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The purpose of this paper is to study the mixed Dirichlet-Neumann boundary value problem for the semilinear Darcy-

Forchheimer-Brinkman system in Lp-based Besov spaces on a bounded Lipschitz domain in R3, with p in a neighborhood

of 2. This system is obtained by adding the semilinear term juju to the linear Brinkman equation. First, we provide some

results about equivalence between the Gagliardo and non-tangential traces, as well as between the weak canonical conormal

derivatives and the non-tangential conormal derivatives. Various mapping and invertibility properties of some integral

operators of potential theory for the linear Brinkman system, and well posedness results for the Dirichlet and Neumann

problems in Lp-based Besov spaces on bounded Lipschitz domains in Rn (n � 3) are also presented. Then, employing integral

potential operators, we show the well-posedness in L2-based Sobolev spaces for the mixed problem of Dirichlet-Neumann

type for the linear Brinkman system on a bounded Lipschitz domain in Rn (n � 3). Further, by using some stability results of

Fredholm and invertibility properties and exploring invertibility of the associated Neumann-to-Dirichlet operator, we extend

the well-posedness property to some Lp-based Sobolev spaces. Next we use the well-posedness result in the linear case

combined with a �xed point theorem in order to show the existence and uniqueness for a mixed boundary value problem

of Dirichlet and Neumann type for the semilinear Darcy-Forchheimer-Brinkman system in Lp-based Besov spaces, with

p 2 (2� "; 2 + ") and some parameter " > 0. Copyright c
 0000 John Wiley & Sons, Ltd.
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1. Introduction

Boundary integral methods are a powerful tool to investigate linear elliptic boundary value problems that appear in various areas

of science and engineering (see, e.g., [4, 18, 22, 45, 62]). Among many valuable contributions in the �eld we mention the

well-posedness result of the Dirichlet problem for the Stokes system in Lipschitz domains in Rn (n � 3) with boundary data in

L2-based Sobolev spaces, which have been obtained by Fabes, Kenig and Verchota in [23] by using a layer potential analysis.

Also, Mitrea and Wright [61] obtained the well-posedness results for Dirichlet, Neumann and transmission problems for the

Stokes system on arbitrary Lipschitz domains in Rn (n � 2), with data in Sobolev and Besov-Triebel-Lizorkin spaces. By using

a boundary integral method, Mitrea and Taylor [62] obtained well-posedness results for the Dirichlet problem for the Stokes

system on arbitrary Lipschitz domains on a compact Riemannian manifold, with boundary data in L2. Their results extended the

results of [23] from the Euclidean setting to the case of compact Riemannian manifolds. Continuing the study of [62], Dindo�s

and Mitrea [22] developed a layer potential analysis to obtain existence and uniqueness results for the Poisson problem for the
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Stokes and Navier-Stokes systems on C1 domains, but also on Lipschitz domains in compact Riemannian manifolds. Medkov�a

in [45] studied various transmission problems for the Brinkman system.

Due to many practical applications, the mixed problems for elliptic boundary value problems on smooth and Lipschitz domains

have been also intensively investigated. Let us mention that Mitrea and Mitrea in [57] have proved sharp well-posedness results

for the Poisson problem for the Laplace operator with mixed boundary conditions of Dirichlet and Neumann type on bounded

Lipschitz domains in R
3 whose boundaries satisfy a suitable geometric condition introduced by Brown [7], and with data in

Sobolev and Besov spaces. Brown et al. [9] have obtained the well-posedness result of the mixed Dirichlet-Neumann problem for

the Stokes system on creased Lipschitz domains in Rn (n � 3). In order to prove the desired well-posedness result, the authors

reduced such a boundary value problem to a boundary integral equation, obtained useful Rellich-type estimates, and used the

well-posedness result of the mixed Dirichlet-Neumann problem for the Lam�e system that has been obtained in [8]. Costabel

and Stephan in [19] analyzed mixed boundary value problems in polygonal domains by using a boundary integral approach.

In [13, 15], direct segregated systems of boundary-domain integral equations equivalent to mixed boundary value problems

of Dirichlet-Neumann type for a scalar second-order divergent elliptic partial di�erential equation with a variable coe�cient,

were analyzed in interior and exterior domains in R
3 (see also [14] for the mixed problems with cracks and [48] for united

boundary-domain integral equations). An interesting boundary integral equation method for a mixed boundary value problem of

the biharmonic equation has been developed in [11].

Boundary integral methods combined with �xed point theorems have been focused on the analysis of boundary value problems

for linear elliptic systems with nonlinear boundary conditions and for nonlinear elliptic systems with various (linear or nonlinear)

boundary conditions. Recently, the authors in [33] have used a boundary integral method to obtain existence results for a nonlinear

problem of Neumann-transmission type for the Stokes and Brinkman systems on Lipschitz domains in Euclidean setting and with

boundary data in various Lp, Sobolev, or Besov spaces. The techniques of layer potential theory for the Stokes and Brinkman

systems was used in [36] to analyze Poisson problems for semilinear generalized Brinkman systems on Lipschitz domains in

R
n with Dirichlet or Robin boundary conditions and given data in Sobolev and Besov spaces. Boundary value problems of

Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains in Euclidean setting have been

investigated in [35] (see also [34, 37]). An integral potential method for transmission problems with Lipschitz interface in R3

for the Stokes and Darcy-Forchheimer-Brinkman systems and data in weighted Sobolev spaces has been recently obtained in

[32]. Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact

Riemannian manifolds have been recently analyzed in [39]. Well-posedness results for semilinear elliptic problems on Lipschitz

domains in compact Riemannian manifolds have been obtained by Dindo�s and Mitrea in [21]. Let us also mention that Russo and

Tartaglione in [67, 68] used a double-layer integral method in order to obtain existence results for boundary problems of Robin

type for the Stokes and Navier-Stokes systems in Lipschitz domains in Euclidean setting with data in Sobolev spaces. Maz'ya

and Rossmann [42] obtained Lp estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral

domains. Taylor, Ott and Brown in [70] studied Lp-mixed Dirichlet-Neumann problem for the Laplace equation in a a bounded

Lipschitz domain in Rn with general decomposition of the boundary.

In this paper we analyze the mixed Dirichlet-Neumann boundary value problem for the semilinear Darcy-Forchheimer-Brinkman

system in Lp-based Besov spaces on a bounded Lipschitz domain in R3, when the given boundary data belong to Lp spaces,

with p in a neighborhood of 2. This system is obtained by adding the semilinear term juju to the linear Brinkman equation.

First, we provide some results about equivalence between the Gagliardo and non-tangential traces, as well as between the weak

canonical conormal derivatives and the non-tangential conormal derivatives. Various mapping and invertibility properties of some

integral operators of potential theory for the linear Brinkman system, and well posedness results for the Dirichlet and Neumann

problems in Lp-based Besov spaces on bounded Lipschitz domains in Rn (n � 3) are also presented. Based on these results

we show the well-posedness result for the mixed problem of Dirichlet-Neumann type for the Brinkman system in a bounded

domain in Rn (n � 3) with given data in L2-based Sobolev spaces. Further, by using some stability results of Fredholm and

invertibility properties, we extend the well-posedness property to the case of boundary data in Lp-based Sobolev spaces, with

p 2
(

2(n�1)
n+1

� "; 2 + "
)
\ (1;+1), for some " > 0. The main idea for showing this property is the invertibility of an associated

Neumann-to-Dirichlet operator, inspired by the approach developed by Mitrea and Mitrea in [57]. Next we use the well-posedness

result in the linear case combined with a �xed point theorem in order to show the existence and uniqueness in Lp-based Besov

spaces for a mixed boundary value problem of Dirichlet and Neumann type for the semilinear Darcy-Forchheimer-Brinkman system

in a Lipschitz domain in R3, when the boundary data belong to some Lp spaces, with p 2 (2� "; 2 + ") and some parameter

" > 0. The motivation of this work is based on some practical applications, where the semilinear Darcy-Forchheimer-Brinkman

system describes the motion of viscous incompressible 
uids in porous media. A suggestive example is given by a sandstone

reservoir �lled with oil, or the convection of a viscous 
uid in a porous medium located in a bounded domain, where a part of

the boundary is in contact with air and the remaining part is a solid surface or the interface with another immiscible material

or 
uid. All these problems are well described by the Brinkman system, the semilinear Darcy-Forchheimer-Brinkman system, or

by the Darcy-Forchheimer-Brinkman system, the latter of these systems containing both the nonlinear convective term (u � r)u
and the semilinear term juju. For further details we refer the reader to the book by Nield and Bejan [65] (see also the theoretical
and numerical approach in [25, 26]).

It is supposed that the methods presented in this paper can be developed further, to analyze also the nonlinear boundary-domain

integro-di�erential equations, e.g., the ones formulated in [49, 50] for some quasi-linear boundary value problems.

2 Copyright c
 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1{42

Prepared using mmaauth.cls



R. Gutt, M. Kohr, S.E. Mikhailov, W.L. Wendland

Mathematical
Methods in the
Applied Sciences

2. Functional setting and useful results

The purpose of this section is to provide main notions and results used in this paper. We recall the de�nition of a bounded

Lipschitz domain and give a short review of the involved Sobolev, Bessel potential and Besov spaces. Also we present the main

properties of the layer potential operators for the Stokes and Brinkman systems in Lipschitz domains in Rn.

For any point x = (x1; x2; : : : ; xn) 2 R
n, we use the representation x = (x 0; xn), where x

0 2 Rn�1 and xn 2 R. First, we recall
the de�nition of Lipschitz domain (cf., e.g., [58, De�nition 2.1]).

De�nition 2.1 A nonempty, open, bounded subset 
 of � R
n (n � 3) is called a bounded Lipschitz domain if for any x 2 @


there exist some constants r; h > 0 and a coordinate system in Rn, (y1; : : : ; yn) = (y 0; yn) 2 R
n�1 � R, which is isometric to the

canonical one and has origin at x, along with a Lipschitz function ' : Rn�1 ! R, such that the following property holds. If C(r; h)
denotes the open cylinder

{
y = (y 0; yn) 2 R

n�1 � R : jy 0j < r; jynj < h
}
� R

n; then


 \ C(r; h) = fy = (y 0; yn) 2 R
n�1 � R : jy 0j < r and '(y 0) < yn < hg: (2.1)

In view of the De�nition 2.1, condition (2.1) implies that @
 = @
 and the characterization (cf. [58, (2.4)-(2.6)])

@
 \ C(r; h) = fy = (y 0; yn) 2 R
n�1 � R : jy 0j < r and yn = '(y 0)g;

(Rn n
) \ C(r; h) = fy = (y 0; yn) 2 R
n�1 � R : jy 0j < r and � h < yn < '(y 0)g:

(2.2)

Let all along the paper, 
+ denote a bounded Lipschitz domain with a connected boundary @
, and 
� := R
n n
+ denote

the corresponding exterior domain. Unless stated otherwise, it will be also assumed that n � 3.

Let � = �(@
) > 1 be a �xed su�ciently large constant. Then the non-tangential maximal operator of an arbitrary function

u : 
� ! R is de�ned by

M(u)(x) := fsup ju(y)j : y 2 D�(x); x 2 @
g; (2.3)

where

D�(x) � D�;�(x) := fy 2 
� : dist(x; y) < �dist(y; @
); x 2 @
g; (2.4)

are non-tangential approach cones located in 
+ and 
�, respectively (see, e.g., [61]). Moreover,

u�nt(x) := lim
D�3y!x

u(y) (2.5)

are the non-tangential limits of u with respect to 
� at x 2 @
. Note that if M(u) 2 Lp(@
) for one choice of �, where

p 2 (1;1), then this property holds for arbitrary choice of � (see, e.g., [47, p. 63]). For the sake of brevity, we use the notation

D�(x) instead of D�;�(x). We often need the property below (cf. [64, page 80], [75, Theorem 1.12]; see also [55, Lemma 2.2]).

Lemma 2.2 If 
 � R
n is a Lipschitz domain, then there exists a sequence of C1 domains 
j approximating 
 (
j ! 
 as

j !1) in the following sense:

(i) 
j � 
, and there exists a covering of @
 with �nitely many coordinate cylinders (atlas) that also form a family of

coordinate cylinders for @
j , for each j . Moreover, for each such cylinder C(r; h), if ' and 'j are the corresponding Lipschitz

functions whose graphs describe the boundaries of @
 and @
j , respectively, in C(r; h), then kr'jkL1(Rn�1) � kr'kL1(Rn�1)

and r'j ! r' pointwise a.e.

(i i) There exist a sequence of Lipschitz di�eomorphisms �j : @
! @
j such that the Lipschitz constants of �j , �
�1
j are

uniformly bounded in j .

(i i i) There is a constant � > 0 such that for all j � 1 and all x 2 @
, we have �j(x) 2 D+(x) � D�;�(x), where D+(x) �
D�;�(x) is the non-tangential approach cone with vertex at x. Moreover,

lim
j!1

j�j(x)� xj = 0 uniformly in x 2 @
; (2.6)

lim
j!1

�
(j)(�j(x)) = �(x) for a.e. x 2 @
; and in every space Lp(@
); p 2 (1;1); (2.7)

where �(j) is the outward unit normal to @
j , and � is the outward unit normal to @
.

(iv) There exist some positive functions !j : @
! R (the Jacobian related to �j , j 2 N) bounded away from zero and in�nity

uniformly in j , such that, for any measurable set A � @
,
´
A
!jd� =

´
�j (A)

d�j . In addition, limj!1 !j = 1 a.e. on @
 and

in every space Lp(@
), p 2 (1;1).

Lemma 2.2 implies that the Lipschitz characters of the domains 
j are uniformly controlled by the Lipschitz character of 
.

The meaning of Lipschitz character of a Lipschitz domain is given below (cf., e.g., [58, p. 22]).

De�nition 2.3 Let 
 � R
n be a Lipschitz domain. Let fCk(rk ; hk) : 1 � k � Ng (with associated Lipschitz functions f'k :

1 � k � Ng) be an atlas for @
, i.e., a finite collection of cylinders covering the boundary @
. Having fixed such an atlas

of @
, the Lipschitz character of 
 is defined as the set consisting of the numbers N, maxfkr'kkL1(Rn�1) : 1 � k � Ng,
minfrk : 1 � k � Ng, and minfhk : 1 � k � Ng.
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2.1. Sobolev and Besov spaces and related results

In this subsection we assume n � 2. We denote by D(Rn) := C1comp(R
n) the space of in�nitely di�erentiable functions with

compact support in R
n and by D(Rn;Rn) := C1comp(R

n;Rn) the space of in�nitely di�erentiable vector-valued functions with

compact support in Rn. Also, let E(
�) := C1(
�) denote the space of in�nitely di�erentiable functions and let D(
�) :=

C1comp(
�) be the space of in�nitely di�erentiable functions with compact support in 
�, equipped with the inductive limit

topology. Lety E 0(Rn) and D0(Rn) be the duals of E(Rn) and D(Rn), respectively, i.e., the spaces of distributions on Rn. The

spaces E 0(
�) and D
0(
�) can be similarly de�ned.

Let F denote the Fourier transform de�ned on the space of tempered distributions to itself, and F�1 be its inverse. For

p 2 (1;1), Lp(R
n) is the Lebesgue space of (equivalence classes of) measurable, pth integrable functions on Rn, and L1(R

n) is

the space of (equivalence classes of) essentially bounded measurable functions on Rn. For s 2 R, the Lp-based Bessel potential

spaces Hs
p(R

n) and Hs
p(R

n;Rn) are de�ned by

Hs
p(R

n) := ff : (I�4)
s
2 f 2Lp(R

n)g = ff : Js f 2Lp(R
n)g; (2.8)

Hs
p(R

n;Rn) :=
{
~f = (f1; f2; : : : ; fn) : fi 2 H

s
p(R

n); j = 1; : : : ; n
}
; (2.9)

where Js : S 0(Rn)! S 0(Rn) is the Bessel potential operator of order s de�ned by Js f = F�1(�sF f ) with

�(�) = (1 + j�j2)
1
2 (2.10)

(see, e.g., [44, Chapter 3]). Note that Hs
p(R

n) is a Banach space with respect to the norm

kf kHs
p(R

n)= kJs f kLp(Rn) = kF�1(�sF f )kLp(Rn): (2.11)

For integer s � 0, the spaces Hs
p(R

n) coincide with the Sobolev spaces W s
p (R

n).

The Bessel potential spaces Hs
p(
) and H̃

s
p(
) are de�ned by

Hs
p(
) := ff 2 D0(
) : 9 F 2 Hs

p(R
n) such that F j
 = f g; (2.12)

H̃s
p(
) :=

{
f 2 Hs

p(R
n) : supp f � 


}
; (2.13)

and the Bessel potential spaces Hs
p(
;R

n) and H̃s
p(
;R

n) are de�ned as the spaces of vector-valued functions (distributions)

whose components belong to the spaces Hs
p(
) and H̃

s
p(
), respectively (see, e.g., [44]). For any s 2 R, C1(
) is dense in

Hs
p(
) and the following duality relations hold (see [29, Proposition 2.9], [24, (1.9)], [63, (4.14)])

(
Hs
p(
)

)0
= H̃�s

p0 (
); H�s
p0 (
) =

(
H̃s
p(
)

)0
: (2.14)

Here and further on p; p0 2 (1;1) are related as
1

p
+

1

p0
= 1:

Replacing 
 by 
� in (2.12) and (2.13), one obtains the Bessel potential spaces Hs
p(
�), H̃

s
p(
�).

For p 2 (1;1) and s 2 (�1; 1), the boundary Bessel potential space Hs
p(@
) can be de�ned by using the space Hs

p(R
n�1), a

partition of unity and pull-pack. In addition, H�s
p0 (@
) =

(
Hs
p(@
)

)0
. We can also equivalently de�ne H0

p(@
) = Lp(@
) as the

Lebesgue space of measurable, pth power integrable functions on @
. In addition, H1
p(@
) coincides, with equivalent norm, with

the Sobolev space

W 1
p (@
) :=

{
f 2 Lp(@
) : kf kW 1

p (@
)
<1

}
; kf kW 1

p (@
)
:= kf kLp(@
) + krtanf kLp(@
): (2.15)

Here the weak tangential gradient of a function f locally integrable on @
 is rtanf :=
(
�k@�kj f

)
1�j�n

, where @�kj f is de�ned in the

weak form as (cf. e.g., [61, (2.9)]) h@�kj f ; �i@
 := �hf ; @�kj�i@
 for any � 2 D(Rn) with @�kj� := �k (@j�) j@
 � �j (@k�) j@
; j; k =
1; : : : ; n; and � = (�1; : : : ; �n) is the outward unit normal to 
, which exists at almost every point on @
. If f is de�ned and

smooth enough in the vicinity of @
, then by integrating by parts it is possible to show that the weak de�nition coincides with

the strong one, given by @�kj f := �k (@j f ) j@
 � �j (@k f ) j@
.
Now, for s 2 R and p; q 2 (1;1), denote by Bs

p;q(R
n) the scale of Besov spaces in Rn, see Appendix A. Similar to (2.12) and

(2.13), the Besov spaces Bs
p;q(
) and B

s
p;q(
;R

n) are de�ned by

Bs
p;q(
) := ff 2 D0(
) : 9 F 2 Bs

p;q(R
n) such that F j
 = f g; (2.16)

Bs
p;q(
;R

n) :=
{
f = (f1; f2; : : : ; fn) : fi 2 B

s
p;q(
); j = 1; : : : ; n

}
; (2.17)

B̃s
p;q(
) :=

{
f 2 Bs

p;q(R
n) : supp f � 


}
: (2.18)

yIf X is a topological space, then X 0 denotes its dual.
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For s 2 [0; 1] and p; q 2 (1;1), the Sobolev and Besov spaces Hs
p(@
) and B

s
p;q(@
) on the boundary @
 can be de�ned by

using the spaces Hs
p(R

n�1) and Bs
p;q(R

n�1), a partition of unity and the pull-backs of the local parametrization of @
. In addition,

we note that H�s
p (@
) =

(
Hs
p0(@
)

)0
and B�s

p;q =
(
Bs
p0;q0(@
)

)0
, where p0; q0 2 (1;1) such that 1

p
+ 1

p0
= 1 and 1

q
+ 1

q0
= 1 (for

further details about boundary Sobolev and Besov spaces see, e.g., [61, p. 35]).

A useful result for the problems we are going to investigate in this paper is the following trace lemma (see [30, Chapter VIII,

Theorems 1,2], [29, Theorem 3.1] and also [18, Lemma 3.6] for the case p = 2 and a discussion on the critical smoothness

index s = 1).

Lemma 2.4 Assume that 
 � R
n is a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
 be the

corresponding exterior domain. Let p; q 2 (1;1) and s 2 (0; 1). Then there exist linear and continuous Gagliardo trace operators


� : H
s+ 1

p
p (
�)! Bs

p;p(@
) and 
� : B
s+ 1

p
p;q (
�)! Bs

p;q(@
), respectively, such that 
�f = f j@
 for any f 2 C1(
�). These

operators are surjective and have (non-unique) linear and continuous right inverse operators 
�1� : Bs
p;p(@
)! H

s+ 1
p

p (
�) and


�1� : Bs
p;q(@
)! B

s+ 1
p

p;q (
�), respectively.

Lemma 2.4 holds also for vector-valued and matrix-valued functions f . If f is such that 
+f = 
�f , we will often write 
f .

We have the following trace equivalence assertion.

Theorem 2.5 Assume that 
 � R
n is a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
 be the

corresponding exterior domain. Let p; q 2 (1;1), and let u 2 B
s+ 1

p
p;q (
�) or u 2 H

s+ 1
p

p (
�) for some s > 0. Then the Gagliardo

trace 
+u is well de�ned on @
 and, moreover,

(i) if the pointwise non-tangential trace u�nt exists a.e. on @
, then u
�
nt = 
�u;

(i i) if the pointwise non-tangential trace u�nt exists a.e. on @
 and s 2 (0; 1) then u�nt = 
�u 2 B
s
p;q(@
);

(i i i) if u�nt 2 H
s
p(@
) for some s 2 (0; 1], then 
�u 2 H

s
p(@
) as well.

Proof. Item (i) for 0 < s < 1 is implied by Theorem 8.7(iii) in [6], while for s � 1 the equality 
�u = u�nt still applies by an

imbedding argument. Item (ii) and (iii) follow from item (i) and the well known imbedding 
�u 2 B
s
p;q(@
) for s 2 (0; 1). �

Further on, h�; �i
0 will denote the dual form between corresponding dual spaces de�ned on a set 
0. For further details about

Sobolev, Bessel potential and Besov spaces, we refer the reader to, e.g., [1, 27, 44, 72, 73].

2.2. The Brinkman system and conormal derivatives in Bessel-potential and Besov spaces

In this subsection we also assume n � 2. For a couple (u; �), and a real number � � 0, let us consider the linear Brinkman

system (in the incompressible case)

L�(u; �) = f; div u = 0; (2.19)

where the Brinkman operator is de�ned as

L�(u; �) := 4u� �u�r�: (2.20)

When � = 0, the Brinkman operator becomes the Stokes operator.

Now, for (u; �) 2 C1(
�;R
n)� C0(
�), such that div u = 0 in 
�, we de�ne the classical conormal derivatives (tractions)

for the Brinkman (or the Stokes) system, tc�� (u; �), by using the well-known formula

tc�(u; �) := (
��(u; �)) �; (2.21)

where

�(u; �) := ��I+ 2E(u) (2.22)

is the stress tensor, E(u) is the strain rate tensor (symmetric part of ru), and �= �
+ is the outward unit normal to 
+, de�ned

a.e. on @
. Then for any function ' 2 D(Rn;Rn) we obtain by integrating by parts the �rst Green identity,

�
〈
tc�(u; �);'

〉
@


=2hE(u);E(')i
� + �hu;'i
� � h�; div 'i
� + hL�(u; �);'i
� : (2.23)

If the non-tangential traces of the stress tensor, ��nt(u; �) and the normal vector � exist at a boundary point, then the

non-tangential conormal derivatives are de�ned at this point as

t�nt(u; �) := �
�
nt �: (2.24)

For s 2 R and p; q 2 (1;1), we consider the spaces

Hs
p;div(
�;R

n) =
{
u� 2 H

s
p(
�;R

n) : div u = 0 in 
�

}
; (2.25)

Bs
p;q;div(
�;R

n) :=
{
u� 2 B

s
p;q(
�;R

n) : div u = 0 in 
�

}
: (2.26)

We need also the following spaces (cf. [51, De�nition 3.3]).
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De�nition 2.6 Let 
 be a Lipschitz domain (bounded or unbounded). For s 2 R, p; q 2 (1;1) and t � �1=p0, let us consider
the following spaces equipped with the corresponding graphic norms:

H
s+ 1

p
;t

p;div (
;L�) :=
{
(u; �) 2 H

s+ 1
p

p (
;Rn)�H
s+ 1

p
�1

p (
) : L�(u; �) = ~fj
; ~f 2 H̃
t
p(
;R

n) and div u = 0 in 

}
;

k(u; �)k2

H
s+ 1

p ;t

p;div
(
;L�)

:= kuk2

H
s+ 1

p
p (
;Rn)

+ k�k2

H
s+ 1

p �1

p (
)

+ k~fk2
H̃t
p(
;R

n)
;

B
s+ 1

p
;t

p;q;div(
;L�) :=
{
(u; �) 2 B

s+ 1
p

p;q (
;Rn)� B
s+ 1

p
�1

p;q (
) : L�(u; �) = ~fj
; ~f 2 B̃
t
p;q(
;R

n) and div u = 0 in 

}
;

k(u; �)k2

B
s+ 1

p ;t

p;q;div
(
;L�)

:= kuk2

B
s+ 1

p
p;q (
;Rn)

+ k�k2

B
s+ 1

p �1

p;q (
)

+ k~fk2
B̃t
p;q(
;R

n)
;

where L�(u; �) is de�ned in (2.20).

If t1 > t2, the following continuous embeddings hold, H
s+ 1

p
;t1

p;div (
;L�) ,! H
s+ 1

p
;t2

p;div (
;L�), B
s+ 1

p
;t1

p;q;div (
;L�) ,! B
s+ 1

p
;t2

p;q;div (
;L�).

Let Ddiv(
;R
n) :=

{
v 2 D(
;Rn) : div v = 0 in 


}
. Similar to [52, Theorem 6.9], one can prove the following assertion.

