ) to By .(Q24+). Indeed, for any f € H;1(6Q)

there exist fo, fip € L,(8Q), r.&=1,...n, such that f = fo+ > ", s,y (see (3.46)). Then by using the integration by parts
formula (3.59), we obtain that

(Vaf)(x) = /89 Ga(x —y)fo(y)doy, — Z /69 (0,5, Ga(x,Y)) fre(y)doy, V x € R"\ 02, (3.104)

ré=1
where Ga (x,y) is the fundamental solution of the Laplace equation in R" (n > 3). By using again [58, Proposition 2.68] (see also
1
(3.99)) and the continuity of the Laplace single layer potential operator Va : L,(8Q2) — B;;f (€24+) (see, e.g., [59, Proposition
4.23] and property (3.49) in [62, Proposition 3.3]), there exists a constant Co such that

”VAf”BH% = [|[VafllL,p) + ||VVAf||B% @ < Collfllpyy, ¥V F € Lp(Q4). (3.105)
p.p*

+ +R

p.p*

1
Thus, the operator VVa : Lp(02) — B .(©2+4,R") is also continuous. Finally, by continuity of this operator and of the
1
operator Va : L,(092) — B;:f’ (€24+) and also by the second relation in (3.46), we obtain from (3.104) continuity of the operator

1
Va o Hy ' (09) — B ,-(€4+) and, accordingly, continuity of the second operator in (3.66).
Let us now show the continuity of the first operator in (3.68). To this end, we notice that the Brinkman double-layer potential
operator can be written as Wy = W + W0, where W0 is the complementary double layer potential operator, i.e.,

Woo =W —W =Kso07 oN (3.106)

(see [33, Eq. (3.31)]), where the operator 91 : Hy (09, R") — L,(0Q,R" @ R") — B, ;- (0, R" ®R"), 9h(x) := v(x) @ h(x),
is continuous for any s € (0,1). In addition, Ka.o is a pseudodifferential operator of order —3 with the kernel $*° := §* — S (cf.,
e.g., [33, (2.27)]), and hence the operator

syl _eql
Koo : B, o on? (R”, R" @ R") — B, "1? (R, R"),
Copyright © 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1-42
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—1-s+1 n n n
(KaoT); (%) == ((Sjie = Sjie) (. X). Ty )gn» VT € B, oo (R". R" ®R"), (3.107)

(]R” R"®R") is the space of all distributions in B *e (R",R"®
R"®R") = B} ,..(0, R" ®]R”) (acting on

is also linear and continuous for any s € (0, 1), where Bpp -comp

R"™) having compact support in R”. In addition, the trace operator 7y : Bp pr oc
—s—1+1

matrix valued functions) and its adjoint 7' : B, ;. (02, R" @ R") — B, . .,/ (R", R" ® R") are continuous (see the proof of [18
Theorem 1]). Then formula (3.106) and the contlnwty of the involved operators imply that the operators

Woo : HA(0Q, R") — BijTOC(R R"), (W) o, : HA(8Q,R") = B, 5 (0, R)
are continuous as well. Now, the continuity of the embedding B (Q ,R7) — B " of (24, R") for any s € (0, 1) shows that
W : HY(8Q. R") — B, "(Q+ R") (3.108)

is a continuous operator, even compact. Let us now show that the Stokes double-layer potential operator

W : HL (00, R") = B, ”(Q+ R") (3.109)

is continuous as well. In the setting of Riemannian manifolds and for double layer potentials for second order elliptic equations,
this continuity property follows from [63, Theorem 8.5], but we will provide a direct proof here in the context of Euclidean
setting. To this end, we use the following characterization of the space H},(@Q)

h€ Hy(0Q) <= h € L,(8Q), O, h € L,(8Q), jk=1,..., n (3.110)

(cf., e.g., [61, (2.11)]), and recall that the tangential derivative operators &y, : H2(8Q) — L,(6Q) are continuous. In addition,
consider the operator Vjx defined as

(Vig) (x) = /mgjux—y)g(y)doy, X ER"\ . (3.111)

We have proved that the Stokes single layer potential operator (3.101) is continuous for any p € (1, co) (see also [62, Theorem
3.1, (3.33)]). Consequently, the operators

1
Lo(89) = BL 5P () (3.112)

1
are continuous as well, for all j,k=1,..., n. Recall that the operator Va : L,(8Q) — B;;f (Q4) is also linear and continuous.
Finally, we mention the following formula (cf. [61, (4.84)])

8, (Wh), = —8;Viy (8r,, h) — 8Vik (8ry, i) — BV (B, h

Tjr

) in R"\ 0%, (3.113)

which holds for every h € H;(@Q,R”) and j,r=1,..., n, where h; is the j-th component of h. Then by using the continuity of
operator (3.112) and properties (3.110) and (3.113), we deduce that the operators

1
& (W), : Hy(0,R") = B (), rj=1,..., n (3.114)

are continuous. By [61, Proposition 10.5.1, (10.68)], the operator W : Hp(8Q2,R") — L,(Q+,R") is also continuous (as its
st l
range is a subspace of the space Hp+"(Q+,R”) for any s € (0,1), Hy(092, R") = B3 ,(8Q, R") (due to formula (A 12)), and

1
Bob? (4, R") < L,(Q4, R")). Consequently, the Stokes double layer potential operator W : H (09, R") — B "(Q+ R") is
continuous, as asserted. This mapping property combined with the continuity of operator (3.108) implies the contlnwty of the
first operator in (3.68).
Continuity of the second operator in (3.68) follows from similar arguments. To this end, let us mention the useful

1
formula Q%g = div(Wag), where the harmonic double layer potential operator Wa : Hp(892) — B:,f (Q4) is continuous (cf.,
e.g., [59, Proposition 4.23, (2.120), (4.96)]). Thus, the continuity of the Stokes double layer pressure potential operator
1

¢ Hy(8Q,R") — B} .(Q4) immediately follows. This property and continuity of the complementary double layer potential
1
operator Qg0 := Q4 — Q7 : Hy(8Q, R") — B/ (), where (cf. [69, (3.10)])

Q%oh = aVa(h-v), (3.115)
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1
yield the continuity of the Brinkman double layer pressure potential operator Q3 = Q7 + Q% : Hp(0Q,R") — By (Q24).
Continuity of the first operator in (3.70) for the case a = 0 is an immediate consequence of [58, Proposition 2.68] applied
to the integral operator whose kernel is given by the fundamental stress tensor S°. Moreover, by using again formulas (3.106)

1
and (3.107) we can see that the operator Way : Lp(0Q,R") — B? .(Q2+,R") is continuous. Therefore, for a > 0 the first
operator in (3.70) is continuous as well. To prove continuity of the second operator in (3.70), we again use the representation

1
Qg = div(Wag), and continuity of the harmonic double layer potential operator Wa : L,(8Q) — B} ,-(£4+), e.g., again by [58,

1_
Proposition 2.68], along with continuity of the complementary double layer potential operator Qg;o D Lp(0,R") — B;P}(QJr)_
Mapping properties (3.65), (3.67) and (3.69) are implied by the ones just above them and by the first relations in (3.35)-(3.36).

s_otl
(ii) Now, relation (3.94), continuity of the operator o' : B5.'(0Q,R") — B,,_q2+" (R",R") (cf. Lemma 2.4), and continuity of

: . —241 1 . o .
the Newtonian potential operator Nggn : B;q e (R",R") — B:;,” (R",R") (see (3.11)) imply the continuity of the first operator

in (3.72) and thus of the first operators in (3.73) and (3.77). Continuity of the second operator in (3.72) follows by similar
arguments based on the equalities Q° = Qrn 0 %y', and implies also continuity of the second operators in (3.73) and (3.77) (cf.
[61, Proposition 10.5.1]).

1
Further, let us mention that relations (3.106) and (3.107) imply that the operator Way : B, ,(0Q2 R") — B;Z”(QJr,R”)
is continuous for all p € (1,+00) and s € (0,1). This mapping property combined with the continuity of the Stokes double-

1
layer potential operator W|q, : B; ,(0Q4+,R") — B;;E (224, R") (see [61, Proposition 10.5.1]) implies the continuity of the first
operator in (3.75). The continuity of the second operator in (3.75) can be similarly obtained. Other mapping properties of layer
potentials mentioned in (3.72) and (3.79), follow with similar arguments to those for (3.64) and (3.68). We omit the details for
the sake of brevity (see also the proof of [32, Lemma 3.4]).

(iif) Equality (3.81) for g € L,(09Q2,R") can be obtained by using inequality (3.62) and [47, Proposition 1] (see also [69,
Theorems 3.4]). Since (Vag):t and (Vag),, are well defined for g € H," (82, R") due to Lemma 3.4(iii), inequality (3.43) and
the density argument then imply equality (3.81) also for g € H, (32, R"). Formulas (3.82) and (3.83) follow by using arguments
similar to those for the trace formulas (3.11) and (3.18) in [69]. To this end, we first prove the formulas

(85 (Vigg)) !nit(x) = :i:%uj(x) (6ik — vix)vk(x)) g(x) + p.v. /69 9,Gx(x —y)g(y)doy a.a. x € 8Q (3.116)

forany g € L,(0Q2) andalli, k=1, ..., n, where the function Vi g is defined as in (3.111) with G} instead of Gj«. Indeed, formula
(3.116) has been proved in [61, (4.50)] in the case o = 0. Moreover, the estimate [69, (2.27)] of the kernel VxGj(x) — VxGjk(x)
and [47, Proposition 1] imply that there exist the non-tangential limits of the complementary potential 8;Vi§ g — 9;Vikg at almost
all points of 02, and

(8 (ViR g) — 8 (Vik9)) [w(x) = p.v. /aQ (81Gik — 9;Gix) (x —y)g(y)doy a.a. x € 0Q, (3.117)
which implies (3.116) also for o # 0. Moreover, formula (3.116) yields for any f € L,(892, R”) that
1 a
(8j(Vaf)) |ft(x) = :l:EUJ-(x) {f(x) — ik () (X)v(x)} + p.v./ 9;G%(x —y)f(y)doy, a.a. x € 9Q (3.118)
a0

(cf. [61, (4.54)] for « = 0 and [69, Lemma 3.3] for o > 0).
In addition,

(st)’i(x) ZZF%uk(x)fk(x)+p.v. /aQ Mi(x —y)fk(y)doy, a.a. x € 8Q (3.119)

(cf. [61, (4.42)], [69, Lemma 3.3]). Then formulas (3.82) and (3.83) follow from formulas (2.22), (2.24), (3.5), (3.34), (3.118)
and (3.119).

Formula (3.84) follows from formula (3.61) and (3.115) together with [61, Proposition 4.2.9] (i.e., the counterpart of the
trace formula (3.84) corresponding to the case a = 0).

Continuity of operators (3.74), (3.76), (3.78), (3.80) is implied by the continuity of the operators just above them and by
the first relations in (3.35) and (3.36).

Now, we note that formula Vo =V + Va0, continuity of the Stokes single layer operator V : L,(82, R") — Hé(aQ,R”) (cf.
[61, Proposition 4.2.5]), and continuity of the complementary operator Vo : L,(892,R") — HA(8Q,R") (cf. [33, Theorem
3.4(b)]) imply continuity of the first operator in (3.85). Continuity of the second operator in (3.85) and of the operators in
(3.87) similarly follows from [61, Propositions 4.2.7 - 4.2.10] and [33, Theorem 3.4(b)]. In addition, formula (3.47) and the first
relation in (3.46) yield the following equality

(20, (0) = | Gix=y)aouly)doy =3 3" pv. [ (00, (G(x=¥)) gus(y)doy 2.2 x €02 (3.120)

k=1 ré=1

Copyright © 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1-42
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for any g € H,' (89, R") (cf., e.g., [61, (4.69)] for & = 0). Then the continuity of the first operator in (3.86) immediately follows
(see also [61, Proposition 4.2.5 (iii)] for o = 0). Continuity of the Stokes double layer operator K : L,(0$2, R") — L,(02, R")
(cf., e.g., [61, Corllary 4.2.4]) and the continuity of the reminder operator Ko — K : L,(8Q2, R") — L,(8Q2, R") (see [33, Theorem
3.4 (b)]) show the continuity of the second operator in (3.86). Continuity of the traces and conormal derivatives of the layer
potentials involved in (3.88)-(3.91) and hence continuity of the boundary operators (3.92), (3.93) immediately follow from the
mapping properties of the layer potentials in item (i) and Lemmas 2.4, 2.11.

Finally, the jump relations given by the first equalities in (3.88)-(3.91) follow from formulas (3.81)-(3.84), together with the
density of the embeddings HA (892, R") = B3 ,(0Q,R") and [,(8Q, R") — B:'(8Q, R"), and equivalence results in Theorems
2.5(i) and 2.13(i) for traces and conormal derivatives. d

Let us mention the following useful result.

Lemma 3.6 Let Q4 CR” (n> 3) be a bounded Lipschitz domain with connected boundary 8Q and let Q_ :=R"\ Q..
(i) Ifpe(1,00), a€(0,00), g€ L,(8Q,R") and h € H}(8Q, R"), then

V:(Vag) = (Va@)i € Hp (02, R"), (3.121)
Y (Wgh) = (Woh)% € Hp, (622, R"), (3.122)
ts (Vag, Q°9) =t (Vag, Q°9) € L,(09,R"), (3.123)
ts (Weh, Q5h) =t (Wsh, Q3h) € L,(8Q,R") (3.124)

with the corresponding norm estimates.
(i) Ifp,g€ (1,00), s €(0,1), @ € (0,00), g € By (0 R") and h € B} (092, R"), then

72 (Vag) = (Vag)i € B 4, (0QR"), (3.125)
Y2 (Wxh) = (Wsh)i; € B 4., (092, R") (3.126)

with the corresponding norm estimates.

Proof. Let first g € L,(092, R") and h € HA(8Q2,R"), p € (1, 00). Then, according to Lemma 3.4(ii,v), the right hand sides of the
equalities in (3.121)-(3.124) exist almost everywhere on 052 in the sense of non-tangential limit, while Theorem 3.5(i) yields that
1 1

(Vag, Q°9) . (Wah, Q2h) € B2 (24, Lo) and (Vag, Q°9), (Wah, QZh) € B, 71 (2, Lq) for any t > —%. Moreover,
Theorem 3.5 (iii) and the divergence theorem applied to the single layer potentials Vo9 and Wyh in the domain €24 yield that
(Va@)%: € Hp, (892, R, t5 (Vag, Q°9) € L,(0Q,R"), for any g € L,(82,R"), while (Wxh)% € H}, (09, R"), t5 (Wag, Q%) €
L,(8Q,R"), for any h € Hy (92, R"), with the corresponding norm estimates. Hence Theorems 2.5(i) and 2.13(ii) along with
Remark 2.14 imply relations (3.121)-(3.124).