Theorem 2.7 If 
 is a Lipschitz domain (bounded or unbounded) or 
 = R
n, � � 0, p; q 2 (1;1), s 2 R and t > � 1

p0
, then

Ddiv(
;R
n)�D(
) is dense in H

s+ 1
p
;t

p (
;L�) and in B
s+ 1

p
;t

p;q (
;L�).

Let p; q 2 (1;1). Let �E� be the operator of extension of functions de�ned on 
� by zero on Rn n
�. Following the proof

of Theorem 2.16 in [51], let us de�ne the operator Ẽ� on Ht
p(
�) and B

t
p;q(
�) as Ẽ� := �E� for 0 � t < 1

p
, and as

hẼ�h; vi
� := hh; Ẽ�vi
� = hh; �E�vi
� ; when �
1

p0
< t < 0;

for all h 2 Ht
p(
�); v 2 H

�t
p0 (
�), or for all h 2 B

t
p;q(
�); v 2 B

�t
p0;q0(
�), respectively. Then, for �1=p

0 < t < 1=p, evidently

Ẽ� : Ht
p(
�)! H̃t

p(
�); Ẽ� : Bt
p;q(
�)! B̃t

p;q(
�)

are bounded linear extension operators. Similar de�nition and properties hold also for vector �elds.

Analogously to the corresponding de�nition for Petrovskii-elliptic systems in [51, De�nition 3.6], we can introduce an operator
~L� as follows.

De�nition 2.8 Let 
 be a Lipschitz domain (bounded or unbounded), p; q 2 (1;1), s 2 R, t � �1=p0. The operator ~L� mapping

(i) functions (u; �) 2 H
s+ 1

p
;t

p;div (
;L�) to the extension of the distribution L�(u; �) 2 H
t
p(
;R

n) to H̃t
p(
;R

n)

or

(i i) functions (u; �) 2 B
s+ 1

p
;t

p;q;div(
;L�) to the extension of the distribution L�(u; �) 2 B
t
p;q(
;R

n) to B̃t
p;q(
;R

n),

will be called the canonical extension of the operator L�.

Remark 2.9 Similar to the paragraph following Definition 3.3 in [51], one can prove that the canonical extensions mentioned

in Definition 2.8 exist and are unique. If p; q 2 (1;1), s 2 R, t � �1=p0, then

k ~L�(u; �)kH̃t
p(
;R

n) � k(u; �)k
H

s+ 1
p ;t

p;div
(
;L�)

and k ~L�(u; �)kB̃t
p;q(
;R

n) � k(u; �)k
B

s+ 1
p ;t

p;q;div
(
;L�)

by definition of the spaces H
s+ 1

p
;t

p;div (
;L�) and B
s+ 1

p
;t

p;q;div(
;L�). Hence the linear operators ~L� : H
s+ 1

p
;t

p;div (
;L�)! H̃t
p(
;R

n) and

~L� : B
s+ 1

p
;t

p;q;div(
;L�)! B̃t
p;q(
;R

n) are continuous. Moreover, if �1=p0 < t < 1=p, and 
 is a Lipschitz domain (bounded or

unbounded), then we have the representation ~L� := Ẽ+L�, or ~L� := Ẽ�L�, respectively, cf. [51, Remark 3.7].

Formula (2.23) suggests the following de�nition of the canonical conormal derivative in the setting of Besov spaces, cf., [18,

Lemma 3.2], [36, Lemma 2.2], [51, De�nition 3.8, Theorem 3.9], [52, De�nition 6.5, Theorem 6.6], [61, Proposition 10.2.1]).

De�nition 2.10 Let � � 0, s 2 (0; 1), p; q 2 (1;1). Then the canonical conormal derivative operators t�� are de�ned on any

(u; �) 2 H
s+ 1

p
;� 1

p0

p;div (
�;L�), or (u; �) 2 B
s+ 1

p
;� 1

p0

p;q;div (
�;L�), in the weak sense, by the formula

�ht��(u; �);'i@
� := 2
〈
Ẽ�E(u);E(


�1
� ')

〉

�

+�hẼ�u; 

�1
� 'i
��

〈
Ẽ��; div(


�1
� ')

〉

�

+h ~L�(u; �); 

�1
� 'i
� ; (2.27)

8 ' 2 B1�s
p0;p0(@
;R

n); or 8 ' 2 B1�s
p0;q0(@
;R

n); respectively:
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Note that the canonical conormal derivative operators introduced in De�nition 2.10 are di�erent from the generalized conormal

derivative operator, cf. [37, Lemma 2.2], [51, De�nition 3.1, Theorem 3.2], [52, De�nition 5.2, Theorem 5.3]. Similar to [51,

Theorem 3.9], one can prove the following assertion.

Lemma 2.11 Under the hypothesis of De�nition 2.10, the canonical conormal derivative operators

t�� : H
s+ 1

p
;� 1

p0

p;div (
�;L�)! Bs�1
p;p (@
;R

n); t�� : B
s+ 1

p
;� 1

p0

p;q;div (
�;L�)! Bs�1
p;q (@
;R

n);

are linear, bounded and independent of the choice of the operators 
�1� . In addition, the following �rst Green identity holds

�ht��(u; �); 
+wi@
 = 2
〈
Ẽ�E(u);E(w)

〉

�

+ �
〈
Ẽ�u;w

〉

�

�
〈
Ẽ��; div w

〉

�

+
〈
~L�(u; �);w

〉

�

(2.28)

for all (u; �) 2 H
s+ 1

p
;� 1

p0

p;div (
�;L�), w 2 H
1+ 1

p0
�s

p0
(
�;R

n) and all (u; �) 2 B
s+ 1

p
;� 1

p0

p;q;div (
�;L�), w 2 B
1+ 1

p0
�s

p0;q0
(
�;R

n), and the

following second Green identity holds

�
(
ht��(u; �); 
+vi@
 � ht

�
�(v; q); 
+ui@


)
=
〈
~L�(u; �); v

〉

�
�
〈
~L�(v; q); u

〉

�

(2.29)

for all (u; �) 2 H
s+ 1

p
;� 1

p0

p;div (
�;L�), (v; q) 2 H
1+ 1

p0
�s;� 1

p

p0;div
(
�;R

n) and all (u; �) 2 B
s+ 1

p
;� 1

p0

p;q;div (
�;L�), (v; q) 2 B
1+ 1

p0
�s;� 1

p

p0;q0
(
�;R

n).

Remark 2.12 Similar to [32, Remark 2.6], we note that by exploiting arguments analogous to those of the proof of Theorem

3.10 and the paragraph following it in [51], one can see that the canonical conormal derivatives on @
 can be equivalently

defined as t��(u; �) = r
@
t

0�
� (u; �): Here t0�� (u; �) is defined by the dual form like (2.27) but only on Lipschitz subsets 
0

� � 
�

such that @
 � @
0
� and closure of 
� n
0

� coincides with 
� n

0
� (i.e., 
0

� are some layers near the boundary @
).

Moreover, such a definition is well applicable to the functions (u; �) from H
s+ 1

p
;� 1

p0

p;div (
0
�;L�) or B

s+ 1
p
;� 1

p0

p;q;div (
0
�;L�) that are

not obliged to belong to H
s+ 1

p
;� 1

p0

p;div (
�;L�) or B
s+ 1

p
;� 1

p0

p;q;div (
�;L�), respectively. It is particularly useful for the functions (u; �)

that belong to H
s+ 1

p
;� 1

p0

p;div (
�;L�) or B
s+ 1

p
;� 1

p0

p;q;div (
�;L�) only locally.

Now we prove the equivalence between canonical and non-tangential conormal derivatives (as well as classical conormal

derivative, when appropriate).

Theorem 2.13 Let n � 2, � � 0, and p; q 2 (1;1).

(i) Let s > 1 and (u; �) 2 B
s+ 1

p

p;q;div(
�;R
n)� B

s�1+ 1
p

p;q (
�) or (u; �) 2 H
s+ 1

p

p;div (
�;R
n)�H

s�1+ 1
p

q (
�). Then the classical

conormal derivative tc�(u; �) and the canonical conormal derivative t��(u; �) are well de�ned and t��(u; �) = tc�(u; �) 2
Lp(@
;R

n).

If, moreover, the non-tangential trace of the stress tensor, ��nt(u; �), exists a.e. on @
, then the non-tangential conormal

derivative, de�ned by (2.24), also exists a.e. on @
 and t�nt(u; �) = t��(u; �) = tc�(u; �) 2 Lp(@
;R
n).

(i i) Let 0 < s � 1, (u; �) 2 B
s+ 1

p
;t

p;q;div(
�;L�) or (u; �) 2 H
s+ 1

p
;t

p;div (
�;L�), for some t > � 1
p0
. Let also assume that the non-

tangential maximal function M(�(u; �)) and the non-tangential trace of the stress tensor, ��nt(u; �), exist and are �nite

a.e. on @
 and belong to the space Lp(@
;R
n�n). Then t��(u; �) = t�nt(u; �) 2 Lp(@
;R

n).

Proof. We will give a proof in the case of a bounded domain 
+ and the Besov spaces. For an unbounded domain 
� and the

Bessel potential spaces the arguments are the same.

(i) Let (u; �) 2 B
s+ 1

p

p;q;div(
+;R
n)� B

s�1+ 1
p

p;q (
+) for some p; q 2 (1;1) and s > 1. Evidently, the stress tensor �(u; �) belongs

to B
s�1+ 1

p
p;q (
;Rn�n), which for 1 < s < 2 implies that 
��(u; �) 2 B

s�1
p;q (@
;R

n�n) � Lp(@
;R
n�n). Taking into account that

the unit normal vector to the boundary, �, belongs to L1(@
;R
n), we obtain by (2.21) that tc+(u; �) 2 Lp(@
;R

n).

On the other hand, the inclusion (u; �) 2 B
s+ 1

p

p;q;div(
+)� B
s�1+ 1

p
p;q (
+) for p; q 2 (1;1) and s > 1 implies that (u; �) 2

B
s+ 1

p
;t

p;q;div(
+;L�) for t 2 (�1=p0; s � 1� 1=p0) and thus the canonical conormal derivative t+�(u; �) is well de�ned and belongs to

Bs 0�1
p;q (@
;Rn) for any s 0 2 (0; 1). For 1 < s < 2, the proof that t+�(u; �) = tc+� (u; �) 2 Lp(@
;R

n) is similar to [51, Corollary

3.14] (with evident modi�cation to Lp-based spaces), while for s � 2 the relation t+�(u; �) = tc+(u; �) 2 Lp(@
;R
n) still stays

by imbedding.

If, in addition, the non-tangential trace of the stress, �+
nt(u; �), exists a.e. on @
, then �

+
nt(u; �) = 
+�(u; �) by Theorem

2.5(i) implying that t+nt(u; �) = t+�(u; �) = tc+(u; �) 2 Lp(@
;R
n).

(ii) Let 0 < s < 1 �rst, and the case s = 1 will follow by inclusion. Under the other hypotheses of item (ii), the canonical

conormal derivative, t+�(u; �), is well de�ned on the boundary @
 and belongs to Bs�1
p;q (@
;R

n). Let f
jgj�1 be a sequence
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of sub-domains in 
+ that converge to 
+ in the sense of Lemma 2.2, with the corresponding notations �j , �
(j) and !j also

introduced there.

Similar to the proof of Lemma 3.15 in [51], one can now prove that the canonical conormal derivative on @
 is a limit of the

canonical conormal derivatives on @
j , i.e., ht
+
�;@
(u; �); 
@
+wi@
 = limj!1ht

+
�;@
j

(u; �); 

@
j

wi@
j
for any w 2 B

1+ 1
p0
�s

p0;q0
(
+;R

n).

The inclusion (u; �) 2 B
s+ 1

p
;t

p;q;div(
+;L�) means that the couple (u; �) satis�es the elliptic Brinkman PDE system (2.19) with a

right hand side f 2 Bt
p;q(
+;R

n), which implies that (u; �) 2 Bt+2
p;q;div(
j)� B

t+1
p;q (
j). Then 
@
j

�(u; �) 2 B
t+1� 1

p
p;q (@
j ;R

n�n) �
Lp(@
j ;R

n�n) and t+�;@
j
(u; �) = tc+@
j

(u; �) = 
+@
j
�(u; �)� 2 Lp(@
j ;R

n) by item (i).

On the other hand, for a.e. point x 2 @
 the non-tangential function M(�(u; �))(x) exists and is �nite, which particularly

implies that �(u; �) is well de�ned and bounded in the approach cones D+(x). We can consider �(u; �)(x) as strictly de�ned

(by its limit mean values limr!0

ffl
B(x;r)

�(u; �)(�)d� in the sense of Jonnson & Wallin [30, p.15], see also [6, Theorem 8.7]); then


@
j
�(u; �)(y) = �(u; �)(y) and hence t+�;@
j

(u; �)(y) = tc+@
j
(u; �)(y) = �(u; �)(y) � � j(y) for y 2 D+(x) \ @
j . In addition

t+�;@
j
(u; �)(�j(x)) = tc+@
j

(u; �)(�j(x)) = �(u; �)(�j(x)) � �(�j(x)) tends to �
+
nt(u; �)(x) � �(x) = t+nt;@
(u; �)(x) as j !1 for

a.e. x 2 @
, for which �
+
nt(u; �)(x) does exist.

Let us now prove that tc+@
j
(u; �)(�j(x)) converges to t

+
nt;@
(u; �)(x) not only point-wise for a.e. x 2 @
 but also in the weak

sense, i.e., limj!1ht
c+
@
j

(u; �); 

@
j

wi@
j
= ht+nt;@
(u; �); 
@
+wi@
 for any w 2 B

1+ 1
p0
�s

p0;q0
(
+;R

n). We have

jhtc+@
j
(u; �); 


@
j
wi@
j

� ht+nt;@
(u; �); 
@
+wi@
j = jhtc+@
j
(u; �) ��j ; !j
@
j

w ��ji@
 � ht
+
nt;@
(u; �); 
@
+wi@
j

� jhtc+@
j
(u; �) ��j � t+nt;@
(u; �); !j
@
j

w ��ji@
j+ jht+nt;@
(u; �); (!j � 1)

@
j

w ��ji@
j

+ jht+nt;@
(u; �); 
@
j
w ��j � 
@
+wi@
j: (2.30)

Let us prove that the summands in the right hand side of (2.30) tend to zero as j !1. To this end, we use the inequality

jhtc+@
j
(u; �) ��j�t

+
nt;@
(u; �); !j
@
j

w ��ji@
j� ktc+@
j
(u; �) ��j� t+nt;@
(u; �)kLp(@
) k!j
@
j

w ��jkLp0 (@
)
: (2.31)

We have,

jtc+@
j
(u; �)(�j(x))� t+nt;@
(u; �)(x)j � M(�(u; �))(x) + jt+nt;@
(u; �)(x)j; (2.32)

the both terms in the right hand side of (2.32) belong to Lp(@
) and tc+@
j
(u; �) ��j � t+nt;@
(u; �)! 0 pointwise a.e. on @
.

Then the Lebesgue dominated convergence theorem implies that the �rst multiplier in the right hand side of (2.31) tends to

zero. Since 

@
j

w 2 B1�s
p0;q0(@
j ;R

n) � L1�s
p0 (@
j ;R

n) and 

@
j

w ��j ! 

@
+w (cf. [64, Chapter 2, Theorem 4.5]), the second

multiplier in the right hand side of (2.31) is bounded and hence the whole right hand side of (2.31) tends to zero. The second

summand in the right hand side of (2.30) tends to zero since !j ! 1, and the third, again, because 

@
j

w ��j ! 

@
+w.

Combining this with the previous argument, we obtain,

ht+�;@
(u; �); 
@
+wi@
 = lim
j!1

htc+@
j
(u; �); 


@
j
wi@
j

= ht+nt;@
(u; �); 
@
+wi@
 8 w 2 B
1+ 1

p0
�s

p0;q0
(
+;R

n)

Taking w = 
�1+ ', this gives ht+�;@
(u; �);'i@
 = ht+nt;@
(u; �);'i@
 for any ' 2 B1�s
p0;q0(@
;R

n), i.e., t+�(u; �) = t+nt(u; �), and

since t+nt(u; �) = �
+
nt(u; �) � 2 Lp(@
;R

n), this completes the proof of item (ii) for 0 < s < 1, while for s = 1 the statement

follows by inclusion. �

Remark 2.14 Due to Remark 2.12, Theorem 2.13 will still valid for 
� if the functions belong to the corresponding spaces

only locally, i.e., if (u; �) 2 B
s+ 1

p

p;q;div;loc(
�;R
n)� B

s�1+ 1
p

p;q;loc (
�) in item (i) and (u; �) 2 B
s+ 1

p
;t

p;q;div;loc(
�;L�) in item (ii).

3. Integral potentials for the Brinkman system

This section is devoted to the main properties of Newtonian and layer potentials for the Brinkman system.

3.1. Newtonian potential for the Brinkman system

Let � > 0 be a constant. Let us denote by G� and � the fundamental velocity tensor and the fundamental pressure vector for

the Brinkman system in Rn (n � 3), with the components (see, e.g., [43, (3.6)], [40, Section 3.2.1], [74, (2.14)])

G�
jk(x) =

1

~!n

{
�jk
jxjn�2

A1(�jxj) +
xjxk
jxjn

A2(�jxj)

}
; �k(x) =

1

~!n

xk
jxjn

(3.1)
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where A1(z) and A2(z) are de�ned by

A1(z) :=

(
z
2

) n
2�1K n

2�1
(z)

�
(
n
2

) + 2

(
z
2

) n
2K n

2
(z)

�
(
n
2

)
z2

�
1

z2
; A2(z) :=

n

z2
� 4

(
z
2

) n
2+1
K n

2+1(z)

�
(
n
2

)
z2

; (3.2)

K{ is the Bessel function of the second kind and order { � 0, � is the Gamma function, and ~!n is the area of the unit sphere

in Rn. The fundamental solution of the Stokes system, (G;�), which corresponds to � = 0, is given by (see, e.g., [74, (1.12)])

Gjk(x) =
1

2~!n

{
1

n � 2

�jk
jxjn�2

+
xjxk
jxjn

}
; �k(x) =

1

~!n

xk
jxjn

: (3.3)

Next we use the notations G�(x; y) = G�(x� y) and �(x; y) = �(x� y). Then

(4x � �I)G
�(x; y)�rx�(x; y) = ��y(x)I; divxG

�(x; y) = 0; 8 y 2 Rn; (3.4)

where �x is the Dirac distribution with mass in y, and the subscript x added to a di�erential operator refers to the action of that

operator with respect to the variable x.

The fundamental stress tensor S� has the components

S�
ij`(x; y) = ��j(x; y)�i` +

@G�
ij (x; y)

@x`
+
@G�

`j (x; y)

@xi
; (3.5)

where �jk is the Kronecker symbol. Let �� be the fundamental pressure tensor with components ��
jk . Then for �xed i and k,

the pair (S�
ijk ;�

�
ik) satis�es the Brinkman system in Rn if x 6= y, i.e.,

4xS
�
ijk(x; y)� �S

�
ijk(x; y)�

@��
ik(y; x)

@xj
= 0;

@S�
ijk(x; y)

@xj
= 0

(3.6)

The components ��
jk(x; y) are given by (see, e.g., [74, (2.18)])

��
ik(x; y) =

1

!n

{
�(yi � xi)

2n(yk � xk)

jy � xjn+2
+

2�ik
jy � xjn

� �
1

(n � 2)

1

jy � xjn�2
�ik

}
: (3.7)

For � = 0, we use the notations Si jk := S0
i jk and �ik := �0

ik .

Let � denote the convolution product. Let us consider the velocity and pressure Newtonian potential operators for the Brinkman
system,

(N�;Rn') (x) := � (G� � ') (x) = �
〈
G�(x; �);'

〉
Rn
; (Q�;Rn') (x) = (QRn') (x) := � (� � ') (x) = �

〈
�(x; �);'

〉
Rn
; (3.8)

where the fundamental tensor G� is presented through its components in (3.1). Note that the Fourier transform of G�-components

is given by

Ĝ�
kj(�) =

(2�)�
n
2

j�j2 + �

(
�kj �

�k�j
j�j2

)
: (3.9)

Then we have the following property (cf. [43, Theorem 3.10] in the case n = 3, s = 0).

Lemma 3.1 Let � > 0. Then for all p; q 2 (1;1) and s 2 R the following linear operators are continuous

N�;Rn : Hs
p(R

n;Rn)! Hs+2
p (Rn;Rn); (3.10)

N�;Rn : Bs
p;q(R

n;Rn)! Bs+2
p;q (R

n;Rn); (3.11)

QRn : Hs
p(R

n;Rn)! Hs+1
p;loc(R

n); (3.12)

QRn : Bs
p;q(R

n;Rn)! Bs+1
p;q;loc(R

n): (3.13)

Proof. Let ' 2 Hs
p(R

n;Rn). By (2.11),

kN�;Rn'kHs+2
p (Rn ;Rn) =

∥∥F�1
(
� s+2F(N�;Rn')

)∥∥
Lp(Rn ;Rn)

; (3.14)

where � is the weight function given by (2.10). In addition, we note that

F (N�;Rn') = F (G� � ') = Ĝ�
'̂ (3.15)
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and hence by (3.14),

kN�;Rn'kHs+2
p (Rn ;Rn) =

∥∥∥F�1
(
� s+2Ĝ�

'̂

)∥∥∥
Lp(Rn ;Rn)

=
∥∥F�1(m̂F(Js'))

∥∥
Lp(Rn ;Rn)

: (3.16)

In view of (3.9), the matrix-function m̂ := � 2Ĝ� has the components

m̂kj(�) = (2�)�
n
2
1 + j�j2

j�j2 + �

(
�kj �

�k�j
j�j2

)
; k; j = 1; : : : ; n;

and is smooth everywhere except the origin and uniformly bounded in Rn � R
n. Hence it is a Fourier multiplier in Lp(R

n) (cf.

Theorem 2 in Appendix of [54]), i.e., there exists a constant M > 0, (which depends on p but is independent of ') such that

kN�;Rn'kHs+2
p (Rn ;Rn) � M kJs'kLp(Rn ;Rn) = Mk'kHs

p(R
n ;Rn):

and thus kN�;RnkHs
p(R

n ;Rn)!Hs+2
p (Rn ;Rn) � M; while operator (3.10) is continuous.

Moreover, by formula (A.12) we have the interpolation property(
Hs1
p (R

n;Rn); Hs2
p (R

n;Rn)
)
�;q

= Bs
p;q(R

n;Rn);
(
Hs1+2
p (Rn;Rn); Hs2+2

p (Rn;Rn)
)
�;q

= Bs+2
p;q (R

n;Rn); (3.17)

where s = (1� �)s1 + �s2. Then by continuity of operator (3.10), we obtain that operator (3.11) is also continuous for

p; q 2 (1;1) and any s 2 R.
Let us now show the continuity of operators (3.12) and (3.13). To this end, we note that the pressure Newtonian potential

operator for the Brinkman system coincides with the one for the Stokes system and for any ' 2 D(Rn;Rn) can be written as

QRn' = divN4;Rn'; (3.18)

where

(N4;Rn') (x) := � (G4 � ') (x); (3.19)

and G4(x; y) := �
1

(n � 2)!n

1

jx� yjn�2
is the fundamental solution of the Laplace equation in R

n. Therefore, the mapping

properties of the pressure Newtonian potential are provided by those of the harmonic Newtonian potential N4;Rn . Since N4;Rn

is a pseudodi�erential operator of order �2 in Rn, the following operator is continuous,

N4;Rn : Hs
p(R

n)! Hs+2
p;loc(R

n); 8 s 2 R; p 2 (1;1): (3.20)

Then by (3.18) and (3.20) we deduce the continuity property of the pressure Newtonian potential operator in (3.12). By using

an interpolation argument as for (3.11), we also obtain continuity of operator (3.13). �

Let � � 0 and p 2 (1;1) be given. The Newtonian velocity and pressure potential operators of the Brinkman system in

Lipschitz domains 
� are de�ned as

N�;
 = r
N�;Rn �E� and Q
� = r
�QRn �E�: (3.21)

Recall that �E� is the operator of extension of vector �elds de�ned in 
� by zero on Rn n
�, and r
� is the restriction operator

from R
n to 
�. The operators �E� : Lp(
�;R

n)! Lp(R
n;Rn) and r
� : H2

p(R
n;Rn)! H2

p(
�;R
n) are linear and continuous.

In addition, the volume potential operator N�;Rn : Lp(R
n;Rn)! H2

p(R
n;Rn) is linear and continuous as well, for any p 2 (1;1)

(cf., e.g., [43, Theorem 3.10], [20, Lemma 1.3] and Lemma 3.1). Therefore, the velocity Newtonian potential operators

N�;
� : Lp(
�;R
n)! H2

p(
�;R
n); p 2 (1;1); (3.22)

are continuous operators. A similar argument yields the continuity of the Newtonian pressure potential operators

Q
+ : Lp(
+;R
n)! H1

p(
+); Q
� : Lp(
�;R
n)! H1

p;loc(
�); p 2 (1;1): (3.23)

Next, in view of (A.5), (A.6) and the �rst inclusion in (A.8) we obtain the inclusions

H2
p(R

n;Rn) = W 2
p (R

n;Rn) ,! W
1+ 1

p
p (Rn;Rn) = B

1+ 1
p

p;p (Rn;Rn) ,! B
1+ 1

p

p;p� (R
n;Rn); 8 p � 1; p� = maxfp; 2g; (3.24)

which are continuous. Then relations (3.22) and (3.24) imply also the continuity of the velocity Newtonian potential operator

N�;
� : Lp(
�;R
n)! B

1+ 1
p

p;p� (
�;R
n); p 2 (1;1): (3.25)

A similar argument yields the continuity property of the pressure Newtonian potential operator

Q�;
+ : Lp(
+;R
n)! B

1
p

p;p�(
+); Q�;
� : Lp(
�;R
n)! B

1
p

p;p�;loc(
�); p 2 (1;1): (3.26)

In addition, due to (3.21), we have the relations

4N�;
� f � �N�;
� f �rQ
� f = f; div N�;
� f = 0 in 
�: (3.27)

This leads us to the following assertion.
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Corollary 3.2 Let � > 0, p 2 (1;1), and p� = maxfp; 2g. Then the Brinkman Newtonian potentials satisfy equations (6.46)

and the following operators are continuous

(N�;
+ ;Q
+) : Lp(
+;R
n)! H2;0

p;div(
+;L�); (N�;
� ;Q
�) : Lp(
�;R
n)! H2;0

p;div;loc(
�;L�); (3.28)

(N�;
+ ;Q
+) : Lp(
+;R
n)! B2;0

p;p�;div(
+;L�); (N�;
� ;Q
�) : Lp(
�;R
n)! B2;0

p;p�;div;loc(
�;L�): (3.29)

Remark 3.3 Let f� 2 Lp(
�;R
n) for some p 2 (1;1), and p� = maxfp; 2g. Then Corollary 3:2, Lemmas 2:4, 2:11 and Remark

2:12 imply that


�
(
N�;
� f�

)
2 Bs

p;p�;�(@
;R
n); t��

(
N�;
� f�;Q
� f�

)
2 Bs�1

p;p�(@
;R
n); 8 s 2 (0; 1): (3.30)

Moreover, due to (3.22), the �rst equality in (3.24), Theorem 2:13, and [10, Theorem 5], these inclusions can be improved

to the following ones


�
(
N�;
� f�

)
2 H1

p;�(@
;R
n); t��

(
N�;
� f�;Q
� f�

)
= tc�

(
N�;
� f�;Q
� f�

)
2 Lp(@
;R

n): (3.31)

In (3.30), (3.31) and further on, the following space notations are used for p 2 (1;1), q 2 (1;1], s 2 (0; 1], and the outward

unit normal � to the Lipschitz domain 
+ � R
n,

Lp;�(@
;R
n) :=

{
v 2 Lp(@
;R

n) :

ˆ
@


v � �d� = 0

}
; Hs

p;�(@
;R
n) :=

{
v 2 Hs

p(@
;R
n) :

ˆ
@


v � �d� = 0

}
;

Bs
p;q;�(@
;R

n) :=

{
v 2 Bs

p;q(@
;R
n) :

ˆ
@


v � �d� = 0

}
: (3.32)

3.2. Layer potentials for the Brinkman system

For a given density g 2 Lp(@
;R
n), the velocity single-layer potential for the Brinkman system, V�g, and the corresponding

pressure single-layer potential, Qsg, are given by

(V�g)(x) := hG�(x; �); gi@
; (Q
sg)(x) := h�(x; �); gi@
; x 2 R

n n @
: (3.33)

Let h 2 H1
p(@
;R

n) be a given density. Then the velocity double-layer potential, W�;@
h, and the corresponding pressure

double-layer potential, Qd
�;@
h, are de�ned by

(W�h)j(x) :=

ˆ
@


S�
ij`(x; y)�`(y)hi(y)d�y; (Q

d
�h)(x) :=

ˆ
@


��
j`(x; y)�`(y)hj(y)d�y; 8 x 2 Rn n @
; (3.34)

where �`, ` = 1; : : : ; n, are the components of the outward unit normal � to 
+, which is de�ned a.e. (with respect to the

surface measure �) on @
. Note that the de�nition of the double layer potential in [69, (3.9)] di�ers from de�nition (3.34) due

to di�erent conormal derivatives used in [69, (1.14)] and in formula (2.22) of our paper.

The single- and double-layer potentials can be also de�ned for any g 2 Bs�1
p;q (@
;R

n) and h 2 Bs
p;q(@
;R

n), respectively,

where s 2 (0; 1) and p; q 2 (1;1). For � = 0 (i.e., for the Stokes system) we use the notations Vg;Qsg;Wh and Qdh for the

corresponding single- and double-layer potentials.

In view of equations (3.4) and (3.6), the pairs (V�g; Q
sg) and (Ws

�h; Q
d
�h) satisfy the homogeneous Brinkman system in 
�,

(4� �I)V�g�rQ
sg = 0; divV�g = 0 in R

n n @
; (3.35)

(4� �I)W�h�rQ
sh = 0; divW�h = 0 in R

n n @
: (3.36)

The direct value of the double layer potential W�;@
h on the boundary is de�ned in terms of Cauchy principal value by

(K�h)k(x) := p:v:

ˆ

@


S�
jk`(y; x)�`(y)hj(y)d�y a.e. x 2 @
: (3.37)

Lemma 3.4 Let 
+�R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
+. Let

� � 0 and p 2 (1;1). There exist some constants Ci >0, i = 1; : : : ; 4, depending only on p, � and the Lipschitz character of


+, such that the following properties hold:

kM (rV�g) kLp(@
) + kM (V�g) kLp(@
) + kM (Qsg) kLp(@
) � C1kgkLp(@
;Rn); 8 g 2 Lp(@
;R
n); (3.38)

kM (V�g) kLp(@
) � C2kgkH�1p (@
;Rn); 8 g 2 H�1
p (@
;Rn); (3.39)

kM (W�h) kLp(@
) � C3khkLp(@
;Rn); 8 h 2 Lp(@
;R
n); (3.40)

kM (rW�h) kLp(@
) + kM (W�h) kLp(@
) + kM
(
Qd

�h
)
kLp(@
) � C4khkH1

p(@
;R
n); 8 h 2 H1

p(@
;R
n): (3.41)

Math. Meth. Appl. Sci. 0000, 00 1{42 Copyright c
 0000 John Wiley & Sons, Ltd. 11
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences R. Gutt, M. Kohr, S.E. Mikhailov, W.L. Wendland

Moreover, the following estimates hold for the non-tangential traces that exist at almost all points of @
:

k(V�g)
�
ntkLp(@
;Rn); k(rV�g)

�
ntkLp(@
;Rn); k(Q

sg)�ntkLp(@
;Rn) � C1kgkLp(@
;Rn); 8 g 2 Lp(@
;R
n); (3.42)

k(V�g)
�
ntkLp(@
) � C2kgkH�1p (@
;Rn); 8 g 2 H�1

p (@
;Rn); (3.43)

k(W�g)
�
ntkLp(@
;Rn) � C3khkLp(@
;Rn); 8 h 2 Lp(@
;R

n); (3.44)

k(W�h)
�
ntkLp(@
;Rn); k(rW�h)

�
ntkLp(@
;Rn); k(Q

d
�h)

�
ntkLp(@
;Rn) � C4khkH1

p(@
;R
n); 8 h 2 H1

p(@
;R
n): (3.45)

Proof. In the case � = 0, inequalities (3.38)-(3.41) follow from [61, Propositions 4.2.3 and 4.2.8].

In the case � > 0, Inequality (3.38) has been obtained in [69, Lemma 3.2]. In addition, inequality (3.39) follows by the same

arguments as in the proof of its counterpart in the case � = 0 (cf. [61, (4.61)]). Indeed, if g 2 H�1
p (@
;Rn), then there exist

g0 = (g0;1; : : : ; g0;n); gr` = (gr`;1; : : : ; gr`;n) 2 Lp(@
;R
n), r; ` = 1; : : : ; n, such that

gk = g0;k +

n∑
r;`=1

@�r`gr`;k ; kg0;kkLp(@
) +

n∑
r;`=1

kgr`;kkLp(@
) � 2kgkkH�1p (@
); k = 1; : : : ; n; (3.46)

(cf. [61, Corollary 2.1.2 and relation (4.65)]), where @�r` = �r@` � �`@r are the tangential derivative operators. Hence, integrating
by parts,

(V�g)j(x) =

ˆ
@


G�
jk(x� y)g0;k(y)d�y �

n∑
k=1

n∑
r;`=1

ˆ
@


(
@�r`

(
G�
jk(x� y)

))
gr`;k(y)d�y; 8 x 2 Rn n @
 (3.47)

(cf. [61, (4.66)] for � = 0). Inequality (3.39) immediately follows from equality (3.47) and the estimates in (3.38) and (3.46).

Let us now show inequality (3.40) for � > 0 (note that its analogue for a di�erently de�ned double layer potential in place

of W� was given in [69, Theorem 3.5]). First, we note that Lemma 4.1 in [46] (see also [69, Theorem 2.5]) implies that there

exists a constant c� = c�(
+; �) > 0 such that

jrG�(x; y)�rG(x; y)j � c�jx� yj2�n; 8 x; y 2 
+; x 6= y: (3.48)

Then, in view of formula (3.5) and equality �� = �, there exists a constant C5 = C5(
+; �) > 0 such that

jS�
ijk(y; x)� Si jk(y; x)j �

∣∣∣@G�
ij (y; x)

@yk
�
@Gi j(y; x)

@yk

∣∣∣+ ∣∣∣@G�
kj(y; x)

@yi
�
@G(y; x)

@yi

∣∣∣ � C5jx� yj2�n; 8 x; y 2 
+; x 6= y: (3.49)

Inequality (3.49) and [47, Proposition 1] (applied to the integral operator W� �W whose kernel is (S�(y; x)� S(y; x)) �(y))

show that there exists a constant C6 = C6(@
; p; �) > 0 such that

kM ((W� �W) h) kLp(@
) � C6khkLp(@
;Rn); 8 h 2 Lp(@
;R
n): (3.50)

Moreover, by [61, (4.56)], there exists a constant C7 = C7(@
; p) > 0 such that

kM (Wh) kLp(@
) � C7khkLp(@
;Rn); 8 h 2 Lp(@
;R
n); (3.51)

and then, by (3.50) and (3.51), we obtain inequality (3.40).

Let us now show inequality (3.41) for � > 0. According to the second formula in (3.34) and formula (3.7) the kernel of the

Brinkman double-layer pressure potential operator Qd
� is given by

��
jk(x; y)�k(y) =

1

~!n

{
�
2n(yj � xj)(yk � xk)�k(y)

jy � xjn+2
+

2�j(y)

jy � xjn
� �

1

(n � 2)

1

jy � xjn�2
�j(y)

}
: (3.52)

For � = 0, (3.52) reduces to the kernel of the Stokes double-layer pressure potential operator Qd . Therefore,

j��
jk(x; y)�k(y)� �jk(x; y)�k(y)j �

�

~!n(n � 2)

1

jy � xjn�2
; 8 x 2 
+; y 2 @
; x 6= y: (3.53)

Then according to [47, Proposition 1] applied to the operator Qd
� �Q

d , there exists a constant C8 = C8(@
; p; �) such that∥∥∥M ((Qd
� �Q

d
)
h
)∥∥∥

Lp(@
)
� C8khkLp(@
;Rn); 8 h 2 H1

p(@
;R
n): (3.54)

In view of [61, Proposition 4.2.8], the Stokes double-layer pressure potential operator Qd satis�es the inequality∥∥∥M (Qdh
)∥∥∥

Lp(@
)
� C9khkH1

p(@
;R
n); 8 h 2 H1

p(@
;R
n); (3.55)
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with a constant C9 � C9(@
; p) > 0. Then by (3.54) and (3.55) there exists a constant C10 � C10(@
; p; �) > 0 such that∥∥∥M (Qd
�h
)∥∥∥

Lp(@
)
� C10khkH1

p(@
;R
n); 8 h 2 H1

p(@
;R
n): (3.56)

Next, we show that there exists a constant c3 = c3(
+; p; �) > 0 such that

kM (rW�h) kLp(@
) � c3khkH1
p(@
;R

n); 8 h 2 H1
p(@
;R

n): (3.57)

To this end, we use expressions (3.34) and (3.5) for the Brinkman double layer potential W�h to obtain for any h 2 H
1
p(@
;R

n),

@r (W�h)j (x) = �

ˆ
@


{
�`(y)

(
@r@`G

�
jk

)
(y � x) + �`(y) (@r@jG

�
`k) (y � x)� �j(y) (@r�k) (y � x)

}
hk(y)d�y

= �

ˆ
@


{
@�`r (y)

(
@`G

�
jk

)
(y � x) + @�`r (y) (@jG

�
`k) (y � x)� @�jr (y)�k(y � x)

}
hk(y)d�y

�

ˆ
@


{
�r (y)4G

�
jk(y � x) + �r (y) (@`@jG

�
`k) (y � x)� �r (y) (@j�k) (y � x)

}
hk(y)d�y

=

ˆ
@


{(
@`G

�
jk

)
(y � x) (@�`r hk) (y) + (@jG

�
`k) (y � x) (@�`r hk) (y)� �k(y � x)

(
@�jr hk

)
(y)
}
d�y

� �

ˆ
@


�r (y)G
�
jk(y � x)hk(y)d�y; j; r = 1; : : : ; n; (3.58)

where @j :=
@

@xj
. We also employed the following integration by parts formula, which holds for any p 2 (1;1) (cf. [61, (2.16)]),

ˆ
@


f
(
@�jk g

)
d� =

ˆ
@


(
@�kj f

)
gd�; 8 f 2 H1

p(@
); 8 g 2 H
1
p0(@
); (3.59)

where 1
p
+ 1

p0
= 1. The last integral in (3.58) follows from equations (3.4), which, in particular, yield that

(4y � �I)G
�(y � x)�ry�(y � x) = 0; divyG

�(y � x) = 0; 8 x 2 Rn n @
; y 2 @
: (3.60)

In the case � = 0, formula (3.58) has been obtained in [61, (4.84)].

Now, from formula (3.58) and its counterpart corresponding to � = 0, we obtain for all j; r = 1; : : : ; n,

@r (W�h)j = @r (Wh)j + @` ((V� � V) (@�`r h))j + @j ((V� � V) (@�`r h))` � � (V� (�rh))j ; 8 h 2 H1
p(@
;R

n): (3.61)

Further, by using estimate (4.86) in [61, Proposition 4.2.8] for the Stokes double layer potential, Wh, property (3.38) for the

Brinkman and Stokes single layer potentials involved in formula (3.61), and continuity of the tangential derivative operators

@�jk : H
1
p(@
)! Lp(@
), we obtain inequality (3.57), as asserted (see also [38, (3.35)]).

Finally, inequalities (3.40), (3.56) and (3.57) imply inequality (3.41).

For any n � 3 and ` � 0, there exists a constant C = C(n; `; �) > 0 such that the inequality (cf. [69, Theorem 2.4])∣∣∣r`
xG

�(x)
∣∣∣ � C

(1 + �jxj2) jxjn�2+`
; (3.62)

holds and implies that jG�(x� y)j � C0jx� yj2�n; with some constant C0 = C0(n; �) > 0. Then in view of [47, Proposition 1],

for any g 2 Lp(@
;R
n) there exist the non-tangential limits of the Brinkman single layer potential V�g at almost all points of

@
. Moreover, the existence of the non-tangential limits of rV�g at almost all points of @
 follows immediately from [69,

Lemma 3.3]. For Qsg such a result is valid since the Brinkman pressure single layer potential coincides with the Stokes pressure

single layer potential, for which the result is well known, cf., e.g., [61, Proposition 4.2.2] and [69, Lemma 3.3].

If g 2 H�1
p (@
;Rn) then the existence of the non-tangential limits of V�g a.e. on @
 follows from formula (3.47) and the

corresponding statement for the existence of non-tangential limits for a single layer potential and the gradient a single layer

potential with a density in Lp(@
;R
n).

Now let h 2 Lp(@
;R
n). Then the existence of the non-tangential limits of the Brinkman double layer potential W�h at

almost all points of @
 follows easily from the case � = 0. Indeed, estimate (3.49) and [47, Proposition 1] imply that the

di�erence

(W�h)j (x)� (Wh)j (x) =

ˆ
@


(
S�
ijk(y � x)� Si jk(y � x)

)
�k(y)hi(y)d�y (3.63)

=

ˆ
@


{(
@G�

ij (y � x)

@yk
�
@Gi j(y � x)

@yk

)
+

(
@G�

kj(y � x)

@yi
�
@Gkj(y � x)

@yi

)}
�k(y)hi(y)d�y; x 2 
�
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has non-tangential limits
(
(W�h)j � (Wh)j

)�
nt
(x0) at almost all points x0 2 @
. On the other hand, according to [61, Proposition

4.2.2] there exist the non-tangential limits of the Stokes double layer potential Wh at almost all points x0 of @
. Therefore, the

non-tangential limits of the Brinkman double layer potential W�h exist as well at almost all points x of @
.

Now let h 2 H1
p(@
;R

n). Then the existence of the non-tangential limits ofrW�h at almost all points of @
 follows from their

existence in the case � = 0 (cf. [61, (4.91)]), formula (3.61), and the statement for the existence of non-tangential limits for a

single layer potential and the gradient a single layer potential with a density in Lp(@
;R
n), while the existence of non-tangential

limits of Q�h a.e. on @
 is provided by the corresponding result in the case � = 0 (cf. [61, (4.85)]) and [47, Proposition 1]

applied to the complementary term
(
Qd

� �Q
d
)
h = �V4(h � �), which by (3.52) is the Laplace single layer potential with density

�h � � 2 Lp(@
).
Finally, note that inequalities (3.42)-(3.45) follow from inequalities (3.38)-(3.41) and the estimate kf �nt kLp(@
) � kM(f )kLp(@
),

whenever f has the property that both f �nt and M(f ) exist a.e on @
 (see [16, Remark 9]). �

The mapping properties of layer potential operators for the Stokes system (i.e., for � = 0) in Bessel-potential and Besov

spaces on bounded Lipschitz domains, as well as their jump relations across a Lipschitz boundary, are well known, cf., e.g.,

[23], [27], [61, Theorem 10.5.3], [62, Theorem 3.1, Proposition 3.3]. The main properties of layer potential operators for the

Brinkman system are collected below (some of them are also available in [22, Proposition 3.4], [32, Lemma 3.4], [33, Lemma

3.1], [62, Theorem 3.1], [69, Theorems 3.4 and 3.5]).

Theorem 3.5 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
+. Let

p; q 2 (1;1), � > 0, and p� := maxfp; 2g. Let t � � 1
p0

be arbitrary, where 1
p
+ 1

p0
= 1.

(i) Then the following operators are linear and continuous,

V�j
+ : Lp(@
;R
n)! B

1+ 1
p

p;p�;div(
+;R
n); Qs j
+ : Lp(@
;R

n)! B
1
p

p;p�(
+); (3.64)(
V�j
+ ;Q

s j
+

)
: Lp(@
;R

n)! B
1+ 1

p
;t

p;p�;div(
+;L�); (3.65)

V�j
+ : H�1
p (@
;Rn)! B

1
p

p;p�;div(
+;R
n); Qs j
+ : H�1

p (@
;Rn)! B
�1+ 1

p

p;p� (
+); (3.66)(
V�j
+ ;Q

s j
+

)
: H�1

p (@
;Rn)! B
1
p
;t

p;p�;div(
+;L�); (3.67)

W�j
+ :H
1
p(@
;R

n)! B
1+ 1

p

p;p�;div(
+;R
n); Qd

�

∣∣

+

:H1
p(@
;R

n)! B
1
p

p;p�(
+); (3.68)(
W�j
+ ;Q

d
�j
+

)
: H1

p(@
;R
n)! B

1+ 1
p
;t

p;p�;div(
+;L�): (3.69)

W�j
+ :Lp(@
;R
n)! B

1
p

p;p�;div(
+;R
n); Qd

�

∣∣

+

:Lp(@
;R
n)! B

1
p
�1

p;p� (
+); (3.70)(
W�j
+ ;Q

d
�j
+

)
: Lp(@
;R

n)! B
1
p
;t

p;p�;div(
+;L�): (3.71)

(i i) Moreover, the following operators are also linear and continuous for s 2 (0; 1),

V� : Bs�1
p;q (@
;R

n)! B
s+ 1

p

p;q;div(R
n;Rn); Qs : Bs�1

p;q (@
;R
n)! B

s+ 1
p
�1

p;q;loc (R
n); (3.72)

V�j
+ : Bs�1
p;q (@
;R

n)! B
s+ 1

p

p;q;div(
+;R
n); (Qs) j
+ :B

s�1
p;q (@
;R

n)! B
s+ 1

p
�1

p;q (
+); (3.73)(
V�j
+ ;Q

s j
+

)
: Bs�1

p;q (@
;R
n)! B

s+ 1
p
;t

p;q;div(
+;L�); (3.74)

W�j
+ : Bs
p;q(@
;R

n)! B
s+ 1

p

p;q;div(
+;R
n); Qd

�j
+ :B
s
p;q(@
;R

n)! B
s+ 1

p
�1

p;q (
+); (3.75)(
W�j
+ ;Q

d
�j
+

)
: Bs

p;q(@
;R
n)! B

s+ 1
p
;t

p;q;div(
+;L�); (3.76)

V�j
� : Bs�1
p;q (@
;R

n)! B
s+ 1

p

p;q;div(
�;R
n); Qs j
� : Bs�1

p;q (@
;R
n)! B

s+ 1
p
�1

p;q;loc (
�); (3.77)(
V�j
� ;Q

s j
�
)
: Bs�1

p;q (@
;R
n)! B

s+ 1
p
;t

p;q;div;loc(
�;L�); (3.78)

W�j
� : Bs
p;q(@
;R

n)! B
s+ 1

p

p;q;div;loc(
�;R
n); Qd j
� : Bs

p;q(@
;R
n)! B

s+ 1
p
�1

p;q;loc (
�); (3.79)(
W�j
� ;Q

d
�j
�

)
: Bs

p;q(@
;R
n)! B

s+ 1
p
;t

p;q;div;loc(
�;L�): (3.80)

(i i i) The following relations hold a.e. on @
,(
V�g

)+
nt
=
(
V�g

)�
nt
=: V�g; 8 g 2 H�1

p (@
;Rn); (3.81)

1

2
h+ (W�h)

+
nt = �

1

2
h+ (W�h)

�
nt =: K�h; 8 h 2 Lp(@
;R

n); (3.82)
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�
1

2
g+ t+nt (V�g;Q

sg) =
1

2
g+ t�nt (V�g;Q

sg) =: K�
�g; 8 g 2 Lp(@
;R

n); (3.83)

t+nt
(
W�h;Q

d
�h
)
= t�nt

(
W�h;Q

d
�h
)
=: D�h; 8 h 2 H1

p(@
;R
n); (3.84)

where K�
� is the transpose of K�;@
, and the following boundary integral operators are linear and bounded,

V� : Lp(@
;R
n)! H1

p(@
;R
n); K� : H1

p(@
;R
n)! H1

p(@
;R
n); (3.85)

V� : H�1
p (@
;Rn)! Lp(@
;R

n); K� : Lp(@
;R
n)! Lp(@
;R

n); (3.86)

K�
� : Lp(@
;R

n)! Lp(@
;R
n); D� : H1

p(@
;R
n)! Lp(@
;R

n): (3.87)

For h 2 Bs
p;q(@
;R

n) and g 2 Bs�1
p;q (@
;R

n), s 2 (0; 1), the following relations hold a.e. on @
,


+
(
V�g

)
= 
�

(
V�g

)
=: V�g; (3.88)

1

2
h+ 
+(W�h) = �

1

2
h+ 
�(W�h) =: K�h; (3.89)

�
1

2
g+ t+� (V�g;Q

sg) =
1

2
g+ t�� (V�g;Q

s
@
g) =: K

�
�g; (3.90)

t+�
(
W�h;Q

d
�h
)
= t��

(
W)�h;Q

d
�;@
h

)
=: D�h; (3.91)

and the following operators are linear and continuous,

V� : Bs�1
p;q (@
;R

n)! Bs
p;q(@
;R

n); K� : Bs
p;q(@
;R

n)! Bs
p;q(@
;R

n); (3.92)

K�
� : Bs�1

p;q (@
;R
n)! Bs�1

p;q (@
;R
n); D� : Bs

p;q(@
;R
n)! Bs�1

p;q (@
;R
n): (3.93)

Proof. (i) First of all, we remark that all range spaces of the velocity vector-valued layer potential operators in (3.64)-(3.80)

are divergence-free due to the second relations in (3.35)-(3.36). Further, let us note that by (3.33) and (3.8) the single layer

potential can be presented as (cf. [18, (4.1)]),

V�g = h
G�(x; �); gi@
 = hG�(x; �); 
 0giRn = N�;Rn � 
 0g (3.94)

for any g 2 Bs�1
p;q (@
;R

n), p; q 2 (1;1) and s 2 (0; 1). Here the operator 
 0 : Bs�1
p;q (@
;R

n)! B
s�1� 1

p0

p;q;comp(R
n;Rn) is adjoint to

the trace operator 
 : B
1�s+ 1

p0

p0;q0;loc
(Rn;Rn)! B1�s

p0;q0(@
;R
n) and they both are continues due to Lemma 2.4.

Next, we show the continuity of the �rst operator in (3.64) in the case � > 0 (i.e., for the Brinkman system). To this end,

we split the Brinkman single-layer potential operator into two operators, as V� = V + V�;0; where V�;0 is the complementary

single-layer potential operator, i.e.,

V�;0 := V� � V = N�;0;Rn � 
 0 � �; (3.95)

where the imbedding operator � : Lp(@
;R
n) ,! Bs�1

p;p�(@
;R
n) is continuous for any s 2 (0; 1) and p 2 (1;1). In addition,

N�;0;Rn := N�;Rn �N0;Rn is a pseudodi�erential operator of order �4 with the kernel G�;0 := G� � G (see formula (2.27) in [33]),

and hence the linear operator

N�;0;Rn : B
s�1� 1

p0

p;p�;comp(R
n;Rn)! B

s+3� 1
p0

p;p�;loc (R
n;Rn) (3.96)

is continuous for any s 2 (0; 1) and p 2 (1;1), where 1
p0
= 1� 1

p
, and B

s�1� 1
p0

p;p�;comp(R
n;Rn) is the space of distributions in

B
s�1� 1

p0

p;p� (Rn;Rn) with compact supports. Then formula (3.95) and the continuity of the involved operators imply that the

operators

V�;0 : Lp(@
;R
n)! B

s+2+ 1
p

p;p�;loc(R
n;Rn); (V�;0) j
+ : Lp(@
;R

n)! B
s+2+ 1

p

p;p� (
+;R
n)

are continuous as well. Now, the continuity of the embedding B
s+2+ 1

p

p;p� (
+;R
n) ,! B

1+ 1
p

p;p� (
+;R
n) for any s 2 (0; 1) shows that

V�;0 : Lp(@
;R
n)! B

1+ 1
p

p;p� (
+;R
n) (3.97)

is a continuous operator, even compact.