For p,q € (1,00) and s € (0, 1), we have g € B5.' (092, R") C Hy;1(8Q,R"), h € B (82, R") C L,(892,R") and, according
to Lemma 3.4(iii,iv), the right hand sides of the equalities in (3.125) and (3.126) exist almost everywhere on 82, while Theorem

s+l
3.5(ii) yields that Vo9, Woh € B o (£24+). Hence Theorem 2.5(i) implies relations (3.125) and (3.126). d

p.q.div
We will further need the following integral representation (the third Green identity) for the homogeneous Brinkman system

solution.

Lemma 3.7 Let Qy CR"” (n>3) be a bounded Lipschitz domain with connected boundary 8Q and let Q_ :=R"\ Q. Let
a €(0,00), p,g€ (1,00) and s € (0,1). If the the pair (u, T) satisfies the system

Au—au—-Vr =0, divu=0 in Q4 (3.127)

s+l s—1-1 s+l s—1-1
and (u, ™) € Hy P(Q4 R") x Hy '~ #(Q4), or (u, ) € Bowf (4, R") x Bog ?(4), then
u(x) = Vo (ta(u, m)) (x) = Wa (13u) (x), ¥V x € Q4. (3.128)

Proof. Let B(y,€) C 2 be a ball of a radius € around a point y € Q4 and let GF(x) = (G (%), .. ., G, (X)), k=1,..., n, where
(g%, M) is the fundamental solution of the Brinkman system in R” (see (3.1) and (3.2)). Applying the second Green identity
(2.29) in the domain Q4 \ B(y.€) to (u, 7) and to the fundamental solution (G%(- —y),M«)(- —y) and taking the limit as
€ — 0, we obtain (3.128). O

Next, we show the counterpart of the integral representation formula (3.128) written in terms of the non-tangential trace
and conormal derivative.

Lemma 3.8 Let 2y CR" (n > 3) be a bounded Lipschitz domain with connected boundary 892. Let a > 0 and p € (1, c0) be
given constants. Assume that M(u), M(Vu), M(m) € L,(052), there exist the non-tangential limits of u, Vu and m at almost all
points of the boundary 892, and that the pair (u, w) satisfies the homogeneous Brinkman system

Au—au—Vr=0, dvu=0 in Q4. (3.129)
Math. Meth. Appl. Sci. 0000, 00 1-42 Copyright © 0000 John Wiley & Sons, Ltd.

Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences R. Gutt, M. Kohr, S.E. Mikhailov, W.L. Wendland

]
Then u satisfies also the following integral representation formula
u(x) = Vq (thrt(u, 7)) (x) — Wa (unth) (x), VxeQ;. (3.130)

Proof. We use arguments similar to the ones in [61, Proposition 4.4.1] for the Stokes system. In the case of a smooth bounded
domain Qo C R" and for u € C2(Q4,R"), m € C1(Q4), formula (3.130) follows easily from the integration by parts, cf. e.g.
(3.128). Now consider a sequence of sub-domains {€;},5, in Q4 that contain the point x € Q4 and converges to Q4 in the
sense of Lemma 2.2. Then formula (3.130) holds for each of the domains 2; and by the Lebesgue Dominated Convergence
Theorem (applied again after the change of variable as in Lemma 2.2 that reduces the integral over 82, to an integral over 8Q2)
letting j — oo, we obtain (3.130) for the Lipschitz domain Q4 as well. O

4. Invertibility of related integral operators

Lemma 4.1 Let Q4 CR" (n > 3) be a bounded Lipschitz domain with connected boundary 82. Let a € (0,00) and0 < s < 1.
Then the following operators are isomorphisms,

%]H— K. - Hy* (O, R") — Hy*(0Q, R"), (4.1)
%]I+ Ka - HS(B, R") — H3(09, R"). (4.2)

Proof. Isomorphism property of operator (4.1) for s =0 follows from [46, Proposition 7.1] (see also [69, Lemma 5.1]). By
duality this also implies the isomorphism property of operator (4.2) for s = 0.

Let us now remark that for &« =0 and 0 < s <1, operator (4.2) is a Fredholm operator with index zero (cf., e.g., [61,
Proposition 10.5.3 and Theorem 5.3.6]), while the operator Ky.g := Ko — K : H3(8Q2, R") — H3(8$2, R") is compact (cf., e.g.,
[33, Theorem 3.4]), implying that for &« > 0 and 0 < s < 1, (4.2) is a Fredholm operator with index zero as well. Then by Lemma
B.4 and the invertibility property of operator (4.2) for s = 0 we obtain the equalities

1 1
Ker{§H+ Ko : H3 (092, R") — H;(aQ,R")} = Ker {EH Ko 1 H(0Q, R") — HS(@Q,R”)} ={0}, 0<s<1, (43)

which show invertibility and hence isomorphism property of operator (4.2) for & > 0 and 0 < s < 1 as well. A duality argument
implies that operator (4.1) is also an isomorphism whenever & > 0 and 0 < s < 1. |
We will often need the following two intervals,

Ro(n.€) (2(n—1) »4 )ﬂ(1+ ) Ru(ne) (2 —¢,400) if n=23, (4.4)
ne)=|(——m—m——c¢, € , , ne)= , , .
0 n+1 o ! (2—8,%-&8) if n>3
which are particular cases of a more general interval
Ro(n. &) (2—¢€,4+00) if n=3andf=1, (4.5)
ne)= _ _ ) . .
? (258 —e 25D +e) N(1L400) i n>30r0<6<1

Lemma 4.2 [et Q1 CR" (n> 3) be a bounded Lipschitz domain with connected boundary 8Q2. Let o € (0, 00). Then there
exists € = €(0Q2) > 0 such that for any p € Ro(n,€) and p' € Ri(n, €), see (4.4), the following operators are isomorphisms,

1

S+ K : Lo(09,R") — L,(8Q, R™), (4.6)
%11 + K HFA(0Q R — H7 (B2, RY), (4.7)
%]I+ Ko : Ly(8Q,R") = Ly (8Q,R"), (4.8)
%11 + Ko s HYO0,R") = HL(0Q, RY). (4.9)

If Q4 is of class C*, then the above invertibility properties hold for all p, p' € (1, c0).

Proof. By [61, Theorem 9.1.11] there exists a parameter € > 0 such that for any p € Ro(n, €),

%}1 F K L(0Q,R") — L,(59, R") (4.10)

Copyright © 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1-42
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is a Fredholm operator with index zero. Then compactness of the operator Ko := K — K* : L,(0Q2,R") — L,(82,R") for any
p € (1, 00) (see [33, Theorem 3.4(b)]), imply that operator (4.6) is Fredholm with index zero as well, for any p € Ro(n, €). In
addition, a density argument based on Lemma B.4 and the invertibility property of operator (4.1) in the case s = 0, show that
operator (4.6) is an isomorphism for p = 2 and hence for any p € Ro(n, €).

Similarly, by [61, Theorem 9.1.3] there exists a parameter (for the sake of brevity, we use the same notation as above) € > 0
such that for any p € Ro(n, €) the operator

%1{+ K : Hy(8Q,R") — H (80, R") (4.11)

is Fredholm with index zero. Then compactness of the complementary operator Koo := Ko — K : H2(0Q, R") — H}(8Q, R") for
any p € (1, 00) (see [33, Theorem 3.4(b)]), implies that operator (4.9) is Fredholm with index zero as well, for any p € Ro(n, €).
In addition, a density argument based on Lemma B.4 and the invertibility property for operator (4.2) in the case s = 1, show
that operator (4.9) is an isomorphism for p = 2 and hence for any p € Ro(n, €).

Isomorphism property of operators (4.7) and (4.8) then follow by duality and isomorphism property of operators (4.9) and
(4.6), respectively, for p' = g

If Q4 is of class C*, then operator (4.11) is Fredholm with index zero for any p € (1, 00), cf., e.g., [67, Remark 3.1], and the
the rest of the proof holds true for any p, g € (1, c0). O

Lemmas 4.2, A.1 and B.1 (ii) and an interpolation argument (provided by the complex and real interpolation theory) imply
the following assertion.

Corollary 4.3 Let Q2+ CR" (n > 3) be a bounded Lipschitz domain with connected boundary 92, and o € (0, 0). Then there
exists € = €(8Q2) > 0 such that for any p € Rs(n,€) and p' € Ri_s(n, €), cf. (4.5), the following operators are isomorphisms

%11 + Ko H5 (O, R™) = H3 (B R, s e [0, 1], (4.12)
%11 KL HS (O RY) - H*(O.R™), s € [0,1], (4.13)
%n 4 Ko BY (ORY  BY (BUR"), se (0,1), g€ (1,o00). (4.14)
%]I+ K. BrS(OR") = B;S(0QR"), s (0,1), g€ (L o00). (4.15)

If Q4 is of class C*, then the properties hold for all p, p' € (1, c0).

Next we show the following invertibility result (see also [46, Proposition 7.2] in the case p =2 and s = 0).

Lemma 4.4 Let Qi CR" (n>3) be a bounded Lipschitz domain with connected boundary 8Q and let Q_ :=R"\ Q. Let
a € (0,00). Then there exists a number € = €(02) > 0 such that the operators

- %]H— Ka : Ly (O RY = Ly, (90, R", (4.16)
—%11 K L, (0 R") /Ry — L,(3Q, R")/Rv, (4.17)
- %]H— Ka : HL,(0Q R") = HL, (80, R"), (4.18)
- %]I+ K : H (0 R") /Ry — H'(9Q, R") /Ry (4.19)

are isomorphisms for all p € Ro(n,€) and p' € Ri(n,g) (cf. (4.4)).
If the domain 2 is of class C*, the above properties hold for all p, p' € (1, 00).

Proof. In the case a = 0, operator (4.16) is an isomorphism (cf. [61, Corollary 9.1.12]), and hence a Fredholm operator with
index zero for any p’ € Ri(n, €). Moreover, the operator Ko — K is compact on the space L,(8Q,R") (see [33, Theorem
3.4(b)]), and its range is a subset of L,.,(0X2,R"). Indeed, by using the formula

the equations divWgh = 0 and divWh = 0 in Q, and then, the divergence theorem and the trace formulas (3.82), we deduce
that (Ko —K)h € L,,,(0Q2,R") for any h € L,.,(0Q2, R"). Therefore, the operator Ko — K : L,.,(82,R") = L.,(02, R") is
compact, and then operator (4.16) is Fredholm with index zero for any p’ € R1(n, €). On the other hand, by a similar reasoning
(cf., e.g., [61, Theorem 9.1.3] and [33, Theorem 3.4 (b)]), operator (4.18) is Fredholm with index zero as well, for any
p € Ro(n,e).
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We show now that operators (4.16) and (4.18) are also injective. Let us start from operator (4.18) with p=2.
Let ho € H3,,(8Q2,R") be such that (—3I+ Kas)h=0. Thus, v:Waxho =0, and by applying the Green formula (2.28) to
the double layer velocity and pressure potentials Wxho and Q%hg in €4, we deduce that Waho =0 and Q%hy = o € R
in Q4. According to formula (3.84), we obtain that t, (Waxho, Qho) = t/; (Waho, Qiho) = —cor, and then the relation
¥-Waho = ho € H}, (82, R") shows that (t; (Waho, Q3ho), v-Waho)se = 0. Finally, the relations Waho(x) = O(|x|™") and
Q%o = O(|x|*™") as |x| = oo (see, e.g., [74, Lemma 2.12, (2.76)]), and the Green formula (2.28) applied to Wxhg and QZhg
in Q_ imply that Woho =0 and Q%hy =0 in Q_. Then the trace formula (3.82) yields that hy = 0. Consequently, operator
(4.18) with p = 2 is injective. Then Lemma B.4 implies that operator (4.16) with p’ = 2 is injective as well. Applying Lemma B.4
again, we now obtain that operator (4.18) with p € Ro(n, €) and operator (4.16) with p' € R1(n, €) are injective, and according
to their Fredholm property, these operators are also isomorphisms. Operators (4.17) and (4.19) are then isomorphisms by duality.

If Q is of C* class, then for all p, p’ € (1, 00) operators (4.16) and (4.17) are Fredholm with index zero due to compactness
of the operators K and K* on the corresponding spaces (cf., e.g., [22, Eq. (3.51) in the proof of Proposition 3.5]), and [33,
Theorem 3.4 (b)]. Then the previous paragraph implies that operators (4.16)-(4.19) are isomorphisms for p, p' € (1, 00). O

Lemmas 4.4, A.1 and B.1(ii) by interpolation imply the following result (see also [46, Proposition 7.2] for p =2 and s = 0).

Corollary 4.5 Let Q. CR" (n> 3) be a bounded Lipschitz domain with connected boundary 8Q and let Q_ := R"\ Q4. Let
a € (0,00). Then there exists € = €(0Q) > 0 such that for any p € Rs(n,€) and p' € Ri—s(n,g) (cf. (4.5)), the following
operators are isomorphisms,

1

ST Ka t Hy (00, RY) = Hy, (B2,R"), s € [0,1], (4.20)
—%11 + K, H3 589, R™) /Ry — H* (02, R")/Rw, s € [0, 1], (4.21)
—%]H— Ka : BS 0 (B R = BS ., (BLR", se (0,1), g€ (L oo), (4.22)
—%]I+ KL : B;% (09 R")/Ry — By%(8QR™) /Ry, s € (0.1), q € (1, 00). (4.23)

If Q4 is of class Ct, then the properties hold for all p, p' € (1, 00).

In the case a = 0, the result, corresponding to the next one, has been obtained in [61, Theorem 9.1.4, Corollary 9.1.5] (see
also [62, Theorem 6.1]).

Lemma 4.6 Let Qi CR"” (n>3) be a bounded Lipschitz domain with connected boundary 8Q and let Q_ :=R"\ Q4. Let
a € (0, 00). Then there exists a number e > 0 such that for any p € Ro(n,€) and p' € R1(n, €), see (4.4), the following Brinkman
single layer potential operators are isomorphisms
Va 1 Lp(8Q,R") /Ry — H,,,(8Q,R"), (4.24)
Va1 Hy' (092, R") /Ry = Ly, (092, R"). (4.25)

If Q4 is of class Ct, then the above invertibility properties hold for all p, p’ € (1, 00).