Moreover, the Stokes single layer potential operator V : Lp(@
;R
n)! Lp(
+;R

n) is continuous (cf., e.g., the mapping

property (10.73) in [61] and the continuity of the embeddings Lp(@
;R
n) ,! Bs�1

p;p�(@
;R
n) and B

s+ 1
p

p;p� (
+;R
n) ,! Lp(
+;R

n)

for any s 2 (0; 1)).
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On the other hand, the kernel rG of the integral operator rV satis�es the relations

rG 2 C1(Rn n f0g); (rG)(�x) = �(rG)(x); (rG)(�x) = ��(n�1)(rG)(x); 8 � > 0: (3.98)

Then, in view of [58, Proposition 2.68], there exists a constant C0 � C0(
+; p) > 0 such that

krVgk
B

1
p

p;p�
(
+;Rn�n)

� C0kgkLp(@
;Rn); 8 g 2 Lp(@
;R
n): (3.99)

Consequently, there exists a constant C � C(
+; p) > 0 such that

kVgk
B
1+ 1

p

p;p�
(
+;Rn)

= kVgkLp(
+;Rn) + krVgk
B

1
p

p;p�
(
+;Rn�n)

� CkgkLp(
+;Rn); 8 g 2 Lp(
+;R
n); (3.100)

which shows that the Stokes single layer potential operator

V : Lp(@
;R
n)! B

1+ 1
p

p;p� (
+;R
n) (3.101)

is also continuous (cf., e.g., [62, Theorem 7.1, (3.33)], see also [23] for p = 2). This mapping property and the continuity of

operator (3.97) show that the Brinkman single layer operator V� : Lp(@
;R
n)! B

1+ 1
p

p;p� (
+;R
n) is continuous, as well.

Let us show the continuity of the second operator in (3.64). To this end, we note that the Stokes single layer pressure

potential Qs f with a density f = (f1; : : : ; fn) 2 Lp(@
;R
n) can be written as

(Qs f) (x) = (div V4f) (x); 8 x 2 Rn n @
; (3.102)

where V4g is the harmonic single layer potential with density g 2 Lp(@
), given by

(V4g)(x) := �
1

(n � 2)~!n

ˆ
@


1

jx� yjn�2
g(y)d�y; x 2 Rn n @
: (3.103)

Then the continuity of the single layer pressure potential potential operator Qs : Lp(@
;R
n)! B

1
p

p;p�(
+) for any p 2 (1;1)

is a direct consequence of Proposition 4.23 in [59]. Note that Proposition 2.68 in [58] applies as well, and shows the desired

continuity of the single layer pressure potential operator in (3.64) (see also [62, Theorem 3.1, (3.30)]). Thus, we have proved

the continuity of the operators in (3.64).

Continuity of the �rst operator in (3.66) follows from the continuity of operators involved in the right hand side of equality

(3.47). Continuity of the second operator in (3.66) follows from equality (3.102), which is valid also for any f 2 H�1
p (@
;Rn), and

by the continuity of the harmonic single layer potential operator V4 from H�1
p (@
) to B

1
p

p;p�(
+). Indeed, for any f 2 H
�1
p (@
)

there exist f0; fr` 2 Lp(@
), r; ` = 1; : : : n, such that f = f0 +
∑n

r;`=1 @�r` fr` (see (3.46)). Then by using the integration by parts

formula (3.59), we obtain that

(V4f )(x) =

ˆ
@


G4(x� y)f0(y)d�y �
n∑

r;`=1

ˆ
@


(
@�rs;yG4(x; y)

)
fr`(y)d�y; 8 x 2 Rn n @
; (3.104)

where G4(x; y) is the fundamental solution of the Laplace equation in R
n (n � 3). By using again [58, Proposition 2.68] (see also

(3.99)) and the continuity of the Laplace single layer potential operator V4 : Lp(@
)! B
1+ 1

p

p;p� (
+) (see, e.g., [59, Proposition

4.23] and property (3.49) in [62, Proposition 3.3]), there exists a constant C0 such that

kV4f k
B
1+ 1

p

p;p�
(
+)

= kV4f kLp(
+) + krV4f k
B

1
p

p;p�
(
+;Rn)

� C0kf kLp(
+); 8 f 2 Lp(
+): (3.105)

Thus, the operator rV4 : Lp(@
)! B
1
p

p;p�(
+;R
n) is also continuous. Finally, by continuity of this operator and of the

operator V4 : Lp(@
)! B
1+ 1

p

p;p� (
+) and also by the second relation in (3.46), we obtain from (3.104) continuity of the operator

V4 : H�1
p (@
)! B

1
p

p;p�(
+) and, accordingly, continuity of the second operator in (3.66).

Let us now show the continuity of the �rst operator in (3.68). To this end, we notice that the Brinkman double-layer potential

operator can be written as W� =W +W�;0; where W�;0 is the complementary double layer potential operator, i.e.,

W�;0 :=W� �W = K�;0 � 

0 �N (3.106)

(see [33, Eq. (3.31)]), where the operator N : H1
p(@
;R

n)! Lp(@
;R
n 
 R

n) ,! B�s
p;p�(@
;R

n 
 R
n); Nh(x) := �(x)
 h(x),

is continuous for any s 2 (0; 1). In addition, K�;0 is a pseudodi�erential operator of order �3 with the kernel S
�;0 := S� � S (cf.,

e.g., [33, (2.27)]), and hence the operator

K�;0 : B
�1�s+ 1

p

p;p�;comp(R
n;Rn 
 R

n)! B
2�s+ 1

p

p;p�;loc(R
n;Rn);
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(K�;0T)j (x) :=
〈(
S�
ji` � Sj i`

)
(�; x); T

i`

〉
Rn ; 8 T 2 B

�1�s+ 1
p

p;p�;comp(R
n;Rn 
 R

n); (3.107)

is also linear and continuous for any s 2 (0; 1), where B
�1�s+ 1

p

p;p�;comp(R
n;Rn 
 R

n) is the space of all distributions in B
�1�s+ 1

p

p;p� (Rn;Rn 


R
n) having compact support in R

n. In addition, the trace operator 
 : B
s+ 1

p0

p0;p�0;loc
(Rn 
 R

n)! Bs
p0;p�0(@
;R

n 
 R
n) (acting on

matrix valued functions) and its adjoint 
 0 : B�s
p;p�(@
;R

n 
 R
n)! B

�s�1+ 1
p

p;p�;comp(R
n;Rn 
 R

n) are continuous (see the proof of [18,

Theorem 1]). Then formula (3.106) and the continuity of the involved operators imply that the operators

W�;0 : H
1
p(@
;R

n)! B
2�s+ 1

p

p;p�;loc(R
n;Rn); (W�;0) j
+ : H1

p(@
;R
n)! B

2�s+ 1
p

p;p� (
+;R
n)

are continuous as well. Now, the continuity of the embedding B
2+ 1

p
�s

p;p� (
+;R
n) ,! B

1+ 1
p

p;p� (
+;R
n) for any s 2 (0; 1) shows that

W�;0 : H
1
p(@
;R

n)! B
1+ 1

p

p;p� (
+;R
n) (3.108)

is a continuous operator, even compact. Let us now show that the Stokes double-layer potential operator

W : H1
p(@
;R

n)! B
1+ 1

p

p;p� (
+;R
n) (3.109)

is continuous as well. In the setting of Riemannian manifolds and for double layer potentials for second order elliptic equations,

this continuity property follows from [63, Theorem 8.5], but we will provide a direct proof here in the context of Euclidean

setting. To this end, we use the following characterization of the space H1
p(@
)

h 2 H1
p(@
)() h 2 Lp(@
); @�jk h 2 Lp(@
); j; k = 1; : : : ; n (3.110)

(cf., e.g., [61, (2.11)]), and recall that the tangential derivative operators @�jk : H
1
p(@
)! Lp(@
) are continuous. In addition,

consider the operator Vjk de�ned as

(Vjkg) (x) :=

ˆ
@


Gjk(x� y)g(y)d�y; x 2 Rn n @
: (3.111)

We have proved that the Stokes single layer potential operator (3.101) is continuous for any p 2 (1;1) (see also [62, Theorem

3.1, (3.33)]). Consequently, the operators

Vjk : Lp(@
)! B
1+ 1

p

p;p� (
+) (3.112)

are continuous as well, for all j; k = 1; : : : ; n. Recall that the operator V4 : Lp(@
)! B
1+ 1

p

p;p� (
+) is also linear and continuous.

Finally, we mention the following formula (cf. [61, (4.84)])

@r (Wh)j = �@`Vjk (@�`r hk)� @jV`k (@�`r hk)� @kV4
(
@�jr hk

)
in R

n n @
; (3.113)

which holds for every h 2 H1
p(@
;R

n) and j; r = 1; : : : ; n, where hj is the j-th component of h. Then by using the continuity of

operator (3.112) and properties (3.110) and (3.113), we deduce that the operators

@r (W)j : H
1
p(@
;R

n)! B
1
p

p;p�(
+); r; j = 1; : : : ; n (3.114)

are continuous. By [61, Proposition 10.5.1, (10.68)], the operator W : H1
p(@
;R

n)! Lp(
+;R
n) is also continuous (as its

range is a subspace of the space H
s+ 1

p
p (
+;R

n) for any s 2 (0; 1), H1
p(@
;R

n) ,! Bs
p;p(@
;R

n) (due to formula (A.12)), and

B
s+ 1

p
p;p (
+;R

n) ,! Lp(
+;R
n)). Consequently, the Stokes double layer potential operator W : H1

p(@
;R
n)! B

1+ 1
p

p;p� (
+;R
n) is

continuous, as asserted. This mapping property combined with the continuity of operator (3.108) implies the continuity of the

�rst operator in (3.68).

Continuity of the second operator in (3.68) follows from similar arguments. To this end, let us mention the useful

formula Qdg = div(W4g), where the harmonic double layer potential operator W4 : H1
p(@
)! B

1+ 1
p

p;p� (
+) is continuous (cf.,

e.g., [59, Proposition 4.23, (2.120), (4.96)]). Thus, the continuity of the Stokes double layer pressure potential operator

Qd : H1
p(@
;R

n)! B
1
p

p;p�(
+) immediately follows. This property and continuity of the complementary double layer potential

operator Qd
�;0 := Qd

� �Q
d : H1

p(@
;R
n)! B

1
p

p;p�(
+), where (cf. [69, (3.10)])

Qd
�;0h = �V4(h � �); (3.115)
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yield the continuity of the Brinkman double layer pressure potential operator Qd
� = Qd +Qd

�;0 : H
1
p(@
;R

n)! B
1
p

p;p�(
+).

Continuity of the �rst operator in (3.70) for the case � = 0 is an immediate consequence of [58, Proposition 2.68] applied

to the integral operator whose kernel is given by the fundamental stress tensor S0. Moreover, by using again formulas (3.106)

and (3.107) we can see that the operator W�;0 : Lp(@
;R
n)! B

1
p

p;p�(
+;R
n) is continuous. Therefore, for � > 0 the �rst

operator in (3.70) is continuous as well. To prove continuity of the second operator in (3.70), we again use the representation

Qdg = div(W4g), and continuity of the harmonic double layer potential operator W4 : Lp(@
)! B
1
p

p;p�(
+), e.g., again by [58,

Proposition 2.68], along with continuity of the complementary double layer potential operator Qd
�;0 : Lp(@
;R

n)! B
1
p
�1

p;p� (
+).

Mapping properties (3.65), (3.67) and (3.69) are implied by the ones just above them and by the �rst relations in (3.35)-(3.36).

(i i) Now, relation (3.94), continuity of the operator 
 0 : Bs�1
p;q (@
;R

n)! B
s�2+ 1

p
p;q (Rn;Rn) (cf. Lemma 2.4), and continuity of

the Newtonian potential operator N�;Rn : B
s�2+ 1

p
p;q (Rn;Rn)! B

s+ 1
p

p;q (Rn;Rn) (see (3.11)) imply the continuity of the �rst operator

in (3.72) and thus of the �rst operators in (3.73) and (3.77). Continuity of the second operator in (3.72) follows by similar

arguments based on the equalities Qs = QRn � 
 0, and implies also continuity of the second operators in (3.73) and (3.77) (cf.

[61, Proposition 10.5.1]).

Further, let us mention that relations (3.106) and (3.107) imply that the operator W�;0 : B
s
p;q(@
;R

n)! B
s+ 1

p
p;q (
+;R

n)

is continuous for all p 2 (1;+1) and s 2 (0; 1). This mapping property combined with the continuity of the Stokes double-

layer potential operator Wj
+ : Bs
p;q(@
+;R

n)! B
s+ 1

p
p;q (
+;R

n) (see [61, Proposition 10.5.1]) implies the continuity of the �rst

operator in (3.75). The continuity of the second operator in (3.75) can be similarly obtained. Other mapping properties of layer

potentials mentioned in (3.72) and (3.79), follow with similar arguments to those for (3.64) and (3.68). We omit the details for

the sake of brevity (see also the proof of [32, Lemma 3.4]).

(i i i) Equality (3.81) for g 2 Lp(@
;R
n) can be obtained by using inequality (3.62) and [47, Proposition 1] (see also [69,

Theorems 3.4]). Since
(
V�g

)+
nt
and

(
V�g

)�
nt
are well de�ned for g 2 H�1

p (@
;Rn) due to Lemma 3.4(iii), inequality (3.43) and

the density argument then imply equality (3.81) also for g 2 H�1
p (@
;Rn). Formulas (3.82) and (3.83) follow by using arguments

similar to those for the trace formulas (3.11) and (3.18) in [69]. To this end, we �rst prove the formulas

(@j (V
�
ik g))

∣∣�
nt
(x) = �

1

2
�j(x) (�ik � �i(x)�k(x)) g(x) + p:v:

ˆ
@


@jG
�
ik(x� y)g(y)d�y a.a. x 2 @
 (3.116)

for any g 2 Lp(@
) and all i ; k = 1; : : : ; n, where the function V �
ik g is de�ned as in (3.111) with G

�
jk instead of Gjk . Indeed, formula

(3.116) has been proved in [61, (4.50)] in the case � = 0. Moreover, the estimate [69, (2.27)] of the kernel rxG
�
jk(x)�rxGjk(x)

and [47, Proposition 1] imply that there exist the non-tangential limits of the complementary potential @jV
�
ik g � @jVikg at almost

all points of @
, and

(@j (V
�
ik g)� @j (Vikg)) j

�
nt(x) = p:v:

ˆ
@


(@jG
�
ik � @jGik) (x� y)g(y)d�y a.a. x 2 @
; (3.117)

which implies (3.116) also for � 6= 0. Moreover, formula (3.116) yields for any f 2 Lp(@
;R
n) that

(@j(V�f))
∣∣�
nt
(x) = �

1

2
�j(x) ff(x)� fk(x)�k(x)�(x)g+ p:v:

ˆ
@


@jG
�(x� y)f(y)d�y a.a. x 2 @
 (3.118)

(cf. [61, (4.54)] for � = 0 and [69, Lemma 3.3] for � > 0).

In addition,

(Qs f)
∣∣�
nt
(x) = �

1

2
�k(x)fk(x) + p:v:

ˆ
@


�k(x� y)fk(y)d�y a.a. x 2 @
 (3.119)

(cf. [61, (4.42)], [69, Lemma 3.3]). Then formulas (3.82) and (3.83) follow from formulas (2.22), (2.24), (3.5), (3.34), (3.118)

and (3.119).

Formula (3.84) follows from formula (3.61) and (3.115) together with [61, Proposition 4.2.9] (i.e., the counterpart of the

trace formula (3.84) corresponding to the case � = 0).

Continuity of operators (3.74), (3.76), (3.78), (3.80) is implied by the continuity of the operators just above them and by

the �rst relations in (3.35) and (3.36).

Now, we note that formula V� = V + V�;0, continuity of the Stokes single layer operator V : Lp(@
;R
n)! H1

p(@
;R
n) (cf.

[61, Proposition 4.2.5]), and continuity of the complementary operator V�;0 : Lp(@
;R
n)! H1

p(@
;R
n) (cf. [33, Theorem

3.4(b)]) imply continuity of the �rst operator in (3.85). Continuity of the second operator in (3.85) and of the operators in

(3.87) similarly follows from [61, Propositions 4.2.7 - 4.2.10] and [33, Theorem 3.4(b)]. In addition, formula (3.47) and the �rst

relation in (3.46) yield the following equality

(V�g)j(x) =

ˆ
@


G�
jk(x� y)g0;k(y)d�y �

n∑
k=1

n∑
r;`=1

p:v:

ˆ
@


(
@�r`

(
G�
jk(x� y)

))
gr`;k(y)d�y a.a x 2 @
; (3.120)
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for any g 2 H�1
p (@
;Rn) (cf., e.g., [61, (4.69)] for � = 0). Then the continuity of the �rst operator in (3.86) immediately follows

(see also [61, Proposition 4.2.5 (iii)] for � = 0). Continuity of the Stokes double layer operator K : Lp(@
;R
n)! Lp(@
;R

n)

(cf., e.g., [61, Corllary 4.2.4]) and the continuity of the reminder operator K� �K : Lp(@
;R
n)! Lp(@
;R

n) (see [33, Theorem

3.4 (b)]) show the continuity of the second operator in (3.86). Continuity of the traces and conormal derivatives of the layer

potentials involved in (3.88)-(3.91) and hence continuity of the boundary operators (3.92), (3.93) immediately follow from the

mapping properties of the layer potentials in item (ii) and Lemmas 2.4, 2.11.

Finally, the jump relations given by the �rst equalities in (3.88)-(3.91) follow from formulas (3.81)-(3.84), together with the

density of the embeddings H1
p(@
;R

n) ,! Bs
p;q(@
;R

n) and Lp(@
;R
n) ,! Bs�1

p;q (@
;R
n), and equivalence results in Theorems

2.5(i) and 2.13(i) for traces and conormal derivatives. �

Let us mention the following useful result.

Lemma 3.6 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
+.

(i) If p 2 (1;1), � 2 (0;1), g 2 Lp(@
;R
n) and h 2 H1

p(@
;R
n), then


�(V�g) = (V�g)
�
nt 2 H

1
p;�(@
;R

n); (3.121)


�(W�h) = (W�h)
�
nt 2 H

1
p;�(@
;R

n); (3.122)

t�� (V�g;Q
sg) = t�nt (V�g;Q

sg) 2 Lp(@
;R
n); (3.123)

t��
(
W�h;Q

d
�h
)
= t�nt

(
W�h;Q

d
�h
)
2 Lp(@
;R

n) (3.124)

with the corresponding norm estimates.

(i i) If p; q 2 (1;1), s 2 (0; 1), � 2 (0;1), g 2 Bs�1
p;q (@
;R

n) and h 2 Bs
p;q(@
;R

n), then


�(V�g) = (V�g)
�
nt 2 B

s
p;q;�(@
;R

n); (3.125)


�(W�h) = (W�h)
�
nt 2 B

s
p;q;�(@
;R

n) (3.126)

with the corresponding norm estimates.

Proof. Let �rst g 2 Lp(@
;R
n) and h 2 H1

p(@
;R
n), p 2 (1;1). Then, according to Lemma 3.4(ii,v), the right hand sides of the

equalities in (3.121)-(3.124) exist almost everywhere on @
 in the sense of non-tangential limit, while Theorem 3.5(i) yields that

(V�g;Q
sg) ;

(
W�h;Q

d
�h
)
2 B

1+ 1
p
;t

p;p�;div(
+;L�) and (V�g;Q
sg) ;

(
W�h;Q

d
�h
)
2 B

1+ 1
p
;t

p;p�;div;loc(
�;L�) for any t � � 1
p0
. Moreover,

Theorem 3.5 (iii) and the divergence theorem applied to the single layer potentials V�g and W�h in the domain 
+ yield that

(V�g)
�
nt 2 H

1
p;�(@
;R

n); t�nt (V�g;Q
sg) 2 Lp(@
;R

n), for any g 2 Lp(@
;R
n), while (W�h)

�
nt 2 H

1
p;�(@
;R

n); t�nt
(
W�g;Q

dg
)
2

Lp(@
;R
n), for any h 2 H1

p(@
;R
n), with the corresponding norm estimates. Hence Theorems 2.5(i) and 2.13(ii) along with

Remark 2.14 imply relations (3.121)-(3.124).

For p; q 2 (1;1) and s 2 (0; 1), we have g 2 Bs�1
p;q (@
;R

n) � H�1
p (@
;Rn), h 2 Bs

p;q(@
;R
n) � Lp(@
;R

n) and, according

to Lemma 3.4(iii,iv), the right hand sides of the equalities in (3.125) and (3.126) exist almost everywhere on @
, while Theorem

3.5(ii) yields that V�g;W�h 2 B
s+ 1

p

p;q;div(
+). Hence Theorem 2.5(i) implies relations (3.125) and (3.126). �

We will further need the following integral representation (the third Green identity) for the homogeneous Brinkman system

solution.

Lemma 3.7 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
+. Let

� 2 (0;1), p; q 2 (1;1) and s 2 (0; 1). If the the pair (u; �) satis�es the system

4u� �u�r� = 0; div u = 0 in 
+ (3.127)

and (u; �) 2 H
s+ 1

p
p (
+;R

n)�H
s�1� 1

p
p (
+), or (u; �) 2 B

s+ 1
p

p;q (
+;R
n)� B

s�1� 1
p

p;q (
+), then

u(x) = V�

(
t+�(u; �)

)
(x)�W� (
+u) (x); 8 x 2 
+: (3.128)

Proof. Let B(y ; �) � 
 be a ball of a radius � around a point y 2 
+ and let G�
k (x) = (G�

k1(x); : : : ;G
�
kn(x)), k = 1; : : : ; n, where

(G�;�) is the fundamental solution of the Brinkman system in Rn (see (3.1) and (3.2)). Applying the second Green identity

(2.29) in the domain 
+ n B(y ; �) to (u; �) and to the fundamental solution (G�
k (� � y);�k)(� � y) and taking the limit as

�! 0, we obtain (3.128). �

Next, we show the counterpart of the integral representation formula (3.128) written in terms of the non-tangential trace

and conormal derivative.

Lemma 3.8 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
. Let � > 0 and p 2 (1;1) be

given constants. Assume that M(u);M(ru);M(�) 2 Lp(@
), there exist the non-tangential limits of u, ru and � at almost all

points of the boundary @
, and that the pair (u; �) satis�es the homogeneous Brinkman system

4u� �u�r� = 0; div u = 0 in 
+: (3.129)
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Then u satis�es also the following integral representation formula

u(x) = V�

(
t+nt(u; �)

)
(x)�W�

(
u+nt
)
(x); 8 x 2 
+: (3.130)

Proof. We use arguments similar to the ones in [61, Proposition 4.4.1] for the Stokes system. In the case of a smooth bounded

domain 
0 � R
n and for u 2 C2(
+;R

n), � 2 C1(
+), formula (3.130) follows easily from the integration by parts, cf. e.g.

(3.128). Now consider a sequence of sub-domains f
jgj�1 in 
+ that contain the point x 2 
+ and converges to 
+ in the

sense of Lemma 2.2. Then formula (3.130) holds for each of the domains 
j and by the Lebesgue Dominated Convergence

Theorem (applied again after the change of variable as in Lemma 2.2 that reduces the integral over @
j to an integral over @
)

letting j !1, we obtain (3.130) for the Lipschitz domain 
+ as well. �

4. Invertibility of related integral operators

Lemma 4.1 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
. Let � 2 (0;1) and 0 � s � 1.

Then the following operators are isomorphisms,

1

2
I+K�

� : H�s
2 (@
;Rn)! H�s

2 (@
;Rn); (4.1)

1

2
I+K� : Hs

2(@
;R
n)! Hs

2(@
;R
n): (4.2)

Proof. Isomorphism property of operator (4.1) for s = 0 follows from [46, Proposition 7.1] (see also [69, Lemma 5.1]). By

duality this also implies the isomorphism property of operator (4.2) for s = 0.

Let us now remark that for � = 0 and 0 < s � 1, operator (4.2) is a Fredholm operator with index zero (cf., e.g., [61,

Proposition 10.5.3 and Theorem 5.3.6]), while the operator K�;0 := K� �K : Hs
2(@
;R

n)! Hs
2(@
;R

n) is compact (cf., e.g.,

[33, Theorem 3.4]), implying that for � > 0 and 0 < s � 1, (4.2) is a Fredholm operator with index zero as well. Then by Lemma

B.4 and the invertibility property of operator (4.2) for s = 0 we obtain the equalities

Ker

{
1

2
I+K� : Hs

2(@
;R
n)! Hs

2(@
;R
n)

}
= Ker

{
1

2
I+K� : H0

2(@
;R
n)! H0

2(@
;R
n)

}
= f0g; 0 < s � 1; (4.3)

which show invertibility and hence isomorphism property of operator (4.2) for � > 0 and 0 < s � 1 as well. A duality argument

implies that operator (4.1) is also an isomorphism whenever � > 0 and 0 < s � 1. �

We will often need the following two intervals,

R0(n; ") =

(
2(n � 1)

n + 1
� "; 2 + "

)
\ (1;+1); R1(n; ") =

{
(2� ";+1) if n = 3;(
2� "; 2(n�1)

n�3
+ "
)

if n > 3
; (4.4)

which are particular cases of a more general interval

R�(n; ") =

{
(2� ";+1) if n = 3 and � = 1;(

2(n�1)
n+1�2�

� "; 2(n�1)
n�1�2�

+ "
)
\ (1;+1) if n > 3 or 0 � � < 1

: (4.5)

Lemma 4.2 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
. Let � 2 (0;1). Then there

exists " = "(@
) > 0 such that for any p 2 R0(n; ") and p
0 2 R1(n; "), see (4.4), the following operators are isomorphisms,

1

2
I+K�

� : Lp(@
;R
n)! Lp(@
;R

n); (4.6)

1

2
I+K�

� : H�1
p0 (@
;R

n)! H�1
p0 (@
;R

n); (4.7)

1

2
I+K� : Lp0(@
;R

n)! Lp0(@
;R
n); (4.8)

1

2
I+K� : H1

p(@
;R
n)! H1

p(@
;R
n): (4.9)

If 
+ is of class C1, then the above invertibility properties hold for all p; p0 2 (1;1).

Proof. By [61, Theorem 9.1.11] there exists a parameter " > 0 such that for any p 2 R0(n; "),

1

2
I+K� : Lp(@
;R

n)! Lp(@
;R
n) (4.10)
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is a Fredholm operator with index zero. Then compactness of the operator K�
�;0 := K�

� �K� : Lp(@
;R
n)! Lp(@
;R

n) for any

p 2 (1;1) (see [33, Theorem 3.4(b)]), imply that operator (4.6) is Fredholm with index zero as well, for any p 2 R0(n; "). In

addition, a density argument based on Lemma B.4 and the invertibility property of operator (4.1) in the case s = 0, show that

operator (4.6) is an isomorphism for p = 2 and hence for any p 2 R0(n; ").

Similarly, by [61, Theorem 9.1.3] there exists a parameter (for the sake of brevity, we use the same notation as above) " > 0

such that for any p 2 R0(n; ") the operator

1

2
I+K : H1

p(@
;R
n)! H1

p(@
;R
n) (4.11)

is Fredholm with index zero. Then compactness of the complementary operator K�;0 := K� �K : H1
p(@
;R

n)! H1
p(@
;R

n) for

any p 2 (1;1) (see [33, Theorem 3.4(b)]), implies that operator (4.9) is Fredholm with index zero as well, for any p 2 R0(n; ").

In addition, a density argument based on Lemma B.4 and the invertibility property for operator (4.2) in the case s = 1, show

that operator (4.9) is an isomorphism for p = 2 and hence for any p 2 R0(n; ").

Isomorphism property of operators (4.7) and (4.8) then follow by duality and isomorphism property of operators (4.9) and

(4.6), respectively, for p0 = p
p�1

.

If 
+ is of class C1, then operator (4.11) is Fredholm with index zero for any p 2 (1;1), cf., e.g., [67, Remark 3.1], and the

the rest of the proof holds true for any p; q 2 (1;1). �

Lemmas 4.2, A.1 and B.1 (ii) and an interpolation argument (provided by the complex and real interpolation theory) imply

the following assertion.

Corollary 4.3 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
, and � 2 (0;1). Then there

exists " = "(@
) > 0 such that for any p 2 Rs(n; ") and p
0 2 R1�s(n; "), cf. (4.5), the following operators are isomorphisms

1

2
I+K� : Hs

p0(@
;R
n)! Hs

p0(@
;R
n); s 2 [0; 1]; (4.12)

1

2
I+K�

� : H�s
p (@
;Rn)! H�s

p (@
;Rn); s 2 [0; 1]; (4.13)

1

2
I+K� : Bs

p0;q(@
;R
n)! Bs

p0;q(@
;R
n); s 2 (0; 1); q 2 (1;1); (4.14)

1

2
I+K�

� : B�s
p;q(@
;R

n)! B�s
p;q(@
;R

n); s 2 (0; 1); q 2 (1;1): (4.15)

If 
+ is of class C1, then the properties hold for all p; p0 2 (1;1).

Next we show the following invertibility result (see also [46, Proposition 7.2] in the case p = 2 and s = 0).

Lemma 4.4 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
+. Let

� 2 (0;1). Then there exists a number " = "(@
) > 0 such that the operators

�
1

2
I+K� : Lp0;�(@
;R

n)! Lp0;�(@
;R
n); (4.16)

�
1

2
I+K�

� : Lp(@
;R
n)=R� ! Lp(@
;R

n)=R�; (4.17)

�
1

2
I+K� : H1

p;�(@
;R
n)! H1

p;�(@
;R
n); (4.18)

�
1

2
I+K�

� : H�1
p0 (@
;R

n)=R� ! H�1
p0 (@
;R

n)=R� (4.19)

are isomorphisms for all p 2 R0(n; ") and p
0 2 R1(n; ") (cf. (4.4)).

If the domain 
 is of class C1, the above properties hold for all p; p0 2 (1;1).

Proof. In the case � = 0, operator (4.16) is an isomorphism (cf. [61, Corollary 9.1.12]), and hence a Fredholm operator with

index zero for any p0 2 R1(n; "). Moreover, the operator K� �K is compact on the space Lp0(@
;R
n) (see [33, Theorem

3.4(b)]), and its range is a subset of Lp0;�(@
;R
n). Indeed, by using the formula

(K� �K) h =

(
�
1

2
I+K�

)
h�

(
�
1

2
I+K

)
h = 
+W�h� 
+Wh;

the equations divW�h = 0 and divWh = 0 in 
+, and then, the divergence theorem and the trace formulas (3.82), we deduce

that (K� �K) h 2 Lp0;�(@
;R
n) for any h 2 Lp0;�(@
;R

n). Therefore, the operator K� �K : Lp0;�(@
;R
n)! Lp0;�(@
;R

n) is

compact, and then operator (4.16) is Fredholm with index zero for any p0 2 R1(n; "). On the other hand, by a similar reasoning

(cf., e.g., [61, Theorem 9.1.3] and [33, Theorem 3.4 (b)]), operator (4.18) is Fredholm with index zero as well, for any

p 2 R0(n; ").
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We show now that operators (4.16) and (4.18) are also injective. Let us start from operator (4.18) with p = 2.

Let h0 2 H
1
2;�(@
;R

n) be such that
(
� 1

2
I+K�

)
h = 0. Thus, 
+W�h0 = 0, and by applying the Green formula (2.28) to

the double layer velocity and pressure potentials W�h0 and Qd
�h0 in 
+, we deduce that W�h0 = 0 and Qd

�h0 = c0 2 R
in 
+. According to formula (3.84), we obtain that t�nt

(
W�h0;Q

d
�h0
)
= t+nt

(
W�h0;Q

d
�h0
)
= �c0�, and then the relation


�W�h0 = h0 2 H
1
2;�(@
;R

n) shows that ht�nt
(
W�h0;Q

d
�h0
)
; 
�W�h0i@
 = 0. Finally, the relations W�h0(x) = O(jxj�n) and

Qdh0 = O(jxj1�n) as jxj ! 1 (see, e.g., [74, Lemma 2.12, (2.76)]), and the Green formula (2.28) applied to W�h0 and Q
d
�h0

in 
� imply that W�h0 = 0 and Qd
�h0 = 0 in 
�. Then the trace formula (3.82) yields that h0 = 0. Consequently, operator

(4.18) with p = 2 is injective. Then Lemma B.4 implies that operator (4.16) with p0 = 2 is injective as well. Applying Lemma B.4

again, we now obtain that operator (4.18) with p 2 R0(n; ") and operator (4.16) with p
0 2 R1(n; ") are injective, and according

to their Fredholm property, these operators are also isomorphisms. Operators (4.17) and (4.19) are then isomorphisms by duality.

If 
 is of C1 class, then for all p; p0 2 (1;1) operators (4.16) and (4.17) are Fredholm with index zero due to compactness

of the operators K and K� on the corresponding spaces (cf., e.g., [22, Eq. (3.51) in the proof of Proposition 3.5]), and [33,

Theorem 3.4 (b)]. Then the previous paragraph implies that operators (4.16)-(4.19) are isomorphisms for p; p0 2 (1;1). �

Lemmas 4.4, A.1 and B.1(ii) by interpolation imply the following result (see also [46, Proposition 7.2] for p = 2 and s = 0).

Corollary 4.5 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
+. Let

� 2 (0;1). Then there exists " = "(@
) > 0 such that for any p 2 Rs(n; ") and p0 2 R1�s(n; ") (cf. (4.5)), the following

operators are isomorphisms,

�
1

2
I+K� : Hs

p0;�(@
;R
n)! Hs

p0;�(@
;R
n); s 2 [0; 1]; (4.20)

�
1

2
I+K�

� : H�s
p (@
;Rn)=R� ! H�s

p (@
;Rn)=R�; s 2 [0; 1]; (4.21)

�
1

2
I+K� : Bs

p0;q;�(@
;R
n)! Bs

p0;q;�(@
;R
n); s 2 (0; 1); q 2 (1;1); (4.22)

�
1

2
I+K�

� : B�s
p;q(@
;R

n)=R� ! B�s
p;q(@
;R

n)=R�; s 2 (0; 1); q 2 (1;1): (4.23)

If 
+ is of class C1, then the properties hold for all p; p0 2 (1;1).

In the case � = 0, the result, corresponding to the next one, has been obtained in [61, Theorem 9.1.4, Corollary 9.1.5] (see

also [62, Theorem 6.1]).

Lemma 4.6 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
+. Let

� 2 (0;1). Then there exists a number " > 0 such that for any p 2 R0(n; ") and p
0 2 R1(n; "), see (4.4), the following Brinkman

single layer potential operators are isomorphisms

V� : Lp(@
;R
n)=R� ! H1

p;�(@
;R
n); (4.24)

V� : H�1
p0 (@
;R

n)=R� ! Lp0;�(@
;R
n): (4.25)

If 
+ is of class C1, then the above invertibility properties hold for all p; p0 2 (1;1).

Proof. First, we note that for any f 2 Lp(@
;R
n) the inclusion V�f 2 H

1
p(@
;R

n) follows by Theorem 3.5(iii). Moreover, the

inclusion V�f 2 H
1
p;�(@
;R

n) follows from the equation divV�f = 0 in 
+, the divergence theorem and relation (3.88). On the

other hand, there exists a number " > 0 such that the Stokes single layer potential operator

V : Lp(@
;R
n)=R� ! H1

p;�(@
;R
n)

is an isomorphism for any p 2 R0(n; ") (cf. [61, Theorem 9.1.4]), which implies that V : Lp(@
;R
n)! H1

p(@
;R
n) is a Fredholm

operator with index zero for the same range of p. Thus, the Brinkman single layer potential operator

V� : Lp(@
;R
n)! H1

p(@
;R
n) (4.26)

is a Fredholm operator of index zero for any p 2 R0(n; "), as follows from the equality V� = V + V�;0, where V�;0 := V� � V :

Lp(@
;R
n)! H1

p(@
;R
n) is a compact operator (cf. [33, Lemma 3.1]). Then by Lemma B.4, we obtain the equality

Ker
{
V� : Lp(@
;R

n)! H1
p(@
;R

n)
}
= Ker

{
V� : L2(@
;R

n)! H1
2(@
;R

n)
}
; (4.27)

for each p 2 R0(n; ").

Moreover, by considering a density '0 2 L2(@
;R
n) such that V�'0 = 0 on @
, by applying the Green identity (2.28) to the

single layer velocity and pressure potentials u0 = V�'0 and �0 = Qs
'0, and by using Theorem 3.5, we deduce that u0 = 0 and

�0 = c0 2 R in 
+. In addition, the behavior at in�nity of the single layer potentials, u0(x) = O(jxj�n), �(u0; �0)(x) = O(jxj1�n)
as jxj ! 1 (see, e.g., [46, Section 4]), yields that the Green identity (2.28) applies also to the �elds u0 and �0 in the exterior
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domain 
� and yields u0 = 0, �0 = 0 in 
�. Then by formulas (3.83) '0 = c0�. On the other hand, the divergence theorem and

the second equation in (3.4) imply that (V��)j (x) =

ˆ

+

@G�
jk(x � y)

@yk
dy = 0; and accordingly that V�� = 0. Thus, we obtain

the equality

Ker
{
V� : L2(@
;R

n)! H1
2(@
;R

n)
}
= R�:

Therefore, by (4.27) the codimension of the range of the operator V� : Lp(@
;R
n)! H1

p(@
;R
n) is equal to one. Moreover,

Range (V�;@
) � H1
p;�(@
;R

n), as follows from the divergence theorem and the second equation in (3.4). Since H1
p;�(@
;R

n) is

a subspace of codimension one in H1
p(@
;R

n), we conclude that the range of the operator V� : Lp(@
;R
n)! H1

p(@
;R
n) is just

H1
p;�(@
j ;R

n). Then the Fundamental quotient theorem for linear continuous maps implies V� : Lp(@
;R
n)=R� ! H1

p;�(@
;R
n)

is an isomorphism for any p 2 R0(n; "), as asserted.

Since the operator V� is self-adjoint, duality shows that operator (4.25) is also an isomorphism for any q 2 (1;1) such that

q = p
p�1

. Note that for the same range of q, the Stokes single layer potential operator V : H�1
q (@
;Rn)=R� ! L1

q;�(@
;R
n) is

an isomorphism as well (see [61, Corollary 9.1.5] for � = 0).

If 
+ is of class C1, then the operator V : H�1
q (@
;Rn)! Lp(@
;R

n) is Fredholm with index zero for any q 2 (1;1) (cf., e.g.,

[67, Remark 3.1]; see also [28, Proposition 4.1]). By duality, we deduce that operator (4.26) is Fredholm with index zero as well for

any p 2 (1;1) whenever � = 0. In view of [33, Theorem 3.4], the complementary operator V� � V : Lp(@
;R
n)! H1

p(@
;R
n)

is compact (even in the case of a Lipschitz domain). Therefore, the operator V� : Lp(@
;R
n)! H1

p(@
;R
n) is Fredholm with

index zero for any p 2 (1;1). Then the rest of the proof holds true for any p; q 2 (1;1). �

Lemmas 4.6, A.1 and B.1(ii) and an interpolation argument imply the following assertion (see also [67, Remark 3.1] in the

case of a C1 domain).

Corollary 4.7 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
 and let 
� := R

n n
+. Let

� 2 (0;1) and p 2 Rs(n; �), see (4.5). Then there exists " = "(@
) > 0 such that the following operators are isomorphisms,

V� : H�s
p (@
;Rn)=R� ! H1�s

p;� (@
;R
n); s 2 [0; 1]; (4.28)

V� : B�s
p;q(@
;R

n)=R� ! B1�s
p;q;�(@
;R

n); s 2 (0; 1); q 2 (1;1): (4.29)

If 
+ is of class C1, then the property holds for any p 2 (1;1).

5. The Dirichlet and Neumann problems for the Brinkman system

5.1. The Dirichlet problem for the Brinkman system

Let us consider the Dirichlet problem for the homogeneous Brinkman system,

4u� �u�r� = 0; div u = 0 in 
+; (5.1)

u+nt = h0 on @
; (5.2)

and show the following assertion (cf. [69, Theorem 5.5] for p = 2 and the boundary data in the space L2;�(@
;R
n); for � = 0

see also [61, Corollary 9.1.5, Theorems 9.1.4, 9.2.2 and 9.2.5] and [62, Theorem 7.1]). The Dirichlet boundary condition (5.2)

is understood in the sense of non-tangential limit at almost all points of @
.

Theorem 5.1 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
+. Let � 2 (0;1), p 2 (1;1),

and p� := maxfp; 2g.

(i) Let h0 2 H
1
p;�(@
;R

n). Then there exists " = "(@
) > 0 such that for any p 2 R0(n; "), the Dirichlet problem (5.1)-(5.2)

has a solution (u; �) such that M(u);M(ru);M(�) 2 Lp(@
) and there exist the non-tangential limits of u, ru and �

at almost all points of the boundary @
. Moreover, there exists a constant C = C(@
; p; �) > 0 such that

kM(u)kLp(@
) + kM(ru)kLp(@
) + kM(�)kLp(@
) � Ckh0kH1
p(@
;R

n); (5.3)

ku+ntkLp(@
) + kru+ntkLp(@
) + k�+
ntkLp(@
) � Ckh0kH1

p(@
;R
n): (5.4)

In addition, u 2 B
1+ 1

p

p;p� (
+;R
n), � 2 B

1
p

p;p�(
+) and

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

� Ckh0kH1
p(@
;R

n):
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(i i) Let h0 2 Lp;�(@
;R
n). Then there exists " = "(@
) > 0 such that for any p 2 R1(n; ") the Dirichlet problem (5.1)-(5.2)

has a solution (u; �) such that M(u) 2 Lp(@
). Moreover, there exists a constant C > 0 such that

kM(u)kLp(@
) � Ckh0kLp(@
;Rn): (5.5)

In addition, u 2 B
1
p

p;p�(
+;R
n) and

kuk
B

1
p

p;p�
(
+;Rn)

� Ckh0kLp(@
;Rn):

(i i i) Let 0 < s < 1 and h0 2 H
s
p;�(@
;R

n). Then there exists " = "(@
) > 0 such that for any p 2 R1�s(n; �) (cf. (4.5)), the

Dirichlet problem (5.1)-(5.2) (where the Dirichlet condition (5.2) is considered in the Gagliardo trace sense) has a solution

u 2 B
s+ 1

p

p;p� (
+;R
n), � 2 B

s+ 1
p
�1

p;p� (
+), and there exists a constant C > 0 such that

kuk
B
s+ 1

p

p;p�
(
+;Rn)

+ k�k
B
s+ 1

p �1

p;p�
(
+)

� Ckh0kHs
p(@
;R

n):

In each of the cases (i), (i i) and (i i i), the solution is unique up to an arbitrary additive constant for the pressure �, and can be

expressed in terms of the following double layer velocity and pressure potentials

u =W�

((
�
1

2
I+K�

)�1
h0

)
; � = Qd

�

((
�
1

2
I+K�

)�1
h0

)
in 
+ : (5.6)

Proof. According to Lemmas 3.4, 4.4 and Theorem 3.5(iii), the functions given by (5.6) provide a solution of the Dirichlet

problem (5.1)-(5.2), which satis�es the corresponding norm estimates mentioned in items (i)� (i i). For 0 < s < 1 in item (iii),

we have by Corollary 4.5 that
(
� 1

2
I+K�

)�1
h0 2 H

s
p(@
;R

n) ,! Bs
p;p�(@
;R

n) with corresponding norm estimates, which by

(3.40), (3.75) and (3.82) proves the desired solution properties.

We will now prove uniqueness of the solution of the Dirichlet problem (5.1)-(5.2) satisfying the conditions in item (i i), by

modifying arguments in the proofs of [61, Theorem 5.5.4] and [62, Theorem 7.1]. Let (u0; �0) be a solution of the homogeneous

version of the Dirichlet problem (5.1)-(5.2) such that M(u0) 2 Lp(@
) and u0 satis�es the homogeneous boundary condition

in the sense of non-tangential limit at almost all points of the boundary @
. Let x0 2 
+ and let f
jgj�1 be a sequence of C
1

sub-domains in 
+ that contain x0 and converge to 
+ in the sense described in Lemma 2.2. Let G�
k (x) = (G�

k1(x); : : : ;G
�
kn(x)),

k = 1; : : : ; n, where (G�;�) is the fundamental solution of the Brinkman system in Rn (see (3.1) and (3.2)). Then for each 
j

and any k = 1; : : : ; n, the functions vj and qj given by

vjx0 =Wj
�

(
h0(j)

)
; qjx0 = Qj ;d

�

(
h0(j)

)
in Rn n @
j ; h0(j) =

(
�
1

2
I+Kj

�

)�1
(G�

k (x0 � �)j@
j
); (5.7)

satisfy the system {
4vjx0 � �v

j
x0 �rq

j
x0 = 0; div vjx0 = 0 in 
j ;

(vjx0)
+
nt = G�

k (x0; �)j@
j
:

(5.8)

HereWj
� :=W�;@
j

and Qj ;d
� := Qd

�;@
j
are the double layer velocity and pressure potential operators corresponding to @
j , while

Kj
� : H1

p0(@
j ;R
n)! H1

p0(@
j ;R
n) is the corresponding double layer integral operator. Indeed, G�

k (x0 � �)j@
j
2 H1

p;�(j)
(@
j ;R

n)

and, in view of Lemma 4.4, the operator � 1
2
I+Kj

� : H1
p0;�(j)

(@
j ;R
n)! H1

p0;�(j)
(@
j ;R

n) is an isomorphism for any p0 2 (1;1)

since 
j is a smooth domain.

Note that the operator � 1
2
I+K� : H1

p0;�(@
;R
n)! H1

p0;�(@
;R
n) is an isomorphism for any p0 2 R0(n; ") (see Lemma 4.4),

i.e., for any p0 such that 1
p0
= 1� 1

p
, where p 2 R1(n; "). After performing a change of variable as in Lemma 2.2, the operator

� 1
2
I+Kj

� de�ned on @
j can be identi�ed with an operator T j
� acting on functions de�ned on @
. Then, employing the

arguments, e.g., similar to those in the last paragraph in p.116 in [61], which are based on [61, Lemmas 11.9.13 and 11.12.2],

and taking into account [47, Proposition 1] (see also [23, Theorems 3.8 (iv) and 4.15]), one can show that the sequence of

operators T j
� converges to the operator T� := � 1

2
I+K� in the operator norm and the sequence of the inverses of the operators

T j
� converges to the inverse of the operator T� in the operator norm. Hence the operator norms k

(
� 1

2
I+Kj

�

)�1
kH1

p0
(@
j ;R

n) are

bounded uniformly in j , implying that there exist some constants C0; C
0
0 depending only on p, n, � and the Lipschitz character

of 
+ (thus, C0 does not depend on j) such that

kh0(j)kH1
p0
(@
j ;R

n) � C0kG
�
k (x0; �)kH1

p0
(@
j ;R

n) � C 00(kM(G�
k (x0; �))kLp0 (@
)

+ kM(rG�
k (x0; �))kLp0 (@
)

); (5.9)

where the non-tangential maximal operator M is considered with respect to a regular family of cones truncated at a height

smaller than the distance from x0 to @
 (cf. [75, Theorem 1.12], see also Lemma 2.2). Further, by considering the change of

variable yj := �j(y) as in Lemma 2.2, the double-layer potential representations (5.7) become

v jx0;`(x) =

ˆ
@
j

S�
i`s(yj ; x)�s(yj)h

0(j)
i (yj)d�yj =

ˆ
@


S�
i`s(�j(y); x)�s(�j(y))H

0(j)
i (y)d�y; (5.10)
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qjx0(x) =

ˆ
@
j

��
is(yj ; x)�s(yj)h

0(j)
i (yj)d�yj =

ˆ
@


��
is(�j(y); x)�s(�j(y))H

0(j)
i (y)d�y; 8 x 2 
j ; (5.11)

where H0(j)(y) := h0(j)(�j(y))!j(y); y 2 @
; y
(j) = (y

(j)
1 ; : : : ; y

(j)
n ), h0(j) = (h

0(j)
1 ; : : : ; h

0(j)
n ), H0(j) = (H0(j)

1 ; : : : ; H
0(j)
n ), and !j is the

Jacobian of �j : @
! @
j .

In view of (5.9) and of the uniform boundedness of f!jgj�1, there exists a constant C1 > 0 (which depends only on p, n and

the Lipschitz character of 
+) such that

kH0(j)kH1
p0
(@
;Rn) � C1kh

0(j)kH1
p0
(@
j ;R

n) � C 00C1(kM(G�
k (x0; �))kLp0 (@
)

+ kM(rG�
k (x0; �))kLp0 (@
)

); 8 j � 1: (5.12)

Hence fH0(j)gj�1 is a bounded sequence in H
1
p0(@
;R

n), and, thus, there exists a subsequence, still denoted as the sequence, and

a function H0 2 H1
p0(@
;R

n), such that H0(j) ! H0 weakly in H1
p0(@
;R

n). By this property and letting j !1 in (5.10)-(5.11),

we obtain vjx0(x)! vx0(x) = W�H
0(x); qjx0(x)! qx0(x) = Qd

�H
0(x) pointwise for any x 2 
+. Moreover, in view of Lemma 3.4

(where the constants depend only on the Lipschitz character of 
+), applied to @
j , and (5.9), we obtain the inequality

kM(rvjx0)kLp0 (@
j ) + kM(qjx0)kLp0 (@
j ) � C3kh
0(j)k � C 00C3

(
kM(G�

k (x0; �))kLp0 (@
)
+ kM(rG�

k (x0; �))kLp0 (@
)

)
; (5.13)

with a constant C3 depending only on p, n and the Lipschitz character of 
+.

In addition, the pair
(
G�;j
k (x0; �); �

j
k(x0; �)

)
given by

G�;j
k (x0; �) := G�

k (x0 � �)� vjx0 ; �j
k(x0; �) := �k(x0 � �)� q

j
x0 (5.14)

de�nes the Green function of the Brinkman system in 
j and its corresponding pressure vector, i.e., it satis�es for each x0 2 
j

the following relations 
�r�j

k(x0; y) +4G�;j
k (x0; y)� �G

�;j
k (x0; y) = ��y(x0)I;

divyG
�;j
k (x0; y) = 0 in 
j ;

G�;j
k (x0; y) = 0; y 2 @
j :

(5.15)

Hence, for each 
j and any k = 1; : : : ; n, we obtain the relations〈
4G�;j

k (x0; �)� �G
�;j
k (x0; �)�r�

j
k(x0; �); u

0
〉

j

= u0k (x0): (5.16)

Then by (5.15) and (5.16) we obtain that

u0k (x0) =

ˆ
@
j

tc+(G�;j
k (x0; �); �

j
k(x0; �)) � u

0d�j : (5.17)

By (5.14) and (5.13), there exists a constant C depending only on �, p, n and the Lipschitz character of 
+ such that

kM(rG�;j
k (x0; �))kLp0 (@
j ) + kM(�j

k(x0; �))kLp0 (@
j ) � C(kM(G�
k (x0; �))kLp0 (@
)

+ kM(rG�
k (x0; �))kLp0 (@
)

);

Since also M(u0) 2 Lp(@
) and (u0)+nt = 0 on @
, then the Lebesgue Dominated Convergence Theorem (applied again after

the change of variable as in Lemma 2.2 that reduces the integral over @
j to an integral over @
) implies that the right hand

side in (5.17) tends to zero as @
j tends to @
 and hence u0k (x0) = 0. Because x0 is an arbitrary point in 
+, we conclude

that u0 = 0 in 
+, and by the �rst equation in (5.1), �0 is a constant pressure, as asserted. This completes the proof of the

uniqueness in item (ii).

Let us show also the uniqueness result for item (i). To do so, assume that (u0; �0) is a solution of the homogeneous version of

the Dirichlet problem (5.1) such thatM(u0);M(ru0);M(�0) 2 Lp(@
), there exist the non-tangential limits of u0,ru0 and �0 at
almost all points of the boundary @
, and u0 satis�es the homogeneous Dirichlet boundary condition in the sense of non-tangential

limit at almost all points of @
. Then the Green representation formula u0 = V�

(
t+nt(u0; �0)

)
�W�

(
u0+nt
)
in 
+ (cf. Lemma

3.8) reduces to u0 = V�

(
t+nt(u0; �0)

)
in 
+, and, by considering the non-tangential trace, we obtain that V�

(
t+nt(u0; �0)

)
= 0

on @
. Thus, t+nt(u0; �0) 2 R� (see Lemma 4.6), and hence u0 = 0 in 
+, while the Brinkman equation (5.1) shows that �
0 = 0

in 
+ (up to an additive constant pressure). This completes the proof of the statement in item (i).