Proof. First, we note that for any f € L,(892,R") the inclusion Vof € H3(8Q, R") follows by Theorem 3.5(iii). Moreover, the
inclusion Vof € Hj, (82, R") follows from the equation div Vof = 0 in Q, the divergence theorem and relation (3.88). On the
other hand, there exists a number € > 0 such that the Stokes single layer potential operator

Vi L,(6Q,R") /Ry — H,, (09, R")

is an isomorphism for any p € Ro(n, €) (cf. [61, Theorem 9.1.4]), which implies that V : L,(89, R") — HX(8Q, R") is a Fredholm
operator with index zero for the same range of p. Thus, the Brinkman single layer potential operator

Va 1 Lp(8Q,R") — Hp (892, R") (4.26)

is a Fredholm operator of index zero for any p € Ro(n, €), as follows from the equality Vo =V + Va0, Where Voo i = Vo — V :
Lp(8Q,R") — HA (02, R") is a compact operator (cf. [33, Lemma 3.1]). Then by Lemma B.4, we obtain the equality

Ker {Va : Lp(02, R") = Hp(8Q, R")} = Ker {Va : L2(3Q,R") = H3(0Q,R")}, (4.27)

for each p € Ro(n,€).

Moreover, by considering a density @, € L2(9$2, R") such that Vo, = 0 on 82, by applying the Green identity (2.28) to the
single layer velocity and pressure potentials ug = Vo9, and 1o = Q°¢,, and by using Theorem 3.5, we deduce that up = 0 and
o = o € R in Q4. In addition, the behavior at infinity of the single layer potentials, ug(x) = O(|x|™"), & (uo, mo)(x) = O(|x|*™")
as |x| = oo (see, e.g., [46, Section 4]), yields that the Green identity (2.28) applies also to the fields ug and mo in the exterior
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domain Q_ and yields ug = 0, mp = 0 in Q_. Then by formulas (3.83) ¢, = cov. On the other hand, the divergence theorem and
G (x —y) J

the second equation in (3.4) imply that (Vav); (x) = / oy
k

Q4

'y =0, and accordingly that Vov = 0. Thus, we obtain

the equality
Ker {Va : L2(092,R") — H3(8, R")} = Rw.

Therefore, by (4.27) the codimension of the range of the operator Vs : L,(89, R") — HE(8Q,R") is equal to one. Moreover,
Range (Va.00) C Hp., (99, R"), as follows from the divergence theorem and the second equation in (3.4). Since H,., (99, R") is
a subspace of codimension one in H3(82, R"), we conclude that the range of the operator Va : L,(0Q,R") — HL (3, R") is just
H3.,(89;, R™). Then the Fundamental quotient theorem for linear continuous maps implies Va : L,(8Q, R")/Rv — H;, (09, R")
is an isomorphism for any p € Ro(n, €), as asserted.

Since the operator V, is self-adjoint, duality shows that operator (4.25) is also an isomorphism for any g € (1, co) such that
qg= p'%l. Note that for the same range of g, the Stokes single layer potential operator V : Hgl(ﬁQ,R”)/Ru — L},;,,(BQ,R”) is
an isomorphism as well (see [61, Corollary 9.1.5] for o = 0).

If Q. is of class C', then the operator V : H, (8, R") — L,(8Q, R") is Fredholm with index zero for any g € (1, o0) (cf., e.g.,
[67, Remark 3.1]; see also [28, Proposition 4.1]). By duality, we deduce that operator (4.26) is Fredholm with index zero as well for
any p € (1, 00) whenever & = 0. In view of [33, Theorem 3.4], the complementary operator Vo — V : L,(89, R") — H1(8Q, R")
is compact (even in the case of a Lipschitz domain). Therefore, the operator Va : L,(992, R") — Hp(892, R") is Fredholm with
index zero for any p € (1,00). Then the rest of the proof holds true for any p, g € (1, ). a

Lemmas 4.6, A.1 and B.1(ii) and an interpolation argument imply the following assertion (see also [67, Remark 3.1] in the
case of a C! domain).

Corollary 4.7 Let Q. C R"” (n > 3) be a bounded Lipschitz domain with connected boundary 82 and let Q_ :=R"\ Q4. Let
a € (0,00) and p € Rs(n, €), see (4.5). Then there exists € = €(0S2) > 0 such that the following operators are isomorphisms,

Vo 1 Hy*(8Q,R") /Ry — Hy 7 (8Q,R"), s €[0,1], (4.28)
Vo 1 By 5(0Q,R") /Ry — B 5, (0, R"), s € (0,1), g€ (1,00). (4.29)

If Q4 is of class Ct, then the property holds for any p € (1, c0).

5. The Dirichlet and Neumann problems for the Brinkman system

5.1. The Dirichlet problem for the Brinkman system

Let us consider the Dirichlet problem for the homogeneous Brinkman system,

Au—au—Vr=0, divu=0 in Qy, (5.1)
uh =ho on 39, (5.2)

and show the following assertion (cf. [69, Theorem 5.5] for p = 2 and the boundary data in the space L, (02, R"); for « =0
see also [61, Corollary 9.1.5, Theorems 9.1.4, 9.2.2 and 9.2.5] and [62, Theorem 7.1]). The Dirichlet boundary condition (5.2)
is understood in the sense of non-tangential limit at almost all points of 2.

Theorem 5.1 et Qy CR"” (n > 3) be a bounded Lipschitz domain with connected boundary 8. Let a € (0, 00), p € (1, 00),
and p* := max{p, 2}.

(i) Letho € Hp, (992, R"). Then there exists e = €(8Q) > 0 such that for any p € Ro(n, €), the Dirichlet problem (5.1)-(5.2)
has a solution (u, ) such that M(u), M(Vu), M() € L,(0S2) and there exist the non-tangential limits of u, Vu and m
at almost all points of the boundary 2. Moreover, there exists a constant C = C(8%2, p, &) > 0 such that

IM(WllL,00) + [IMVU)llL,62) + IM(T)lL,00) < Cllholl @0 (5.3)
llumell00) + I VUm0 + 1m0 < Cllholl 13 a0,87)- (5.4)

. 1+1 n H
In addition, u € B, *(Q24,R"), m € B} .(Q24) and

u 1
I IIBHXE @
p.p

+ ||| i §C||h0||H},(aQ,Rn)-

RP
+.RM) oo (4
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(i) Lethg € Lp.(02,R"). Then there exists € = €(02) > 0 such that for any p € Ri(n, €) the Dirichlet problem (5.1)-(5.2)
has a solution (u, ™) such that M(u) € L,(02). Moreover, there exists a constant C > 0 such that

IM(u)llp00) < Clihollip60.r7)- (5.5)

1
In addition, u € B} .(Q2+,R") and
lull 1 < Cllho| L, 00.rm-

1
P n
BP . (24 R

(iif) Let 0 <s < 1andho € H,, (02, R"). Then there exists € = €(02) > 0 such that for any p € R1-s(n, €) (cf. (4.5)), the
Dirichlet problem (5.1)-(5.2) (where the Dirichlet condition (5.2) is considered in the Gagliardo trace sense) has a solution

+1 +1-1 .
uc B:,pf (Q4,R"), T € B;pf (Q4), and there exists a constant C > 0 such that

lull ..,
p.p*

+ || < C|h s ny.
Il g, < Cllellgonzo

(@4 R7) +

p.p*

In each of the cases (i), (ii) and (iii), the solution is unique up to an arbitrary additive constant for the pressure w, and can be
expressed in terms of the following double layer velocity and pressure potentials

u=W, <(—;I+KQ>_1 ho> . m=0Q% ((—;H— Ka)_l h0> in Q4 . (5.6)

Proof. According to Lemmas 3.4, 4.4 and Theorem 3.5(iii), the functions given by (5.6) provide a solution of the Dirichlet
problem (5.1)-(5.2), which satisfies the corresponding norm estimates mentioned in items (i) — (/7). For 0 < s < 1 in item (iii),
we have by Corollary 4.5 that (—%I + Ka)_1 ho € Hy(0Q2,R") — B; ,- (09, R") with corresponding norm estimates, which by
(3.40), (3.75) and (3.82) proves the desired solution properties.

We will now prove uniqueness of the solution of the Dirichlet problem (5.1)-(5.2) satisfying the conditions in item (ii), by
modifying arguments in the proofs of [61, Theorem 5.5.4] and [62, Theorem 7.1]. Let (u°, 7°) be a solution of the homogeneous
version of the Dirichlet problem (5.1)-(5.2) such that M(u®) € L,(89) and uo satisfies the homogeneous boundary condition
in the sense of non-tangential limit at almost all points of the boundary Q. Let xo € 24 and let {<;};>1 be a sequence of C*
sub-domains in Q4 that contain xo and converge to Q4 in the sense described in Lemma 2.2. Let G§ (x) = (G (x), .. ., Gge.(x)),
k=1,..., n, where (G%, M) is the fundamental solution of the Brinkman system in R” (see (3.1) and (3.2)). Then for each Q;
andany k=1,..., n, the functions v/ and ¢ given by

-1
Vi, =W, (h’@), @, = 0% (h’U)) inR"\ 8%, WO = (—%I + K{;) (GF (%0 — -)log,). (5.7)
satisfy the system

{ AV, —avl, — Vi, =0, divv,, =0in Q) (5.8)

(Vo) = GF (%0, "), -

Here W/, := Woeaq, and Qid = Qi;an. are the double layer velocity and pressure potential operators corresponding to 952;, while
K. : HY (89, R") = HY (8, R") is the corresponding double layer integral operator. Indeed, G§(xo —)loo; € H.. 0 (0, R")
and, in view of Lemma 4.4, the operator —31+ K%, : H, (8, R") — H_, ) (8%, R") is an isomorphism for any p' € (1, c0)
since €2, is a smooth domain.

Note that the operator —31 + Kq : Hp., (892, R") — H,,., (892, R") is an isomorphism for any p' € Ro(n, €) (see Lemma 4.4),
i.e., for any p' such that 5 =1- %, where p € R1(n, €). After performing a change of variable as in Lemma 2.2, the operator
—%I+K{1 defined on 9€2; can be identified with an operator T4 acting on functions defined on Q. Then, employing the
arguments, e.g., similar to those in the last paragraph in p.116 in [61], which are based on [61, Lemmas 11.9.13 and 11.12.2],
and taking into account [47, Proposition 1] (see also [23, Theorems 3.8 (iv) and 4.15]), one can show that the sequence of
operators T4 converges to the operator To 1= —%I + K, in the operator norm and the sequence of the inverses of the operators
T4 converges to the inverse of the operator 7 in the operator norm. Hence the operator norms || (—%]I + K{I)_1 I (00,.r") are

o ’

bounded uniformly in j, implying that there exist some constants Co, Cy depending only on p, n, a and the Lipschitz character
of 24 (thus, Co does not depend on j) such that

”h’(j)HH;,(aQJ,R") < GolIGk (xo, M, o0, 1) < Co(lM (G (x0, Nl o) + IM(VGR (x0. NI,y 02)). (5.9)

where the non-tangential maximal operator M is considered with respect to a regular family of cones truncated at a height
smaller than the distance from xq to 9Q (cf. [75, Theorem 1.12], see also Lemma 2.2). Further, by considering the change of
variable y; := ®;(y) as in Lemma 2.2, the double-layer potential representations (5.7) become

v x) = /6 SR 000 (3) b, = /a (@) 0 (@) HO ) doy, (5.10)
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@00 = [ N 0m)EO0)do, = | N@,0) 0@ 0O W)dey, ¥ x e, (5.11)
Jog, .
where H'9(y) := WO (d;(y)wi(y), y € 82,y = /2, ...y, WO = (n @, .. ), HO = (9 .., H'D), and wj is the
Jacobian of ®; : 92 — 0Q;.
In view of (5.9) and of the uniform boundedness of {w;};>1, there exists a constant C; > 0 (which depends only on p, n and
the Lipschitz character of Q4) such that

Il om0y < Colll s o, ey < CHCH(IM(GE (xa. Nl + IM(VGE (x0, Dl o). ¥ > 1. (5.12)

Hence {H'“};51 is a bounded sequence in H;,(GQ,R”), and, thus, there exists a subsequence, still denoted as the sequence, and
a function H' € H}, (89, R"), such that H'”’ — H' weakly in H (82, R"). By this property and letting j — oo in (5.10)-(5.11),
we obtain v, (x) = vy, (x) = WaH'(X), ¢/, (X) = Gy (x) = QaH'(x) pointwise for any x € Q4. Moreover, in view of Lemma 3.4
(where the constants depend only on the Lipschitz character of Q), applied to 8, and (5.9), we obtain the inequality

1MVl oy + MGl 09y < CalIWI < CoCs (IIM(G (x0. Dl o0 + IM(VGE (0, Nl yom ) . (5.13)

with a constant C3 depending only on p, n and the Lipschitz character of Q.
In addition, the pair (G3”(xo. ), ™ (xo,-)) given by

Gy (x0,) = G (X0 — ) — Wy, Th(Xo, ") := Mk(x0 —-) — q, (5.14)

defines the Green function of the Brinkman system in €2; and its corresponding pressure vector, i.e., it satisfies for each xq € Q;
the following relations

—Vm,(x0.y) + AG; (x0,y) — aGy (x0,y) = =&y (x0)],
divyGy”(x0,y) =0 in €, (5.15)
Gy’ (x0.y) =0, y € Q.

Hence, for each €; and any k=1, ..., n, we obtain the relations
<AG(;J(XO, ) = aGy (%o, -) — Vh(xo, -), u0>Qj = ug(xo). (5.16)
Then by (5.15) and (5.16) we obtain that
U (x0) = / G0, ). M (x0.)) - udoy. (5.17)
]

By (5.14) and (5.13), there exists a constant C depending only on a, p, n and the Lipschitz character of 24 such that
IM(VGE (x0, DllL, o5y + My (x0, DIl o5y < CAMGE (x0, DIl o0y + IM(VGE (x0, Nl 02).

Since also M(u®) € L,(89) and (u®)}, =0 on 89, then the Lebesgue Dominated Convergence Theorem (applied again after
the change of variable as in Lemma 2.2 that reduces the integral over 89, to an integral over 8Q2) implies that the right hand
side in (5.17) tends to zero as 89, tends to 89 and hence u2(xo) = 0. Because xo is an arbitrary point in Q4, we conclude
that u® = 0 in Qy, and by the first equation in (5.1), 7° is a constant pressure, as asserted. This completes the proof of the
uniqueness in item (ii).

Let us show also the uniqueness result for item (/). To do so, assume that (uo, 7o) is a solution of the homogeneous version of
the Dirichlet problem (5.1) such that M(uo), M(Vug), M(mo) € L,(892), there exist the non-tangential limits of ug, Vug and 7p at
almost all points of the boundary 052, and ug satisfies the homogeneous Dirichlet boundary condition in the sense of non-tangential
limit at almost all points of 8Q. Then the Green representation formula uo = Vo (& (uo, m0)) — Wa (udf) in Q4 (cf. Lemma
3.8) reduces to uo = Vg (tf(uo, m0)) in 4, and, by considering the non-tangential trace, we obtain that Va (tf(uo. m0)) =0
on 8. Thus, t}(uo, ) € Ry (see Lemma 4.6), and hence ug = 0 in Q. while the Brinkman equation (5.1) shows that 7° = 0
in Q4 (up to an additive constant pressure). This completes the proof of the statement in item (/).

Next we show for s € (0, 1) the uniqueness of a solution to the Dirichlet problem (5.1)-(5.2), in the hypothesis of item (iii).

1 1

To this end, let (u°, 7°) € B;;E (Q+,R") x B;;f (Q.) denote a solution of the homogeneous version of the Dirichlet problem
(5.1)-(5.2). By Lemmas 2.4, 2.11 and Theorem 2.5 we obtain that y;u® = ulf =0 and tZ(u®, 7°) € B (89, R"). Then for
s € (0, 1), the Green representation formula (3.128) applied to the pair (u°, 7°) implies that v4Vq (t4 (u, 7)) = 0 on 8. Hence
by (3.88) and (4.29) we obtain that t}(u, 7) € Rv. Since Vor = 0 in Q4, we deduce that up = 0 in Q4, and by the Brinkman
equation (5.1) 7° = 0 (up to an additive constant). O

Note that for p =2, Theorem 5.1 (ii) has been obtained by Z. Shen in [69, Theorem 5.5] by using another double layer
potential approach.

The following regularity result has been obtained in [61, Theorem 4.3.1] and [62, Theorem 7.1] in the case of the Stokes
system (i.e., for a = 0). We prove a similar result in the case of the Brinkman system (i.e., for @ > 0) by using the main ideas
of the proof of [62, Theorem 7.1] (see also [56, (2.95), Remark V p. 37], [16, Theorem 2], [35, Lemma 3.3], [45]).
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Theorem 5.2 [Let 2 CR" be a bounded Lipschitz domain with connected boundary 8Q2. Let a« > 0, p € (1,00) and p* :=
max{p, 2}. Assume that a pair (u, ) satisfies the homogeneous Brinkman system (5.1). Then the following properties hold.

(i) There exists € = €(02) > 0 such that for any p € (2 — €, 0c), the condition M(u) € L,(8Q2) implies that there exists the
non-tangential limit of u almost everywhere on 82 and ul, € L., (0Q,R"). Moreover,

lumell,00rm) < CilIM(u)ll,00). ||U||B% < GIM(u)lle 00 (5.18)

p.p* QR

with some constants C1 = C1(8Q, p, @) > 0, C; = C1(8%, p, &) > 0.

(ii) There exists € = €(02) > 0 such that for any p € Ro(n,e) U (2, 00), the assumption M(u), M(Vu), M(m) € L,(0%2)
implies that there exist the non-tangential limits of u, Vu, ™ almost everywhere on 892, and that ul, € H;;,,(aQ,R”) and
th(u, ) € L,(0Q,R"). In addition, there exist some constants Co = C2(02, p,a) > 0, C5 = C5(89, p, &) > 0 such that

”u:t”H},(aQ.R") + lltne(u, Ml 00rm < Co (IMW)lL,00) + IMVW)lL00) + 1ML, 00) . (5.19)
+ |l b o < G (MWl 00 + IM(VWIIL @0 + M), 00) - (5.20)

u 1
ol s o b o,

p.p*

Proof. (i) We will use arguments similar to the ones in the proof of [16, Lemma 8]. First, let {<2;};>1 be a sequence of sub-
domains in Q4 that converge to Q4 in the sense described in Lemma 2.2, with the corresponding notations &, vY and wj
also introduced there. Due to ellipticity of the homogeneous Brinkman system in €24, we have (u, 7) € C*(Q4,R") x C*(Q4).
Now, let h¥) := ulag;- Then (u;, m;) := (u|§j, 7r|§J) satisfies the homogeneous Brinkman system in €2; and the Dirichlet boundary

condition ujlog; = hY on 89, where h¥) € L,.,1»(82;, R"). The solution of such a problem is unique, up to an additive constant
for the pressure (see, e.g., Theorem 5.1).

According to Lemma 4.4 applied to the smooth domain ;, such a solution can be expressed in terms of the double layer
potential u; = Wao0, W'Y, m; = Qf.50 W'Y, with a density WY € L, () (8%, R") satisfying the equation (—31+ Kb) WY = h",
where Ki, := Kaa0, is associated (as in (3.89)) with the double layer potential Waa0, defined on L, ;) (0%, R"), and, in view
of Lemma 4.4, the operator —%I + K, L,y (882, R") = L) (89, R") is an isomorphism for any p € (1, 00).

Note that the operator —21 4+ Ka : Lpy (82, R") — L (92, R") is an isomorphism for any p € R1(n, €) (see Lemma 4.4).
After performing a change of variable as in Lemma 2.2, the operator —%I + K, defined on 8; can be identified with an operator
T4 acting on functions defined on 8Q2. Then, employing the arguments, e.g., similar to those in the last paragraph in p.116 in
[61], which are based on [61, Lemmas 11.9.13 and 11.12.2], and taking into account [47, Proposition 1] (see also [23, Theorems
3.8 (iv) and 4.15]), one can show that the sequence of operators T2 converges to the operator 7o := —%I + K4 in the operator
norm and the sequence of the inverses of the operators 7J converges to the inverse of the operator 7 in the operator norm for
p € Ri(n,€). Hence, if p € Ri(n, €), the operator norms || (=51 + K{I)f1 l|Lp(o0, &y are bounded uniformly in j, implying that
there exists a constant ¢o depending only on p, n, a, and the Lipschitz character of Q4 (thus, not depending on j) such that

1G) 1P P _ P
lh ||Lp(aQ/:]R") < cllh ||Lp(aQ/:R") = COHUHLp(aQwRU

. /a | O)Pdoy, = /6 ()P y)do; < o /6 M) day = MW oz, (5:21)

Recall that we have approximated the domain Q24 with a sequence of smooth domains €2; with uniform Lipschitz characters from
inside, and we have employed here the change of variable y; := ®;(y), y € 09, y; € 9%, and w; is the Jacobian of ®; : Q2 — 0
(cf. Lemma 2.2). Hence the constants ¢y and ¢; depend only on p, n, a, and the Lipschitz character of 2.

Further, the double-layer potential W0, h'Y’ becomes

() = [ St 0O )doy, = [ SE(@,0) 00 (@ 0)HO W)dey, ¥x e, (5:22)

where H'?(y) := WO (®;(y))w;(y), WO = (19, ..., By, HO = (H'Y, .., H'D).
In view of (5.21) and of the uniform boundedness of {w;};j>1, there exist some constants ci, ¢ > 0 (which depend only on
Q4 and p) such that

/ HO(y)Pdoy < e, / lu(y)IPdo, < & / IM(u(y))Pdoy, ¥ j > 1. (5.23)
N i [o}9]

e}

Hence {H'?’} >, is a bounded sequence in L,(89, R"), and, thus, there exists a subsequence, still denoted as the sequence, and
a function H' € L,(8Q, R"), such that H'Y) — H’ weakly in L,(89, R"). By this property and letting j — co in (5.22), we obtain
u=W,H' in Q. According to Lemma 3.4(i,iv), there exists the non-tangential limit uf, = (W,H')% of u at almost all points
of 82, and by estimates (3.40) and (5.23), we obtain that

llumll L, 0087 = I(WoH )l 00k < cllH'|lL,00rm< ¢ |imji_f)1; ||H’(J)||Lp(0Q,R") < clIM@)lL,o0). (5.24)
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where the constants c3, ¢4 > 0 do not depend on j. Moreover, the divergence theorem shows that uf, = (WoH'); € L, (0Q,R").

Estimate (5.18) is provided by the representation u = WyH’, by continuity of operator (3.70), and by estimates (5.24). This
completes the proof of item (i) for any p € R1(n, €).

Let us now consider item (i) for any p > 2 (not covered yet when n > 3). Note that inclusions 2 € Ri(n,€) and L,(8Q) C
Lo(02) particularly imply that for such p there exist non-tangential limits of u almost everywhere on 9Q2. Implementing now,
e.d., [58, Proposition 3.29] completes the proof for any p > 2.

(ii) Now assume that u and 7 satisfy the Brinkman system and that M(u), M(Vu), M(w) € L,(092). As in the proof of item
(i), we consider again a sequence of smooth domains {2}y, such that Q; C Q4 and Q — Q4 asj — oo.

As we already mentioned, (w;, ;) := (ulg . 7lg, ) € C™(Q,R") x C*(Y). Thus, ¥ := ulag, € C*(0;,R") C Hy(0, R")
and h¥) e L, (09, R"), for any j € N. Then the pair (u;, m;) € C*(Q;, R") x C*(£2;) satisfies the Brinkman system in Q;
with the Dirichlet boundary condition Uj|aQJ =hY e H,i;,,m (8€2j,R"). The solution of such a problem is unique up to an additive
constant pressure (see Theorem 5.1(i)) and can be expressed in terms of a double layer potential as in item (i), but now with a
density in H;;UU) (092, R"). Proceeding similar to the proof of item (i), we prove item (ii). d

Remark 5.3 The condition requiring the existence of the non-tangential limits of u, Vu and 7 at almost all points of the
boundary 02 in Lemma 3.8 is particularly satisfied if p € Ro(n, €) U (2, 00) with € > 0 as in Theorem 5.2(ii). Indeed, for
such p, the condition is implied by the inclusions M(u), M(Vu), M(7) € L,(8$2) and by the Brinkman system (3.129).

Having in view Theorem 5.1(iii), we are now able to consider the Poisson-Dirichlet problem for the Brinkman system,

{Au—au—Vﬂ:f, divu=0 in Qy (5.25)

Y+u = hg on 002
with the Dirichlet datum for the Gagliardo trace «y4+u (see also [61, Theorem 10.6.2] for o = 0).

Theorem 5.4 Let Q2. CR" (n > 3) be a bounded Lipschitz domain with connected boundary 990. Let a € (0,00) and0 < s < 1.

Then there exists € = €(8) > 0 such that for any p € R1_s(n, €) (cf. (4.5)), the Dirichlet problem (5.25) with f € L,(Q4,R?)
o4l el

andho € H;., (02, R") has a solution (u, w) € Bp:f (24, R") x Bp:f 1(Q+), which is unique up to an arbitrary additive constant

for the pressure w, where p* = max{2, p}. In addition, there exists a constant C = C(s, p,2+) > 0 such that

lull .
p.p*

L =S CIfllp(@4.mm + [hol[Hg@arn)).-

(2+.R") ‘

p.p*

Proof. If f = 0, the existence of a solution of the problem (5.25) for 0 < s < 1 is implied by Theorem 5.1(iii) together with the
asserted estimate, while for s = 1 it follows from Theorems 5.1 (i) and 2.5 (iii).
If f # 0, we will look for a solution of problem (5.25) in the form

u=Nyo f+v, m=Qq.f+gq, (5.26)
where the Newtonian velocity and pressure potentials Nq.o, f and Qg f are defined by (3.21). By Remark 3.3,

ANgo f—aNgo, f — VQoif =f, div Nao,f=0 in Qy,
(Nao, f, Qa.f) € B - (24, R") x Bp - (4), ¥+(Na:a,f) € Hp, (O R"), td (Nao, f, Qo f) € L,(09,R").

Then problem (5.25) reduces to the one for the corresponding homogeneous Brinkman system,

{Av—av—quO, divv=0 in Q, (5.27)

Y+V = hoo,

where hgy := hg — v+ (Na;mf) € H;.,(022,R"), already discussed in the first paragraph of the proof. Therefore, there exists a

1 1_
solution (u, ) € B;:f (24, R") x B:_J;f 1(Q+) of the Poisson problem (5.25), which satisfies the asserted estimate.

Let us prove the uniqueness of the solution to the Poisson problem (5.25) for 0 < s < 1. To do so, we consider a solution
1 1_
(u®, %) € B:;f (Q.R?) x B;_:f "(Q) of the homogeneous version of the problem (5.25). Let us take the trace of the Green

representation formula (3.128) for (u°, 7°). Since y+u® = 0, we obtain the equation

Va (th(u®, %) =0 on aQ,

for t1(u® 7°) € B;,t(8Q), which by Corollary 4.7 has a one-dimensional set of solutions, ti(u®, %) = cv, where ¢ € R.
Substituting this back into the Green representation formula (3.128) we obtain u® = cVov =0 in Q4 (cf. the arguments
in the proof of Lemma 4.6), and by the homogeneous Brinkman equation, m° is an arbitrary constant. Finally, uniqueness for

0 < s < 1 implies also uniqueness for s = 1. O
Math. Meth. Appl. Sci. 0000, 00 1—42 Copyright © 0000 John Wiley & Sons, Ltd.
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5.2. The Neumann problem for the Brinkman system

Using an argument similar to the one for the Robin boundary value problem for the Brinkman system in [35], we obtain in this
section the well-posedness of the Neumann problem for the linear Brinkman system,

Au—au—Vr =0, in Q,
divu=0 in Q, (5.28)
th(u m) =go on 0Q
in L,—based Bessel potential and Besov spaces for some € > 0, and extend the results obtained in the case p =2 and for a
- . 0 Ou . .
conormal derivative given by —2 =—mv + —5 in [69, Theorem 5.3] (see also [61, Theorem 5.5.2] in the case a = 0). Note
that the Neumann boundary condition in (5.28) is understood in the sense of non-tangential limit almost everywhere on 8%2.

Theorem 5.5 Let QO CR" (n > 3) be a bounded Lipschitz domain with connected boundary 8S2. Let a € (0, 00). Then there

exists € > 0, such that for any p € Ro(n, €) (see (4.4)), and for any given datum go € L,(02, R"), the Neumann problem (5.28)
has a unique solution (u, 7) such that M(u), M(Vu), M(7) € L,(82). The solution can be represented by the single layer velocity

and pressure potentials
1 - 1 -
u=V, <(2]I+ K;) go> T =Q° ((211—{— K;) go) . (5.29)

Moreover, (u, ) € B ”(Q+ R") x B - (€+), and there exist some constants Cu, C and C' depending only on Q4, a, and p
such that

(IM(Vu)lle, 00 + IIMWl,60) + IIMTl,00) < Cullgolli ook, (5.30)

u + || <C n, 531

I ||Bl+*%(m. . [|7r]] b S llgoll ., 0087 (5.31)
p.p P.P

[Vull gz og ey + It (U, Tl 60.z0 < Cligolle @0 (5.32)

Proof. We use an argument similar to that for [23, Theorem 4.15] (see also [62, Theorem 3.1, Proposition 3.3]). By Lemma 4.2
there exists € > 0 such that operator i1+ K : L,(02,R") — L,(82,R") is an isomorphism for p € Ro(n,€). Along with
Lemma 3.4, Theorem 3 5 and Lemma 3 6 this implies that representation (5.29) gives a solution of problem (5.28) that

belongs to the space B (Q ,R™) x B »-(£24) and satisfies estimates (5.30)-(5.32).