Next we show for s 2 (0; 1) the uniqueness of a solution to the Dirichlet problem (5.1)-(5.2), in the hypothesis of item (i i i).

To this end, let (u0; �0) 2 B
s+ 1

p

p;p� (
+;R
n)� B

s+ 1
p

p;p� (
+) denote a solution of the homogeneous version of the Dirichlet problem

(5.1)-(5.2). By Lemmas 2.4, 2.11 and Theorem 2.5 we obtain that 
+u
0 = u0+nt = 0 and t+�(u

0; �0) 2 Bs�1
p;p�(@
;R

n). Then for

s 2 (0; 1), the Green representation formula (3.128) applied to the pair (u0; �0) implies that 
+V�

(
t+�(u; �)

)
= 0 on @
. Hence

by (3.88) and (4.29) we obtain that t+�(u; �) 2 R�. Since V�� = 0 in 
+, we deduce that u0 = 0 in 
+, and by the Brinkman

equation (5.1) �0 = 0 (up to an additive constant). �

Note that for p = 2, Theorem 5.1 (ii) has been obtained by Z. Shen in [69, Theorem 5.5] by using another double layer

potential approach.

The following regularity result has been obtained in [61, Theorem 4.3.1] and [62, Theorem 7.1] in the case of the Stokes

system (i.e., for � = 0). We prove a similar result in the case of the Brinkman system (i.e., for � > 0) by using the main ideas

of the proof of [62, Theorem 7.1] (see also [56, (2.95), Remark V p. 37], [16, Theorem 2], [35, Lemma 3.3], [45]).
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Theorem 5.2 Let 
+ � R
n be a bounded Lipschitz domain with connected boundary @
. Let � � 0, p 2 (1;1) and p� :=

maxfp; 2g. Assume that a pair (u; �) satis�es the homogeneous Brinkman system (5.1). Then the following properties hold.

(i) There exists " = "(@
) > 0 such that for any p 2 (2� ";1), the condition M(u) 2 Lp(@
) implies that there exists the

non-tangential limit of u almost everywhere on @
 and u+nt 2 Lp;�(@
;R
n). Moreover,

ku+ntkLp(@
;Rn) � C1kM(u)kLp(@
); kuk
B

1
p

p;p�
(
+;Rn)

� C 01kM(u)kLp(@
); (5.18)

with some constants C1 � C1(@
; p; �) > 0, C 01 � C 01(@
; p; �) > 0.

(i i) There exists " = "(@
) > 0 such that for any p 2 R0(n; ") [ (2;1), the assumption M(u);M(ru);M(�) 2 Lp(@
)
implies that there exist the non-tangential limits of u;ru; � almost everywhere on @
, and that u+nt 2 H

1
p;�(@
;R

n) and

t+nt(u; �) 2 Lp(@
;R
n). In addition, there exist some constants C2 � C2(@
; p; �) > 0, C 02 � C 02(@
; p; �) > 0 such that

ku+ntkH1
p(@
;R

n) + kt+nt(u; �)kLp(@
;Rn) � C2

(
kM(u)kLp(@
) + kM(ru)kLp(@
) + kM(�)kLp(@
)

)
; (5.19)

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

� C 02
(
kM(u)kLp(@
) + kM(ru)kLp(@
) + kM(�)kLp(@
)

)
: (5.20)

Proof. (i) We will use arguments similar to the ones in the proof of [16, Lemma 8]. First, let f
jgj�1 be a sequence of sub-

domains in 
+ that converge to 
+ in the sense described in Lemma 2.2, with the corresponding notations �j , �
(j) and !j

also introduced there. Due to ellipticity of the homogeneous Brinkman system in 
+, we have (u; �) 2 C
1(
+;R

n)� C1(
+).

Now, let h(j) := uj@
j
. Then (uj ; �j) := (uj
j

; �j
j
) satis�es the homogeneous Brinkman system in 
j and the Dirichlet boundary

condition uj j@
j
= h(j) on @
j , where h

(j) 2 Lp;�(j)(@
j ;R
n). The solution of such a problem is unique, up to an additive constant

for the pressure (see, e.g., Theorem 5.1).

According to Lemma 4.4 applied to the smooth domain 
j , such a solution can be expressed in terms of the double layer

potential uj =W�;@
j
h0(j), �j = Qd

�;@
j
h0(j), with a density h0(j) 2 Lp;�(j)(@
j ;R

n) satisfying the equation
(
� 1

2
I+Kj

�

)
h0(j) = h(j),

where Kj
� := K�;@
j

is associated (as in (3.89)) with the double layer potential W�;@
j
de�ned on Lp;�(j)(@
j ;R

n), and, in view

of Lemma 4.4, the operator � 1
2
I+Kj

� : Lp;�(j)(@
j ;R
n)! Lp;�(j)(@
j ;R

n) is an isomorphism for any p 2 (1;1).

Note that the operator � 1
2
I+K� : Lp;�(@
;R

n)! Lp;�(@
;R
n) is an isomorphism for any p 2 R1(n; ") (see Lemma 4.4).

After performing a change of variable as in Lemma 2.2, the operator � 1
2
I+Kj

� de�ned on @
j can be identi�ed with an operator

T j
� acting on functions de�ned on @
. Then, employing the arguments, e.g., similar to those in the last paragraph in p.116 in

[61], which are based on [61, Lemmas 11.9.13 and 11.12.2], and taking into account [47, Proposition 1] (see also [23, Theorems

3.8 (iv) and 4.15]), one can show that the sequence of operators T j
� converges to the operator T� := � 1

2
I+K� in the operator

norm and the sequence of the inverses of the operators T j
� converges to the inverse of the operator T� in the operator norm for

p 2 R1(n; "). Hence, if p 2 R1(n; "), the operator norms k
(
� 1

2
I+Kj

�

)�1
kLp(@
j ;R

n) are bounded uniformly in j , implying that

there exists a constant c0 depending only on p, n, �, and the Lipschitz character of 
+ (thus, not depending on j) such that

kh0(j)kpLp(@
j ;R
n) � c0kh

(j)kpLp(@
j ;R
n) = c0kuk

p
Lp(@
j ;R

n)

= c0

ˆ
@
j

ju(yj)j
pd�yj = c0

ˆ
@


ju(�j(y))j
p!j(y)d�y � c1

ˆ
@


jM(u(y))jpd�y = c1kM(u)kpLp(@
;Rn); (5.21)

Recall that we have approximated the domain 
+ with a sequence of smooth domains 
j with uniform Lipschitz characters from

inside, and we have employed here the change of variable yj := �j(y), y 2 @
; yj 2 @
j ; and !j is the Jacobian of �j : @
! @
j

(cf. Lemma 2.2). Hence the constants c0 and c1 depend only on p, n, �, and the Lipschitz character of 
+.

Further, the double-layer potential W�;@
j
h0(j) becomes

u`(x) =

ˆ
@
j

S�
i`s(yj ; x)�s(yj)h

0(j)
i (yj)d�yj =

ˆ
@


S�
i`s(�j(y); x)�s(�j(y))H

0(j)
i (y)d�y; 8 x 2 
j ; (5.22)

where H0(j)(y) := h0(j)(�j(y))!j(y); h
0(j) = (h

0(j)
1 ; : : : ; h

0(j)
n ), H0(j) = (H0(j)

1 ; : : : ; H
0(j)
n ).

In view of (5.21) and of the uniform boundedness of f!jgj�1, there exist some constants c1; c2 > 0 (which depend only on


+ and p) such that

ˆ
@


jH0(j)(y)jpd�y � c2

ˆ
@
j

ju(yj)j
pd�yj � c 02

ˆ
@


jM(u(y))jpd�y; 8 j � 1: (5.23)

Hence fH0(j)gj�1 is a bounded sequence in Lp(@
;R
n), and, thus, there exists a subsequence, still denoted as the sequence, and

a function H0 2 Lp(@
;R
n), such that H0(j) ! H0 weakly in Lp(@
;R

n). By this property and letting j !1 in (5.22), we obtain

u =W�H
0 in 
+: According to Lemma 3.4(i,iv), there exists the non-tangential limit u+nt = (W�H

0)+nt of u at almost all points

of @
, and by estimates (3.40) and (5.23), we obtain that

ku+ntkLp(@
;Rn) = k(W�H
0)+ntkLp(@
;Rn) � c3kH

0kLp(@
;Rn)� c3 lim inf
j!1

kH0(j)kLp(@
;Rn) � c4kM(u)kLp(@
); (5.24)
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where the constants c3; c4 > 0 do not depend on j . Moreover, the divergence theorem shows that u+nt = (W�H
0)+nt 2 Lp;�(@
;R

n).

Estimate (5.18) is provided by the representation u =W�H
0, by continuity of operator (3.70), and by estimates (5.24). This

completes the proof of item (i) for any p 2 R1(n; ").

Let us now consider item (i) for any p > 2 (not covered yet when n > 3). Note that inclusions 2 2 R1(n; ") and Lp(@
) �
L2(@
) particularly imply that for such p there exist non-tangential limits of u almost everywhere on @
. Implementing now,

e.g., [58, Proposition 3.29] completes the proof for any p > 2.

(ii) Now assume that u and � satisfy the Brinkman system and that M(u);M(ru);M(�) 2 Lp(@
). As in the proof of item

(i), we consider again a sequence of smooth domains f
jgj2N, such that 
j � 
+ and 
j ! 
+ as j !1.

As we already mentioned, (uj ; �j) := (uj
j
; �j
j

) 2 C1(
j ;R
n)� C1(
j). Thus, h

(j) := uj@
j
2 C1(@
j ;R

n) � H1
p(@
j ;R

n)

and h(j) 2 Lp;�(j)(@
j ;R
n), for any j 2 N. Then the pair (uj ; �j) 2 C

1(
j ;R
n)� C1(
j) satis�es the Brinkman system in 
j

with the Dirichlet boundary condition uj j@
j
= h(j) 2 H1

p;�(j)
(@
j ;R

n). The solution of such a problem is unique up to an additive

constant pressure (see Theorem 5.1(i)) and can be expressed in terms of a double layer potential as in item (i), but now with a

density in H1
p;�(j)

(@
j ;R
n). Proceeding similar to the proof of item (i), we prove item (ii). �

Remark 5.3 The condition requiring the existence of the non-tangential limits of u, ru and � at almost all points of the

boundary @
 in Lemma 3.8 is particularly satisfied if p 2 R0(n; ") [ (2;1) with " > 0 as in Theorem 5.2(ii). Indeed, for

such p, the condition is implied by the inclusions M(u);M(ru);M(�) 2 Lp(@
) and by the Brinkman system (3.129).

Having in view Theorem 5.1(iii), we are now able to consider the Poisson-Dirichlet problem for the Brinkman system,{
4u� �u�r� = f; div u = 0 in 
+


+u = h0 on @

(5.25)

with the Dirichlet datum for the Gagliardo trace 
+u (see also [61, Theorem 10.6.2] for � = 0).

Theorem 5.4 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
. Let � 2 (0;1) and 0 < s � 1.

Then there exists " = "(@
) > 0 such that for any p 2 R1�s(n; �) (cf. (4.5)), the Dirichlet problem (5.25) with f 2 Lp(
+;R
3)

and h0 2 H
s
p;�(@
;R

n) has a solution (u; �) 2 B
s+ 1

p

p;p� (
+;R
n)� B

s+ 1
p
�1

p;p� (
+), which is unique up to an arbitrary additive constant

for the pressure �, where p� = maxf2; pg. In addition, there exists a constant C = C(s; p;
+) > 0 such that

kuk
B
s+ 1

p

p;p�
(
+;Rn)

+ k�k
B
s+ 1

p �1

p;p�
(
+)=R

� C(kfkLp(
+;Rn) + kh0kHs
p(@
;R

n)):

Proof. If f = 0, the existence of a solution of the problem (5.25) for 0 < s < 1 is implied by Theorem 5.1(iii) together with the

asserted estimate, while for s = 1 it follows from Theorems 5.1 (i) and 2.5 (iii).

If f 6= 0, we will look for a solution of problem (5.25) in the form

u = N�;
+ f + v; � = Q
+ f + q; (5.26)

where the Newtonian velocity and pressure potentials N�;
+ f and Q
+ f are de�ned by (3.21). By Remark 3.3,

4N�;
+ f � �N�;
+ f �rQ
+f = f; div N�;
� f = 0 in 
+;

(N�;
+ f;Q
+ f) 2 B
2
p;p�(
+;R

n)� B1
p;p�(
+); 
+(N�;
+ f) 2 H

1
p;�(@
;R

n); t+�
(
N�;
+ f;Q
� f

)
2 Lp(@
;R

n):

Then problem (5.25) reduces to the one for the corresponding homogeneous Brinkman system,{
4v � �v �rq = 0; div v = 0 in 
+;


+v = h00;
(5.27)

where h00 := h0 � 
+
(
N�;
+ f

)
2 Hs

p;�(@
;R
n); already discussed in the �rst paragraph of the proof. Therefore, there exists a

solution (u; �) 2 B
s+ 1

p

p;p� (
+;R
n)� B

s+ 1
p
�1

p;p� (
+) of the Poisson problem (5.25), which satis�es the asserted estimate.

Let us prove the uniqueness of the solution to the Poisson problem (5.25) for 0 < s < 1. To do so, we consider a solution

(u0; �0) 2 B
s+ 1

p

p;p� (
;R
3)� B

s+ 1
p
�1

p;p� (
) of the homogeneous version of the problem (5.25). Let us take the trace of the Green

representation formula (3.128) for (u0; �0). Since 
+u
0 = 0, we obtain the equation

V�
(
t+�(u

0; �0)
)
= 0 on @
;

for t+�(u
0; �0) 2 Bs�1

p;p�(@
), which by Corollary 4.7 has a one-dimensional set of solutions, t+�(u
0; �0) = c�, where c 2 R.

Substituting this back into the Green representation formula (3.128) we obtain u0 = cV�� = 0 in 
+ (cf. the arguments

in the proof of Lemma 4.6), and by the homogeneous Brinkman equation, �0 is an arbitrary constant. Finally, uniqueness for

0 < s < 1 implies also uniqueness for s = 1. �
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5.2. The Neumann problem for the Brinkman system

Using an argument similar to the one for the Robin boundary value problem for the Brinkman system in [35], we obtain in this

section the well-posedness of the Neumann problem for the linear Brinkman system,
4u� �u�r� = 0; in 
+;

div u = 0 in 
+;

t+nt(u; �) = g0 on @


(5.28)

in Lp�based Bessel potential and Besov spaces for some " > 0, and extend the results obtained in the case p = 2 and for a

conormal derivative given by
@u

@n
:= ��� +

@u

@�
, in [69, Theorem 5.3] (see also [61, Theorem 5.5.2] in the case � = 0). Note

that the Neumann boundary condition in (5.28) is understood in the sense of non-tangential limit almost everywhere on @
.

Theorem 5.5 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
. Let � 2 (0;1). Then there

exists � > 0, such that for any p 2 R0(n; �) (see (4.4)), and for any given datum g0 2 Lp(@
;R
n), the Neumann problem (5.28)

has a unique solution (u; �) such thatM(u);M(ru);M(�) 2 Lp(@
). The solution can be represented by the single layer velocity

and pressure potentials

u = V�

((
1

2
I+K�

�

)�1
g0

)
; � = Qs

((
1

2
I+K�

�

)�1
g0

)
: (5.29)

Moreover, (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+), and there exist some constants CM , C and C 0 depending only on 
+, �, and p

such that

kM(ru)kLp(@
) + kM(u)kLp(@
) + kM(�)kLp(@
) � CMkg0kLp(@
;Rn); (5.30)

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

� Ckg0kLp(@
;Rn); (5.31)

k
+ukH1
p(@
;R

n) + kt+�(u; �)kLp(@
;Rn) � C 0kg0kLp(@
;Rn): (5.32)

Proof. We use an argument similar to that for [23, Theorem 4.15] (see also [62, Theorem 3.1, Proposition 3.3]). By Lemma 4.2

there exists � > 0 such that operator 1
2
I+K�

� : Lp(@
;R
n)! Lp(@
;R

n) is an isomorphism for p 2 R0(n; �). Along with

Lemma 3.4, Theorem 3.5 and Lemma 3.6 this implies that representation (5.29) gives a solution of problem (5.28) that

belongs to the space B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+) and satis�es estimates (5.30)-(5.32).

In order to show the uniqueness assertion, we assume that (u0; �0) is a solution of the homogeneous version of (5.28)

such that M(u0);M(ru0);M(�)0 2 Lp(@
) and satis�es the Neumann condition almost everywhere on @
 in the sense of

non-tangential limit. Then the Green representation formula (3.130) gives,

u0 = V�

(
t+nt(u

0; �0)
)
�W�

(
u0+nt
)
= �W�

(
u0+nt
)

in 
+; (5.33)

which, combined with formulas (3.82), leads to the boundary integral equation(
1

2
I+K�

)
u0+nt = 0 on @
: (5.34)

Here u0+nt 2 H
1
p(@
;R

n) due to Lemma 3.4(i). Then invertibility of operator (4.9) in Lemma 4.2 implies that u0+nt = 0 on @


and thus, by (5.33), u0 = 0 in 
+. Moreover, by the homogeneous Neumann condition satis�ed by (u0; �0), we obtain that

�0 = 0 in 
+. This concludes the proof of uniqueness of the solution of the Neumann problem (5.28), and hence the proof of

the theorem. �

Having in view Theorem 5.5, we are now able to consider the Poisson-Neumann problem for the Brinkman system,{
4u� �u�r� = f; div u = 0 in 
+

t+�(u; �) = g0 on @

(5.35)

with the Neumann datum for the canonical conormal derivative t+�(u; �) (see also [62, Theorem 10.6.4] for � = 0).

Theorem 5.6 Let 
+ � R
n (n � 3) be a bounded Lipschitz domain with connected boundary @
. Let � 2 (0;1). Then

there exists " = "(@
) > 0 such that for any p 2 R0(n; �) (cf. (4.4)), the Neumann problem (5.35) with f 2 Lp(
+;R
3) and

g0 2 Lp(@
;R
n) has a unique solution (u; �) 2 B

1+ 1
p

p;p� (
+;R
n)� B

1
p

p;p�(
+), where p
� = maxf2; pg. In addition, there exists a

constant C = C(p;
+) > 0 such that

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

� C(kfkLp(
+;Rn) + kg0kLp(@
;Rn));
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k
+ukH1
p(@
;R

n) � C(kfkLp(
+;Rn) + g0kLp(@
;Rn)):

Moreover, if f = 0, then M(u);M(ru);M(�) 2 Lp(@
) and there exists a constant CM > 0 such that

kM(u)kLp(@
) + kM(ru)kLp(@
) + kM(�)kLp(@
) � CMkg0kLp(@
;Rn):

Proof. If f = 0, there exists a solution of problem (5.35) given by the solution of the corresponding problem (5.28) with the

non-tangential conormal derivative in the Neumann condition, whose existence is provided by Theorem 5.5 together with the

asserted estimate. Here we rely also on the equivalence of the conormal derivatives, t+�(u; �)=t+nt(u; �), due to Theorem 2.13.

If f 6= 0, we will look for a solution of problem (5.35) in the form

u = N�;
+ f + v; � = Q
+ f + q; (5.36)

where the Newtonian velocity and pressure potentials N�;
+ f and Q
+ f are de�ned by (3.21). According to Remark 3.3, we

obtain the relations

4N�;
+ f � �N�;
+ f �rQ
+f = f; div N�;
� f = 0 in 
+;

(N�;
+ f;Q
+ f) 2 B
2
p;p�(
+;R

n)� B1
p;p�(
+); 
+(N�;
+ f) 2 H

1
p;�(@
;R

n); t+
(
N�;
+ f;Q
� f

)
2 Lp(@
;R

n):

Then problem (5.35) reduces to the problem for the corresponding homogeneous Brinkman system,{
4v � �v �rq = 0; div v = 0 in 
+;

t+�(u; �) = g00 on @
;
(5.37)

where g00 := g0 � t+�
(
N�;
� f�;Q
� f�

)
2 Lp(@
;R

n); already discussed in the �rst paragraph of the proof. Therefore, there

exists a solution (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+) of the Poisson problem (5.35), which satis�es all the asserted estimates.

Let us prove uniqueness of the solution to the Poisson problem (5.35). Indeed, let us consider a solution (u0; �0) 2

B
1+ 1

p

p;p� (
;R
3)� B

1
p

p;p�(
) of the homogeneous version of problem (5.35). Let us take the trace of the Green representation

formula (3.128) for (u0; �0), considered for any s 2 (0; 1). Since t+�(u; �) = 0, we obtain the equation


+u
0 =

1

2

+u

0 �K�
+u
0 on @
;

with the unknown 
+u
0 2 Bs

p;p�(@
;R
n), which, by Corollary 4.3, has only the trivial solution. Substituting this back to the

Green representation formula (3.128) we obtain u0 = 0 in 
+. Then the Brinkman system implies �0 = c 2 R, and taking again
into account that t+�(u; �) = 0, we obtain �0 = 0 in 
+, as asserted. �

6. The mixed Dirichlet-Neumann problem for the Brinkman system

In this section we show the well-posedness of the mixed Dirichlet-Neumann boundary value problem for the Brinkman system
4u� �u�r� = 0; div u = 0 in 
+;

u+ntjSD = h0;

t+nt(u; �)jSN = g0;

(6.1)

on a bounded, creased Lipschitz domain 
+ � R
n (n � 3) with connected boundary @
, which is decomposed into two disjoint

admissible patches SD and SN (see De�nition 6.3), �jSD is the operator of restriction from Hs
p(@
;R

n) to Hs
p(SD;R

n), and �jSN
is de�ned similarly. We show that for h0 2 H

1
p(SD;R

n) and g0 2 Lp(SN ;R
n) given and for some range of p, there exists a unique

solution (u; �) of the mixed problem (6.1), such that M(u);M(ru);M(�) 2 Lp(@
), and the Dirichlet and Neumann boundary
conditions in (6.1) are satis�ed in the sense of non-tangential limits at almost all points of SD and SN , respectively. Moreover,

we will show that (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+).

We consider also a counterpart mixed problem
4u� �u�r� = 0; div u = 0 in 
+


+ujSD = h0;

t+�(u; �)jSN = g0;

(6.2)

where, unlike the mixed problem setting (6.1), the trace is considered in the Gagliardo sense and the conormal derivative in the

canonical sense. We will show that for h0 2 H
1
p(SD;R

n) and g0 2 Lp(SN ;R
n) given and for some range of p, there exists a unique

solution (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+) of problem (6.2). Moreover, we will obtain that M(u); M(ru); M(�) 2 Lp(@
).
The corresponding mixed problems for the Poisson-Brinkman system, i.e., with non-zero right hand side of the Brinkman

system, will be also considered.
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6.1. Creased Lipschitz domains

Next, we recall the de�nition of admissible patch (cf., e.g., [57, De�nition 2.1], [9]).

De�nition 6.1 Let 
 � R
n (n � 3) be a Lipschitz domain. Let S be an open set of @
, such that for any x0 2 @S there exists

a new orthogonal system obtained from the original one by a rigid motion with x0 as the origin and with the property that one

can �nd a cube Q = Q1 �Q2 � � � � �Qn � R
n centered at 0 and two Lipschitz functions{

� : Q0 := Q1 � : : :�Qn�1 ! Qn ; �(0) = 0;

	 : Q00 := Q2 � : : :�Qn�1 ! Q1 ; 	(0) = 0;
(6.3)

such that

S \Q =
{
(x 0;�(x 0)) : x 0 2 Q0; 	(x 00) � x1

}
;(

@
nS
)
\Q =

{
(x 0;�(x 0)) : x 0 2 Q0; 	(x 00) � x1

}
; (6.4)

@S \Q =
{(
	(x 00); x 00;�(	(x 00); x 00)

)
: x 00 2 Q00

}
:

Such a set S is called an admissible patch of @
.

De�nition 6.1 shows that if S � @
 is an admissible patch then @
 n S is also an admissible patch (cf., e.g., [57]). Next, we

recall the de�nition of a creased Lipschitz graph domain (cf. [57, De�nition 2.2]).

De�nition 6.2 Let 
 � R
n (n � 3) be an open, connected set. Suppose that SD; SN � @
 are two non-empty, disjoint admissible

patches such that SD \ SN = @SD = @SN and SD [ SN = @
. The set 
 is a creased Lipschitz graph domain if the following

conditions are satis�ed:

(a) There exists a Lipschitz function � : Rn�1 ! R such that


 =
{
(x 0; xn) 2 R

n : xn > �(x 0)
}
:

(b) There exists a Lipschitz function 	 : Rn�2 ! R such that

SN = f(x1; x"; xn) 2 R
n : x1 > 	(x")g \ @
; (6.5)

SD = f(x1; x"; xn) 2 R
n : x1 < 	(x")g \ @
: (6.6)

(c) There exist some constants �D; �N � 0, �D + �N > 0 with the property that

@�

@x1
� �N a.e. on SN ;

@�

@x1
� ��D a.e. on SD: (6.7)

Let us now refer to a creased bounded Lipschitz domain (cf. [57, De�nition 2.3]).

De�nition 6.3 Assume that 
 � R
n is a bounded Lipschitz domain with connected boundary @
, and that SD; SN � @
 are

two non-empty, disjoint admissible patches such that SD \ SN = @SD = @SN and SD [ SN = @
. Then 
 is creased if

(a) There exist m 2 N, a > 0 and zi 2 @
, i = 1; : : : ; m, such that @
 � [m
i=1 Ba(zi), where Ba(zi) is the ball of radius a and

center at zi .