In order to show the uniqueness assertlon, we assume that (u°, 7°) is a solution of the homogeneous version of (5.28)
such that M(u®), M(Vu®), M(7)° € L,(8Q) and satisfies the Neumann condition almost everywhere on 8 in the sense of
non-tangential limit. Then the Green representation formula (3.130) gives,

u’ = Vo (thu®, 7°) — Wo (ulf) = —Wa (uff) in Q4 (5.33)

which, combined with formulas (3.82), leads to the boundary integral equation
( I+ Ka> ult =0 on Q. (5.34)

Here ulf € HA (09, ]R”) due to Lemma 3.4(i). Then invertibility of operator (4.9) in Lemma 4.2 implies that u% = 0 on 9Q

and thus, by (5.33), u’® =0 in Q.. Moreover, by the homogeneous Neumann condition satisfied by (u®, 7°), we obtain that

7 =0 in Q4. This concludes the proof of uniqueness of the solution of the Neumann problem (5.28), and hence the proof of

the theorem. O
Having in view Theorem 5.5, we are now able to consider the Poisson-Neumann problem for the Brinkman system,

{Au—au—szf, dvu=0 in Q4 (5.35)

tZ(u,w) =go on 00
with the Neumann datum for the canonical conormal derivative t} (u, ) (see also [62, Theorem 10.6.4] for o = 0).

Theorem 5.6 Let 2+ CR" (n>3) be a bounded Lipschitz domain with connected boundary 092. Let a € (0,00). Then
there exists € = €(8Q2) > 0 such that for any p € Ro(n €) (cf. (4. 4)) the Neumann problem (5.35) with f € L,(Q4,R%) and

do € L,(02,R") has a unique solution (u, ) € B " (2+.R") x B o~ (§24), where p* = max{2, p}. In addition, there exists a
constant C = C(p, Q+) > 0 such that

[lull 141 Rn) + ”’””B% o) < C(”f”Lp(QJr.R") + ||90||Lp(aQ.R”)),

-+ L (Q4

p.p* p.p
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llv+ull i aorn < CUIFlL@. v + dollLye2.8m)-
Moreover, if f =0, then M(u), M(Vu), M(m) € L,(02) and there exists a constant Cy > 0 such that

(IM (W)L, 00) + 1MVl 00 + IM(T)] L0 < CulldollL,@o.rm-

Proof. If f = 0, there exists a solution of problem (5.35) given by the solution of the corresponding problem (5.28) with the

non-tangential conormal derivative in the Neumann condition, whose existence is provided by Theorem 5.5 together with the

asserted estimate. Here we rely also on the equivalence of the conormal derivatives, t} (u, 7) =t/ (u, 7), due to Theorem 2.13.
If f # 0, we will look for a solution of problem (5.35) in the form

u=Nqyo f+v, m=0Qq . f+gq, (5.36)

where the Newtonian velocity and pressure potentials Ng.o,f and Qg f are defined by (3.21). According to Remark 3.3, we
obtain the relations

ANQ;Q+f - aNa;Q+f - VQQ+f = f, div Na;Qif =0 in Q+,
(Nao,f, Qa.f) € B}, (21, R") x By - (24), ¥+(Nao,f) € H}, (02 R"), t* (Nao.f, Qo.f) € L,(0Q, R").

Then problem (5.35) reduces to the problem for the corresponding homogeneous Brinkman system,

{Av—av—Vq:O, divv=0 in Q, (5.37)

tf(u, ) =goo on 89,

where goo := go — t3 (N, Qifi Qq.f:) €L (aQ R"), already discussed in the first paragraph of the proof. Therefore, there

exists a solution (u, ) € B " o (24, R") x B - (€24) of the Poisson problem (5.35), which satisfies all the asserted estimates.
Let us prove un|queness of the solutlon to the Poisson problem (5.35). Indeed, let us consider a solution (u° 7°) €

1 1
B:;f (QR?) x B} ,-(Q) of the homogeneous version of problem (5.35). Let us take the trace of the Green representation
formula (3.128) for (u®, 7°), considered for any s € (0, 1). Since t}(u, 7) = 0, we obtain the equation

1
yeu® = §'y+u° — Koysu® on 89,

with the unknown ~y,u® € B, (92, R"), which, by Corollary 4.3, has only the trivial solution. Substituting this back to the
Green representation formula (3.128) we obtain u® = 0 in Q.. Then the Brinkman system implies 7° = ¢ € R, and taking again
into account that t£(u, w) = 0, we obtain 7° = 0 in Q, as asserted. g

6. The mixed Dirichlet-Neumann problem for the Brinkman system

In this section we show the well-posedness of the mixed Dirichlet-Neumann boundary value problem for the Brinkman system

Au—au—Vr =0, dvu=0 in Qy,
uls, = ho, (6.1)
to:(u, )|, = do.

on a bounded, creased Lipschitz domain Q24 C R" (n > 3) with connected boundary 82, which is decomposed into two disjoint
admissible patches Sp and Sy (see Definition 6.3), -|s, is the operator of restriction from H;(9%2, R") to H,(Sp,R"), and s,
is defined similarly. We show that for hg € H3(Sp,R") and go € L,(Sn,R") given and for some range of p, there exists a unique
solution (u, 7) of the mixed problem (6.1), such that M(u), M(Vu), M(m) € L,(892), and the Dirichlet and Neumann boundary
conditions in (6.1) are satlsﬂed in the sense of non-tangential limits at almost all points of Sp and Sy, respectively. Moreover,

we will show that (u, ) € B "(Q+ R™) x B o (824).
We consider also a counterpart mixed problem

Au—au—Vr =0, dvu=0 in Q4
Y+uls, = ho, (6.2)
ta (u, mls, = go,

where, unlike the mixed problem setting (6.1), the trace is considered in the Gagliardo sense and the conormal derivative in the
canonical sense. We wiII show that for ho € H(Sp,R") and go € L,(Sn, R") given and for some range of p, there exists a unique

solution (u, 7) € B "(Q+ R") x B o (§24) of problem (6.2). Moreover, we will obtain that M(u), M(Vu), M(r) € L,(0%2).
The correspondmg mixed problems for the Poisson-Brinkman system, i.e., with non-zero right hand side of the Brinkman
system, will be also considered.

Math. Meth. Appl. Sci. 0000, 00 1-42 Copyright © 0000 John Wiley & Sons, Ltd.
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6.1. Creased Lipschitz domains
Next, we recall the definition of admissible patch (cf., e.g., [57, Definition 2.1], [9]).
Definition 6.1 Let Q CR"” (n > 3) be a Lipschitz domain. Let S be an open set of 82, such that for any xo € 8S there exists

a new orthogonal system obtained from the original one by a rigid motion with xo as the origin and with the property that one
can find a cube @ = Q1 X Q2 X --- X Q, C R" centered at 0 and two Lipschitz functions

{ Qi =Q1x ... xQu1 = Qn, ®(0)=0,

V:Q"=Q%x...xQnr1—Q1, W(0)=0, (6.3)

such that
SNR={K,o(x)): xX e, V(x")<x},
(B\S) NQ ={(x, ®(x): X €Q’, V(x") >xi}, (6.4)
oSNQ = {(V(x"). x", o(v(x"),x")) : x" € Q"}.

Such a set S is called an admissible patch of 652.

Definition 6.1 shows that if S C 8Q is an admissible patch then 8Q\ S is also an admissible patch (cf., e.g., [57]). Next, we
recall the definition of a creased Lipschitz graph domain (cf. [57, Definition 2.2]).

Definition 6.2 Letgc ]&”(n > 3) bean open,gnneited set. Suppose that Sp, Sy C 0X2 are two non-empty, disjoint admissible
patches such that Sp NSy = 0Sp = 0Sn and Sp U Sy = 02. The set Q2 is a creased Lipschitz graph domain if the following
conditions are satisfied:

(a) There exists a Lipschitz function ¢ : R™ — R such that
Q={(x".xn) €ER": x> $(x) }.
(b) There exists a Lipschitz function W : R™2 — R such that

Sw={(x1.x", x) ER" : x1 > W(x")} N6, (6.5)
Sp={(x, x",xa) ER" : x1x < W(x")} NOQ. (6.6)

(¢c) There exist some constants dp, 6y > 0, 6p + 6y > O with the property that

—_— > — < —
ox, oy a.e.on Sy, o op a.e.on Sp. (6.7)

Let us now refer to a creased bounded Lipschitz domain (cf. [57, Definition 2.3]).

Definition 6.3 Assume that Q C R" is a bounded Li;gchitijomain with connectgf bcﬂ)dary 0Q2, and that Sp, Sy C 02 are
two non-empty, disjoint admissible patches such that Sp N Sy = 0Sp = 0Sn and Sp U Sy = 0X2. Then Q2 is creased if

(a) Thereexistme N, a>0andz €0Q,i=1,..., m, such that 82 C UL, Ba(z;), where B,(z) is the ball of radius a and
center at z;.

(b) For any point zj, i=1,..., m, there exist a coordinate system {xi,..., Xn} with origin at zi and a Lipschitz function
@i from R"™! to R such that the set Qi := {(x', x,) € R" : x, > ¢i(x')}, whose boundary 8Q; admits the decomposition
02 = Sp, U Sw;, Is a creased Lipschitz graph domain in the sense of Definition 6.2, and

QN BQa(Zj) =QiN Bga(Z,'), SpnN Bza(Z,') = SD: n Bza(Z,'), Sy N Bza(Z,') = SN: n Bga(Z,'). (68)

The geometric meaning of Definitions 6.2 and 6.3 is that Sp and Sy are separated by a Lipschitz interface (Sp N Sy is a creased
collision manifold for ©) and that Sp and Sy meet at an angle which is strictly less than m (cf., e.g., [7, 57]). A main property
of a (bounded or graph) creased Lipschitz domain is the existence of a function ¢ € C*(2,R") and of a constant § > 0 such
that

o-v>dae onSy, @-v<—0a.e onSp, (6.9)

i.e., the scalar product ¢ - v, between ¢ and the unit normal v, changes the sign when moving from Sp to Sy (cf., e.g., [8,
(1.122)], [9, (2.2)]). For such a domain, Brown [7] showed that the mixed problem for the Laplace equation has a unique solution
whose gradient belongs to L»(8D) when the Dirichlet datum belongs to H3(Sp) and the Neumann datum to L2(Sy). For the
same class of domains, well-posedness of the mixed problem for the Laplace equation in a range of L,—based spaces has been
obtained in [57].

Copyright © 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1-42
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6.2. Mixed Dirichlet-Neumann problem for the Brinkman system with boundary data in [,-based spaces

Mitrea and Mitrea in [57] have proved sharp well-posedness results for the Poisson problem for the Laplace operator with mixed
boundary conditions of Dirichlet and Neumann type on bounded creased Lipschitz domains in R” (n > 3), whose boundaries
satisfy a geometric condition, and with data in Sobolev and Besov spaces. Brown et al. in [9, Theorem 1.1] have obtained the
well-posedness result for the mixed Dirichlet-Neumann problem for the Stokes system with boundary data in L,-based spaces
on creased Lipschitz domains in R” (n > 3), by reducing such a boundary value problem to the analysis of a boundary integral
equation (see also the references therein). Well-posedness of the mixed Dirichlet-Robin problem for the Brinkman system in
a creased Lipschitz domain with boundary data in L»-based spaces has been recently proved in [35, Theorem 6.1]. Using the
main ideas of that proof, we show in this section well-posedness of the mixed Dirichlet-Neumann boundary value problem for
the Brinkman system in L-based Bessel potential spaces defined on a bounded, creased Lipschitz domain 2.

Theorem 6.4 Assume that Q2+ CR" (n>3) is a bounded, creased Lipschitz domain with connected boundary OS2,
which is decomposed into two disjoint admissible patches Sp and Sy. Then the mixed problem (6.1) with given data
(ho do) € HQ(SD R™) x Lo(Sn, R™) has a unique solution (u, ) such that M(u), M(Vu), M(m) € L»(092). Moreover, (u, ) €

H2 (24, R") x H2 (Q4), and there exist some constants Cy and C depending only on Sp, Sy and a such that

IM(TW)lzia0) + IM@) 1z + M) < Cur (Iholliycsy &y + lgolliasyzn ) (6.10)

Il 3 gy 13 < € (Ml + Mol ) (6.11)
2

Proof. First, we note that if a couple (u, ) satisfies the Brinkman system (6.1) and the conditions M(u), M(Vu), M(m) €
L»(8S2), then, taking into account that BQ%Q(Q+,R”) = HQ%(Q+ R"), BEQ(Q+) = HQ% (Q4), Theorem 5.2(ii) implies that
(u,m) € ﬁéaﬁv(Q,Ea) for any t > —3, while y4u = u}; and tf(u, 7) = t};(u, ) by Theorems 2.5 and 2.13.

Let us show that the mixed boundary value problem (6.1) has at most one Lg solution. Indeed, if a couple (u(®, () satisfies
the homogeneous problem associated to (6.1), and moreover (u®, 1) ¢ Y)2 dW(Q L), then by the first Green identity (2.28),

we obtain the equality
<t;(u(0), 7, 'Y+u(0)> =2 <]E(u(0)), E(u(o))> +a <u(0), u(0)> , (6.12)
a0 Q Q

where the left-hand side vanishes, due to the homogeneous boundary conditions satisfied by v u© = u,(ft’)Jr and tf (u©®, 7@ =
th(u@, @) on Sp and Sw, respectively. Then by (6.12) we immediately obtain that u® =0 and 7 =0 in Q.
Next, we consider the operator

So i L2(BR") = HY(Sp,R") x Lo(Sn,R"), SeV = <(vaw) s, <(%H+ K;) w) SN) (6.13)

(cf. [35, (6.6)-(6.8)]), and show that this is an isomorphism, which will yield the well-posedness of the mixed problem (6.1). To
this end, we note that S, can be written as So = So + Sa:0, Where

SN) , (6.14)
Sao : L2(89,R") = HA(Sp, R") x L2(Sy, R"), SaoW i= ((Va;o\ll) s, (KoW) |SN) . (6.15)

So : La(B R™) = HL(Sp, R") x La(Sw, R"), SoWf = ((Vow) 5o ((%HJFKS) W)

Here Vao @ L2(8,R™) — H3(8Q, R") and Ko : L2(82,R") — [(8Q,R") are the complementary layer potential operators
defined as
VaoV = VaW — VoW and KoV = KLU — KjW. (6.16)

The operator 8o defined in (6.14) is an isomorphism and this property is equivalent with the well-posedness result of the mixed
Dirichlet-Neumann problem for the Stokes system on a creased Lipschitz domain with Dirichlet and Neumann boundary data
in Lo-based spaces (cf. the proof of [9, Theorem 6.3]), when the BVP solution is looked for in the form of the Stokes single
layer potential. In addition, the continuity of the restriction operators from H3(8Q, R") to H:(Sp,R") and from L,(8Q, R") to
Lo(Sn, R"), respectively, as well as the compactness of the complementary operators in (6.16) (cf. [33, Theorem 3.4]) imply that
the operator Sq:p in (6.15) is compact as well. Therefore, the operator Sy in (6.13) is Fredholm with index zero. This operator is
also injective. Indeed, if v ¢ L»(892, R™) satisfies the equation Sa V@ =0 then the single layer velocity and pressure potentials
u©® =V, ¥ ® and 7 .= Q*W© will determine a solution of the homogeneous mixed problem associated to (6.1), such that
@, 7Y € Hi (. R") x HZ (Q4) and M(U®@), M(Vu®@), M(7@) € L,(89). Then u® =0 and 7@ = 0 in Q4. as shown
above. Consequently, th(u®, 7®) =0 a.e. on 8Q, which, in view of (3.83), can be written as

(%]I+ Kj,) v©® =

Math. Meth. Appl. Sci. 0000, 00 1-42 Copyright © 0000 John Wiley & Sons, Ltd.
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Moreover, the invertibility of the operator I+ K} : L2(892, R") — L2(892,R") (see Lemma 4.2) shows that v® =
Consequently, operator (6.13) is an isomorphism, as asserted. Then the fields

u=V, (S;'(ho.g0)). m=0Q° (S, (ho.g0)) (6.17)

determine the unique solution of the mixed Dirichlet-Neumann problem (6.1). According to Lemma 3.4, Theorem 3.5 and

3 1
(6.17), the solution belongs to the space H? (24, R") x HZ (£24) and satisfies the estimate (6.10) with some constant Cy > 0
depending on Sp, Sy and «, as well as estimate (6.11) with the constant C = (||Va|| + [|Q°I]) ISl O

6.3. Mixed Dirichlet-Neumann problem for the Brinkman system with data in L,-spaces

Next, we extend the results established in Theorem 6.4, to Lp,-based spaces with p in some neighborhood of 2, for the mixed
Dirichlet-Neumann problem for the Brinkman system (6.1), with the boundary data (ho, go) € H:(Sp, R") x L,(Sn, R"). We

will obtain the well-posedness result in the space B "(Q ,R") x B (Q+), where p* = max{2, p}.
We further need the space

Hp(S0,R") = {® € L,(82,R") : supp ® C So}, So C 8% (6.18)

e The Neumann-to-Dirichlet operator for the Brinkman system

As in the work [57], devoted to the mixed Dirichlet-Neumann problem for the Laplace equation in a creased Lipschitz domain,
we consider the Neumann-to-Dirichlet operator V..o, Which associates to g € L,(922, R"), the restriction of the non-tangential
trace ul, to the patch Sp, where (u, 7) is the unique L,-solution of the Neumann problem (5.28) for the Brinkman system with
the non-tangential conormal derivative g. Thus, (u, 7) satisfies the Neumann condition almost everywhere on 992 in the sense
of non-tangential limit, as well as the conditions M(u), M(Vu), M(7) € L,(0%2), and

Totag = Unls, - (6.19)

Similarly, we consider the Neumann-to-Dirichlet operator T, which associates to g € L,(9€2, R"), the restriction of the trace
Y+u to the patch Sp, where (u, ) is the unique solution of the Neumann problem (5.35) for the Brinkman system with f =0
and the canonical conormal derivative g, i.e.,

Tag = Y4uls,- (6.20)
A way to extend the well-posedness result in Theorem 6.4 to L,-based spaces is to show the invertibility of the Neumann-to-
Dirichlet operator Tht.q0n such spaces. An intermediary step to obtain this property is given by the following result.

Lemma 6.5 Let Q4 CR" (n> 3) be a bounded, creased Lipschitz domain with connected boundary 8Q which is decomposed
into two disjoint admissible patches Sp and Sn. Let a € (0, 00). Then there exists € = €(02) > 0 such that for any p € Ro(n, €)
the following properties hold.

(i) The operators T and T coincide and are given by

1 -1
’Y‘nt;a :Ta = (Va o <§H+ KZ;) )

(ii) The mixed Dirichlet-Neumann problem (6.1) with given data (ho,do) € H:(Sp,R") x L,(Sn,R") has a unique solution
(u, ), such that M(u), M(Vu), M(m) € L,(890), if and only if the operator

(6.21)

Sp

Tota - HY(Sp, R™) = Hp(Sp,R") (6.22)
is an isomorphism.
(iii) The mixed D/r/ch/et Neumann problem (6.2) with given data (ho,do) € Hy(Sp.R") x L,(Sn,R") has a unique solution
(u,m) € B ” (24, R") x B o (824) if and only if the operator
To : HY(Sp,R") = HA(Sp, R") (6.23)
is an isomorphism.

Moreover, when the solution (u, w) in item (ii) or (iii) exists, then it belongs to the space B ” o (24, R") x B o (Q24)
and there exist some constants Cyy = Cy(a, p, Sp, Sn), C = C(e, p, Sp, Sn) and C' = C'(a, p, SD Sw) such that

(IM(VWI|L,00) + M)l L0 + IM(T)L, 00 < Cu <||h0||H},(sD.Rn) + ||90||Lp(sN,Rn)) : (6.24)
ull L1 + 7l . <C(h m+ ) * = max{2, p}, 6.25
Il 155 gy * W73 ) S € (ollgcspmry+ Nollscsn ) o7 = max(2. o} (6.25)
v+ ull i o0 ) + lltx (u, ™)l 00.8m) < C’ (||h0||H,£(sD.Rn) + ”gOHLp(SN,R”)> - (6.26)
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Proof. (i) By Theorem 5.5, there exists € = €(82) > 0 such that for any p € Ro(n, €) the Neumann problem (5.28) has a unique
solution, and it can be expressed in form (5.29). Then due to Theorem 3.5 and Lemma 3.6 we deduce that the operator (6.19)
has the expression (6.21) and is continuous, due to the continuity of both operators in the right-hand side of (6.21).

(i) First, we assume that problem (6.1) is well-posed and show the invertibility of operator (6.22).

In order to prove the injectivity property of this operator, we consider a function g° € H3(Sp,R"), such that Theag® = 0.
Denoting by (u°®, 7°%) the unique L,-solution of the Neumann problem (5.28) for the homogeneous Brinkman system with
boundary datum g° € H2(Sp,R") on 8%, in view of (6.19), we have

un+t|SD = Tnt;ago = 0: (627)

and

0_ 0 _ o0 _ 0
{ Au’ —au’ = Vr’ =0, divu’=0 in Q, (6.28)

th(u’, ) =g° on Q.

In addition, (u®, w°) satisfies the conditions M(u®), M(Vu®), M(7°) € L,(8S2), and the Neumann condition holds almost
everywhere on 8% in the sense of non-tangential limit.
According to relation (6.27) and the inclusion g° € H3(Sp,R"), we have

uils, =0 on Sp, th(u’ 7%|s, =0 on Su, (6.29)

and hence by the assumed well-posedness of the mixed Dirichlet-Neumann problem (6.1), we deduce that wW=0and 7°=0in
Q4. Thus, ¢g° =t} (u®, 7°) = 0 on 8Q, which implies that the operator T is injective.

We show that the operator T« iS also surjective. Due to the assumed well posedness of the mixed Dirichlet-Neumann
problem (6.1), for any Dirichlet datum ho € Hy(Sp,R") on Sp and the Neumann datum go =0 on Sy, there exists a unique
Lp-solution, (uo, o), of this problem. In particular, we deduce that the vector field g° := t;(uo, mo) € L,(8Q, R") belongs to
ﬁg(SD,R”), due to definition (6.18). In addition, the uniqueness result in Theorem 5.5 shows that (uo, 7o) is the unique solution
of the Neumann problem for the Brinkman system in ©, with the Neumann datum ¢° € ﬁg(SD,R”) C Lp(82,R"). Then by
definition (6.19) of the operator The.a, we obtain that Theago = ug |s, = ho. Consequently, for a given hg € Hy(Sp, R") there
exists go € ﬁg(SD, R"™) such that Tht:ogo = hg. This shows that the operator T« is surjective, and thus, it is an isomorphism,
as asserted.

Next, we show the converse result, i.e., that the invertibility of the operator Tato implies the well-posedness of the
mixed Dirichlet-Neumann problem (6.1). Let us first show uniqueness of the solution to problem (6.1). To this end, we
assume that (u@ 7®) is an L,-solution of the homogeneous version of (6.1). Hence, g := t,(u®, ) € HI(Sp, R")
since t,(u®@, 7®)|s, = 0, implying that (u®, 7(?) is (by Theorem 5.5) the unique solution of the Neumann problem for the
Brinkman system with Neumann datum g© on 8Q. Then by (6.19), Toag® = u@*|s, =0, and injectivity of Tnre implies
that g = 0. Hence t,(u©®, 7©®) = 0 on 8Q and Theorem 5.5 implies that u® = 0, 7° = 0 in 4. This concludes the proof of
uniqueness of the solution to the mixed problem (6.1).

To show existence of an Lp-solution to the mixed problem (6.1), let us consider such a problem with arbitrary boundary data
(ho, go) € HX(Sp,R") x L,(Sn, R"). Also let G € HY(Sy,R") be such that

Gls, = 9o. (6.30)

Then by Theorem 5.5 there exists a unique Lp-solution (v, g) of the Neumann problem (5.28) with the Neumann datum G, such
that there exist the non-tangential limits of u, Vu, 7 at almost all points of 8Q2, M(v), M(Vv), M(q) € L,(8%), and satisfies
the Neumann boundary condition in the sense of non-tangential limit at almost all points of Q2. Note that v can be expressed
in terms of a single-layer potential with a density in the space L,(89Q, R"), and hence v}, € H3(3Q, R") (see Lemma 3.6).

On the other hand, the invertibility of the operator Tnea : H9(Sp, R") — HL(Sp, R") assures that the equation

Totag’ = (ho — viils,) € Hp(Sp.R") (6.31)

has a unique solution g° € H3(Sp, R") C L,(8Q, R"). Next, let (u®, 7°) be the unique L,-solution of the Neumann problem
(5.28) with the Neumann datum g°. Also let

(u,m) = (v+u®, g+ 7n°). (6.32)

Then we obtain the relations
un+t|5D = Vr:rt|SD + ugt;+|SD = (hO - Tnt;ago) + Tnt;ago = hO, (633)
tn+t(u’ 7r)|5/v = t:rt(vi q)|5N + t;rt(uor 7r0)|5/\1 = G|5N + go|5N = 9o, (634)

where the last equality follows from (6.30) and the inclusion g° € ﬁS(SD,R”). Moreover, the estimates (6.24) and (6.25)
corresponding to item (ii) are due to (6.32) and the mapping properties of the pairs (v, g) and (u®, #°) given by Theorem 5.5.
Consequently, the mixed Dirichlet-Neumann problem (6.1) is well-posed and estimates (6.24)-(6.26) hold true.
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The proof for item (iii) of the lemma and estimates (6.24)-(6.26) follow from similar arguments as those for item (ii), by
refering to Theorems 5.4 and 5.6 instead of Theorems 5.1 and 5.5. O

By combining Theorem 6.4 and Lemma 6.5, we are now able to obtain the well-posedness results for the mixed Dirichlet-
Neumann problem (6.1) with boundary data in L,-based Bessel potential spaces and with p in a neighborhood of 2, which is the
main result of this section. Recall that p* = max{2, p}.

Theorem 6.6 Assume that Qy CR"” (n > 3) is a bounded, creased Lipschitz domain with connected boundary 8Q which is
decomposed into two disjoint admissible patches Sp and Sy. Then there exists a numbere > 0 such that foranyp € (2 —€,2 4+ €)
and for all given data (ho, do) € HL(Sp, R") x L,(Sn,R") the following properties hold.

(i) The mixed Dirichlet-Neumann problem for the Brmkman system (6 1) has a unique solution (u,m), such that

M(u), M(Vu), M(m) € L,(8R2). Moreover, (u, ) € B "(QJr R") x B »-(82+), and there exist some constants Cy =
Cm(a,p,Sp,Sn) >0, C =C(a, p,Sp,Sn) >0 and C' = C'(a, p, Sp, SN) > 0 such that

(IM(VWllL,00) + IMWIIL@0) + IM(T)lL060) < Cm (lIhollhy(sy ey T+ I19ollLy(sy k) ) (6.35)
P

ull 1 il . <c(h "+ ) 6.36

| ||B:;} . | HB,,’IT,,*(QM < C (holl (s, mey + llgollL,(sy re (6.36)

v+ ull i o0, mm) + lIts (u, ™)L, 6ok < C' (||h0||H},(sD,Rn) + ||90||Lp(s,\,,1mn)) - (6.37)

(ih) The mixed Dirichlet-Neumann problem for the Brinkman system (6.2) has a unique solution (u, ) € B ”(Q+ R™) x

B}, P .(Q4). Moreover, the solution satisfies estimates (6.35)-(6.37).

Proof. (i) By Theorem 6.4 the mixed Dirichlet-Neumann problem (6.1) is well-posed for p = 2. Then by Lemma 6.5 (ii) and
Theorem 5.5 for p = 2, the operator Thtq : HY(Sp,R") = HA(Sp,R") is an isomorphism. Moreover, by Lemma A.1, the sets
{H3(Sp, R")}»>1 and {H}(Sp,R")},>1 are complex interpolation scales. Then by the stability of the invertibility property given
in Lemma B.2, there exists a number & > 0, such that the operator Taa : H3(Sp,R") = HL(Sp, R") is an isomorphism as
well, for any p € (2 —e1,2 4+ €1). Finally, by choosing the parameter € := min{¢,e1} > 0, where € is the parameter in Theorem
5.5, and by using again Lemma 6.5 (ii), we deduce the well-posedness result of the mixed Dirichlet-Neumann problem (6.1) and
estimates (6.35)-(6.37), whenever p € (2 —¢,2 +¢).