(b) For any point zi , i = 1; : : : ; m, there exist a coordinate system fx1; : : : ; xng with origin at zi and a Lipschitz function

�i from R
n�1 to R such that the set 
i := f(x 0; xn) 2 R

n : xn > �i(x
0)g, whose boundary @
i admits the decomposition

@
i = SDi
[ SNi

, is a creased Lipschitz graph domain in the sense of De�nition 6:2, and


 \ B2a(zi) = 
i \ B2a(zi); SD \ B2a(zi) = SDi
\ B2a(zi); SN \ B2a(zi) = SNi

\ B2a(zi): (6.8)

The geometric meaning of De�nitions 6.2 and 6.3 is that SD and SN are separated by a Lipschitz interface (SD \ SN is a creased

collision manifold for D) and that SD and SN meet at an angle which is strictly less than � (cf., e.g., [7, 57]). A main property

of a (bounded or graph) creased Lipschitz domain is the existence of a function ' 2 C1(
;Rn) and of a constant � > 0 such

that

' � � > � a.e. on SN ; ' � � < �� a.e. on SD; (6.9)

i.e., the scalar product ' � �, between ' and the unit normal �, changes the sign when moving from SD to SN (cf., e.g., [8,

(1.122)], [9, (2.2)]). For such a domain, Brown [7] showed that the mixed problem for the Laplace equation has a unique solution

whose gradient belongs to L2(@D) when the Dirichlet datum belongs to H1
2(SD) and the Neumann datum to L2(SN). For the

same class of domains, well-posedness of the mixed problem for the Laplace equation in a range of Lp�based spaces has been

obtained in [57].
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6.2. Mixed Dirichlet-Neumann problem for the Brinkman system with boundary data in L2-based spaces

Mitrea and Mitrea in [57] have proved sharp well-posedness results for the Poisson problem for the Laplace operator with mixed

boundary conditions of Dirichlet and Neumann type on bounded creased Lipschitz domains in Rn (n � 3), whose boundaries

satisfy a geometric condition, and with data in Sobolev and Besov spaces. Brown et al. in [9, Theorem 1.1] have obtained the

well-posedness result for the mixed Dirichlet-Neumann problem for the Stokes system with boundary data in L2-based spaces

on creased Lipschitz domains in Rn (n � 3), by reducing such a boundary value problem to the analysis of a boundary integral

equation (see also the references therein). Well-posedness of the mixed Dirichlet-Robin problem for the Brinkman system in

a creased Lipschitz domain with boundary data in L2-based spaces has been recently proved in [35, Theorem 6.1]. Using the

main ideas of that proof, we show in this section well-posedness of the mixed Dirichlet-Neumann boundary value problem for

the Brinkman system in L2-based Bessel potential spaces de�ned on a bounded, creased Lipschitz domain 
+.

Theorem 6.4 Assume that 
+ � R
n (n � 3) is a bounded, creased Lipschitz domain with connected boundary @
,

which is decomposed into two disjoint admissible patches SD and SN . Then the mixed problem (6.1) with given data

(h0; g0) 2 H
1
2(SD;R

n)� L2(SN ;R
n) has a unique solution (u; �) such that M(u);M(ru);M(�) 2 L2(@
). Moreover, (u; �) 2

H
3
2
2 (
+;R

n)�H
1
2
2 (
+); and there exist some constants CM and C depending only on SD, SN and � such that

kM(ru)kL2(@
) + kM(u)kL2(@
) + kM(�)kL2(@
) � CM

(
kh0kH1

2(SD ;R
n) + kg0kL2(SN ;Rn)

)
; (6.10)

kuk
H

3
2
2 (
+;Rn)

+ k�k
H

1
2
2 (
+)

� C
(
kh0kH1

2(SD ;R
n) + kg0kL2(SN ;Rn)

)
: (6.11)

Proof. First, we note that if a couple (u; �) satis�es the Brinkman system (6.1) and the conditions M(u);M(ru);M(�) 2

L2(@
), then, taking into account that B
3
2
2;2(
+;R

n) = H
3
2
2 (
+;R

n), B
1
2
2;2(
+) = H

1
2
2 (
+), Theorem 5.2(ii) implies that

(u; �) 2 H
3
2 ;t

2;div(
;L�) for any t � � 1
2
, while 
+u = u+nt and t+�(u; �) = t+nt(u; �) by Theorems 2.5 and 2.13.

Let us show that the mixed boundary value problem (6.1) has at most one L2-solution. Indeed, if a couple (u
(0); �(0)) satis�es

the homogeneous problem associated to (6.1), and moreover (u(0); �(0)) 2 H
3
2 ;0

2;div(
;L�), then by the �rst Green identity (2.28),

we obtain the equality 〈
t+�(u

(0); �(0)); 
+u
(0)
〉
@


= 2
〈
E(u(0));E(u(0))

〉

+

+ �
〈
u(0); u(0)

〉

+

; (6.12)

where the left-hand side vanishes, due to the homogeneous boundary conditions satis�ed by 
+u
(0) = u

(0)+
nt and t+�(u

(0); �(0)) =

t+nt(u
(0); �(0)) on SD and SN , respectively. Then by (6.12) we immediately obtain that u(0) = 0 and �(0) = 0 in 
+.

Next, we consider the operator

S� : L2(@
;R
n)! H1

2(SD;R
n)� L2(SN ;R

n); S�	 :=

(
(V�	)

∣∣
SD
;

((
1

2
I+K�

�

)
	

) ∣∣∣
SN

)
(6.13)

(cf. [35, (6.6)-(6.8)]), and show that this is an isomorphism, which will yield the well-posedness of the mixed problem (6.1). To

this end, we note that S� can be written as S� = S0 + S�;0; where

S0 : L2(@
;R
n)!H1

2(SD;R
n)�L2(SN ;R

n); S0	 :=

(
(V0	)

∣∣
SD
;

((
1

2
I+K�

0

)
	

) ∣∣∣
SN

)
; (6.14)

S�;0 : L2(@
;R
n)!H1

2(SD;R
n)�L2(SN ;R

n); S�;0	:=
(
(V�;0	)

∣∣
SD
; (K�

�;0	)
∣∣
SN

)
: (6.15)

Here V�;0 : L2(@
;R
n)! H1

2(@
;R
n) and K�

�;0 : L2(@
;R
n)! L2(@
;R

n) are the complementary layer potential operators

de�ned as

V�;0	 := V�	� V0	 and K�
�;0	 := K�

�	�K�
0	: (6.16)

The operator S0 de�ned in (6.14) is an isomorphism and this property is equivalent with the well-posedness result of the mixed

Dirichlet-Neumann problem for the Stokes system on a creased Lipschitz domain with Dirichlet and Neumann boundary data

in L2-based spaces (cf. the proof of [9, Theorem 6.3]), when the BVP solution is looked for in the form of the Stokes single

layer potential. In addition, the continuity of the restriction operators from H1
2(@
;R

n) to H1
2(SD;R

n) and from L2(@
;R
n) to

L2(SN ;R
n), respectively, as well as the compactness of the complementary operators in (6.16) (cf. [33, Theorem 3.4]) imply that

the operator S�;0 in (6.15) is compact as well. Therefore, the operator S� in (6.13) is Fredholm with index zero. This operator is

also injective. Indeed, if 	(0) 2 L2(@
;R
n) satis�es the equation S�	

(0) = 0 then the single layer velocity and pressure potentials

u(0) := V�	
(0) and �(0) := Qs	(0) will determine a solution of the homogeneous mixed problem associated to (6.1), such that

(u(0); �(0)) 2 H
3
2
2 (
+;R

n)�H
1
2
2 (
+) and M(u(0));M(ru(0));M(�(0)) 2 L2(@
). Then u(0) = 0 and �(0) = 0 in 
+, as shown

above. Consequently, t+nt(u
(0); �(0)) = 0 a.e. on @
, which, in view of (3.83), can be written as(

1

2
I+K�

�

)
	(0) = 0:
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Moreover, the invertibility of the operator 1
2
I+K�

� : L2(@
;R
n)! L2(@
;R

n) (see Lemma 4.2) shows that 	(0) = 0.

Consequently, operator (6.13) is an isomorphism, as asserted. Then the �elds

u = V�

(
S�1� (h0; g0)

)
; � = Qs

(
S�1� (h0; g0)

)
(6.17)

determine the unique solution of the mixed Dirichlet-Neumann problem (6.1). According to Lemma 3.4, Theorem 3.5 and

(6.17), the solution belongs to the space H
3
2
2 (
+;R

n)�H
1
2
2 (
+) and satis�es the estimate (6.10) with some constant CM > 0

depending on SD, SN and �, as well as estimate (6.11) with the constant C = (kV�k+ kQsk) kS�1� k. �

6.3. Mixed Dirichlet-Neumann problem for the Brinkman system with data in Lp-spaces

Next, we extend the results established in Theorem 6.4, to Lp-based spaces with p in some neighborhood of 2, for the mixed

Dirichlet-Neumann problem for the Brinkman system (6.1), with the boundary data (h0; g0) 2 H
1
p(SD;R

n)� Lp(SN ;R
n). We

will obtain the well-posedness result in the space B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+), where p
� = maxf2; pg.

We further need the space

H̃0
p(S0;R

n) :=
{
� 2 Lp(@
;R

n) : supp � � S0

}
; S0 � @
: (6.18)

� The Neumann-to-Dirichlet operator for the Brinkman system

As in the work [57], devoted to the mixed Dirichlet-Neumann problem for the Laplace equation in a creased Lipschitz domain,

we consider the Neumann-to-Dirichlet operator �nt;�, which associates to g 2 Lp(@
;R
n), the restriction of the non-tangential

trace u+nt to the patch SD, where (u; �) is the unique Lp-solution of the Neumann problem (5.28) for the Brinkman system with

the non-tangential conormal derivative g. Thus, (u; �) satis�es the Neumann condition almost everywhere on @
 in the sense

of non-tangential limit, as well as the conditions M(u);M(ru);M(�) 2 Lp(@
), and

�nt;�g = u+ntjSD : (6.19)

Similarly, we consider the Neumann-to-Dirichlet operator ��, which associates to g 2 Lp(@
;R
n), the restriction of the trace


+u to the patch SD, where (u; �) is the unique solution of the Neumann problem (5.35) for the Brinkman system with f = 0

and the canonical conormal derivative g, i.e.,

��g = 
+ujSD : (6.20)

A way to extend the well-posedness result in Theorem 6.4 to Lp-based spaces is to show the invertibility of the Neumann-to-

Dirichlet operator �nt;�on such spaces. An intermediary step to obtain this property is given by the following result.

Lemma 6.5 Let 
+ � R
n (n � 3) be a bounded, creased Lipschitz domain with connected boundary @
 which is decomposed

into two disjoint admissible patches SD and SN . Let � 2 (0;1). Then there exists " = "(@
) > 0 such that for any p 2 R0(n; ")

the following properties hold.

(i) The operators �nt;� and �� coincide and are given by

�nt;� =�� =

(
V� �

(
1

2
I+K�

�

)�1)∣∣∣∣∣
SD

: (6.21)

(i i) The mixed Dirichlet-Neumann problem (6.1) with given data (h0; g0) 2 H
1
p(SD;R

n)� Lp(SN ;R
n) has a unique solution

(u; �), such that M(u);M(ru);M(�) 2 Lp(@
), if and only if the operator

�nt;� : H̃0
p(SD;R

n)! H1
p(SD;R

n) (6.22)

is an isomorphism.

(i i i) The mixed Dirichlet-Neumann problem (6.2) with given data (h0; g0) 2 H
1
p(SD;R

n)� Lp(SN ;R
n) has a unique solution

(u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+) if and only if the operator

�� : H̃0
p(SD;R

n)! H1
p(SD;R

n) (6.23)

is an isomorphism.

Moreover, when the solution (u; �) in item (i i) or (i i i) exists, then it belongs to the space B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+)

and there exist some constants CM � CM(�; p; SD; SN), C � C(�; p; SD; SN) and C
0 � C 0(�; p; SD; SN) such that

kM(ru)kLp(@
) + kM(u)kLp(@
) + kM(�)kLp(@
) � CM

(
kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
; (6.24)

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

� C
(
kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
; p� = maxf2; pg; (6.25)

k
+ukH1
p(@
;R

n) + kt+�(u; �)kLp(@
;Rn)) � C 0
(
kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
: (6.26)
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Proof. (i) By Theorem 5.5, there exists " = "(@
) > 0 such that for any p 2 R0(n; ") the Neumann problem (5.28) has a unique

solution, and it can be expressed in form (5.29). Then due to Theorem 3.5 and Lemma 3.6 we deduce that the operator (6.19)

has the expression (6.21) and is continuous, due to the continuity of both operators in the right-hand side of (6.21).

(ii) First, we assume that problem (6.1) is well-posed and show the invertibility of operator (6.22).

In order to prove the injectivity property of this operator, we consider a function g0 2 H̃0
p(SD;R

n), such that �nt;�g
0 = 0.

Denoting by (u0; �0) the unique Lp-solution of the Neumann problem (5.28) for the homogeneous Brinkman system with

boundary datum g0 2 H̃0
p(SD;R

n) on @
, in view of (6.19), we have

u+ntjSD = �nt;�g
0 = 0; (6.27)

and {
4u0 � �u0 �r�0 = 0; div u0 = 0 in 
+;

t+nt(u
0; �0) = g0 on @
:

(6.28)

In addition, (u0; �0) satis�es the conditions M(u0);M(ru0);M(�0) 2 Lp(@
), and the Neumann condition holds almost

everywhere on @
 in the sense of non-tangential limit.

According to relation (6.27) and the inclusion g0 2 H̃0
p(SD;R

n), we have

u0+nt jSD = 0 on SD; t+nt(u
0; �0)jSN = 0 on SN ; (6.29)

and hence by the assumed well-posedness of the mixed Dirichlet-Neumann problem (6.1), we deduce that u0 = 0 and �0 = 0 in


+. Thus, g
0 = t+nt(u

0; �0) = 0 on @
, which implies that the operator �� is injective.

We show that the operator �nt;� is also surjective. Due to the assumed well posedness of the mixed Dirichlet-Neumann

problem (6.1), for any Dirichlet datum h0 2 H
1
p(SD;R

n) on SD and the Neumann datum g0 � 0 on SN , there exists a unique

Lp-solution, (u0; �0), of this problem. In particular, we deduce that the vector �eld g0 := t+nt(u0; �0) 2 Lp(@
;R
n) belongs to

H̃0
p(SD;R

n), due to de�nition (6.18). In addition, the uniqueness result in Theorem 5.5 shows that (u0; �0) is the unique solution

of the Neumann problem for the Brinkman system in 
+ with the Neumann datum g0 2 H̃0
p(SD;R

n) � Lp(@
;R
n). Then by

de�nition (6.19) of the operator �nt;�, we obtain that �nt;�g0 = u+0;ntjSD = h0: Consequently, for a given h0 2 H
1
p(SD;R

n) there

exists g0 2 H̃
0
p(SD;R

n) such that �nt;�g0 = h0. This shows that the operator �nt;� is surjective, and thus, it is an isomorphism,

as asserted.

Next, we show the converse result, i.e., that the invertibility of the operator �nt;� implies the well-posedness of the

mixed Dirichlet-Neumann problem (6.1). Let us �rst show uniqueness of the solution to problem (6.1). To this end, we

assume that (u(0); �(0)) is an Lp-solution of the homogeneous version of (6.1). Hence, g(0) := t+nt(u
(0); �(0)) 2 H̃0

p(SD;R
n)

since t+nt(u
(0); �(0))jSN = 0, implying that (u(0); �(0)) is (by Theorem 5.5) the unique solution of the Neumann problem for the

Brinkman system with Neumann datum g(0) on @
. Then by (6.19), �nt;�g
(0) = u

(0)+
nt jSD = 0, and injectivity of �nt;� implies

that g(0) = 0. Hence t+nt(u
(0); �(0)) = 0 on @
 and Theorem 5.5 implies that u0 = 0, �0 = 0 in 
+. This concludes the proof of

uniqueness of the solution to the mixed problem (6.1).

To show existence of an Lp-solution to the mixed problem (6.1), let us consider such a problem with arbitrary boundary data

(h0; g0) 2 H
1
p(SD;R

n)� Lp(SN ;R
n). Also let G 2 H̃0

p(SN ;R
n) be such that

GjSN = g0: (6.30)

Then by Theorem 5.5 there exists a unique Lp-solution (v; q) of the Neumann problem (5.28) with the Neumann datum G, such

that there exist the non-tangential limits of u, ru, � at almost all points of @
, M(v);M(rv);M(q) 2 L2(@
), and satis�es

the Neumann boundary condition in the sense of non-tangential limit at almost all points of @
. Note that v can be expressed

in terms of a single-layer potential with a density in the space Lp(@
;R
n), and hence v+nt 2 H

1
p(@
;R

n) (see Lemma 3.6).

On the other hand, the invertibility of the operator �nt;� : H̃0
p(SD;R

n)! H1
p(SD;R

n) assures that the equation

�nt;�g
0 =

(
h0 � v+ntjSD

)
2 H1

p(SD;R
n) (6.31)

has a unique solution g0 2 H̃0
p(SD;R

n) � Lp(@
;R
n). Next, let (u0; �0) be the unique Lp-solution of the Neumann problem

(5.28) with the Neumann datum g0. Also let

(u; �) := (v + u0; q + �0): (6.32)

Then we obtain the relations

u+ntjSD = v+ntjSD + u0+nt jSD =
(
h0 ��nt;�g

0
)
+�nt;�g

0 = h0; (6.33)

t+nt(u; �)jSN = t+nt(v; q)jSN + t+nt(u
0; �0)jSN = GjSN + g0jSN = g0; (6.34)

where the last equality follows from (6.30) and the inclusion g0 2 H̃0
p(SD;R

n). Moreover, the estimates (6.24) and (6.25)

corresponding to item (ii) are due to (6.32) and the mapping properties of the pairs (v; q) and (u0; �0) given by Theorem 5.5.

Consequently, the mixed Dirichlet-Neumann problem (6.1) is well-posed and estimates (6.24)-(6.26) hold true.
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The proof for item (iii) of the lemma and estimates (6.24)-(6.26) follow from similar arguments as those for item (ii), by

refering to Theorems 5.4 and 5.6 instead of Theorems 5.1 and 5.5. �

By combining Theorem 6.4 and Lemma 6.5, we are now able to obtain the well-posedness results for the mixed Dirichlet-

Neumann problem (6.1) with boundary data in Lp-based Bessel potential spaces and with p in a neighborhood of 2, which is the

main result of this section. Recall that p� = maxf2; pg.

Theorem 6.6 Assume that 
+ � R
n (n � 3) is a bounded, creased Lipschitz domain with connected boundary @
 which is

decomposed into two disjoint admissible patches SD and SN . Then there exists a number " > 0 such that for any p 2 (2� "; 2 + ")
and for all given data (h0; g0) 2 H

1
p(SD;R

n)� Lp(SN ;R
n) the following properties hold.

(i) The mixed Dirichlet-Neumann problem for the Brinkman system (6.1) has a unique solution (u; �), such that

M(u);M(ru);M(�) 2 Lp(@
). Moreover, (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+), and there exist some constants CM �
CM(�; p; SD; SN) > 0, C � C(�; p; SD; SN) > 0 and C 0 � C 0(�; p; SD; SN) > 0 such that

kM(ru)kLp(@
) + kM(u)kLp(@
) + kM(�)kLp(@
) � CM

(
kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
; (6.35)

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

� C
(
kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
; (6.36)

k
+ukH1
p(@
;R

n) + kt+�(u; �)kLp(@
;Rn)) � C 0
(
kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
: (6.37)

(i i) The mixed Dirichlet-Neumann problem for the Brinkman system (6.2) has a unique solution (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)�

B
1
p

p;p�(
+): Moreover, the solution satis�es estimates (6.35)-(6.37).

Proof. (i) By Theorem 6.4 the mixed Dirichlet-Neumann problem (6.1) is well-posed for p = 2. Then by Lemma 6.5 (ii) and

Theorem 5.5 for p = 2, the operator �nt;� : H̃0
2(SD;R

n)! H1
2(SD;R

n) is an isomorphism. Moreover, by Lemma A.1, the sets

fH̃0
p(SD;R

n)gp�1 and fH
1
p(SD;R

n)gp�1 are complex interpolation scales. Then by the stability of the invertibility property given

in Lemma B.2, there exists a number "1 > 0, such that the operator �nt;� : H̃0
p(SD;R

n)! H1
p(SD;R

n) is an isomorphism as

well, for any p 2 (2� "1; 2 + "1). Finally, by choosing the parameter " := minf�; "1g > 0, where � is the parameter in Theorem

5.5, and by using again Lemma 6.5 (ii), we deduce the well-posedness result of the mixed Dirichlet-Neumann problem (6.1) and

estimates (6.35)-(6.37), whenever p 2 (2� "; 2 + ").
(ii) Let " be as in the proof of item (i). Let p 2 (2� "; 2 + "). Then Lemma 6.5 (i) implies that �� = �nt;�, and hence

�� : H̃0
p(SD;R

n)! H1
p(SD;R

n) is an isomorphism, and by Lemma 6.5 (ii) the mixed Dirichlet-Neumann problem (6.2) is well

posed and estimates (6.35)-(6.37) hold. �

Remark 6.7 Under the conditions of Theorem 6:6, the solution (u; �) of the mixed Dirichlet-Neumann problem (6.1) can be

expressed by the single layer velocity and pressure potentials

u = V�

(
S�1� (h0; g0)

)
; � = Qs

@


(
S�1� (h0; g0)

)
; (6.38)

where the operator

S� : Lp(@
;R
n)! H1

p(SD;R
n)� Lp(SN ;R

n); S�	 :=

(
(V�	)

∣∣
SD
;

((
1

2
I+K�

�

)
	

) ∣∣∣
SN

)
(6.39)

is an isomorphism. Indeed, as shown in the proof of Theorem 6:4, the operator S� : L2(@
;R
n)! H1

2(SD;R
n)� L2(SN ;R

n) is

an isomorphism, and then, by using again Lemma A.1 and Lemma B:2, we can extend the isomorphism property of the operator

(6.39) to Lp-spaces, with p in a neighborhood of 2, which can be chosen to coincide with that in Theorem 6:6.

6.4. Poisson problem of mixed Dirichlet-Neumann type for the Brinkman system with data in Lp-based spaces

Having in view Theorem 6.6, we are now able to consider the well-posedness of the following Poisson problem of mixed Dirichlet-

Neumann type for the Brinkman system in a creased Lipschitz domain 
+, with data in some Lp-based spaces,
4u� �u�r� = f 2 Lp(
+;R

3); div u = 0 in 
+


+ujSD = h0 2 H
1
p(SD;R

n)

t+�(u; �)jSN = g0 2 Lp(SN ;R
n):

(6.40)

Remark 6.8 (i) By a solution of the Poisson problem of mixed Dirichlet-Neumann type (6.40) we mean a pair (u; �) 2

B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+), where p� = maxf2; pg, which satisfies the non-homogeneous Brinkman system in 
+, the Dirichlet
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boundary condition on SD in the Gagliardo trace sense, and the Neumann boundary condition on SN in the canonical sense

described in Definition 2:10.

(ii) If a pair (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+), p 2 (1;1), solves the non-homogeneous Brinkman system in the first

line of (6.40) with f 2 Lp(@
;R
n), then (u; �) 2 B

1+ 1
p
;0

p;p�;div(
+;L�) by Definition 2.6. Hence, by Lemma 2.4, Definition 2.10,

Lemma 2.11 and the embeddings B
1+ 1

p

p;p� (
+;R
n) ,! B

s+ 1
p

p;p� (
+;R
n), B

1+ 1
p
;0

p;p�;div(
+;L�) ,! B
s+ 1

p
;� 1

p0

p;p�;div (
+;L�), for any 0 < s < 1,

the trace 
+u and canonical conormal derivative t+�(u; �) are well defined and belong to Bs
p;p�(@
;R

n) and Bs�1
p;p�(@
;R

n),

respectively. Thus, the boundary conditions in (6.40) are well defined as well. In what follows, we show that the sharper

inclusions, 
+u 2 H
1
p(@
;R

n) and t+�(u; �) 2 Lp(@
;R
n), hold if the spaces of the given boundary data in the boundary

conditions are those mentioned in (6.40).

Theorem 6.9 Assume that 
+ � R
n (n � 3) is a bounded, creased Lipschitz domain with connected boundary @
, and that

@
 is decomposed into two disjoint admissible patches SD and SN . Then there exists a number " > 0 such that for any

p 2 (2� "; 2 + ") and for all given data (f; h0; g0) 2 Lp(
+;R
n)�H1

p(SD;R
n)� Lp(SN ;R

n) the Poisson problem of mixed

Dirichlet-Neumann type (6.40) has a solution (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+) that can be represented in the form

u = N�;
+ f + V�

(
S�1� (h00; g00)

)
; � = Q
+ f +Qs

@


(
S�1� (h00; g00)

)
; (6.41)

where S� : Lp(@
;R
n)! H1

p(SD;R
n)� Lp(SN ;R

n) is the isomorphism de�ned in (6.39), and

h00 := h0 � 
+
(
N�;
+ f

)
jSD 2 H

1
p(SD;R

n); g00 := g0 � t+�
(
N�;
+ f;Q�;
+ f

)
jSN 2 Lp(SN ;R

n): (6.42)

Moreover, the solution (u; �) is unique in the space B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+); and there exist some constants

C � C(�; p; SD; SN) > 0 and C 0 � C 0(�; p; SD; SN) > 0 such that the following inequalities hold

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

� C
(
fkLp(
+;Rn) + kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
; (6.43)

k
+ukH1
p(@
;R

n) + kt+�(u; �)kLp(@
;Rn) � C 0
(
fkLp(
+;Rn) + kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
: (6.44)

In addition, there exists a linear continuous operator

Ap : Lp(
+;R
n)�H1

p(SD;R
n)� Lp(SN ;R

n)! B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+)

delivering this solution, i.e., Ap(f; h0; g0) = (u; �).