(i) Let € be as in the proof of item (i). Let p € (2 —¢,2+4¢€). Then Lemma 6.5 (i) implies that To = Thta. and hence
To: ﬁg(SD,R”) — Hr(Sp,R") is an isomorphism, and by Lemma 6.5 (ii) the mixed Dirichlet-Neumann problem (6.2) is well
posed and estimates (6.35)-(6.37) hold. ]

Remark 6.7 Under the conditions of Theorem 6.6, the solution (u, ) of the mixed Dirichlet-Neumann problem (6.1) can be
expressed by the single layer velocity and pressure potentials

u=Va (S;'(ho.90)), 7= Q5 (Sx (ho, o)), (6.38)

where the operator

So: Lp(8,R") = H(Sp, R") X Lp(Sn,R"), SaW := ((Vakll) sy ((%H Ki;) W)

SN) (6.39)

is an isomorphism. Indeed, as shown in the proof of Theorem 6.4, the operator Sa : L2(82, R") = H3(Sp,R") x Lo(Sn,R") is
an isomorphism, and then, by using again Lemma A.1 and Lemma B.2, we can extend the isomorphism property of the operator
(6.39) to Lp-spaces, with p in a neighborhood of 2, which can be chosen to coincide with that in Theorem 6.6.

6.4. Poisson problem of mixed Dirichlet-Neumann type for the Brinkman system with data in L,-based spaces

Having in view Theorem 6.6, we are now able to consider the well-posedness of the following Poisson problem of mixed Dirichlet-
Neumann type for the Brinkman system in a creased Lipschitz domain Q, with data in some L,-based spaces,

Au—au—Vr="Ff€L,(Q R, dvu=0 in Q4
~yiuls, = ho € HX(Sp, R") (6.40)
t2(u, m)|s, = go € L,(Sn, R").

Remark 6.8 (i) By a solution of the Poisson problem of mixed Dirichlet-Neumann type (6.40) we mean a pair (u, ) €

" (Q4,R") x B o (£24), where p* = max{2, p}, which satisfies the non-homogeneous Brinkman system in {2, the Dirichlet
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boundary condition on Sp in the Gagliardo trace sense, and the Neumann boundary condition on Sy in the canonical sense
described in Definition 2. 10

(ii) If a pair (u, 7) € B " of (24, R") x B »-(§24), p € (1,00), solves the non-homogeneous Brinkman system in the first
1
line of (6.40) with f € L (OQ R"), then (u,m) € %;Zfﬁv(QJr'E ) by Definition 2.6. Hence, by Lemma 2.4, Definition 2.10,

41
Lemma 2.11 and the embeddings B " o (24.R") — B "(Q+ R"), %;J; d?v(§2+, Lo) — %p ppaw” (24; La), for any 0 < s < 1,

the trace yy+u and canonical conormal derivative t+(u, m) are well defined and belong to B; ,- (02, R") and lepl (62, R"),
respectively. Thus, the boundary conditions in (6.40) are well defined as well. In what follows, we show that the sharper
inclusions, y;u € Hp(02, R") and t}(u, ) € L,(02, R"), hold if the spaces of the given boundary data in the boundary
conditions are those mentioned in (6.40).

Theorem 6.9 Assume that Q4+ CR"” (n > 3) is a bounded, creased Lipschitz domain with connected boundary 82, and that
002 is decomposed into two disjoint admissible patches Sp and Sn. Then there exists a number € > 0 such that for any
p€(2—¢€,2+¢€) and for all given data (f, ho,go) € L,,(Q+ R") x H} (SD R™) x Lp(Sn,R™) the Poisson problem of mixed

Dirichlet-Neumann type (6.40) has a solution (u, w) € B " (Q24+,R") x B »-(824) that can be represented in the form
u=Nuo,.f+ Va (S;l(hoo, 900)) , m=Qq.f+ Q30 (S;l(ho(), 900)) . (6.41)
where Sa : Lp(0Q,R") = HL(Sp.R") x L,(Sn,R") is the isomorphism defined in (6.39), and

hoo := ho — v+ (Na. f) [sp € Hp(Sp.R"), doo := go — t& (Nao, f, Q. f) sy € Lp(Sn,R"). (6.42)

Moreover, the solution (u, T) is unique in the space B " oF (24, R") x B o~ (§24), and there exist some constants
C=C(a,p.Sp,Sn) >0 and C' = C'(a, p, Sp, Sn) > O such that the fol/owing inequalities hold

ol sy oo Il <€ (flmn) + ol s +190llycsmn) (6.43)
p.p* :

) o.p% (24

lv+ull o0, rm) + lItd (u, ™)l 60k < C' (f||Lp(Q+,R") + [Iholl . (sp mmy + ||90||Lp(5N,R")) : (6.44)
In addition, there exists a linear continuous operator
Ap  Lp(Q4,R") x HY(Sp,R") x L,y(Sn,R") = Bij(m,Rn) x ijx(m)
delivering this solution, i.e., Ap(f, ho, go) = (u, ).
Proof. Let € > 0 as in Theorem 6.6, and let p € (2 —€,2 + €). We will look for a solution of problem (6.40) in the form
u=Ngo, f+v, m=Qq.f+aq. (6.45)

where the Newtonian velocity and pressure potentials N, f and Qq,f are defined by (3.21). By properties (3.23)-(3.26),
Corollary 3.2 and Remark 3.3, we obtain that

ANQ;Q+f - aNa;Q+f — VQQ+f =f, div Noo.f =0 in Q4, (6.46)
n 1+1 n 1

(N, f, Qo f) € H3 (4, R") x Hp(Q4) — Bp;f(m,R ) x B, (), (6.47)

Y4Nao, f € Hy (O R"), td(Nag,f, Qa.f) € L,(0Q R"), (6.48)

where 4 is the Gagliardo trace operator from H2(Q4+,R") to Hz(89,R"). Then the mixed Poisson problem (6.40) reduces to
the mixed problem for the corresponding homogeneous system,

Av—av—Vqg=0, divv=0 in Q,
Y+V|sp, = hoo € Ha(Sp, R"), (6.49)
t;(v, q)|5/\/ = 900 S Lp(SN- Rn)x

where hoy € H:(Sp,R") and goo € L,(Sn, R") are given by (6.42), and these inclusions follow from (6.47).

1 1
By Theorem 6.6(ii), there exists a unique solution (v, q) € B;:f (Q24+,R") x B .(Q24) of problem (6.49), and it satisfies the
following estimates

< n n .

W op o Tl <€ (hoolligsy oy + gl pcsye). (6.50)
P.P p.p
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__________________________________________________________________________________________________]
¥l mmmy + IEE (V. Dlon ey < € (Moollipisp mry + 1goolipcsyn ) (6.51)

with some constants ¢ = c(a, p, Sp, Sy) > 0 and ¢' = ¢'(a, p, Sp. Sn) > 0.
According to Lemma 3.6 the single layer velocity and pressure potentials

v =V, (S; (hoo.go0)) . q= Q30 (Sz" (hoo. goo)) . (6.52)

where Sy : L,(0Q,R") = Hp(Sp,R") x L,(Sn,R") is the isomorphism defined by (6.39), determine the unique solution of
problem (6 49). I\/Ioreover in view of Theorem 3.5 (i) and Lemma 3.6, the pair (v, g) given by (6.52) belongs indeed to the

space B "(Q+ R") x Bpp (Q4),

Therefore, there exists a solution (u, 7) € B P(Q ,R") x B" .(€4) of the mixed Poisson problem (6.40), which is given by
representation (6.41) and satisfies estimates (6 43) and (6.44). The uniquness result of such a solution follows from Theorem
6.6 (ii). Moreover, linearity and continuity of the Newtonian potential operators (3.25), (3.26) and estimate (6.50) imply the
continuity of the operator A, delivering such a solution. O

7. Mixed Dirichlet-Neumann problem for the semilinear Darcy-Forchheimer-Brinkman
system in Besov spaces

Next we consider the mixed Dirichlet-Neumann problem for the semilinear Darcy-Forchheimer-Brinkman system
Au—ou—Bluu—Vr=Ff, divu=0 in Q. (7.1)

Such a nonlinear system describes flows in porous media saturated with viscous incompressible fluids (see, e.g., [65, p.17]), and
the constants o, B8 > 0 are related by the physical properties of such a porous medium, as they describe the viscosity and the
convection of the fluid flow.

Due to some embedding results that play a main role in our arguments, we will restrict our analysis in this section to the
cases n = 3.

A numerical study of a mixed Dirichlet-Neumann problem for system (7.1) in the particular case of a two-dimensional square
cavity driven by a moving wall has been obtained in [26]. Well-posedness and numerical results for an extended nonlinear system,
called the Darcy-Forchheimer-Brinkman system, where both semilinear and nonlinear terms |uju and (u - V)u are involved, have
been obtained in [25], and boundary value problems of Robin type for the Darcy-Forchheimer-Brinkman system with data in
Lo-based Bessel potential (Sobolev) spaces have been studied in [34, 35].

In what follows, we extend an existence and uniqueness result obtained in [35, Theorem 7.1] for the mixed problem (7.3) with
the given data in Lo-based Sobolev spaces, to the case of L,-based Bessel potential spaces, i.e., when the given boundary data
(ho, go) belong to the space Ha(Sp,R") x L,(Sn,R"), with p € (2 —&,2 + ), and the parameter € > 0 as in Theorem 6.9. In
addition, the given data should be sufficiently small in a sense that will be specified below.

Theorem 7.1 Assume that Q. CR? is a bounded creased Lipschitz domain with connected boundary 82, and that 6%
is decomposed into two disjoint admissible patches Sp and Sn. Let a,B >0 be given constants. Then there exists a
number € > 0 such that for any p € (2 —¢€,2+€) and p* = max{2, p}, there exist two constants (p, = (p,(Q4+, ., B, p) > 0 and
M = np(Q4. @, B, p) > 0 with the property that for all given data (f,hg, do) € L,(Q4+, R*)xH}(Sp. R?) x L,(Sn, R?) satisfying
the condition

||h0||H},(sD,R3) + 9ol (s Tl L0y k2 < b (7.2)

the mixed Dirichlet-Neumann problem for the semilinear Darcy-Forchheimer-Brinkman system

Au—ou—Bluju—Vr=Ff, divu=0 in Q,
Y+uls, =ho on Sp (7.3)
ti(u,w)|5,\, =dgo on Sn

has a unique solution (u, ) € B " o (24, R") x B o~ (Q2+), which satisfies the inequality

u <M. 7.4
[lull Hﬁ(mm Mo (7.4)

Moreover, yiu € Hy(92, R"), ti(u,m) € L,(8Q,R") and the solution depends continuously on the given data, which means
that there exists some constants C. = C.(Q4,a, B, p) > 0 and C, = C.(Q4, a, B, p) > 0 such that

U P LS SO (181150, oy Hl0ll iy 55,0y + ligollp ) (7.5)
v+ ull iz o0 rmy + lItd (u, ™)l 60k < Ci (||f||Lp(Q+,R”) + Iholly(sp ) + ”gOHLp(SN,R”)) : (7.6)
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Proof. We use the arguments similar to those in the proof of [32, Theorem 5.2] devoted to transmission problems with Lipschitz
interface in R” for the Stokes and Darcy-Forchheimer-Brinkman systems in Lo—based Sobolev spaces.
According to (A.7) and the second formula in (A.8), for n <5 and p > 3/2, we obtain the following continuous embeddings,

1+l n n n n
B,y (4. R") = By mingap 2oy} (24 R") = Hop (24, R") = L2p(Q24 R). (7.7)

Now, by (7.7) and the Holder inequality we obtain the estimates

1+1
I viw Iy zny < IVllLo@p 2wl e <clivi] s [  Vv,we B, (9 R, (7.8)
B P )
p.p*

w
(Q4.R") ”B;j (@ R
141
with some constants ¢, = ¢,(Q4+,p) > 0, k =0, 1, implying that |[vlw € L,(Q4+,R"), Vv, w € Bp;f (24, R7).
. . 141 ) ) . ) :
Next, for a given fixed v € Bp;" (Q4+,R"), we consider the linear Poisson problem of mixed type for the Brinkman system
AV —av® — v = f+Blv|v in Q,

’)’+V0|5D =ho € H;(SD,R“), (7.9)
t; (v°,7%) sy = g0 € Lp(Sn,R"),

1 1
with the unknown fields (v°, °) € B;;f’ (4. R") x B? . (Q24).

Let2—e < p<2+e, wheree > 0isasin Theorem 6.9 and such that 2 —e > % Then by Theorem 6.9, problem (7.9) with
given data (f+B|v|v,ho, do) € L,(Q4+,R") x H2(Sp,R") x L,(Sn,R™) has a unique solution

(0, ) i= (UNV), P(v)) = A, (F+B|v|v, ho, go) € Xy, (7.10)

where the linear and continuous operator A, : V, — A&}, has been defined in Theorem 6.9, and
1+l n H n n n
Xp =B, P (4. R") x B . (), Vo= Lp(Q24,R") x Hy(Sp,R") x Lp(Sw, R"). (7.11)

Hence, for fixed data (f,ho, go) € L,(Q4,R") X H;(SD,R”) x Lp(Sn,R™), the nonlinear operators

U.P): BEF(Q4 R - A, (7.12)
defined in (7.10), are continuous and bounded, we obtain,
[ @(w), Pw)) |, < CII (F+Blwlw, ho, go) II,
< C (I1(F. 1o, 90) Il e, mrywtp g ety ey + B MW 1,0, 5

1+1 n
< C|| (f. ho.go) |y, + CC2||w||21 Vwe Bp;f (Q4,R"), (7.13)
B
p.