Proof. Let " > 0 as in Theorem 6.6, and let p 2 (2� "; 2 + "). We will look for a solution of problem (6.40) in the form

u = N�;
+ f + v; � = Q
+ f + q; (6.45)

where the Newtonian velocity and pressure potentials N�;
+ f and Q
+ f are de�ned by (3.21). By properties (3.23)-(3.26),

Corollary 3.2 and Remark 3.3, we obtain that

4N�;
+ f � �N�;
+ f �rQ
+ f = f; div N�;
� f = 0 in 
+; (6.46)

(N�;
+ f;Q
+ f) 2 H
2
p(
+;R

n)�H1
p(
+) ,! B

1+ 1
p

p;p� (
+;R
n)� B

1
p

p;p�(
+); (6.47)


+N�;
+ f 2 H
1
p(@
;R

n); t+�(N�;
+ f;Q
+ f) 2 Lp(@
;R
n); (6.48)

where 
+ is the Gagliardo trace operator from H2
p(
+;R

n) to H1
p(@
;R

n). Then the mixed Poisson problem (6.40) reduces to

the mixed problem for the corresponding homogeneous system,
4v � �v �rq = 0; div v = 0 in 
+;


+vjSD = h00 2 H
1
p(SD;R

n);

t+�(v; q)jSN = g00 2 Lp(SN ;R
n);

(6.49)

where h00 2 H
1
p(SD;R

n) and g00 2 Lp(SN ;R
n) are given by (6.42), and these inclusions follow from (6.47).

By Theorem 6.6(ii), there exists a unique solution (v; q) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+) of problem (6.49), and it satis�es the

following estimates

kvk
B
1+ 1

p

p;p�
(
+;Rn)

+ kqk
B

1
p

p;p�
(
+)

� c
(
kh00kH1

p(SD ;R
n) + kg00kLp(SN ;R

n)

)
; (6.50)
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k
+vkH1
p(@
;R

n) + kt+�(v; q)kLp(@
;Rn)) � c 0
(
kh00kH1

p(SD ;R
n) + kg00kLp(SN ;R

n)

)
; (6.51)

with some constants c � c(�; p; SD; SN) > 0 and c 0 � c 0(�; p; SD; SN) > 0.

According to Lemma 3.6 the single layer velocity and pressure potentials

v = V�

(
S�1� (h00; g00)

)
; q = Qs

@


(
S�1� (h00; g00)

)
; (6.52)

where S� : Lp(@
;R
n)! H1

p(SD;R
n)� Lp(SN ;R

n) is the isomorphism de�ned by (6.39), determine the unique solution of

problem (6.49). Moreover, in view of Theorem 3.5 (i) and Lemma 3.6, the pair (v; q) given by (6.52) belongs indeed to the

space B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+),

Therefore, there exists a solution (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+) of the mixed Poisson problem (6.40), which is given by

representation (6.41) and satis�es estimates (6.43) and (6.44). The uniquness result of such a solution follows from Theorem

6.6 (ii). Moreover, linearity and continuity of the Newtonian potential operators (3.25), (3.26) and estimate (6.50) imply the

continuity of the operator Ap delivering such a solution. �

7. Mixed Dirichlet-Neumann problem for the semilinear Darcy-Forchheimer-Brinkman

system in Besov spaces

Next we consider the mixed Dirichlet-Neumann problem for the semilinear Darcy-Forchheimer-Brinkman system

4u� �u� �juju�r� = f; div u = 0 in 
+: (7.1)

Such a nonlinear system describes 
ows in porous media saturated with viscous incompressible 
uids (see, e.g., [65, p.17]), and

the constants �; � > 0 are related by the physical properties of such a porous medium, as they describe the viscosity and the

convection of the 
uid 
ow.

Due to some embedding results that play a main role in our arguments, we will restrict our analysis in this section to the

cases n = 3.

A numerical study of a mixed Dirichlet-Neumann problem for system (7.1) in the particular case of a two-dimensional square

cavity driven by a moving wall has been obtained in [26]. Well-posedness and numerical results for an extended nonlinear system,

called the Darcy-Forchheimer-Brinkman system, where both semilinear and nonlinear terms juju and (u � r)u are involved, have

been obtained in [25], and boundary value problems of Robin type for the Darcy-Forchheimer-Brinkman system with data in

L2-based Bessel potential (Sobolev) spaces have been studied in [34, 35].

In what follows, we extend an existence and uniqueness result obtained in [35, Theorem 7.1] for the mixed problem (7.3) with

the given data in L2-based Sobolev spaces, to the case of Lp-based Bessel potential spaces, i.e., when the given boundary data

(h0; g0) belong to the space H1
p(SD;R

n)� Lp(SN ;R
n), with p 2 (2� "; 2 + "), and the parameter " > 0 as in Theorem 6.9. In

addition, the given data should be su�ciently small in a sense that will be speci�ed below.

Theorem 7.1 Assume that 
+ � R
3 is a bounded creased Lipschitz domain with connected boundary @
, and that @


is decomposed into two disjoint admissible patches SD and SN . Let �; � > 0 be given constants. Then there exists a

number " > 0 such that for any p 2 (2� "; 2 + ") and p� = maxf2; pg, there exist two constants �p � �p(
+; �; �; p) > 0 and

�p � �p(
+; �; �; p) > 0 with the property that for all given data (f;h0; g0) 2 Lp(
+;R
3)�H1

p(SD;R
3)� Lp(SN ;R

3) satisfying

the condition

kh0kH1
p(SD ;R

3) + kg0kLp(SN ;R
3)+kfkLp(
+;R3)

� �p; (7.2)

the mixed Dirichlet-Neumann problem for the semilinear Darcy-Forchheimer-Brinkman system
4u� �u� �juju�r� = f; div u = 0 in 
+;


+ujSD = h0 on SD
t+�(u; �)jSN = g0 on SN

(7.3)

has a unique solution (u; �) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+), which satis�es the inequality

kuk
B
1+ 1

p

p;p�
(
+;Rn)

� �p: (7.4)

Moreover, 
+u 2 H
1
p(@
;R

n); t+�(u; �) 2 Lp(@
;R
n) and the solution depends continuously on the given data, which means

that there exists some constants C� � C�(
+; �; �; p) > 0 and C 0� � C�(
+; �; �; p) > 0 such that

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

� C�

(
kfkLp(
+;Rn)+kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
; (7.5)

k
+ukH1
p(@
;R

n) + kt+�(u; �)kLp(@
;Rn)) � C 0�

(
kfkLp(
+;Rn) + kh0kH1

p(SD ;R
n) + kg0kLp(SN ;R

n)

)
: (7.6)
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Proof. We use the arguments similar to those in the proof of [32, Theorem 5.2] devoted to transmission problems with Lipschitz

interface in Rn for the Stokes and Darcy-Forchheimer-Brinkman systems in L2�based Sobolev spaces.

According to (A.7) and the second formula in (A.8), for n � 5 and p > 3=2, we obtain the following continuous embeddings,

B
1+ 1

p

p;p� (
+;R
n) ,! B0

2p;minf2p;(2p)0g(
+;R
n) ,! H0

2p(
+;R
n) = L2p(
+;R

n): (7.7)

Now, by (7.7) and the H�older inequality we obtain the estimates

k jvjw kLp(
+;Rn) � kvkL2p(
+;Rn)kwkL2p(
+;Rn)�c
0
1kvk

B
1+ 1

p

p;p�
(
+;Rn)

kwk
B
1+ 1

p

p;p�
(
+;Rn)

; 8 v;w 2 B
1+ 1

p

p;p� (
+;R
n); (7.8)

with some constants c 0k � c 0k(
+; p) > 0, k = 0; 1, implying that jvjw 2 Lp(
+;R
n); 8 v; w 2 B

1+ 1
p

p;p� (
+;R
n):

Next, for a given �xed v 2 B
1+ 1

p
p;p (
+;R

n), we consider the linear Poisson problem of mixed type for the Brinkman system
4v0 � �v0 �r�0 = f+�jvjv in 
+;


+v
0jSD = h0 2 H

1
p(SD;R

n);

t+�
(
v0; �0

)
jSN = g0 2 Lp(SN ;R

n);

(7.9)

with the unknown �elds (v0; �0) 2 B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+).

Let 2� " < p < 2 + ", where " > 0 is as in Theorem 6.9 and such that 2� " > 3
2
. Then by Theorem 6.9, problem (7.9) with

given data (f+�jvjv; h0; g0) 2 Lp(
+;R
n)�H1

p(SD;R
n)� Lp(SN ;R

n) has a unique solution(
v0; �0

)
:= (U(v);P(v)) = Ap (f+�jvjv; h0; g0) 2 Xp; (7.10)

where the linear and continuous operator Ap : Yp ! Xp has been de�ned in Theorem 6.9, and

Xp := B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+); Yp := Lp(
+;R
n)�H1

p(SD;R
n)� Lp(SN ;R

n): (7.11)

Hence, for �xed data (f; h0; g0) 2 Lp(
+;R
n)�H1

p(SD;R
n)� Lp(SN ;R

n), the nonlinear operators

(U ;P) : B
1+ 1

p

p;p� (
+;R
n)! Xp (7.12)

de�ned in (7.10), are continuous and bounded, we obtain,∥∥(U(w);P(w))∥∥
Xp
� Ck (f+�jwjw; h0; g0) kYp

� C
(
k (f; h0; g0) kLp(
+;Rn)�H1

p(SD ;R
n)�Lp(SN ;R

n) + �k jwjw kLp(
+;Rn)

)
� Ck (f; h0; g0) kYp + CC2kwk

2

B
1+ 1

p

p;p�
(
+;Rn)

; 8 w 2 B
1+ 1

p

p;p� (
+;R
n); (7.13)

k
+U(w)kH1
p(@
;R

n) + kt+�
(
U(w);P(w)

)
kLp(@
;Rn)) � C 0k (f; h0; g0) kYp + C

0C2kwk
2

B
1+ 1

p

p;p�
(
+;Rn)

: (7.14)

where C2 := c 01� > 0, and c 01 � c 01(
+; p) > 0 is the constant that appears in inequality (7.8), and C can be taken as

C = kApkL(Yp ;Xp). In addition, in view of (7.10) and due to the de�nition of Ap, we obtain that
(
v0; �0

)
= (U(v);P(v)) and

satisfy (7.9). Therefore, if we show that the nonlinear operator U has a �xed point u 2 B
1+ 1

p

p;p� (
+;R
n), i.e., such that U(u) = u,

then u together with the pressure function � = P(u) determine a solution of the nonlinear mixed problem (7.3) in the space

Xp. In order to show the existence of such a �xed point, we introduce the constants

�p :=
3

16C2C2
> 0; �p :=

1

4C2C
> 0 (7.15)

(cf. [32, Theorem 5.2]) and the closed ball

B�p :=

{
w 2 B

1+ 1
p

p;p� (
+;R
n) : kwk

B
1+ 1

p

p;p�
(
+;Rn)

� �p

}
; (7.16)

and assume that the given data satisfy the inequality

k (f; h0; g0) kYp � �p: (7.17)
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Then by (7.13), (7.15)-(7.17) we deduce that

k (U(w);P(v)) kXp �
1

4C2C
= �p; 8 w 2 B�p : (7.18)

Consequently, U maps B�p into B�p .

Moreover, we now prove that U is a contraction on B�p . Indeed, by using the expression of U given in (7.10), the linearity

and continuity of the operator Ap, and inequality (7.8), we obtain that

kU(v)� U(w)k
B
1+ 1

p

p;p�
(
+;Rn)

� kAp (�jvjv � �jwjw; 0; 0) k
B
1+ 1

p

p;p�
(
+;Rn)

� C�k jvjv � jwjw kLp(
+;Rn) = C�k (jvj � jwj)v + jwj(v � w) kLp(
+;Rn)

� Cc 01�
(
kvk

B
1+ 1

p

p;p�
(
+;Rn)

+ kwk
B
1+ 1

p

p;p�
(
+;Rn)

)
kv � wk

B
1+ 1

p

p;p�
(
+;Rn)

� 2�pCC2kv � wk
B
1+ 1

p

p;p�
(
+;Rn)

=
1

2
kv � wk

B
1+ 1

p

p;p�
(
+;Rn)

; 8 v;w 2 B�p ; (7.19)

see also (7.13). Then the Banach-Caccioppoli �xed point theorem implies that there exists a unique �xed point u 2 B�p of U ,
i.e., U(u) = u. Moreover, u and the pressure function � = P(u), given by (7.10), determine a solution of the semilinear problem

(7.3) in the space B
1+ 1

p

p;p� (
+;R
n)� B

1
p

p;p�(
+). In addition, since the solution satis�es the condition u 2 B�, by inequality (7.13)

we obtain the estimate

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

� Ck (f; h0; g0) kYp +
1

4
kuk

B
1+ 1

p

p;p�
(
+;Rn)

; (7.20)

implying that

kuk
B
1+ 1

p

p;p�
(
+;Rn)

+ k�k
B

1
p

p;p�
(
+)

�
4

3
Ck (f; h0; g0) kYp ; (7.21)

which is just the inequality (7.5) with the constant C� =
4

3
C =

4

3
kA�1

p kL(Yp ;Xp). Similarly, (7.14) and (7.21) lead to (7.6) with

the constant C 0� =
4

3
C 0.

Next, we prove the uniqueness of the semilinear mixed problem (7.3) solution (u; �) 2 Xp, that satis�es inequality (7.4), when

the given data satisfy conditions (7.2). Assume that (u0; �0) 2 Xp is another solution of problem (7.3), which satis�es inequality

(7.4), implying u0 2 B�p . Then U(u
0) 2 B�p ; where (U(u0);P(u0)) are given by (7.10) and satisfy (7.9) with v replaced by u0.

Then by (7.3) and (7.21) (both written in terms of (u0; �0)) we obtain the linear mixed Dirichlet-Neumann problem
4 (U(u0)� u0)� � (U(u0)� u0)�r (P(u0)� �0) = 0 in 
+;

(
+ (U(u
0)� u0)) jSD = 0 on SD;(

t+� (U(u
0)� u0;P(u0)� �0)

)
jSN = 0 on SN ;

(7.22)

and 
+ (U(u
0)� u0) 2 H1

p(@
+;R
n); t+� (U(u

0)� u0;P(u0)� �0) 2 Lp(@
+;R
n). This problem has only the trivial solution in the

space Xp (see Theorem 6.9), i.e., U(u0) = u0, P(u0) = �0. Thus, u0 is a �xed point of U . Since U : B�p ! B�p is a contraction,

it has a unique �xed point in B�p , which has been already denoted by u. Consequently, u0 = u, and, in addition, �0 = �. �

Appendices

A. Besov spaces in Rn

Let � = (�1; : : : ; �n) be an arbitrary multi-index in Z
n
+ of length j�j := �1 + � � �+ �n, and let @� :=

@ j�j

@x�11 � � � @x�n
n

: Next we

recall the de�nition of Besov spaces in Rn (cf., e.g., [61, Section 11.1]). By � one denotes the collection of all sets f�jg
1
j=0 of

Schwartz functions with the following property:

(i) There are some constants b; c; d > 0 such that

supp(�0) � fx : jx j � bg; supp(�j) � fx : 2j�1c � jx j � 2j+1dg; j = 1; 2; : : : (A.1)

(ii) Let � be an arbitrary multi-index in Rn. Then there exists a constant c@
 > 0 such that

sup
x2Rn

sup
j2N

2j j�jj@��j(x)j � c@
: (A.2)
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(iii) The following equality holds
1∑
j=0

�j(x) = 1; 8 x 2 Rn: (A.3)

Let s 2 R, p; q 2 (0;1). Then for a sequence f�jg
1
j=0 � �, the Besov space Bs

p;q(R
n) is de�ned by

Bs
p;q(R

n) :=

{
f 2 S 0(Rn) : kf kBs

p;q(R
n) :=

( 1∑
j=1

k2sjF�1(�jF f )k
q
Lp(Rn)

) 1
q

<1

}
; (A.4)

where f is the Fourier transform and S 0(Rn) denotes the space of tempered distributions in Rn. Note that the above de�nition

of the Besov space Bs
p;q(R

n) is independent of the choice of the set f�jg
1
j=0 � �, which means that another sequence in � leads

to the same space with an equivalent norm. In particular, for any s 2 R, the Besov space Bs
2;2(R

n) coincides with the Sobolev

space Hs
2(R

n), i.e., Bs
2;2(R

n) = Hs
2(R

n). Moreover, denoting by W s
p (R

n) the Sobolev-Slobodeckij spaces (de�ned in the classical

way through their norms), we have the relations (see, e.g., [72], [5])

W s
p (R

n) = Bs
p;p(R

n); s 2 R n Z; (A.5)

W k
p (R

n) = Hk
p (R

n); k 2 Z: (A.6)

Let s0; s1 2 R, 1 < p0�p1 <1 be such that s1 �
n

p1
< s0 �

n

p0
; and 0 < q0; q1 � 1. Then the embedding

Bs0
p0;q0(R

n) ,! Bs1
p1;q1(R

n) (A.7)

is continuous (cf. [72, Theorem in Section 2.7.1 and Proposition 2(ii) in Section 2.3.2], [66, Remark 2 in Section 2.2.3]). Note

that Rn in (A.7) can be replaced by a domain 
 2 Rn.

Let us also recall the following useful inclusions between Besov spaces and Bessel potential spaces. Assume that 1 � q1 �
q2 � 1, 1 � p; q � 1 and s1 < s < s2. Let p

0 denote the conjugate exponent of p, i.e., 1
p0
= 1� 1

p
. Then we have the following

continuous embeddings,

Bs
p;q1(R

n) ,! Bs
p;q2(R

n); Bs
p;minfp;p0g(R

n) ,! Hs
p(R

n) ,! Bs
p;maxfp;p0g(R

n); (A.8)

Bs
2;2(R

n) = Hs
2(R

n); Bs2
p;1(R

n) ,! Hs
p(R

n) ,! Bs1
p;1(R

n); (A.9)

(cf., e.g., [3, Chapter 6], [71, (3.2)], [62, (4.19)]), which imply the continuity of the embedding

Bs2
p;q(R

n) ,! Bs1
p;q(R

n): (A.10)

These embeddings hold also when Rn is replaced by a bounded Lipschitz domain (see [3, Chapter 6], [73, (8)]).

The scales of Bessel potential and Besov spaces can be obtained by the method of complex interpolation. Indeed, if s0; s1 2 R,
s0 6= s1, p0; p1 2 (1;+1), q0; q1 2 (1;+1) and � 2 (0; 1), then (cf., e.g., [72], [61, Theorem 11.1.2], [5, Theorem 3.1]):[

Hs0
p0(R

n); Hs1
p1(R

n)
]
�
= Hs

p(R
n);

[
Bs0
p0;q0(R

n); Bs1
p1;q1(R

n)
]
�
= Bs

p;q(R
n); (A.11)

where s = (1� �)s0 + �s1,
1
p
= 1��

p0
+ �

p1
and 1

q
= 1��

q0
+ �

q1
.

Moreover, the scale of Besov spaces can be also obtained by using the method of real interpolation of Sobolev spaces. Indeed,

for p; q 2 (1;+1), s0 6= s1, and � 2 (0; 1), we have the following real interpolation property(
Hs1
p (R

n); Hs2
p (R

n)
)
�;q

= Bs
p;q(R

n;Rn); (A.12)

where s = (1� �)s0 + �s1 (cf., e.g., [1, Theorem 14.1.5], [24, p. 329], [29], [57, (5.38)], [72], [5, Theorem 3.1]).

Formulas (A.11) and (A.12) remain true if Rn is replaced by a Lipschitz domain (cf., e.g., [5, Theorem 3.2, Remark 3.3]).

For the following property we refer the reader to, e.g., [57, relations (3.11) and Proposition 4.2].

Lemma A.1 Let 
 � R
n be a bounded Lipschitz domain. Let S � @
 be an admissible patch. If p0; p1 2 (1;1), s0; s1 2 [0; 1]

or s0; s1 2 [�1; 0], and � 2 (0; 1), then the following complex and real interpolation properties hold

[Hs0
p0(@
); H

s1
p1(@
)]� = Hs

p(@
); [Hs0
p0(S); H

s1
p1(S)]� = Hs

p(S); [H̃s0
p0(S); H̃

s1
p1(S)]� = H̃s

p(S); (A.13)

(Hs0
p0(@
); H

s1
p1(@
))�;q = Bs

p;q(@
); (Hs0
p0(S); H

s1
p1(S))�;q = Bs

p;q(S); [H̃s0
p0(S); H̃

s1
p1(S)]�;q = B̃s

p;q(S); (A.14)

where 1
p
= 1��

p0
+ �

p1
and s = (1� �)s0 + �s1. In (A.14) also s0 6= s1 and q 2 (1;1].
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B. Some general assertions on interpolation theory and continuous operators

Let us consider two compatible couples of Banach spaces, X0; X1 and Y0; Y1. Let X� and Y� be interpolation spaces with respect

to X0; X1 and Y0; Y1, according to [3, De�nition 2.4.1]. If Aj : Xj ! Yj , j = 0; 1 are linear continuous compatible operators

(i.e., A0jX0\X1 = A1jX0\X1) then they induce the operator A+ : X0 + X1 ! Y0 + Y1, such that A+x := A0x0 + A1x1, for any

x 2 X0 + X1, where x = x0 + x1, xj 2 Xj , and kA+k � max(kA0k; kA1k), cf. [3, Section 2.3, Eq. (3)]. Further, X� � X0 + X1

and the operator A� := A+jX�
is linear and continuous. In the following assertion we consider some cases when the interpolation

preserves isomorphism properties of operators.

Lemma B.1 Let X0; X1 and Y0; Y1 be two compatible couples of Banach spaces. Let X� and Y� be interpolation spaces with

respect to X0; X1 and Y0; Y1. Let Aj : Xj ! Yj , j = 0; 1, be linear continuous compatible operators that are isomorphisms. Let

A� : X� ! Y� be the operator induced by Aj .

(i) If the operators Rj : Yj ! Xj , inverse to the operators Aj : Xj ! Yj , j = 0; 1, respectively, are compatible (i.e., R0jY0\Y1 =
R1jY0\Y1), then A� : X� ! Y� is an isomorphism.

(i i) If X0 � X1, then A� : X� ! Y� is an isomorphism.

(i i i) If there exist linear subspaces X� � X0 \ X1 and Y� � Y0 \ Y1 such that Y� is dense in Y0 \ Y1 and the operator

A� := A0jX� = A1jX� : X� ! Y� is an isomorphism, then A� : X� ! Y� is an isomorphism.

Proof. Let us prove item (i). Since the inverse operators Rj : Yj ! Xj are compatible, they induce a continuous operator

R+ : Y0 + Y1 ! X0 + X1, such that R+y := R0y0 + R1y1, for any y 2 Y0 + Y1, where y = y0 + y1, yj 2 Yj , and continuous

operator R� = R+jY� : Y� ! X�. Let us show that the operator R� is inverse to A�. Indeed, any x 2 X� can be represented

as x = x0 + x1, where xj 2 Xj , and then

R�A�x = R+A+x = R+A+(x0 + x1) = R+(A0x0 + A1x1) = R0A0x0 + R1A1x1 = x0 + x1 = x:

Similarly, any y 2 Y� can be represented as y = y0 + y1, where yj 2 Yj , and then

A�R�y = A+R+y = A+R+(y0 + y1) = A+(R0y0 + R1y1) = A0R0y0 + A1R1y1 = y0 + y1 = y:

This proves that R� : Y� ! X� is the operator inverse to A� : X� ! Y� and hence the latter one is an isomorphism.

To prove item (ii) we remark that the inclusion X0 � X1, the compatibility of the operators Aj : Xj ! Yj , j = 0; 1, and

the invertibility of the operator A0 : X0 ! Y0 imply that Y0 � Y1. Then the invertibility of the operator A1 : X1 ! Y1 implies

R1jY0 = R0, i.e., the compatibility of the inverse operators to the operators Aj : Xj ! Yj , j = 0; 1, which reduces item (ii) to

item (i).

Let us prove item (iii). If Aj : Xj ! Yj , j = 0; 1, are isomorphisms then there exist continuous inverse operators Rj : Yj ! Xj ,

j = 0; 1. Let us prove that Rj are compatible operators. Let R� : Y� ! X� be the inverse to the operator A� := A0jX� = A1jX� :
X� ! Y�. Then for any  2 Y�, there exists � 2 X� such that  = A�� = A0� = A1�. Hence R� = � = R0 = R1 , i.e.,

R� = R0jY� = R1jY� .
Due to the density of Y� in Y0 \ Y1, for any y 2 Y0 \ Y1 there exists a sequence f ig1i=1 � Y� converging to y in Y0 \ Y1

and hence in Y0 and in Y1. Then R� 
i 2 X� � X0 [X1 and due to continuity of the operators Rj : Yj ! Xj , j = 0; 1,

limi!1 R� 
i = limi!1 Rj 

i = Rjy in Xj for j = 0; 1, which implies R1jY0\Y1 = R2jY0\Y1 , i.e., the inverse operators Rj : Yj ! Xj ,

j = 0; 1 are compatible.

Employing now item (i) concludes the proof of item (iii). �

Note that item (iii) of Lemma B.1 is available in [24, Lemma 8.4] for the cases, when the image and domain spaces coincide,

i.e, Xj = Yj , under the additional assumptions that X� = Y� is a Banach space.

Let us give the following useful result in the complex interpolation theory (cf., e.g., [12, Theorem 2.7, Corollary 2.8] and the

references therein, see also [44, Appendix B]).

Lemma B.2 Let X0; X1 and Y0; Y1 be two compatible couples of Banach spaces and Aj : Xj ! Yj , j = 0; 1, be two continuous

compatible linear operators. Let X� := [X0; X1]� and Y� := [Y0; Y1]� denote the complex interpolation spaces of X0; X1 and Y0; Y1,

respectively, for each � 2 (0; 1). If there exists a number �0 2 (0; 1) such that A�0 : X�0 ! Y�0 is an isomorphism, then there

exists " > 0 such that the operator A� : X� ! Y� is an isomorphism as well, for any � 2 (�0 � "; �0 + ").

Remark B.3 The extension of Lemma B.2 to the case of two compatible couples of quasi-Banach spaces, X0; X1 and Y0; Y1,

such that X0 + X1 and Y0 + Y1 are analytically convex can be found in [61, Theorem 11.9.24] and the references therein. Note

that any Banach space is analytically convex (cf., e.g., [61; p:223]).

Finally, let us mention the following useful result (cf, e.g., [61, Lemma 11.9.21]).

Lemma B.4 Let X1; X2 and Y1; Y2, be Banach spaces such that the embeddings X1 ,! X2 and Y1 ,! Y2 are continuous, and

also that the embedding Y1 ,! Y2 has dense range. Assume that T : X1 ! Y1 and T : X2 ! Y2 are Fredholm operators with the

same index, ind (T : X1 ! Y1) = ind (T : X2 ! Y2). Then KerfT : X1 ! Y1g = KerfT : X2 ! Y2g:
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