1
PR

[+ U (W) |z o0,y + It (U (W), P(W))le,00.8m) < C'll(F. o, go) lly, + C'CQIIWIIQBH%

. (7.14)
£ (Q4 R™)

P.P

where Co :=c¢{8 >0, and c{ = c{(Q4,p) >0 is the constant that appears in inequality (7.8), and C can be taken as
C = l4pllevp.x,)- In addition, in view of (7.10) and due to the definition of A,, we obtain that (v°, 7°) = (U(v), P(v)) and

. . . . . 1+1 .
satisfy (7.9). Therefore, if we show that the nonlinear operator U has a fixed point u € B, ;7 (Q2+,R"), i.e., such that U(u) = u,
then u together with the pressure function ™ = P(u) determine a solution of the nonlinear mixed problem (7.3) in the space
AXp. In order to show the existence of such a fixed point, we introduce the constants

3 1
=—>=>0 =——>0 7.15
%= 150,02 >0 ™ T a5c (7.15)
(cf. [32, Theorem 5.2]) and the closed ball
1+ n
By, = (W€ B,,” (2, R") : Wl .1 <mpy. (7.16)
Bp’p” (Q4.R™)
and assume that the given data satisfy the inequality
Il (F. ho, go) [ly, < o (7.17)
Math. Meth. Appl. Sci. 0000, 00 1-42 Copyright © 0000 John Wiley & Sons, Ltd.
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Then by (7.13), (7.15)-(7.17) we deduce that
1
| Uw), P(v)) llx, < ac,c = M VweBy,,. (7.18)

Consequently, « maps By, into By,.
Moreover, we now prove that U is a contraction on By,. Indeed, by using the expression of U given in (7.10), the linearity
and continuity of the operator Ap, and inequality (7.8), we obtain that
led(v) —UwW)ll 1 < |IA, (Blvlv — Blwlw, 0, 0) | . 1
Bp’pf (Q4+ RM)

Bp’pf (Q4.R")
S CBI v = Iwlw |,z = CBI ([v] — Iw)v + [wl(v — w) ||, &

< CC’B< v 1 + |lw 1 ) vV—w 1
<CAB(IM g g * Iy o SV =Wl

1
<2npCGollv —w| 4,1 =Zllv—wl .1 . Vv,we€ By, (7.19)
B, 7 (24.R") 2 B, 7 (24.R")

see also (7.13). Then the Banach-Caccioppoli fixed point theorem implies that there exists a unique fixed point u € B, of U,
i.e., U(u) = u. Moreover, u and the pressure function m = P(u), given by (7.10), determine a solution of the semilinear problem

. 1+1 L . . . i - . .
(7.3) in the space Bp;f (Q2+,R") x BF .(Q2+). In addition, since the solution satisfies the condition u € By, by inequality (7.13)
we obtain the estimate

1
< Cl[(f. ho, 9o) |ly, + Z||U||Bl (7.20)

all s il
= P

1
(Q2+.R™) BP (1)

1
41 ,
+ o (1R

PP p.p*

implying that

ol 1.
p.p

4
+ Il 1 < €l (f. ho, 9o) ||y, (7.21)
BP (@)~ 3

(@4 R7)

4 4
which is just the inequality (7.5) with the constant C. = §C = §||A;1||[,(yp_xp). Similarly, (7.14) and (7.21) lead to (7.6) with

4
the constant C = §C"

Next, we prove the uniqueness of the semilinear mixed problem (7.3) solution (u, w) € X, that satisfies inequality (7.4), when
the given data satisfy conditions (7.2). Assume that (u’, ') € X}, is another solution of problem (7.3), which satisfies inequality
(7.4), implying u’ € B,,. Then U(u') € B,,, where (U(u'), P(u’)) are given by (7.10) and satisfy (7.9) with v replaced by u’.
Then by (7.3) and (7.21) (both written in terms of (u’, 7')) we obtain the linear mixed Dirichlet-Neumann problem

AUW)—u)—aUW) =)=V (PW)-7)=0 in Q,
(v+ U') —u))|s, =0 on Sp, (7.22)
(tf UW) —u',P(u')=7"))|s, =0 on Sy,

and v+ U(U') —u') € HY (094, R"), t& (U(W') —u', P(u') — 7') € L,(89+,R"). This problem has only the trivial solution in the
space X, (see Theorem 6.9), i.e., U(u') =u', P(u') = 7'. Thus, u' is a fixed point of ¢. Since U : B,, — By, is a contraction,
it has a unique fixed point in By,, which has been already denoted by u. Consequently, u’ = u, and, in addition, 7’ = . O

Appendices

A. Besov spaces in R”

] o ] ol
Let u=(u1,..., Wn) be an arbitrary multi-index in Z of length |u| := u1 + -+ + wn, and let & := Next we

Tooxt . oxkn
recall the definition of Besov spaces in R" (cf., e.g., [61, Section 11.1]). By = one denotes the collection of all sets {¢;}72, of
Schwartz functions with the following property:

(i) There are some constants b, ¢, d > 0 such that
supp(€o) C {x : |x| < b}, supp(&)) C {x 2 tc < |x| < 2Md}, j=1,2,. .. (A1)
(i) Let w be an arbitrary multi-index in R". Then there exists a constant cso > 0 such that

sup sup 2M18%¢;(x)| < con. (A.2)
XERM jEN
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(iii) The following equality holds
D () =1 VxeR". (A.3)

Jj=0

Let s € R, p, g € (0,00). Then for a sequence {£;}72, C =, the Besov space B} ,(R") is defined by

e 1
B;4(R") = {f € SR : Ifllgs @&m = (Z ||251}"1($j]-'f)||zp(Rn)) ‘< oo} , (A.4)

=1

where f is the Fourier transform and &'(R”) denotes the space of tempered distributions in R". Note that the above definition
of the Besov space B; ,(R") is independent of the choice of the set {€;}72y C =, which means that another sequence in = leads
to the same space with an equivalent norm. In particular, for any s € R, the Besov space B3 ,(R") coincides with the Sobolev
space H3(R"), i.e., B5,(R") = H3(R"). Moreover, denoting by W;(R") the Sobolev-Slobodeckij spaces (defined in the classical
way through their norms), we have the relations (see, e.g., [72], [5])

Wi (R") = BS,(R"), s € R\ Z, (A.5)
W) (R") = HE(R"), k€ Z. (A.6)

n n )
Let sp,51 €R, 1 < po<p1 < oo be such that s; — p— < S — p— and 0 < qo, g1 < 0. Then the embedding
1 0

B o (R") = Byl o (R") (A7)

is continuous (cf. [72, Theorem in Section 2.7.1 and Proposition 2(ii) in Section 2.3.2], [66, Remark 2 in Section 2.2.3]). Note
that R" in (A.7) can be replaced by a domain Q2 € R".

Let us also recall the following useful inclusions between Besov spaces and Bessel potential spaces. Assume that 1 < g1 <
G <00,1<p,g<ooands <s < s Let p’ denote the conjugate exponent of p, i.e., 5 =1- %. Then we have the following

continuous embeddings,

B;,ql (R”) — B;,qg (R”), B;.min{p.p’} (Rn) — H;(Rn) — B;.max{p.p’}(R”)r (AS)
B3(R") = H3(R"), Brw(R") = HA(R") = B} (R"), (A.9)

(cf., e.qg., [3, Chapter 6], [71, (3.2)], [62, (4.19)]), which imply the continuity of the embedding
B2o(R") = Bple(R"). (A.10)

These embeddings hold also when R” is replaced by a bounded Lipschitz domain (see [3, Chapter 6], [73, (8)]).
The scales of Bessel potential and Besov spaces can be obtained by the method of complex interpolation. Indeed, if sp, 51 € R,
So # S1, po. p1 € (1, +00), qo, q1 € (1,+00) and 6 € (0, 1), then (cf., e.g., [72], [61, Theorem 11.1.2], [5, Theorem 3.1]):
I:H;g (R”), H;i (R”)]g — H;(R”), [Bso

Po.do

(R"), Bt ¢, (RM)], = B; (R, (A.11)

p1.q1

where s = (1 —8)so + 651, 7 = L2+ Zand ;= 2+ .
Moreover, the scale of Besov spaces can be also obtained by using the method of real interpolation of Sobolev spaces. Indeed,
for p,q € (1, 4+00), so # s1, and 6 € (0, 1), we have the following real interpolation property

(H;l (Rn)’ H;z (Rn)) _ B;q(Rn,Rn), (A.12)

0.q

where s = (1 — 0)so + 0s1 (cf., e.g., [1, Theorem 14.1.5], [24, p. 329], [29], [57, (5.38)], [72], [5, Theorem 3.1]).
Formulas (A.11) and (A.12) remain true if R" is replaced by a Lipschitz domain (cf., e.g., [5, Theorem 3.2, Remark 3.3]).
For the following property we refer the reader to, e.g., [57, relations (3.11) and Proposition 4.2].

Lemma A.1 Let Q C R” be a bounded Lipschitz domain. Let S C Q2 be an admissible patch. If po, p1 € (1, 00), S0, 51 € [0, 1]
or sp, 51 € [—1,0], and 6 € (0, 1), then the following complex and real interpolation properties hold

[H32 (89), Hz ()]s = H3(09).  [Hi(S). H(S)ls = H3(S).  [H(S). H5 (S)le = H3(S), (A.13)

0 0 0

(H2(892), H2L(82))o.q = Bp o(82),  (H2(S). HE(S))ew = Bia(S).  [HR(S). A (S)le.q = Bjo(S). (A.14)

where 5 = 28 4+ % and s = (1 —6)so + 0s1. In (A.14) also so # s1 and q € (1, 00].

Math. Meth. Appl. Sci. 0000, 00 1-42 Copyright © 0000 John Wiley & Sons, Ltd.
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B. Some general assertions on interpolation theory and continuous operators

Let us consider two compatible couples of Banach spaces, Xp, X1 and Yp, Yi. Let Xy and Yp be interpolation spaces with respect
to Xo, X1 and Yo, Yi, according to [3, Definition 2.4.1]. If A;: X; = Vj, j=0,1 are linear continuous compatible operators
(i.e., Aolxonx; = Atlxonx;) then they induce the operator Ay : Xo + X1 — Yo + Y1, such that Ayx := Aoxo + Aixi, for any
x € Xo + X1, where x = xo + x1, xj € Xj, and ||A¢|| < max(||Aoll. ||A1l]). cf. [3, Section 2.3, Eq. (3)]. Further, Xy C Xo + X1
and the operator Ag := A |x, is linear and continuous. In the following assertion we consider some cases when the interpolation
preserves isomorphism properties of operators.

Lemma B.1 Let Xo, X1 and Yo, Y1 be two compatible couples of Banach spaces. Let Xg and Yy be interpolation spaces with
respect to Xo, X1 and Yo, Yi. Let Aj: X; = Y;, j=0,1, be linear continuous compatible operators that are isomorphisms. Let
As : Xo = Yo be the operator induced by A;.

1) If the operators R; : Y; — X;, inverse to the operators A; . X; = Y;, j = 0, 1, respectively, are compatible (i.e., Roly,ny, =
J J J Y J J ollry
Rilyyny, ), then Ag 1 Xo — Y is an isomorphism.

(if) If Xo C X1, then Ag : Xo — Yp is an isomorphism.

(iii) If there exist linear subspaces X. C XoN X1 and Y. C YoNYi1 such that Y, is dense in YoNY1 and the operator
As = Aolx. = A1lx. : X« = Y. is an isomorphism, then Ag : Xo — Yp is an isomorphism.

Proof. Let us prove item (i). Since the inverse operators R, :Yj — X; are compatible, they induce a continuous operator
R4+ : Yo+ Y1 = Xo + X1, such that Riy := Royo + Riy1, for any y € Yo+ Yi, where y =y + 1, y; € Y, and continuous
operator Ry = R4y, : Yo = Xy. Let us show that the operator Ry is inverse to Ag. Indeed, any x € Xp can be represented
as x = Xp + x1, where x; € Xj, and then

ReAsx = Ry Ayx = R+A+(X0 + X1) = R+(AOXo + A1X1) = RoAoxo + R1Aixi = Xo + x1 = X.
Similarly, any y € Yp can be represented as y = yo + y1, where y; € Y], and then
AoRoy = ArRyy = ArRy (Yo + y1) = A+ (Royo + Riy1) = AoRovo + AitRiyi = yvo +y1 = y.

This proves that Ry : Yo — Xp is the operator inverse to Ay : Xo — Ys and hence the latter one is an isomorphism.

To prove item (i) we remark that the inclusion Xo C Xi, the compatibility of the operators A;: X; =V, j=0,1, and
the invertibility of the operator Ag : Xo — Yo imply that Yo C Yi. Then the invertibility of the operator A; : X1 — Y1 implies
Rily, = Ro, i.e., the compatibility of the inverse operators to the operators A; : X; = VYj, j =0, 1, which reduces item (ii) to
item (i).

Let us prove item (iii). If A; : X; = Y}, j =0, 1, are isomorphisms then there exist continuous inverse operators R; : Y; = Xj,
j=0,1. Let us prove that R; are compatible operators. Let R : Y. — X, be the inverse to the operator A. := Ag|x. = A1lx. :
X« = Y.e. Then for any 9 € Yi, there exists ¢ € X. such that ¥ = A.¢p = Ao = A1¢. Hence R.Y = ¢ = Ro¥ = R1v, ie.,
R. = R0|y* = R1 Y. -

Due to the density of Y. in Yo NYi, for any y € YoNY; there exists a sequence {%'}%; C Y. converging to y in YoNY;
and hence in Yo and in Yi. Then R.¢' € X. C XoU X; and due to continuity of the operators R :Y,—=X;, j=0,1,

liMisoe Reth’ = limj5e0 iji = Rjy in Xj for j =0, 1, which implies Ri|y,ny, = R2|vynv;. i-€., the inverse operators R; : Y; — Xj,
Jj=20,1 are compatible.
Employing now item (i) concludes the proof of item (iii). a

Note that item (iii) of Lemma B.1 is available in [24, Lemma 8.4] for the cases, when the image and domain spaces coincide,
i.e, X; =Y;, under the additional assumptions that X. =Y. is a Banach space.

Let us give the following useful result in the complex interpolation theory (cf., e.g., [12, Theorem 2.7, Corollary 2.8] and the
references therein, see also [44, Appendix B]).

Lemma B.2 Let Xo, X1 and Yo, Y1 be two compatible couples of Banach spaces and A; : X; — Y}, j =0, 1, be two continuous
compatible linear operators. Let Xg := [Xo, X1]e and Yo := [Y0, Y1]e denote the complex interpolation spaces of Xy, X1 and Yo, Y,
respectively, for each 6 € (0,1). If there exists a number 6y € (0, 1) such that Ag, : Xe, = Yo, IS an isomorphism, then there
exists € > 0 such that the operator Ag : Xg — Yp is an isomorphism as well, for any 6 € (6 — €, 6 + €).

Remark B.3 The extension of Lemma B.2 to the case of two compatible couples of quasi-Banach spaces, Xq, X1 and Yo, Y4,
such that Xo + X1 and Yo + Y1 are analytically convex can be found in [61, Theorem 11.9.24] and the references therein. Note
that any Banach space is analytically convex (cf., e.g., [61, p.223]).

Finally, let us mention the following useful result (cf, e.g., [61, Lemma 11.9.21]).

Lemma B.4 Let X1, X2 and Yi,Ya, be Banach spaces such that the embeddings X1 < X2 and Y1 — Y, are continuous, and
also that the embedding Y1 < Y2 has dense range. Assume that T : X1 — Y1 and T : Xo — Y3 are Fredholm operators with the
same index, ind (T : X1 = Y1) =ind (T : X2 = Y2). Then Ker{T : X1 = Y1} = Ker{T : X2 = Y5}.

Copyright © 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1-42
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